We use cookies to improve your experience with our site.

基于边缘计算的智能路网分布式协同任务调度算法

CA-DTS: A Distributed and Collaborative Task Scheduling Algorithm for Edge Computing Enabled Intelligent Road Network

  • 摘要:
    研究背景 自动驾驶不可能在“真空”的理想状态下在道路上行驶,智能汽车还需要一个基于智能路网(IRN)的道路支持系统。随着信息服务、驾驶安全和交通效率等应用的大量涌现,计算密集型或延迟敏感型任务服务给IRN的计算、通信和存储带来巨大挑战。通过结合边缘计算和车联网技术,边缘计算支持的IRN (EC-IRN)可以处理复杂、异构和动态的车路环境。然而,配备边缘服务器的单个路边计算单(RSU)可能无法完成其覆盖区域内的卸载任务。此外,现有的研究方法大多考虑的是一次性优化,在动态变化的EC-IRN环境中可能无法达到预期的性能。
    目的 本文主要研究EC-IRN环境下RSU的协同任务调度问题。每个RSU负责其覆盖区域内所有终端设备(例如,车辆、传感器和摄像机)的卸载计算任务。 为了解决RSU中可能出现的计算过载和未配置服务请求任务的问题,本文致力于设计一种分布式协同调度算法,使RSU能够独立决策,以最小化每个RSU产生的任务的长期总延迟为目标。
    方法 为了最小化长期任务延迟,通过指定所考虑EC-IRN环境场景中涉及的博弈元素,将协作任务调度过程建模为马尔可夫博弈。为了解决马尔可夫博弈中的奖励最大化问题,结合反事实的多智能体决策梯度方法(COMA)和动作语义网络(ASN)的优点,提出了一种基于分布式多智能体深度游强化学习()的协同任务调度算法CA-DTS。仿真实验结果表明,所提的CA-DTS算法在不同数量的RSU、不同数量的任务服务、不同任务到达率以及不同的通信速率下,都能取得最低的长期任务延迟,保持良好的拓展性和稳定性。
    结果 测试平台的系统实验结果表明,在人脸识别任务和车牌识别任务所提的CA-DTS算法与其他对比的基准算法相比调度延迟最低,任务成功率也是最高
    结论 在一个完全分散的EC-IRN环境中实现不同RSU之间的协作调度是一个挑战。本文提出了一种基于MADRL的EC-IRN协同任务调度算法CA-DTS,该算法利用了COMA和ASN的优势,实现了多个RSU之间的协同。CA-DTS具有较快的收敛速度和较低的平均任务延迟。不同场景下的仿真结果表明,CA-DTS具有良好的可扩展性和鲁棒稳定性

     

    Abstract: Edge computing enabled Intelligent Road Network (EC-IRN) provides powerful and convenient computing services for vehicles and roadside sensing devices. The continuous emergence of transportation applications has caused a huge burden on roadside units (RSUs) equipped with edge servers in the Intelligent Road Network (IRN). Collaborative task scheduling among RSUs is an effective way to solve this problem. However, it is challenging to achieve collaborative scheduling among different RSUs in a completely decentralized environment. In this paper, we first model the interactions involved in task scheduling among distributed RSUs as a Markov game. Given that multi-agent deep reinforcement learning (MADRL) is a promising approach for the Markov game in decision optimization, we propose a collaborative task scheduling algorithm based on MADRL for EC-IRN, named CA-DTS, aiming to minimize the long-term average delay of tasks. To reduce the training costs caused by trial-and-error, CA-DTS specially designs a reward function and utilizes the distributed deployment and collective training architecture of counterfactual multi-agent policy gradient (COMA). To improve the stability of performance in large-scale environments, CA-DTS takes advantage of the action semantics network (ASN) to facilitate cooperation among multiple RSUs. The evaluation results of both the testbed and simulation demonstrate the effectiveness of our proposed algorithm. Compared with the baselines, CA-DTS can achieve convergence about 35% faster, and obtain average task delay that is lower by approximately 9.4%, 9.8%, and 6.7%, in different scenarios with varying numbers of RSUs, service types, and task arrival rates, respectively.

     

/

返回文章
返回