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Abstract Conventional community detection approaches in complex network are based on the optimization of a priori
decision, i.e., a single quality function designed beforehand. This paper proposes a posteriori decision approach for community
detection. The approach includes two phases: in the search phase, a special multi-objective evolutionary algorithm is designed
to search for a set of tradeoff partitions that reveal the community structure at different scales in one run; in the decision
phase, three model selection criteria and the Possibility Matrix method are proposed to aid decision makers to select the
preferable solutions through differentiating the set of optimal solutions according to their qualities. The experiments in five
synthetic and real social networks illustrate that, in one run, our method is able to obtain many candidate solutions, which
effectively avoids the resolution limit existing in priori decision approaches. In addition, our method can discover more
authentic and comprehensive community structures than those priori decision approaches.
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1 Introduction

Analysis of large complex networks, such as social
network, World Wide Web, telecommunication network
and biological network, have drawn great interest in
various research communities. One of the key prob-
lems in the field is “how to describe/explain its com-
munity structure”[1]. This topic is important because
these communities often play special roles in the net-
work systems. Detecting communities (or modules) can
be a way to identify substructures corresponding to im-
portant functions.

A loose definition of the community is the group
of nodes that are densely interconnected but only spa-
rely connected with the rest of the network[2-3]. Many
methods and algorithms have been developed for com-
munity detection (CD)[4-5]. Most contemporary com-
munity detection algorithms choose a cost function that
measures the quality of community partitions first, and
then optimize this function through searching the so-
lution space. For example, community detection with
the modularity, a popular quality function proposed by
Newman[1], is equivalent to a modularity optimization.
Some other quality functions have also been proposed,
such as the “cut” function in spectral method[6] and

the “description length” in information theoretic-based
method[7]. From the perspective of decision making,
these algorithms can be regarded as a priori preference
articulation, that is, a single objective function is de-
signed beforehand and the algorithm returns a single
solution as results.

Although these priori approaches achieve great suc-
cesses in artificial and real networks, they have some
fundamental drawbacks. These algorithms attempt to
optimize just one quality function and this confines
the solution to a particular community structure pro-
perty. And thus, it often causes a fundamental discrep-
ancy that different algorithms may produce distinct
solutions for the same network. Moreover, these pri-
ori approaches have the resolution limit problem. For-
tunato and Barthelemy[8] showed mathematically that
the modularity optimization has a resolution limit, that
is, modularity optimization fails to find small commu-
nities in large networks, which raises important con-
cerns about the reliability of the modules detected using
these techniques, or more broadly using any other single
quality functions. In order to avoid the resolution limit
existing in the modularity optimization, some other
quantitative measures have also been proposed, for
example, the Hamiltonian-based method introduced
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by Reichardt and Bornholdt (RB)[9] and a multiple
resolution procedure proposed by Arenas, Fernandez
and Gomez (AFG)[10]. However, these methods still
have two disadvantages: high time complexities due to
many runs through tuning the parameters, and the si-
milar resolution limit due to a single objective used[11].
In addition, many contemporary algorithms require pri-
ori information: the number of communities, which is
usually unknown for real networks. Last but not the
least, a single fixed community partition returned by
most contemporary algorithms may not be suitable for
the networks with multiple potential structures. For
example, a fixed community partition cannot reveal the
hierarchical or overlapping structures. However, the
overlapping and hierarchical structures[12] are pervasive
in real networks[12].

Generally, there are three decision making diagrams
when multiple objectives present: priori, posteriori, and
progressive[13]. The conventional community detection
approaches fall in the priori decision making category,
that is, the Decision Maker (DMer) firstly designs an
objective function that captures the notion of commu-
nity, and then optimizes the objective. A single solution
is usually returned. The progressive methods usually
make a decision during the optimization process. In
the posteriori decision approach, the DMer is usually
presented with a set of optimal candidate solutions ob-
tained through searching the solution space and then
the DMer makes a decision to choose the proper solu-
tions from that set. With the posteriori approach, a
community detection algorithm returns a set of solu-
tions that contain community partitions with different
sizes, which may avoid the disadvantages existing in the
priori approaches. Moreover, the real social networks
usually are complex and uncertain. They not only
have the complex hierarchical or overlapping structures,
but also may evolve with time or other factors. As
a consequence, a single community partition returned
by the priori approaches hardly discovers the real dy-
namic community structure and it is hard to control
in progressive approaches. In contrast, the posteriori
approaches are easy to control and they return a set
of optimal solutions with the structural and functional
information in different angles, which provides DMers
more choices to select proper models and analyze the
internal implicit structures.

After a review of the related work, this paper pro-
poses a posteriori decision approach for CD. As a pow-
erful posteriori decision approach, the multi-objective
evolutionary algorithm is applied to detect the commu-
nity structure in this paper. The approach includes two
phases. In the first phase, a special multi-objective evo-
lutionary algorithm (MOEA) is designed to generate a

set of optimal solutions. Then, in the second phase, we
propose three model selection methods and the Possibi-
lity Matrix to differentiate the set of optimal solutions,
which assists the DMers to select the preferable ones
from them. The method will be validated not only in
the synthetic hierarchical, overlapping and random net-
works but also two social networks (i.e., Karate network
and coauthorship network).

2 Related Work

Many different algorithms have been designed to
analyze the community structure in complex networks.
The algorithms use methods and principles of physics,
artificial intelligence, graph theory and even electrical
circuits[5]. One of the most known algorithms proposed
so far is the Girvan-Newman (GN) algorithm that intro-
duces a divisive method by iteratively cutting the edge
with the greatest betweenness value[1]. Some improved
algorithms have been proposed[14-15]. These algorithms
are based on a foundational measure criterion of com-
munity, modularity, proposed by Newman[1]. The
larger the value is, the more accurate the community
partition would be. As a consequence, the community
detection becomes a modularity optimization problem.
Because the search for the optimal (largest) modularity
value is an NP-complete problem[16], many heuristic
search algorithms have been applied to solve the op-
timization problem, such as extremal optimization[17],
simulated annealing[3] and genetic algorithm[18].

Some other criteria are also proposed as the opti-
mization objective. The Hamiltonian-based method in-
troduced by Reichardt and Bornholdt (RB)[9] is based
on considering the community indices of nodes as spins
in a q-state Potts model. Recently, Arenas, Fernandez
and Gomez (AFG)[10] proposed a multiple resolution
procedure that allows the modularity optimization to
go deep into the structure. These methods vary the
thresholds by using a tuning parameter in their crite-
ria and investigate the community structure at various
resolutions. The modularity can be regarded as a spe-
cial case of these two criteria. In addition, Fosvall and
Bergstrom[7] proposed an information-theoretic formu-
lation for the concept of modularity, in which commu-
nity structures are an optimal compression of its topo-
logy. Although these criteria could effectively assess
the quality of communities, the recent research shows
that the optimization based on a single criterion (i.e.,
the priori approaches) has a fundamental disadvantage.
Fortunato and Barthelemy[8] found that the modularity
optimization may fail to identify modules smaller than
a scale which depends on the total size of the network
and on the degree of interconnectedness of the modules,
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even in the cases where modules are unambiguously de-
fined. Kumpula et al.[11] further discussed a similar
limited resolution when a global energy-like quantity is
optimized, for example, the former two criteria (RB[9]

and AFG[10]).
Recently, several researches pointed out that real

networks have hierarchical structures with ubiquitous
overlapping communities. Shen et al.[19] proposed novel
covariance and correlation matrix to detect multi-scale
community structures based on dimension reduction.
Lancichinetti[20] et al. proposed a local optimization
method of a fitness function, in which the hierarchi-
cal and overlapping community structures are revealed
by peaks in the fitness function and parameter tuning.
The maximal clique and an extension of modularity into
the overlapping scenario are also applied to detect the
overlapping and hierarchical communities[21-22]. These
approaches usually optimize a priori objective function,
and thus they can be considered as priori approaches.

The genetic algorithm (GA), as an effective opti-
mization technique, has also been used for community
detection. In order to optimize the modularity, the
GAs in [18, 23] use the cluster centers and the locus-
based adjacency as the encoding scheme, respectively.
Pizzuti proposed another GA to optimize the “com-
munity score” criterion[24-25]. These algorithms have
the advantage that the number of communities can
be automatically determined during the evolutionary
process. However, they also have the resolution limit,
since a single objective is optimized. More recently,
some researchers regard the CD as a multi-objective
optimization problem (MOP) and solve the MOP with
MOEAs[26-27]. Pizzuti[27] proposed the MOGA-Net to
optimize the community score and community fitness.
Shi et al.[26] proposed an MOEA to optimize two com-
ponents of modularity Q. These two multi-objective
methods show their advantages in detecting more ac-
curately community structures. However, they do not
further explore the benefits and properties of the mul-
tiple Pareto optimal solutions returned by the multi-
objective methods.

3 Posterior Decision for Community Detection

In this section, we propose a posteriori approach:
multi-objective evolutionary algorithm for community
detection (MOCD). The approach consists of two
phases. The first community detection phase applies
a special MOEA to discover communities, and returns
a set of optimal solutions. The second model selection
phase proposes three community selection criteria and
a Possibility Matrix method to assist DMer’s decision
making.

The rationality of applying MOEA to CD is as

follows. Firstly, CD can be regarded as a special case
of clustering problems, because it has the similar defi-
nition with clustering. The concept of a cluster is a
generalization of what humans perceive, as densely con-
nected “patches” within data space, whereas a human
intuition is inherently difficult to capture by means
of single objective[28]. As a consequence, the single-
objective solution may not holistically reveal the in-
trinsic structure. In addition, some researchers have
also been aware that enumerating the modules in a net-
work is a tradeoff among multi-objectives[7-8,16]. For
example, Fortunato et al.[8] believed that finding the
maximum modularity is a tradeoff between the num-
ber of modules and the value of each term, and Ros-
vall and Bergstrom[7] also thought that enumerating
the modules in a network has an inevitable tradeoff
between the amount of the structure information of
a network and its description length. Thus defining
CD as an MOP reflects the inherent characteristics of
CD. On the other hand, Evolutionary Algorithm (EA)
becomes an increasingly popular approach for solving
MOPs and many MOEAs have been suggested[29]. This
is because the MOPs usually have no single optimal so-
lution, which makes EA returning a set of promising
solutions preferable to an algorithm returning only one
solution based on some weighting of the objectives. The
MOEAs use Pareto dominance to guide the search, and
return a set of non-dominated solutions (i.e., Pareto
optimal solutions) as results. As a successful posteriori
decision approach, MOEA has the potential to avoid
the disadvantages existing in those priori approaches,
and thus this paper employs MOEA as the basic algo-
rithm framework.

3.1 Community Detection Phase

This subsection designs a special MOEA suitable for
CD. Although there are many successful MOEAs, when
they are applied to CD, many components need to be
redesigned according to CD’s characteristics. These
components include objective functions, genetic repre-
sentation, operators, etc.

3.1.1 Algorithm Framework

This paper selects a well-known MOEA, NSGA-
II[30], to form the basis of MOCD’s community disco-
very phase. NSGA-II transforms the M objectives to
a single fitness assignment by the creation of a num-
ber of fronts, sorted according to non-domination. Du-
ring the fitness assignment, the individuals are divided
into different fronts according to their dominating rela-
tionships. After each front has been created, its mem-
bers are assigned crowded distance to be used later for
niching. In each generation, N new individuals are
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generated, where N is the population size. The N best
individuals are selected for the next generation from
the combination of the new-generated individuals and
the individuals in the current generation. In this way, a
huge elite set can be kept from generation to generation.
The main framework of the algorithm is illustrated in
Algorithm 1. The detailed implementation can be seen
in [30].

Algorithm 1. Main Framework of MOCD

1: procedure

2: generate P0 at random

3: set P0 = (F1, F2, . . .) = non-dominated-sort(P0)

4: for all Fi ∈ P0 do

5: crowding-distance-assignment(Fi)

6: end for

7: set t = 0

8: while (not done) do

9: generate child population Qt from Pt

10: set Rt = Pt ∪Qt

11: set P0 = (F1, F2, . . .) = non-dominated-sort(P0)

12: set Pt+1 = Φ

13: set i = 1

14: while (|Pt+1|+ |Fi| < N) do

15: crowding-distance-assignment(Fi)

16: set Pt+1 = Pt+1 ∪ Fi

17: set i = i + 1

18: end while

19: sort Fi on crowding distances

20: Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt + 1|)]
21: set t = t + 1

22: end while

23: return F1

24: end procedure

Algorithm 1 is the main framework. To apply
NSGA-II to the community detection problem, there
is much work to do. Two or more objective functions
should be determined according to the characteristics
of CD. Moreover, a community partition should be en-
coded through a genetic representation, and the cor-
responding genetic variation operators need to be de-
signed. These choices are nontrivial and are crucial
to the performance and particularly to the scalability
of the algorithm. The design of an effective EA for
CD requires a close harmonization of the encoding, the
operators, and the objective functions, and so that the
effective search space can be reduced and the search
can be effectively guided. Our choices for these compo-
nents, determined after extensive experimentation, are
described next.

3.1.2 Objective Functions

Objective function (i.e., fitness function), which
guides the search process, is one of the most impor-
tant components in MOEAs. The objective functions
quantify the optimality of a solution, so we should
select optimization objectives that reflect the funda-
mentally different aspects of a good community parti-
tion. Modularity is a foundational quality index for CD.
Given a simple graph G = (V, E), we have the following
definition[1]:

Q(C) =
∑

c∈C

[E(c)
m

−
(∑

v∈c deg(v)
2m

)2]
, (1)

where the sum is over the modules of the partition,
|E(c)| is the number of links inside module c, m is the
total number of links in the network, C is a partition
result, and deg(v) is the degree of the node v in mo-
dule c (it is same in the following sections). According
to the definition, in order to maximize the modulari-
ity Q, we should maximize the first term, while mini-
mizing the second term. Maximizing the first term in-
creases the number of edges contained within clusters
(i.e., “densely interconnected”). Minimizing the second
term tends to split the graph into many clusters with
small total degrees each (i.e., “sparely connected with
the rest”). These two complementary terms reflect two
fundamental aspects of a good partition. The modular-
ity is an intrinsic trade-off between these two objectives.

In this paper, we select these two terms as the ob-
jective functions. In order to formulate the problem
as a minimal optimization problem, we revise the first
term. The first objective function minimizes 1 minus
the inter-link strength of a partition, and it is called
inter objective.

inter(C) = 1−
∑

c∈C

|E(c)|
m

. (2)

The second objective function minimizes the intra-link
strength of a partition, and it is called intra objective.

intra(C) =
∑

c∈C

(∑
v∈C deg(v)

2m

)2

. (3)

According to the two definitions, we found that

Q(C) = 1− inter(C)− intra(C). (4)

The important reason in the choice of these objective
functions is their potential to balance each other’s ten-
dency to increase or decrease the number of communi-
ties, enabling the use of a representation that does not
fix the number of communities (k). While the value as-
sociated with the inter objective necessarily improves
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with an increasing number of communities, the oppo-
site is the case for intra objective. The conflict of the
two objective functions tradeoffs the two objectives du-
ring the optimization, keeps the number of communities
dynamically and avoids the convergence of trivial solu-
tions (the detailed analysis can be seen in [29]). More
objective functions can be used. However, our experi-
ments indicate that the additional objective functions
do not necessarily lead to better solutions, but may
result in some practical difficulties, such as the larger
search space and more candidate solutions. We will ex-
plore more potential objective functions in the further
work.

3.1.3 Genetic Representation

The biological and social complex networks are usua-
lly represented as graphs consisting of nodes and links,
and then the communities to be detected are groups
of nodes. When the EA is applied to CD, a commu-
nity partition needs to be encoded in a character string
(i.e., genotype) with the genetic representation, and in-
versely a genotype (i.e., a solution of the problem or
an individual in the population) can also be decoded
into a community partition. This paper employs the
locus-based adjacency representation[30] illustrated in
Fig.1. In this graph-based representation, each geno-
type g consists of n genes g1, g2, . . . , gn and each can
take one of the adjacent nodes of node i. Thus, a value
of j assigned to the i-th gene is then interpreted as a
link between nodes i and j. In the resulting solution,
they will be in the same community. The decoding of
this representation requires the identification of all con-
nected components. All nodes that belong to the same
connected component are then assigned to one commu-
nity. Using a simple backtracking scheme, this decoding
step can be performed in linear time[23].

According to the genetic structure, we found that
the encoding approach cannot represent all partitions

of nodes. For example, the genetic representation
cannot combine two disconnected subgraphs into one
community, and thus one may argue that the solutions
with a good community structure may not be in the so-
lution space constructed by the genetic representation.
Recently, Brandes et al.[16] have analyzed the basic
structural properties of the clustering with maximum
modularity and proposed that “a clustering of maxi-
mum modularity does not include disconnected clus-
ters”. Although the modularity optimization has the
resolution limit[8], the community partition with a large
modularity usually is a good solution. Because the ge-
netic representation contains all varieties of connected
subgraphs, these properties promise that the commu-
nity with a good structure can be represented with the
genetic representation.

The locus-based adjacency encoding scheme is sui-
table for CD due to the following advantages. Most
importantly, there is no need to fix the number of com-
munities in advance, as it is automatically determined
in the decoding step. Many methods need some pri-
ori knowledge such as the number of communities or
threshold settled, whereas MOCD does not require any
priori information. Another important advantage of
this scheme is that the search space constructed by the
representation is reduced significantly. In the former
GA-based method[18], Tasgin and Bingol used a num-
ber ranging from 1 to n to represent the community a
node belongs to, which results in a search space with the
complexity O(nn). Brandes et al.[16] cast the problem
of maximizing modularity into an integer linear pro-
gram (ILP) with complexity O(n2n

) in the search space.
The complexity of the search space constructed by the
locus-based adjacency representation is O(dn) (d is the
degree of nodes). The complexity is much smaller than
that of the other representations, because d is much
smaller than n for most real problems. With the re-
duced search space, MOCD can obtain more accurate

Fig.1. Illustration of the locus-based adjacency representation. (a) The topologic of the graph representing a complex network. (b)

One possible genotype. (c) How (b) is translated into the graph structure, for example node 0 links to node 3, since gene g0 is 3. (d)

The partition result.
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solutions in less time. Furthermore, this representa-
tion is suitable for the standard crossover operators
such as uniform one-point or two-point crossover. A ge-
netic algorithm with the locus-based adjacency encod-
ing scheme in [23, 31] (called GACD) have validated the
effectiveness of the encoding scheme. For most bench-
mark problems, GACD finds the maximal Q values,
whereas its running time is much shorter than that of
GN and Tasgin and Bingol’s GA[23].

3.1.4 Operators and Initialization

Based on the locus-based adjacency representation,
the crossover operation in MOCD is done by intersect-
ing two chromosomes randomly selected from the popu-
lation. For simplicity, the two chromosomes are called
source and destination, respectively. Firstly, a gene is
selected randomly from the source chromosome, and
then we iteratively search for the gene values that the
gene links to, and transfer these values in source chro-
mosome to the corresponding genes in the destination
chromosome. The exchange of gene segments is bidi-
rectional. The crossover operator is prone to replicate
the good structures generated by evolution to the new
individual. Moreover, it is able to effectively generate
the individual with different structures. The operator’s
computational complexity is O(l) (where l is the length
of the gene segment, namely the size of the community
selected) l is usually smaller than n.

In the mutation operation, we randomly select some
genes and replace them with other randomly selected
adjacent nodes.

In the initialization, we randomly generate indivi-
duals with the predefined number size (see Line 2 of
Algorithm 1). For each individual, each gene gi ran-
domly takes one of its adjacent nodes.

In Line 9 of Algorithm 1, two parameters λcro and
λmut are used to control the ratio of crossover and mu-
tation operations, respectively, and λcro + λcro = 1. In
our implementation, the halting criterion (see Line 8 of
Algorithm 1) is that the running generation is equal to
a predefined value gen.

3.2 Model Selection Phase

MOCD does not return a single solution, but a set
of Pareto optimal solutions. These community parti-
tions correspond to different tradeoffs between the two
objectives and also consist of communities of different
sizes. Domain expertise can be leveraged to make the fi-
nal decision through analyzing the alternative solutions.
This is crucial to a problem with unknown structure,
like CD. In addition, the DMer may desire that the
set of candidate solutions can be further narrowed or
some representative ones can be recommended. In this

subsection, we therefore propose some methods to eva-
luate the quality of the Pareto optimal partition solu-
tions. These methods are able to further identify some
promising partitions from the optimal solutions.

Formally, let CSet be the set of community partitions
(i.e., the optimal solution set returned by MOCD), C
be a partition in CSet, and there are k communities in
the partition C: C = c1 ∪ c2 ∪ · · · ∪ ck. A partition
result is also called a clustering model M .

Maximum Q Criterion. The criterion selects the
model with maximum modularity Q. Because of the
relationship of Q and two objective functions (see (4)),
it is easy to select the model with maximum Q, and the
corresponding model is called MQ.

MQ = argmax
C∈CSset

{1− inter(C)− intra(C)}. (5)

Strong Community Criterion. According to the
strong community definition given by Radicchi et al.[14],
each node i in each community c is validated whether
to satisfy the strong definition. If the ratio of commu-
nities satisfying the strong definition is larger than the
predefining threshold λstr , the corresponding partition
result is called strong partition, and the set compris-
ing all the strong partitions is called StrMSet. (kin

i (c)
is the number of edges connecting node to other nodes
belonging to c. kout

i (c) is the number of connections
toward nodes in the rest of the network.)

StrCSet = {c | kin
i (c) > kout

i (c), ∀i ∈ c},

StrRatio(C) =
|StrCSet |
|C| ,

StrMSet(C) = {C|StrRadio(C) > λstr}. (6)

According to the definition, we can find that StrM-
Set contains those good partitions in which the ratio
of strong communities is larger than λstr .

Weak Community Criterion. Similarly, according to
the weak community definition[14], for each partition
result, each community could be verified whether to
satisfy the weak definition. If the ratio of communities
satisfying the weak definition is larger than the pre-
defining threshold λweak , the corresponding partition
result is called weak partition, and the set comprising
all the weak partitions is called WeakMSet.

WeakCSet =
{

c
∣∣∣

∑

i∈c

kin
i (c) >

∑

i∈c

kout
i (c)

}
,

WeakRadio(C) =
|WeakCSet |

|C| ,

WeakMSet = {C|WeakRadio(C) > λweak}. (7)

The definition shows that WeakMSet includes those
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partitions whose weak community ratio is larger than
λweak .

In the definitions, two parameters λstr and λweak

need to be settled in the range from 0 to 1 beforehand,
and they control the size of StrMSet and WeakMSet. If
the networks have obvious community structures, these
two parameters are settled with large values, other-
wise with small values. These three criteria reflect the
quality of solutions from different perspectives. The
maximum Q criterion recommends an optimal solution
MQ in terms of Q to DMers. When λstr = λweak ,
StrMSet ⊆ WeakMSet . And solutions in StrMSet
have more obvious community structure than those in
WeakMSet, because the definition of strong community
is more restrictive than that of weak community.

In order to illustrate the statistical characteristics of
multi-solutions, a Possibility Matrix is proposed to de-
scribe the probability that a pair of nodes belong to the
same community.

Possibility Matrix. The rows and columns of the
matrix correspond to the indices of nodes. For a parti-
tion solution, if two nodes are in the same community,
the corresponding matrix value is 1, or else it is 0. For
multi-solutions, the single Possibility Matrix of each so-
lution is added as an accumulated Possibility Matrix.
The matrix can be converted to a gray graph in which
higher value corresponds to darker gray.

4 Experiments

We validated the effectiveness of MOCD through
three synthetic networks and two real social networks.
The experiments were carried out on a 3GHz and 1 GB
RAM computer running Windows XP.

4.1 Synthetic Network

4.1.1 Hierarchical Network

The hierarchical network is a K40-4 network con-
sisting of a ring of cliques, connected through single

link. The network has 40 cliques, and each clique is
a complete graph with 4 nodes and 6 links. In the
network, it is clear that there are 40 unit communities,
and the connected cliques can also be considered as a
community. The network has been used by Fortunato
and Barthelemy to research the resolution limit in op-
timization of modularity[8].

We ran MOCD with the following parameters: the
population size was 100, the running generation was
100, the crossover ratio was 0.6, and the mutation
ratio was 0.4, λstr and λweak both were 1. We
also ran two popular priori approaches on the net-
work: the betweenness-based heuristic algorithm GN[1]

and the GA-based modularity optimization algorithm
GACD[23]. Note that GACD has the same parameters
with MOCD. In this experiment, the running times of
MOCD, GN, and GACD are 26, 41, and 21 seconds,
respectively.

GN obtained a solution with 16 communities, and
GACD reached the maximal Q value 0.881 with 15 com-
munities. In both solutions, some connected cliques
were combined. According to the construction process,
these two solutions can both be regarded as the cor-
rect partitions. However, they both failed to reveal
the hierarchical characteristic of the network. MOCD
obtained 100 non-dominated solutions which are illus-
trated in Fig.2(a). Please note that the inter and intra
values are normalized (it is the same in the following
section). There are 78 correct partitions in StrCSet
with the number of communities from 26 to 40. There
are two special models in these solutions. As illustrated
in Fig.2(b), the model MQ (labeled I in Fig.2(a)) reveals
the 26 communities with the highest granularity. An-
other special strong community solution (labeled II),
shown in Fig.2(c), reveals all 40 cliques with the lowest
granularity. Most solutions lie between these two solu-
tions. The accumulated Possibility Matrix of all solu-
tions are illustrated in Fig.2(d). We can clearly find the
hierarchical structure in which some large communities

Fig.2. Multiple resolution of modular structure in K40-4 network. (a) The curve of non-dominated solutions. (b) The Possibility

Matrix of the solution labeled with I. (c) The Possibility Matrix of the solution labeled with II. (d) The accumulated Possibility Matrix

of all solutions.
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may contain some connected cliques. Compared to one
solution with the higher granularity returned by GN
and GACD, MOCD can find the communities with dif-
ferent scales in one run, which reveals more structural
information.

Using the experimental data, we analyzed the re-
lationship of the objective values and the number of
communities as shown in Fig.3(a). It is obvious that
with the increase of the number of communities, the in-
ter values increase, whereas the intra values decrease. It
validates that the two objective functions are conflicting
and complementary and the modularity Q is a trade-
off between these two objectives. As for the Q value,
it seems to decrease with the increase of the number
of communities. In order to observe their relationship
more clearly, the relationship of the number of commu-
nities and Q values of solutions in StrMSet is shown in
Fig.3(b). It is clear that with the increase of the number
of communities the Q value trends to become small. As
the experiments illustrated, the priori approaches (e.g.,
GN and GACD) could only reveal the communities with
large sizes. In fact, all the community partitions with

Fig.3. The relationship of the number of communities and the

objective values. (a) The relationship on the optimal solution

set. (b) The relationship on the strong community set.

small sizes discovered by MOCD are also correct. The
experiment further confirms the resolution limit in the
priori approaches with single objective[8]: methods
based on optimizing the modularity measure or other
single criterion may fail to identify modules smaller
than some thresholds. Compared with those priori ap-
proaches, MOCD can discover the hierarchical network
with different scales (i.e., both small and large sizes).

4.1.2 Overlapping Network

The second experiment was on an overlapping net-
work. The network consists of two large communities
A and B, each containing 128 nodes, which have on
average 12 internal links per node. Within A and B,
a subgroup of 32 nodes exist, which we denoted by a
and b, respectively. Every node within this subgroup
had six of its 12 intra community links with the 31
other members of this subgroup. The two subgroups a
and b had on average three links per node with each
other. Additionally, every node had one link with ran-
domly chosen nodes from the network. It is clear that
the network has two large communities (i.e., A and B)
and one overlapping community a&b between A and
B. The similar network has been used by Reichardt
and Bornholdt to discover the overlapping network[9].

MOCD was settled with the following parameters:
the population size was 200, the running generation
was 500, the crossover ratio was 0.6, and the muta-
tion ratio was 0.4, λstr was 0.3 and λweak was 0.5. GN
and GACD were also run on this network, and GACD
was equipped with the same parameters in MOCD. The
running time of MOCD, GN and GACD were 214, 312,
and 198 seconds, respectively.

GN and GACD both revealed the large communi-
ties A and B accurately. However, they were not able
to discover the overlapping structure. MOCD obtained
200 non-dominated solutions which are illustrated in
Fig.4(a). All the solutions were divided into four types:
1 solution for MQ, 9 solutions in StrCSet, 22 solutions
in WeakCSet, and 165 other solutions. We also found
two special clustering models in the figure. The model
MQ (labeled with I in Fig.4(a)) reveals the same com-
munity structure as that of GN and GACD (i.e., two
large communities A and B as illustrated in Fig.4(b)).
Another special partition was a strong community solu-
tion (labeled with II) as shown in Fig.4(c). The parti-
tion consisted of three communities: two large commu-
nities, an overlapping community that was constituted
by the nodes in a and b. The result shows that MOCD
not only finds the obvious large community structure,
but also reveals the implicit overlapping community in
one run.
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Fig.4. Multiple resolutions of modular structure in the overlapping network. (a) The curve of non-dominated solutions. (b) The

Possibility Matrix of the solution labeled with I with a gray graph. (c) The Possibility Matrix of the solution labeled with II. (d) The

accumulated Possibility Matrix of all the solutions.

The overlapping community can be easily identified
through an aggregation of all the solutions obtained
from MOCD. Fig.4(d) shows the accumulated Possibi-
lity Matrix of all the solutions of MOCD. We can see
that an overlapping community which spans from node
98 to node 160 lies between the two large communities.
A single solution obtained by any priori approach, such
as GN or GACD, can hardly discover the overlapping
structures. Whereas, the accumulated Possibility Ma-
trix can easily reveal it with aggregation of all the opti-
mal solutions obtained by MOCD. In [9], Reichardt and
Bornholdt also found the two partitions in Figs. 4(b)
and 4(c) at γ = 0.5 and γ = 1, respectively. However,
in order to discover the correct partition, many runs
should be done to find the proper γ. Compared with
their method, MOCD obtains many partitions includ-
ing the correct partitions in one run and the accumu-
lated Possibility Matrix is able to statistically reveal
the hidden but informative structure.

4.1.3 Random Network

In order to further validate the performance of
MOCD, we compared MOCD with four popular al-
gorithms on a set of random networks with known
structures. Because conventional priori methods only
return a single solution, here we only use one sin-
gle solution with the maximum Q selected from the
solutions set returned by MOCD. We name the so-
lution MOCD-Q. The baseline methods include: 1)
GN[1]: the betweenness-based heuristic algorithm; 2)
GN Fast[15]: the improved version of GN; 3) GACD[23]:
the GA-based modularity optimization algorithm; and
4) INFO[7]: the information-theoretic framework based
algorithm. The random networks are the newly pro-
posed benchmark graphs[32] that account for the hetero-
geneity in the distributions of node degrees and commu-
nity sizes. As suggested in [32], the benchmark graphs
are set as follows: the number of nodes is N = 1500;
the average degree is k = 25 and the maximum degree

is not more than 80; the degree and the community
size distributions are power laws, with exponents γ = 2
and β = 2, respectively. µ is the mixing parameter
that controls the fraction of the links of a node with
the other nodes outside the community of the node.
As µ increases, it becomes harder and harder to iden-
tify the community structure. The Normalized Mutual
Information[32] (NMI) is used to evaluate the perfor-
mance.

The parameters in MOCD-Q and GACD are the
same: the population size is 200, the running generation
is 200, the crossover ratio is 0.6, and the mutation ratio
is 0.4. The experimental results are shown in Fig.5. It is
clear that MOCD-Q reveals the most accurate commu-
nity structures for most networks compared with other
methods, and the superior of MOCD-Q even becomes
more obvious when the community structure becomes
fuzzier.

Fig.5. Comparison of MOCD with other methods on the random

networks with known structure.

4.2 Social Network

We now turn to two real world examples to see
whether these structural properties can indeed be found
in real networks.
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4.2.1 Karate Network

The famous Karate club network analyzed by
Zachary is widely used as a benchmark to test the com-
munity detection methods[1,17,23]. The network consists
of 34 members of a Karate club with nodes and 78 edges
representing friendship between members of the club
which was observed over a period of two years. Due to
a disagreement between the club’s administrator and its
instructor, the club split into two groups. The question
we concern is that if we can detect the real groups.

The following parameters were used in MOCD: the
population size was 50, the running generation was 100,
the crossover ratio was 0.6, and the mutation ratio was
0.4, λstr was 0.5 and λweak was 0.7. GN and GACD
were also ran on this network. GN found five commu-
nities which are distinguished with the color of the in-
terior of nodes in Fig.6(b). GACD divided the network
into 4 groups with the maximal Q value 0.419, which
are distinguished with the shape of nodes. They both
fail to find the correct partition. Fig.6(a) illustrates
the 50 non-dominated solutions returned by MOCD.
The number of communities of those solutions ranges
from 1 to 6. Note that the 50 solutions returned by
MOCD actually include the partition results returned
by GN and GACD. We labeled these two solutions with
III and I, respectively. Moreover, MOCD successfully
revealed the real partition which was denoted by label
II in Fig.6(a). In all, MOCD not only found the com-
munity structures discovered by GN and GACD, but
also revealed the true structure.

4.2.2 Coauthorship Network

The real coauthorship network with 2 122 nodes
and 5 678 edges reflects the coauthorships of the

Beijing University of Posts and Telecommunications
(BUPT)[33]. The nodes and edges represent authors
and coauthorship relations, respectively. This network
was used because the real community partition is known
to authors, and thus it is easy to validate the partition
results. MOCD was settled with the following param-
eters: the population size was 200, the running gen-
eration was 800, the crossover ratio was 0.6, the mu-
tation ratio was 0.4, λstr was 0.2 and λweak was 0.5.
The running time was 550 seconds. GN was also run
on this network and it obtained a partition result in
2 109 seconds. As shown in Fig.7(a), GN obtained one
solution that partitioned each node into a certain com-
munity. MOCD obtained 200 solutions and all the solu-
tions were accumulated to form the Possibility Matrix
shown in Fig.8(a). Note that, in order to demonstrate
the community structure clearly, the order of nodes in
the Possibility Matrix is sorted by their order in the
partition result of the model MQ.

From the graph, we can observe that MOCD reveals
the obvious community structures with the lower gra-
nularity and some nodes are not definitely clustered as
a community. These communities can be roughly ca-
tegorized into three categories: 1) coherent structure;
2) hierarchical structure; and 3) overlapping structure.
In order to analyze their practical meanings, we select
three representative communities from these three cat-
egories, respectively and they are shown from Fig.8(b)
to Fig.8(d). To compare the qualities of the results
of MOCD and GN, we also select three corresponding
communities from Fig.7(a). In other words, the three
pairs of communities in Fig.8(a) and Fig.7(a) have the
same core members. Fig.8(b) displays a coherent com-
munity, which can hardly be further divided. The ac-
tual situation is consistent with the experimental result.

Fig.6. Multiple solutions of modular structure in Karate network. (a) The curve of non-dominated solutions. (b) Three different

partitions. The differences of partitions are made by the color of the boundary of nodes, the color of the interior of nodes, and the

shape of nodes, which correspond to the results of real partition & the solution labeled with II, GN & the solution labeled with III,

and GACD & the solution labeled with I, respectively.
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Fig.7. Partition result in the real coauthor network with GN. (a) The Possibility Matrix of GN’s partition. (b)∼(d) The practical

meaning of the selected communities in (a).

Fig.8. Multiple resolutions of modular structure in the real coauthor network with MOCD. (a) The Possibility Matrix of all solutions.

(b) The practical meaning of the coherent structure. (c) The practical meaning of the hierarchical structure. (d) The practical meaning

of the overlapping structure.

The members in this community, led by both Luo-Ming
Meng and Xue-Song Qiu, are coherent. Their research
interests mainly focus on network management and al-
most all the persons are in the same department. As
for the GN’s partition shown in Fig.7(b), besides Meng
and Qiu’s group, the community also includes two other
relatively independent groups. In fact, the lower right
group is led by Feng Qi, an expertise in telecommu-
nications. Although he was a member of the network
management group led by Meng and Qiu before, he is
now a leader of a new group. The same thing also hap-
pens to the lower right group. Compared with GN,
MOCD identifies the community more correctly.

Fig.8(c) shows an example of the community with
a hierarchical structure. In the real situation, all the
members in this community are in the same lab where
Jun Guo is the director. Gang Liu, another professor,
in the lab leads a different team. Guo’s team and Liu’s
team share the similar research interest, which causes
the formation of two sub-communities under this com-
munity. Fig.7(c) displays Jun Guo’s research commu-
nity obtained by GN. Apparently, this community in-
cludes more sub-communities, such as Jing-Di Wang’s
and Li Zhang’s groups, which are not closely related to
Guo’s group in the real situation. Thus, GN only gives
a large community. It cannot correctly reveal those

sub-communities within it. MOCD is able to uncover
more detailed community information or show its hier-
archical structure.

Fig.8(d) shows an overlapping community. Most
members of the community are the faculty members
in the School of Computer. These members belong to
two laboratories with an overlapping person Bai Wang.
These two laboratories are the intelligent network group
in the State Key Laboratory of Networking and Switch-
ing Technology (SKLNST) led by Fang-Chun Yang and
Jun-Liang Chen, and the Telecommunication Software
Engineering Group (TSEG) with professor Liu-Tong
Xu and Bin Wu. The overlapping part is caused by
Bai Wang who moved from SKLNST to TSEG in 2002.
As shown in Fig.7(d), the corresponding partition in
GN still displays a general structure that reveals two
groups in SKLNST which are led by Junliang Chen
and Jianxin Liao, respectively. It failed to reveal the
implicitly overlapping part. In all, MOCD more cor-
rectly detects the complex community structures than
GN.

4.3 Discussion

In the experiments, five networks including the syn-
thetic and social networks were used to validate the
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effectiveness of MOCD. The optimal solutions returned
by MOCD successfully discovered the underlying hier-
archical and overlapping structures that is hard to be
discovered by any single partition returned by the pri-
ori approaches. The experiments also show that MOCD
can avoid the resolution limit existing in the priori ap-
proaches (e.g., GN and GACD), because MOCD is able
to find small and independent communities. We think
the advantages of MOCD can be explained as follows.
The real social networks usually are complex and un-
certain, because the data of the network are not clean
and full of noise. And thus it is nearly impractical to
describe the community structure with a fixed parti-
tion. MOCD solves the problem by providing many
solutions in one run. These tradeoff solutions describe
the community structure from different angles. A sin-
gle solution of them may ignore some real structures,
but their aggregation (i.e., the Possibility Matrix) can
statistically offset the noise and uncertainty and reveal
the true and comprehensive information.

MOCD requires some parameters settled before run-
ning. There are two types of parameters: four pa-
rameters for MOCD (i.e., population size, running
generation, and the ratio of crossover and mutation),
and two parameters for model selection (i.e., λstr and
λweak ). Selection of GA-related parameters (i.e., first
four parameters) can follow the general rules in that
of MOEA[29]. Problems with large scale may require
larger population size and more running generations
to get good performance. A large ratio of crossover is
helpful to convergence, but it may result in premature.
The ratio of mutation has the opposite effect, that is,
it helps to maintain the population diversity but slow
down the convergence speed. A large crossover ratio
and a small mutation ratio are usually used in MOEAs.
Many experiments have confirmed that MOEAs with
rational parameters could generate steady solutions[29].
Due to the limited space, we do not validate it with ex-
periments in this paper. In the experiments, we chose
the appropriate parameters based on the problem scales
and did not specially tune them. The parameters for
model selection are used to control the size of StrM-
Set and WeakMSet, which does not affect the quality
of solutions. We set the proper parameters for better
demonstration purpose in the experiments. Generally
speaking, the networks will have more obvious commu-
nity structure with larger λstr and λweak .

The fitness evaluation function (i.e., calculating the
values of the objectives) is the most time-consuming
process in the algorithm. Calculating the objective
functions has the complexity O(m), and the decoding
process has the complexity O(n). As a consequence, the
fitness evaluation based on an individual has the com-
plexity O(m + n). The whole complexity of MOCD is

gs2(m+n) which is linear with the scale of the network.
(g is the running generation, and s is the population
size.) Note that the framework of MOCD (i.e., NSGA-
II) has the complexity O(gs2)[30]. More running genera-
tions and larger population size are usually desirable for
large scale problems and lead to longer running time.
However, increasing the population size or running
generation does not yield better results at some point.
As the constant parameters, these values (i.e., g, s) do
not increase the time-complexity of the algorithm. As
we know, most community detection algorithms have
a large time-complexity[5]. Compared with these algo-
rithms, the complexity of MOCD is small. Some multi-
resolution methods (e.g., RB[9] and AFG[10]) apply the
optimization technology (e.g., genetic algorithm, simu-
lated annealing algorithm) to obtain a solution. To ob-
tain multi-resolutions, these algorithms should be run
many times by tuning parameters. However, MOCD
obtains many solutions with only one run.

Similar to the contemporary GAs for CD[18,23-25],
MOCD is also a heuristic search algorithm based on
GA. A difference lies in the two objective functions of
MOCD. Due to the difference, MOCD, as a posteri-
ori approach, can avoid the resolution limit of those
traditional GA-based approaches. With the great suc-
cess of MOEAs, Handle and Knowles[28] have applied
MOEA for clustering (MOEAC). MOCD and MOEAC
both have the same MOEA framework. Because of the
different problem characteristics, MOCD and MOEAC
have many differences in objective functions, operators
and model selection methods. Similar to MOCD, RB[9]

and AFG[10] also provide multiple solutions through
tuning a parameter. In fact, two components in RB
are very similar to the intra and inter objectives, so
RB and MOCD can be considered as two implementa-
tion of single- and multi-objective for the CD optimiza-
tion problem, respectively. In order to obtain multi-
resolutions, MOCD only requires one run, whereas RB
and AFG should be run for many times by tuning
the parameter. Recently, some researchers have pro-
posed to detect communities with MOEA. Our method
is different from MOGA-Net proposed Pizzuti[27] in
many aspects, including objective functions, opera-
tors, and model selection methods. Similar to Shi
et al.’s method[26] in the community detection phase,
our approach has different model selection methods.
Our approach firstly proposes effective model selec-
tion methods to explore the potential benefits of multi-
solutions returned by multi-objective based methods in
detecting the complex community structures (i.e., hier-
archical and overlapping structures).

5 Conclusion

From the decision’s perspective, this paper proposes
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a posteriori decision approach for community detection.
Observing the fact that the community detection is in-
trinsically a multi-objective optimization problem, in
this paper, we propose a posteriori approach, multi-
objective evolutionary algorithm for community detec-
tion (MOCD), to detect complex community structure.
The approach includes two phases. In the first com-
munity detection phase, a special multi-objective evo-
lutionary algorithm is designed to search the solution
space and return a set of optimal solutions. To help
the decision maker (DMer) select proper community
partitions from the optimal solution set, the second
model selection phase further proposes three model se-
lection criteria and the Possibility Matrix that effec-
tively differentiate these optimal solutions according to
their qualities.

Five synthetic and social networks validate the ef-
fectiveness of MOCD. The hierarchical and overlapping
networks experiments illustrate that MOCD is able to
effectively reveal the implicit hierarchical and overlap-
ping communities, simultaneously avoiding the resolu-
tion limit. The random networks with known struc-
tures also validate that MOCD can find more accurate
community structures compared with the state-of-the-
art methods. Two social networks further show the
advantages of MOCD that it not only correctly finds
the independent and compact communities, but also
reveals the valuable underlying structure information
(e.g., overlapping and hierarchical structure) which is
consistent with the real situation.

This paper focuses on the concept of community dis-
covery with a posteriori approach and its practical ad-
vantages. Many interesting issues need further research.
One of them is how to effectively select models from the
candidate solutions and another interesting work is to
design more effective objective functions.
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