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Abstract Transfer learning aims at leveraging the knowledge in labeled source domains to predict the unlabeled data
in a target domain, where the distributions are different in domains. Among various methods for transfer learning, one
kind of algorithms focus on the correspondence between bridge features and all the other specific features from different
domains, and later conduct transfer learning via the single-view correspondence. However, the single-view correspondence
may prevent these algorithms from further improvement due to the problem of incorrect correlation discovery. To tackle this
problem, we propose a new method for transfer learning in a multi-view correspondence perspective, which is called Multi-
View Principal Component Analysis (MVPCA) approach. MVPCA discovers the correspondence between bridge features
representative across all domains and specific features from different domains respectively, and conducts the transfer learning
by dimensionality reduction in a multi-view way, which can better depict the knowledge transfer. Experiments show that
MVPCA can significantly reduce the cross domain prediction error of a baseline non-transfer method. With multi-view
correspondence information incorporated to the single-view transfer learning method, MVPCA can further improve the
performance of one state-of-the-art single-view method.

Keywords transfer learning, multi-view principal component analysis, text mining, sentiment classification

1 Introduction

In machine learning, traditional classification and re-
gression algorithms strictly rely on the i.i.d. assump-
tion, which requires that training and testing data are
independent and identically distributed. However, real
world applications usually show disobedience of this as-
sumption. Let us take the sentiment polarity classifica-
tion of product reviews on Amazon as an example. For
one kind of product selling on Amazon, we can use all
the labeled reviews to train a sentiment polarity clas-
sifier for the reviews of this product. However, new
products are emerging on Amazon every day and lots
of new product reviews will be posted afterwards. How
could these newly posted product reviews be automat-
ically classified as “positive” or “negative”? Of course,
we can achieve this by spending lots of human efforts
and time to annotate huge amount of new reviews to
train a new classifier. But it is so expensive that we can-
not do this all the time. Another easier way is to predict
the sentiment polarity of new reviews by adapting an
existing classifier trained on another domain. However,

different types of product reviews tend to use different
domain specific terms. So the term distributional dif-
ference will cause a lot of troubles for traditional clas-
sification methods. Table 1 shows some domain spe-
cific terms from four domains on Amazon: Book, DVD,
Electronic, Kitchen. This gives us an intuitive impres-
sion on the distributional difference between domains.
To solve this non-i.i.d. classification problem, transfer
learning research has attracted a lot of interest.

Transfer learning tackles the problem of predicting

Table 1. Domain Specific Terms

Book DVD Electronic Kitchen

two-stars script warranty ease

must-read dumb it-worked broken

pages pathetic unreliable kitchen

repetitive atrocious works-great convenient

great-book great-dvd stopped-working cooking

poorly-written predictable memory easy-to

excellent-book intense an-error clean

required-reading pointless battery sharp
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testing instances drawn from a different but related
distribution compared with training instances. Gen-
erally speaking, transfer learning aims at minimizing
the differences between distributions of different do-
mains to minimize the cross domain prediction error.
In this paper, we assume that P (Xs) 6= P (Xt) and
P (Ys) = P (Yt), which are in a common setting of trans-
fer learning. P (Xs) and P (Ys) denote the distributions
of instances and labels in source domain respectively.
P (Xt) and P (Yt) are similarly defined in the target do-
main.

To achieve the goal of minimizing the prediction er-
ror across domains, transfer learning methods aim at
making P (Xs) and P (Xt) less differ. Among proposed
approaches, one kind of algorithms try to learn a low
dimensional semantic space, which is able to depict the
common knowledge across source and target domains.
Represented by the common knowledge in the seman-
tic space, source domain and target domain become
more similar. In this way, Blitzer et al.[1-2] proposes a
single-view transfer learning algorithm, Structural Cor-
respondence Learning (SCL), in which a latent seman-
tic space is generated via a single-view correspondence.
SCL[1-2] seeks to learn the common knowledge across
domains in the semantic space by applying the SVD
procedure to a correspondence matrix. This correspon-
dence matrix represents the statistical correlations be-
tween bridge features and all other features. Briefly,
bridge features are those representative words occurring
frequently across all domains, with detailed specifica-
tion in Subsection 3.2. It is notable that this correspon-
dence matrix mixes up all the other features across do-
mains except bridge features, and measures the statisti-
cal correlations between them. In this paper, we regard
this matrix as a single-view correspondence. Single-
view correspondence can really help knowledge trans-
fer. If the word “well-written” is a unique term in Book
domain, and the word “use-easily” is another unique
term in Kitchen domain, then they may never be corre-
lated since they only occur separately. So if a classifier
f(“well-written”) is trained on Book domain, it has no
prediction power on the word “use-easily” in Kitchen
domain. However, when you consider another bridge
word “great”, which may have strong correlations with
both “well-written” and “use-easily”, f(“well-written”)
becomes predictive on the word “use-easily”. Because
when you see “well-written”, it is assumed that “great”
can be seen in some extend and then the probability of
seeing the word “use-easily” can be estimated.

The above example shows how SCL[1-2] works. How-
ever, SCL has some limitations by utilizing the single-
view correspondence. Let us zoom into the limitations
by digesting a negative example. In DVD domain, if

one product reviewer says “read-the-book”, he means
this DVD is “boring”. So “read-the-book” has high cor-
relation with “boring” in DVD domain. While taking
a look at Book domain, if one product reviewer says
“read-the-book”, he means the book is “well-written”
or “great”. Surprisingly, besides the term “boring”,
“read-the-book” also has high correlations with “well-
written” and “great”. Obviously, it is a contradiction
which is caused by the vague meanings of “read-the-
book” in different domains. If we mix the instances
from Book domain and DVD domain as SCL[1-2] does,
and learn the single-view correspondence matrix on
the mixed dataset, we can get a strong prediction be-
tween “boring” and “great”. In this paper, we call
this phenomenon incorrect correlation discovery. As
these words with vague meanings do appear in senti-
ment texts on the Internet, we may often encounter
incorrect correlations between words if we apply the
single-view transfer learning methods. This problem
would surely decrease the performances of these single-
view algorithms.

In order to alleviate this problem, this paper pro-
poses a new transfer learning method by utilizing
Multi-View Principal Component Analysis (MVPCA).
In MVPCA, firstly we choose m bridge features as
SCL[1-2] does. Secondly, in every single domain, we
learn a correspondence between bridge features and the
other features. We call these correspondences in differ-
ent domains multi-view correspondences. In this way,
we separate the single-view correspondence of SCL al-
gorithm into multiple parts. In every single view of cor-
respondence of MVPCA, those words with vague mean-
ings can only show its domain dependent meaning and
they are not correlated with those contradictory words
simultaneously in the single correspondence. Thus in-
correct correlations between specific words from differ-
ent domains are prevented. Finally, we apply MVPCA
to learn a low dimensional semantic space. In this pro-
cedure, common knowledge of cross domain correlation
is preserved in the eigenvectors as SCL does. Thus,
knowledge transfer can be facilitated.

Compared with previous related work, the main con-
tributions of MVPCA algorithm include the following.

1) This paper points out that words with vague
meanings may do harm to single-view transfer learn-
ing methods. And we propose MVPCA to tackle this
problem in a multi-view perspective. To the best of
our knowledge, no previous work performs multi-view
learning before prediction function f(·) is learned and
no previous transfer learning method aims at this prob-
lem.

2) MVPCA opens a new scope for transfer learning.
In order to learn a low dimensional semantic space,
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multi-view correspondence learning offers a different
way from single-view correspondence learning, which
may achieve neat and clear correspondences between
bridge features and different domain specific features in
each domain. With the neat correspondence informa-
tion incorporated into the single-view correspondence
matrix, experimental results show that the performance
of single-view transfer learning method can be further
improved.

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 describes MVPCA
algorithm in detail. Section 4 illustrates experimental
results to show the effectiveness of MVPCA. Section 5
gives the conclusion and discussion on future work.

2 Related Work

Recently, many transfer learning algorithms have
been proposed in the line of extracting common la-
tent semantic space. Following this intuitive idea,
SCL[1-2], Co-Clustering[3], and Transferred Component
Analysis[4] are applied to learning the low dimensional
semantic space. In these low dimensional semantic
space learning methods, SCL[1-2] is one of the state-
of-the-art transfer learning methods.

Daumé[5] suggests a new feature representation for
both source domain and target domain. In this new
feature space, both domain specific features and shared
common features can be recognized to help improve
knowledge transfer. Although [5] is easy to perform, it
may suffer from “the curse of dimensionality”. Daumé
et al.[6] proposes a different way of transfer via adap-
tation on statistical maximal entropy classifier. Dai et
al.[7] carries out the co-clustering[3] procedure on data
combination of both source domain and target domain
to find a shared latent space across domains. Similarly,
Pan et al.[4] proposes a transferred component analy-
sis to reduce the Maximum Mean Discrepancy (MMD)
as a criterion to measure the difference between do-
mains. All of the methods mentioned above achieve re-
markable performances on knowledge transfer via newly
generated latent space.

It is notable that Pan et al.[8] also propose a multi-
view transfer learning algorithm, which predicts physi-
cal locations via an estimation function mapping from
signal space to physical location space. Resulted from
time variant signal space, multi-view refers to one view
of original estimation function and the other view of
current signal space data, which is utilized to ad-
just the previous estimation function to predict cur-
rent location. MVPCA is different from [8]. On one
hand, MVPCA performs multi-view learning before
prediction function f(·) is estimated, while [8] performs
multi-view adjustment after prediction function on

source domain has been estimated. On the other hand,
before the prediction function is estimated, MVPCA
can employ as much information and as neat correspon-
dence as it could to improve the transferability of the
latent semantic space. The neat correspondence infor-
mation may enable MVPCA to better depict intrinsic
shared structures across domains than [8] does.

Accompanying with the viewpoint of extracting la-
tent semantic space across domains, transfer learning
algorithms aiming at instance weighting are proposed
as well. Dai et al.[9] assign different weights to instances
in different domains, and transfer the knowledge in a
similar way of boosting. Huang et al.[10], Zadrozny[11]

consider domain difference as a sample selection prob-
lem which differs the importance of instances in trans-
fering. Jiang et al.[12] solve an application in natural
language processing in the viewpoint of instance weight-
ing. Besides above algorithms, Raina et al.[13] apply the
sparse coding algorithm[14] to the problem of self-taught
learning and achieves satisfactory performance. Tan et
al.[15] and Dai et al.[16] propose modified versions of
Naive Bayes to tackle the transfer learning in different
viewpoints. Sandler et al.[17] incorporate manifold in-
formation to depict the relationship between features,
and facilitate knowledge transfer via feature network
constraint.

3 Transfer Learning via Multi-View
Perspective

3.1 Problem Setting and Notations

Before introducing Multi-View Principal Compo-
nent Analysis algorithm in detail, we should specify the
problem setting and notations. In our transfer learning
setting, domain and task are two basic concepts follow-
ing the common transfer learning analysis.

A domain D consists of a feature space X ⊂ Rd

and label Y ⊂ R, distributions P (X ) and P (Y), i.e.,
D = {X ,Y, P (X ), P (Y)}. Also D can be rewritten as
D = {(xi, yi)|xi ∈ X , yi ∈ Y}, which implies P (X )
and P (Y) implicitly; xi denotes an instance in domain
D which is a term vector of a document with Bag of
Words or TFIDF representation; yi denotes the label
of instance xi; [xi]j denotes the j-th coordinate value
of the instance and [xi]j ∈ Xj . Source domain is de-
noted by Ds = Dsl

⋃Dsu ⊆ Xs × Ys, Ys = {+1,−1, 0}.
Dsl = {(xsl

i , ysl
i )|i = 1, . . . , nsl} denotes labeled data;

Dsu = {(xsu
i , ysu

i = 0)|i = 1, . . . , nsu} denotes unlabeled
data; Xs = {xs

i |i = 1, . . . , nsl + nsu}; Y s = {ys
i |i =

1, . . . , nsl + nsu}; xs
i is a positive\negative instance if

ys
i = +1 \ −1, xs

i is an unlabeled instance if ys
i = 0.

Dt, Dtl, Dtu, Xt and Y t are similarly defined in target
domain.
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A task T consists of a specified domain D and
a prediction function f(·), i.e., T = {D, f(·)}. f(·)
is a prediction function learned on domain D, which
maximizes likelihood or minimizes a loss function, i.e.,
f(·) = arg minf

∑
xi∈X ‖f(xi)− h(xi)‖22, where h(·) is

a ground truth prediction function on domain D.
Now we can give a formal definition of transfer learn-

ing in our setting.
Definition 1 (Transfer Learning). Given source

domain Ds = Dsl

⋃Dsu and target domain Dt =
Dtu , transfer learning aims at learning a task
T = {Ds

⋃Dt, f(·)} in order that errDt(f) =∑
xi∈Xt

‖f(xi)−ht(xi)‖22 can be minimized. Note that,
ht(·) is a ground truth prediction function on domain
Dt, and we often approximate ht(xt

i) by yt
i . This defi-

nition holds under following assumptions:

1) Xs

⋂Xt 6= ∅;

2) P (Xs) 6= P (Xt);

3) P (Ys) = P (Yt);

4) this paper only focuses on one source domain and
one target domain.

3.2 Bridge Features and Multi-View
Correspondence Learning

Let us come to the definition of bridge feature, which
is one of the key parts of MVPCA algorithm. We
denote one single bridge feature as XΛi

, and denote
the bridge feature set as XΛ. One of the most impor-
tant reasons that MVPCA shows good performance on
domain adaptation is that our chosen bridge features
contribute great discriminative ability across domains
when performing multi-view transfer learning. The
discriminative power of bridge features is definitely de-
rived from high correlations with class labels. So bridge
features can be regarded as pseudo labels, and these
discriminative pseudo labels can bring a lot of help-
ful discriminative power across domains to benefit the
knowledge transfer.

For short, to achieve the discriminative power on
both domains, bridge features must satisfy the follow-
ing assumptions:
• XΛi

is one of the representative features in both
domains; all bridge features constitute bridge feature
set XΛ = {XΛ1 , . . . ,XΛm} ⊆ Xs

⋂Xt;
• each bridge feature XΛi

is statistical correlated
with class labels. In this paper, mutual information
is utilized as the measurement.

To construct the bridge feature set XΛ in MVPCA,
we may simply pick up m features Xi ⊆ Xs

⋂Xt with
the highest mutual information values and group them
into XΛ. Mutual information is computed between

feature Xi and Ys on Dsl according to (1):

I(Xi;Ys) =
∑

y∈Ys

∑

x∈Xi

p(x, y) log
p(x, y)

p1(x) p2(y)
. (1)

After XΛ is ready, multi-view correspondence can be
extracted thereafter. In this paper, multi-view corre-
spondence consists of two views on source and target
domains respectively. One view is the correspondence
between bridge features XΛ and other features Xs−XΛ

in Ds; the other view is the correspondence between
bridge features and other features Xt−XΛ in Dt. Any-
way, two-view MVPCA algorithm is a straightforward
and representative version of multi-view MVPCA, and
the multi-view version can be easily extended, which is
specified in Theorem 2.

Then let us take source domain Ds as an example
to illustrate how to measure the correspondence be-
tween bridge feature XΛi and other text features in Xs

in detail. For each instance (xsu
i , ysu

i ) ∈ Dsu, check the
value of bridge feature XΛi

in instance (xsu
i , ysu

i ). If
[xsu

i ]Λi = 0, set ysu
i = −1; otherwise, set [xsu

i ]Λi = 0,
ysu

i = +1. In this way, we can construct a pseudo la-
beled dataset DΛi

s . On this pseudo labeled domain, a
linear classifier fDΛi

s
(·) can be learned and fDΛi

s
(·) pro-

vides a classification hyper plane θDΛi
s

∈ Rds . This
hyper plane θDΛi

s
can be regarded as the correspon-

dence between bridge feature XΛi
and other features

on source domain. So we may arrange all θDΛi
s

to-
gether as ΘDΛ

s
= [θDΛ1

s
, . . . ,θDΛm

s
] ∈ Rds×m. Similarly,

ΘDΛ
t

= [θDΛ1
t

, . . . ,θDΛm
t

] ∈ Rdt×m can be constructed
in the same way. Up to now, every bridge feature XΛi

has set up multi-view correspondences with features in
source domain and target domain respectively: θDΛi

s

and θDΛi
t

. By putting them together, (θT

DΛi
s

,θT

DΛi
t

) rep-
resents a multi-view perspective on the correspondences
of bridge feature XΛi

. So we rewrite ΘDΛ
s

and ΘDΛ
t

as

Θ
(s)
Λ and Θ

(t)
Λ respectively to show that they are two

views of feature correspondences.
By setting up multi-view correspondence on both do-

mains, strong correlations between bridge features and
specific features can be detected within every domain.
In this way, those words with vague meanings can only
give one sentimental polarity in one view of the cor-
respondence. And those contradictory correlations are
prevented in correspondence. As a result, multi-view
correspondences can give a cleaner and neater within
domain knowledge, and preserve cross domain knowl-
edge via bridge features as SCL does. To conclude
this subsection, in multi-view perspective, we separate
the correspondence between features from single-view
to multi-view in order to better depict within domain
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knowledge while preserving the same cross domain
knowledge as SCL does.

3.3 Multi-View Principal Component Analysis

After setting up the multi-view correspondence, we
may apply Multi-View Principal Component Analysis
to these correspondence matrices to get a latent se-
mantic space, which consists of a group of eigenvectors.
These eigenvectors of MVPCA not only prevent incor-
rect correlation generation, but also preserve the cross
domain knowledge. Thus MVPCA can further improve
the performance of domain adaptation of SCL.

3.3.1 Objective Function Specification and Notations

Before introducing the details of MVPCA algorithm,
we specify the intuitive idea and notations first. Sup-
pose we have two views of instances Xs = {xs

i ∈
Rds |i = 1, . . . , m} and Xt = {xt

i ∈ Rdt |i = 1, . . . , m}.
We call Xs and Xt source view and target view re-
spectively. And the instances with index i in source
view and target view, e.g., xs

i and xt
i, are describing

the same instance. So all the m instances in both views
correspond one to one.

In order to generate a low dimensional semantic
space, one common way is to compress instances from
two views into single view X = {xi ∈ Rds+dt |xi =
〈xs

i ,x
t
i〉; i = 1, . . . , m}. xi = 〈xs

i ,x
t
i〉 denotes the

spliced vector of xs
i and xt

i. Then by applying SVD
or PCA on X, we can get a low dimensional seman-
tic space. However, there are some drawbacks of this
method. Firstly, when applied to transfer learning, we
can still see the incorrect correlation between some con-
tradictory domain specific features. So in the low di-
mensional semantic space, helpful common knowledge
and incorrect correlations are fused together, which can
do harm to the transfer learning. As a result, we cannot
expect it to show better performance than the single-
view transfer learning method. Secondly, Vinokourov
et al.[18] and Li et al.[19] point out that when perform-
ing cross-language classification, this naive method does
not have promising results as Hardoon’s algorithm[20]

does.
In another way, if we can learn a set of uniform or-

thogonal eigenvectors U = {uj |j = 1, . . . , p} across
different feature spaces of Xs and Xt, the set of eigen-
vectors U may not only preserve helpful common know-
ledge across source and target domains, but also pre-
vent incorrect correlation generation. While learning a
set of unified eigenvectors across different feature spaces
seems infeasible, we can achieve this by merging Xs and
Xt into a unified feature space X̂ = X̂s = X̂t ⊂ Rd,
which is just the same as a merged dictionary from an-
other two. In the unified feature space, Xs = {xs

i ∈

Rds |i = 1, . . . , m} and Xt = {xt
i ∈ Rdt |i = 1, . . . , m}

are rewritten as X̂s = {x̂s
i ∈ Rd|i = 1, . . . , m} and

X̂t = {x̂t
i ∈ Rd|i = 1, . . . , m}. We may also denote

X̂s by [x̂s
1, . . . , x̂

s
m] and denote X̂t by [x̂t

1, . . . , x̂
t
m] for

convenience. Under these settings, we give the details
of Multi-View Principal Component Analysis:

Definition 2 (Objective Function of Multi-View
Principal Component Analysis). Suppose we have two
views of instances Xs = {xs

i ∈ Rds |i = 1, . . . , m} and
Xt = {xt

i ∈ Rdt |i = 1, . . . , m}. Given a parameter p,
Multi-View Principal Component Analysis tries to find
a set of p uniform orthogonal vectors U = {u1, . . . ,up}
which minimizes:

min
U
E(X̂s, X̂t,U , p) =

m∑

i=1

(E2
s (x̂s

i ,U , p) + E2
t (x̂t

i,U , p))
(2)

s.t. Es(x̂
s
i ,U , p) = x̂s

i −
p∑

j=1

((x̂s
i)

T · uj)uj

= x̂s
i −

p∑

j=1

uj(x̂
s
i)

Tuj (3)

Et(x̂
t
i,U , p) = x̂t

i −
p∑

j=1

((x̂t
i)

T · uj)uj

= x̂t
i −

p∑

j=1

uj(x̂
t
i)

Tuj (4)

uT
i uj =

{
1, if i = j,

0, if i 6= j.
(5)

The set of p uniform orthogonal vectors U =
{u1, . . . ,up} build up a low dimensional semantic
space. And in this semantic space, every instance can
be reconstructed by the new coordinate system. The
difference between original instance and reconstructed
one is called residual error, denoted by E2

s (x̂s
i ,U , p) and

E2
t (x̂t

i,U , p). So MVPCA aims at finding the semantic
space which minimizes the total residual error of each
instance under all views.

Theorem 1. The first p eigenvectors with the largest
eigenvalues of [X̂s, X̂t][X̂s, X̂t]T give the solution of
the uniform orthogonal vector set to Definition 2.

Proof. Firstly, let

E(X̂s,U , p) =
m∑

i=1

E2
s (x̂s

i ,U , p) (6)

=
m∑

i=1

(x̂s
i −

p∑

j=1

uj(x̂
s
i)

Tuj)2 (7)

=
m∑

i=1

((x̂s
i)

T(x̂s
i)−

p∑

j=1

uT
j (x̂s

i)(x̂
s
i)

Tuj)

(8)
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= trace(X̂
T

s X̂s)−
p∑

j=1

uT
j X̂sX̂

T

s uj . (9)

Similarly,

E(X̂t,U , p) = trace(X̂
T

t X̂t)−
p∑

j=1

uT
j X̂tX̂

T

t uj . (10)

Secondly,

min
U
E(X̂s, X̂t,U , p)

= min
U

(E(X̂s,U , p) + E(X̂t,U , p)) (11)

= min
U
{trace(X̂

T

s X̂s + X̂
T

t X̂t)−
p∑

j=1

uT
j (X̂sX̂

T

s + X̂tX̂
T

t )uj} (12)

= max
U

p∑

j=1

uT
j (X̂sX̂

T

s + X̂tX̂
T

t )uj (13)

= max
U

p∑

j=1

uT
j [X̂s, X̂t][X̂s, X̂t]Tuj . (14)

From the last step, we can see that
maxU

∑p
j=1 uT

j [X̂s, X̂t][X̂s, X̂t]Tuj is a standard
form of Principal Component Analysis, and the so-
lution to U consists of the first p eigenvectors with
largest eigenvalues of matrix [X̂s, X̂t][X̂s, X̂t]T. ¤

If we have multiple views Xk = {xk
i ∈ Rdk |i =

1, . . . , m}, k = 1, . . . , K, Theorem 1 can be further ex-
tended to a multi-view setting. After merging their
feature spaces to a unified space, these multiple views
are rewritten as X̂k = {x̂k

i ∈ Rd|i = 1, . . . , m}, with
k = 1, . . . , K.

Theorem 2. If we have K views of instances,
X̂1 = {x̂1

i ∈ Rd|i = 1, . . . , m} is the first view, with
X̂k (k = 2, . . . , K) in the same notations. Given a
parameter p, Multi-View Principal Component Analy-
sis tries to find a set of p uniform orthogonal vectors
U = {u1, . . . ,up}, which minimizes the residual error
across all the views of instances:

min
U
E(X̂1, . . . , X̂K ,U , p) =

m∑

i=1

K∑

k=1

(E2
k(x̂k

i ,U , p))
(15)

s.t. Ek(x̂k
i ,U , p) = x̂k

i −
p∑

j=1

uj(x̂
k
i )Tuj , k = 1, . . . , K

(16)

uT
i uj =

{
1, if i = j,

0, if i 6= j.
(17)

The first p eigenvectors with the largest eigenvalues of
[X̂1, . . . , X̂K ][X̂1, . . . , X̂K ]T give the solution.

Proof. This proof is rather similar to the proof of
Theorem 1. We simply omit it here. ¤

3.3.2 Multi-View Principal Component Analysis
Algorithm

When we apply Multi-View Principal Component
Analysis to transfer learning, we need to replace Xs

and Xt in Theorem 1 by Θ
(s)
Λ and Θ

(t)
Λ respectively

and then we get the algorithm. Now let us move to the
details of Multi-View Principal Component Analysis al-
gorithm, which are shown in Table 2.

Table 2. Multi-View Principal Component Analysis Algorithm

Input: Ds = Dsl
⋃Dsu, Dt = Dtu.

Output: f̂Dsl .

Begin

(1) Choose m features from Xs
⋂Xt to form bridge feature

set XΛ.

(2) For XΛi
in XΛ

• construct pseudo labeled datasets: DΛi
s and DΛi

t

• train linear classifiers on them: fDΛi
s

and fDΛi
t

• add θ
(s)
Λi

into Θ
(s)
Λ , θ

(t)
Λi

into Θ
(t)
Λ

End

(3) Run MVPCA:

PΛ = MVPCA([Θ
(s)
Λ ,Θ

(t)
Λ ]).

(4) D̂sl = FeatureExpansion(Dsl, P Λ)

D̂t = FeatureExpansion(Dt, PΛ)

(5) Train a linear classifier f̂Dsl on D̂sl.

f̂Dsl is the output.

Bridge features are those representative words oc-
curring frequently across domains, which can be easily
detected according to the specification in Subsection
3.2.

Then let us take source domain Ds as an example to
illustrate how to measure the correspondence matrices
Θ

(s)
Λ and Θ

(t)
Λ . For every bridge feature XΛi , we can

construct a pseudo labeled dataset DΛi
s . Next step is

to train a linear classifier fDΛi
s

on this pseudo labeled
domain. In this paper, logistic regression is utilized as
our linear classier:

L(X, λ) = max
θ

∑

x∈X

1
1 + e−yθTx

− λ||θ||22. (18)

We denote the hyper plane θ of logistic regression as
θ

(s)
Λi

on the pseudo labeled dataset DΛi
s . Then we may

arrange all θ
(s)
Λi

together as Θ
(s)
Λ , which is one view of

feature correspondence. Similarly, Θ(t)
Λ is another view

of feature correspondence. The following step is to run
Multi-View Principal Component Analysis to get a pro-
jection matrix.
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In feature generation phase, for instance (xs
i , y

s
i ) ∈

Ds, xs
i is expanded to x̂s

i = 〈xs
i ,PT

Λxs
i〉. So in this fea-

ture expansion way, we get a feature expanded labeled
data D̂sl for source domain. Similarly, we can get D̂t.
Finally, we train a classifier f̂Dsl on source domain D̂sl,
then we apply classifier f̂Dsl to predict new instances
from target domain D̂t.

What is more interesting, by incorporating single-
view correspondences of SCL algorithm into MVPCA,
MVPCA’s performance can be further improved via
learning a semantic space from both multi-view and
single-view perspectives. This variant version of
MVPCA is presented in Table 3, and we denote it
by Variant Multi-View Principal Component Analysis
(VMVPCA), which can also be regarded as a combined
algorithm of MVPCA and SCL.

On conclusion of this section, we briefly review
Multi-View Principal Component Analysis method.
MVPCA separates single-view correspondence between
features into multiple views of feature correspondence.
The separate multiple views prevent the generation of
incorrect and contradictory correlation between domain
specific features. After that, we apply Multi-View Prin-
cipal Component Analysis to generate a semantic space
which preserves common knowledge across domains. In
this way, MVPCA algorithm overcomes the drawback
of single-view transfer learning methods, and preserves
the benefits for knowledge transfer.

Table 3. Variant Multi-View Principal Component

Analysis Algorithm

Input: Ds = Dsl
⋃Dsu, Dt = Dtu.

Output: f̂Dsl .

Begin

(1) Choose m features from Xs
⋂Xt to form bridge feature set

XΛ.

(2) For XΛi
in XΛ

• construct pseudo labeled datasets: DΛi
s and DΛi

t

• train linear classifiers on them: fDΛi
s

and fDΛi
t

• add θ
(s)
Λi

into Θ
(s)
Λ , θ

(t)
Λi

into Θ
(t)
Λ

End

(3) Run SCL procedure to learn a single-view correspondence:

ΘΛ.

(4) Run MVPCA procedure:

PΛ = MVPCA([Θ
(s)
Λ ,Θ

(t)
Λ ,ΘΛ]).

(5) D̂sl = FeatureExpansion(Dsl, P Λ)

D̂t = FeatureExpansion(Dt, PΛ)

(6) Train a linear classifier f̂Dsl on D̂sl.

f̂Dsl is the output.

4 Experimental Result Analysis

4.1 Data and Software Specification

In this paper, we perform experiments on both
multi-domain sentiment dataset① and 20 Newsgroups
dataset②, which show that MVPCA/VMVPCA can
not only outperform baseline non-transfer method sub-
stantially, but also improve the performance of transfer
learning method SCL significantly.

We choose Multi-Domain Sentiment Dataset to show
that polysemous words do exist in sentiment domain.
While polysemous words incorporate conflict corre-
spondence between words into single-view algorithm
SCL, experiments show MVPCA/VMVPCA can solve
this problem and further improve the performance of
transfer learning. Multi-Domain Sentiment Dataset is
crawled from Amazon, where there are four types of
product reviews: Book, DVD, Electronic and Kitchen.
Every product review is given a rating from 1 to 5. Re-
views with rating higher than 3 are regarded as positive
instances, and reviews with rating lower than 3 are la-
beled as negative with others discarded. After this con-
version, every domain contains 1000 positive instances
and 1000 negative instances. Besides these labeled in-
stances, every domain has some unlabeled instances.
Book domain has 6000 unlabeled instances, DVD has
34 741, Electronic has 13 153, and Kitchen domain has
16 785 unlabeled instances. Details are shown in Ta-
ble 4.

Before applying MVPCA and VMVPCA to Multi-
Domain dataset, we briefly outline the distributional
shift between domains by showing different distribu-
tions of top 50 bridge features in Book, DVD, Elec-
tronic and Kitchen domains in Fig.1. The X axis de-
notes different bridge features in alphabetic order. The
Y axis denotes the value of mutual information. From
Fig.1, we can see that all of the four domains differ sub-
stantially in the mutual information values of bridge
features. In this way, Fig.1 does show some intuitive
differences between domains, although the differences
can be detected in more ways than mutual information.
These distributional differences encourage us to apply
transfer learning techniques to cross domain sentiment
classification.

Table 4. Multi-Domain Sentiment Dataset Specification

Domain Positive Negative Unlabeled Features

Book 1 000 1 000 6 000 42 835

DVD 1000 1 000 34 741 162 682

Electronic 1 000 1 000 13 153 47 426

Kitchen 1 000 1 000 16 785 48 534

①http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/.
②http://people.csail.mit.edu/jrennie/20Newsgroups/.
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Fig.1. Distributional shift in different domains.

We choose 20 Newsgroups dataset to show that
polysemous words exist not only in sentiment review

data, but also in topic domain text data. The 20 News-
groups dataset is a set of nearly 20 000 documents col-
lected from 20 different newsgroups. These 20 different
newsgroups covers extensive topics from computer and
science to forsale. These topics can be categorized into
6 top categories and 20 subcategories, with each subcat-
egory corresponding to a newsgroup. They are shown
in Table 5. In order to make the 20 Newsgroups dataset

Table 5. 20 Newsgroups Dataset Specification

comp.graphics rec.autos

comp.os.ms-windows.misc rec.motorcycles

comp.sys.ibm.pc.hardware rec.sport.baseball

comp.sys.mac.hardware rec.sport.hockey

comp.windows.x

sci.crypt talk.politics.misc

sci.electronics talk.politics.guns

sci.med talk.politics.mideast

sci.space

misc.forsale talk.religion.misc

alt.atheism

soc.religion.christian

Table 6. Cross Domain Classification Setting of the 20 Newsgroups Dataset

Dataset Source Domain Target Domain

comp vs. sci comp.graphics comp.sys.ibm.pc.hardware

(C-S) comp.os.ms-windows.misc comp.sys.mac.hardware

sci.crypt comp.windows.x

sci.electronics sci.med

sci.space

rec vs. talk rec.autos rec.sport.baseball

(R-T) rec.motorcycles rec.sport.hockey

talk.politics.guns talk.politics.mideast

talk.politics.misc talk.religion.misc

rec vs. sci rec.autos rec.motorcycles

(R-S) rec.sport.baseball rec.sport.hockey

sci.med sci.crypt

sci.space sci.electronics

sci vs. talk sci.electronics sci.crypt

(S-T) sci.med sci.space

talk.politics.misc talk.politics.guns

talk.religion.misc talk.politics.mideast

comp vs. rec comp.graphics comp.os.ms-windows.misc

(C-R) comp.sys.ibm.pc.hardware comp.windows.x

comp.sys.mac.hardware rec.autos

rec.motorcycles rec.sport.baseball

rec.sport.hockey

comp vs. talk comp.graphics comp.os.ms-windows.misc

(C-T) comp.sys.mac.hardware comp.sys.ibm.pc.hardware

comp.windows.x talk.politics.guns

talk.politics.mideast talk.politics.misc

talk.religion.misc
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suitable for our problem setting, we reorganize the 20
subcategories and put them in related but different do-
mains. In this paper, the settings of 20 Newsgroups
dataset is similar to Dai et al.[7] We reorganize the 20
subcategories into 6 source and target domain pairs.
Within each domain pair, the texts are from only two
top categories. And within each domain in the pair,
positive instances consist of some subcategories in one
top category while negative instances consist of some
other subcategories in the other top category. Details
of cross domain classification setting of the 20 News-
groups dataset are shown in Table 6.

4.2 Experiments on Multi-Domain Sentiment
Dataset

In order to conduct the comparisons fairly, we com-
pare MVPCA/VMVPCA and SCL in the same expe-
rimental settings: 1) MVPCA/VMVPCA and SCL use
the same parameter settings, e.g., the same number of
bridge features, m, and the same dimensionality of la-
tent semantic space, p; 2) MVPCA/VMVPCA and SCL

utilize the same linear classifier when learning feature
correspondences: logistic regression. Then we show the
experimental results according to different parameter
settings in Table 7 and Table 8.

In Table 7 and Table 8, “B-D” in “Domain” column
means that source domain is Book domain and target
domain is DVD domain. “Baseline” column denotes the
accuracy of baseline method, which first trains a logistic
regression model on source domain, and then evaluates
the testing accuracy on target domain instances. m de-
notes the number of bridge features. p denotes the num-
ber of eigenvectors generated by MVPCA or SCL[1-2],
and it is also the dimensionality of cross domain se-
mantic space. “S” denotes the accuracy of SCL[1-2];
“M” denotes the accuracy of MVPCA; “VM” denotes
the accuracy of the VMVPCA algorithm described in
Table 3, regarded as a mixture algorithm of SCL and
MVPCA.

From Table 7 and Table 8, it is clear that MVPCA
and VMVPCA win most of the time over SCL algo-
rithm and baseline method. The values of accuracy in
bold mean they are the winners, and the values in bold

Table 7. Classification Accuracy Comparison on Multi-Domain Sentiment Dataset (%)

Domain Baseline m = 100, p = 10 m = 100, p = 30 m = 100, p = 50 m = 100, p = 70

S M VM S M VM S M VM S M VM

B-D 79.30 78.45 77.05 77.85 79.15 78.90 79.05 79.80 80.60 81.05 80.65 80.70 80.90

B-E 77.20 76.25 76.55 76.50 79.30 78.80 77.95 79.55 78.90 79.95 79.05 78.60 80.00

B-K 77.15 77.40 76.10 75.90 79.20 78.75 79.25 80.00 80.05 79.85 80.70 79.25 80.70

D-B 75.10 76.45 74.95 74.60 78.50 77.75 77.90 78.25 78.80 78.30 78.60 78.55 78.35

D-E 76.50 77.60 76.20 76.40 76.90 78.25 78.15 77.20 78.25 79.90 77.60 78.70 79.15

D-K 76.75 76.95 77.50 77.05 80.25 78.50 78.75 80.30 78.50 79.65 80.85 79.15 79.80

E-B 70.30 72.75 70.45 71.90 72.15 72.45 72.80 71.80 71.75 73.30 71.75 71.85 72.70

E-D 71.55 71.20 69.45 71.45 73.55 72.80 71.85 72.75 73.80 73.30 72.75 75.50 73.10

E-K 84.75 85.35 85.45 85.55 85.75 86.95 86.85 86.55 87.65 87.95 86.85 87.60 87.50

K-B 71.70 72.85 72.50 73.05 73.85 73.30 72.05 74.70 72.75 73.30 74.35 72.55 74.30

K-D 72.05 73.30 73.30 71.80 75.85 74.40 75.25 74.10 76.45 75.85 75.00 75.80 76.20

K-E 84.25 84.50 85.10 84.30 85.45 85.60 85.70 86.15 86.15 86.55 85.55 85.50 86.05

Table 8. Classification Accuracy Comparison on Multi-Domain Sentiment Dataset (%)

Domain Baseline m = 200, p = 10 m = 200, p = 30 m = 200, p = 50 m = 200, p = 70

S M VM S M VM S M VM S M VM

B-D 79.30 79.95 79.05 78.75 79.20 79.55 79.65 80.05 81.00 80.30 81.80 81.65 81.75

B-E 77.20 76.40 76.95 76.70 77.70 77.30 77.30 79.35 78.60 79.05 78.95 79.35 80.25

B-K 77.15 76.75 76.80 76.60 78.05 78.50 78.25 81.25 80.00 80.10 81.40 80.15 81.45

D-B 75.10 77.05 75.95 74.90 77.30 78.60 78.40 76.40 77.15 76.65 77.90 77.25 77.90

D-E 76.50 77.50 76.20 76.20 73.30 77.65 79.10 75.20 77.65 78.70 77.15 78.30 79.55

D-K 76.75 77.60 76.95 77.50 80.20 78.45 78.35 79.35 77.60 77.65 80.95 78.35 80.35

E-B 70.30 72.45 70.45 70.85 72.35 72.55 72.30 72.10 71.30 71.95 71.30 70.25 72.50

E-D 71.55 71.30 69.20 69.25 73.55 72.55 72.20 71.60 74.20 73.15 73.20 76.65 75.35

E-K 84.75 85.70 85.70 85.45 85.35 86.80 86.25 85.95 87.10 86.55 87.00 87.60 87.35

K-B 71.70 71.95 72.45 73.05 73.05 71.90 72.05 73.70 72.20 73.15 74.70 72.05 73.20

K-D 72.05 72.60 72.15 71.25 71.20 74.10 75.70 73.90 74.75 75.20 73.30 75.25 75.20

K-E 84.25 84.60 83.05 83.30 83.65 85.60 85.55 85.25 85.40 85.60 85.70 85.85 85.65
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with underline show the winners are MVPCA or
VMVPCA. To see how they perform in different set-
tings, we need to conduct further analysis.

Firstly, we put some efforts on the win/draw/loss
statistics of these methods under different settings of
p shown in Table 9, where “M vs. Baseline” denotes
the comparison between MVPCA and baseline method.
Similarly for VM vs. Baseline. “M-best vs. S-best”
denotes the comparison between the best results of
MVPCA/VMVPCA and the best results of SCL, un-
der different settings of p. “M/VM vs. S” compares the
better results of MVPCA and VMVPCA with SCL. “M
vs. S” denotes the comparison between MVPCA and
SCL. Similarly for “VM vs. S”, “VM vs. M”. Obvi-
ously, both MVPCA and VMVPCA outperform base-
line method in almost all time of transfer learning when
p > 30. When the parameter p = 10 or 30, MVPCA
and VMVPCA do not outperform SCL or perform even
worse when p = 10. When p > 30, performances of
MVPCA and VMVPCA are enhanced and they out-
perform SCL significantly. And they achieve the most
significant improvement over SCL when p = 50. When
m = 100, p > 50, VMVPCA performs better than SCL
and baseline at the 5% significance level, while MVPCA
performs comparable with SCL and significant better
than baseline; when m = 200, p > 30, VMVPCA per-
forms better than SCL and baseline at the 5% signifi-
cance level, while MVPCA performs comparable with
SCL and significant better than baseline. However, it
is notable that when p reaches 70, MVPCA degener-
ates its performance to be comparable with SCL. In
general, when p reaches 50, MVPCA and VMVPCA

can obviously improve SCL’s performance. The rea-
son why they need a certain number of eigenvectors to
get better knowledge transfer performance is that they
performs a multi-view component analysis which deals
with more complex structural information across do-
mains than SCL does. So compared with SCL, MVPCA
and VMVPCA need more eigenvectors to depict the
knowledge transfer clearly.

Table 9. Win/Draw/Loss Statistics Analysis on

Multi-Domain Sentiment Dataset

Parameter Settings p = 10 p = 30 p = 50 p = 70

M vs. Baseline 12/0/12 23/0/1 24/0/0 23/0/1

VM vs. Baseline 9/0/15 23/0/1 24/0/0 24/0/0

M-best vs. S-best 17/2/5 17/2/5 17/2/5 17/2/5

M/VM vs. S 9/0/15 13/0/11 17/0/7 18/0/6

M vs. S 7/2/15 11/0/13 14/1/9 12/0/12

VM vs. S 7/0/17 12/0/12 16/0/8 17/0/7

VM vs. M 11/1/12 11/1/12 16/0/8 16/0/8

Fig.2 and Fig.3 demonstrate the similar statistics of
the comparison between SCL and MVPCA/VMVPCA.
X axis denotes the settings of source and target do-
main pairs. Y axis denotes the classification accuracy.
When m = 100, p = 10 and m = 200, p = 10, it is
shown that MVPCA/VMVPCA only achieve compa-
rable performance with baseline method. And at the
same time, SCL performs better than our algorithms.
When p = 30 and m = 200, SCL degenerates its per-
formance, and both MVPCA and VMVPCA achieve
obvious improvement over SCL and baseline method.

Fig.2. Transfer learning performance comparison on multi-domain sentiment dataset when m = 100.
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Fig.3. Transfer learning performance comparison on Multi-Domain Sentiment Dataset when m = 200.

When p = 30 and m = 100, both SCL and
MVPCA/VMVPCA get enhanced performance, with
SCL achieving the best performance. When p = 50 and
p = 70, the performance curves of MVPCA/VMVPCA
stay over the cure of SCL most of the time. And
MVPCA/VMVPCA win 35 in 48 times of comparison
when p = 50 and p = 70. In general, MVPCA and
VMVPCA achieve significant improvement over SCL
when p reaches 50 or 70.

Then we study how the performances of
MVPCA/VMVPCA are affected by parameters p and
m. Table 10 shows the average classification accuracy of
the algorithms in comparison under different settings
of p. If we focus on one line, when p increases, the
cross domain classification accuracy of every algorithm
will increase. This trend makes sense, because if one
classifier owns more information to benefit knowledge
transfer, we can expect the continuous improvement.
From Fig.4, we can also see that at first when p is
small, SCL performs the best. As soon as MVPCA col-
lects enough eigenvectors to facilitate transfer learning,
MVPCA outperforms SCL. One more remark about

the parameter m is that as m increases, we cannot
always expect to improve its performance. Because
choose more bridge features cannot guarantee that the
discriminative power increases at the same time, they
will always increase the information. Bridge features
within one domain have so similar explanations that
100 bridge features can give sufficient helpful informa-
tion for transfer learning. This also leaves an open
question for future work on choosing bridge features.

From above discussions, we get the point that
MVPCA/VMVPCA need a certain number of eigen-
vectors to facilitate cross domain knowledge transfer,
and when p reaches 50, MVPCA/VMVPCA achieve
significant improvement over SCL and baseline method.
So let us take a detailed look at the improvement of
our algorithms. Fig.5 shows error reduction ratios of
MVPCA/VMVPCA over baseline method and SCL al-
gorithm. X axis denotes source and target domain
pairs; Y axis denotes error reduction ratio, and the
curves of MVPCA/VMVPCA are computed with the
minimum error of MVPCA and VMVPCA. In this
paragraph, we simply denote MVPCA and VMVPCA

Table 10. Average Performance Comparison on Multi-Domain Sentiment Dataset (%)

m = 100 m = 200

p = 10 p = 30 p = 50 p = 70 p = 10 p = 30 p = 50 p = 70

Baseline 76.38 76.38

SCL 76.92 78.33 78.43 78.64 76.99 77.08 77.84 78.61

MVPCA 76.22 78.04 78.64 78.65 76.24 77.80 78.08 78.56

VMVPCA 76.36 77.96 79.08 79.06 76.15 77.93 78.17 79.21
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Fig.4. Average transfer learning performance comparison on multi-domain sentiment dataset. (a) m = 100. (b) m = 200.

Fig.5. Error reduction ratio of MVPCA on multi-domain sentiment dataset.

together by MVPCA. Compared with baseline method,
when p = 50, MVPCA always gets a positive error
reduction, which means MVPCA always outperforms
baseline method under this setting. MVPCA reduces
the error of baseline method transferring from Elec-
tronic to Kitchen up to 21% when m = 100 and p = 50,
and achieves an average of 11.43% error reduction over
baseline when m = 100, p = 50. Compared with
SCL algorithm, it seems that transferring from Kitchen
domain to Book domain and transferring from DVD
domain to Kitchen domain are two difficult tasks for
MVPCA/VMVPCA, and they cannot outperform SCL
algorithm in many different parameter settings. How-
ever, MVPCA can reduce SCL’s error of transferring
from DVD to Electronic up to 14% when m = 200,
p = 50, and MVPCA achieves an average of 2.7% error
reduction over SCL when m = 100, p = 50.

Finally, we can give the following remarks of our
algorithm. When p increases to a certain extend,
MVPCA collects enough information from the complex
structure of multi-view feature correspondences, and
these information keeps MVPCA away from incorrect

correlations. Thus, MVPCA can outperform the single-
view transfer learning algorithm SCL. It is more in-
teresting that when we fuse the single-view correspon-
dences with the multi-view correspondences, we can
learn a more powerful semantic space to benefit our
knowledge transfer. Thus VMVPCA achieves an ave-
rage error reduction of 11.43% over baseline method
and 2.7% over SCL algorithm.

4.3 Experiments on 20 Newsgroups Dataset

Similar to the experiments on multi-domain sen-
timent dataset, we perform MVPCA/VMVPCA and
SCL under the setting of the same parameters
and the same base classifier: logistic regression.
The experimental results of comparisons between
MVPCA/VMVPCA and SCL are listed in Table 11,
where “Domain” tells the setting of source and target
domains, and “C-S” in this column denotes that source
and target domains are from dataset “comp vs. sci” in
Table 5. “Baseline”, “S”, “M” and “VM” are defined
similarly with Table 7. On 20 Newsgroups dataset, we
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Table 11. Classification Accuracy Comparison on 20 Newsgroups Dataset (%)

Domain Baseline
m = 100, p = 10 m = 100, p = 30 m = 100, p = 50 m = 100, p = 70

S M VM S M VM S M VM S M VM

C-S 68.51 68.74 68.90 72.03 66.00 70.99 72.09 65.86 70.48 71.81 66.20 71.78 70.23

C-R 81.95 88.40 86.24 87.84 89.78 85.47 88.73 88.55 86.92 88.17 88.12 86.11 87.33

C-T 87.03 90.95 90.59 90.65 91.50 93.32 93.85 91.20 93.32 93.68 88.61 91.72 93.16

R-S 72.65 75.30 76.48 78.75 76.23 77.39 78.68 76.31 78.98 79.38 76.81 78.15 77.82

R-T 74.29 66.58 59.80 72.77 67.23 59.66 75.41 62.28 62.87 76.01 66.47 62.64 75.78

S-T 75.41 73.89 70.00 73.63 74.26 68.24 74.81 75.10 69.68 75.49 75.80 70.81 74.99

only perform experiments when m = 100 to show the
superior of MVPCA/VMVPCA over SCL.

We need to conduct further analysis to see how
they perform in different settings. Table 12 gives the
win/draw/loss statistics of MVPCA/VMVPCA com-
pared with other methods. When we conduct t-
test, VMVPCA is significantly better than baseline
method and SCL, while MVPCA is significantly better
than baseline method and comparable with SCL. Fig.6
shows the comparisons between MVPCA/VMVPCA
and other methods intuitively. X axis denotes different
source and target domain pairs. Y axis denotes the pre-
diction accuracy. Fig.6 shows that VMVPCA almost
always stays above SCL and baseline. It also shows
that R-T and S-T are two hard domains for transfer
learning. While SCL performs much worse than base-
line on domain R-T, which is called negative transfer,
VMVPCA performs better than both SCL and baseline
when p > 10.

Table 13 and Fig.7 give the overview of how these
methods perform on 20 Newsgroups dataset. The num-
bers in bold with underline in Table 13 denote the
best performances from MVPCA/VMVPCA. In Fig.7,

it can be seen that the performance curves are different
from those on multi-domain sentiment dataset.

Table 12. Win/Draw/Loss Statistics Analysis on 20

Newsgroups Dataset

Parameter Settings p = 10 p = 30 p = 50 p = 70

M vs. Baseline 4/0/2 4/0/2 4/0/2 4/0/2

VM vs. Baseline 4/0/2 5/0/1 6/0/0 5/0/1

(M/VM)-best vs. S-best 4/0/2 4/0/2 4/0/2 4/0/2

M/VM vs. S 3/0/3 5/0/1 5/0/1 4/0/2

M vs. S 2/0/4 3/0/3 4/0/2 3/0/3

VM vs. S 3/0/3 5/0/1 5/0/1 5/0/1

VM vs. M 6/0/0 6/0/0 6/0/0 4/0/2

Table 13. Average Performance Comparison on 20

Newsgroups Dataset (%)

m = 100 p = 10 p = 30 p = 50 p = 70

Baseline 76.64 76.64 76.64 76.64

SCL 77.31 77.50 76.55 77.00

MVPCA 75.34 75.85 77.04 76.87

VMVPCA 79.28 80.60 80.76 79.89

Fig.6. Transfer learning performance comparison between MVPCA/VMVPCA and other methods on 20 Newsgroups dataset.
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Fig.7. Average transfer learning performance comparison be-

tween baseline method, SCL algorithm, and MVPCA/VMVPCA

on 20 Newsgroups dataset.

The curves in Fig.7 are rather stable compared to
those in Fig.4, with VMVPCA staying higher above
the curves of baseline and SCL methods. However,
MVPCA needs more eigenvectors to achieve its best
performance than SCL method. And this phenomenon
is the same as that MVPCA shown on Multi-Domain
Sentiment Dataset. Fig.8 shows the error reduction
of MVPCA/VMVPCA over SCL algorithm. When
p = 50, VMVPCA reduces the prediction error of SCL
up to 22% on domain R-T. On 20 Newsgroups dataset,
we can conclude that VMVPCA performs significantly
better than SCL with MVPCA achieving comparable
performance with SCL, while all of MVPCA/VMVPCA
perform substantially better than baseline method.
The improvement of MVPCA/VMVPCA over single-
view transfer learning algorithm SCL and baseline non-
transfer method shows that multi-view transfer learning
technique works well in topic domain text data.

4.4 Experiments on the Performance of
MVPCA/VMVPCA under Different
Quantities of Polysemous Words

To show MVPCA/VMVPCA outperforms SCL
actually due to the problem of polysemous words, we

further study the performance of MVPCA/VMVPCA
and SCL under different quantities of vague words in
the dataset. We specify a polysemous word by its cor-
relation with class labels in different domains, and to
change the number of polysemous words in a domain,
we artificially create some polysemous words to incor-
porate into the dataset. Thus the perturbed datasets
provide different settings of quantities of vague words
to study how the performance is affected by the number
of polysemous words. Experiments show that the more
polysemous words in the dataset, MVPCA/VMVPCA
the better choice MVPCA/VMVPCA is when we need
transfer learning techniques.

To further study the performance of MVPCA/
VMVPCA under different quantities of polysemous
words, we randomly choose “B-E”, “E-K” from multi-
domain sentiment dataset, and “C-S”, “R-T” from 20
Newsgroups dataset. To specify whether a word w is a
polysemous word, we simply compute

p(w = 1, y = +1) =
count(w = 1, y = +1)∑

w,y count(w, y)

and

p(w = 1, y = −1) =
count(w = 1, y = −1)∑

w,y count(w, y)
.

If p(w=1,y=+1)
p(w=1,y=−1) > δ with δ > 1, it tells that w occurs

more often with positive label. If p(w=1,y=+1)
p(w=1,y=−1) < 1

δ

with δ > 1, it tells that w occurs more often with
negative label. In this paper, we set δ = 1. So if
p(w=1,y=+1)
p(w=1,y=−1) > 1 occurs in source domain and mean-

while p(w=1,y=+1)
p(w=1,y=−1) < 1 occurs in target domain, or vice

versa, we regard w as a polysemous word with different
meanings in different domains. Based on the definition
of polysemous words, we can artificially create some
new polysemous words. For example, if a word “cars”

Fig.8. Error reduction of MVPCA/VMVPCA over SCL on 20 Newsgroups dataset. X axis denotes different domain pairs, Y axis

denotes the percentage of prediction error reduction of MVPCA/VMVPCA over SCL. (a) m = 100, p = 50. (b) m = 100, p = 70.
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has strong correlation with positive label in source do-
main, while “israeli” strongly correlates with negative
label in target domain, we generate “cars israeli” as a
polysemous word. Similarly, if “fbi” correlates more
with negative label in source domain while “games”
highly correlates with positive label in target domain,
“fbi games” is artificially generated as a polysemous
word. Table 14 illustrates some of the artificial po-
lysemous words in different domains.

After the generation of new words, we replace
those original words with these artificially generated

Table 14. Artificially Generated Polysemous Words

in Different Datasets

B-E excellent not work, a must not, wonderful not buy,

great return, highly recommend waste,

i highly terrible, an excellent waste your, easy work,

a great refund, a wonderful after, easy poor,

E-K great not, excellent waste, price not buy,

highly disappointed, a great was, easy to returned,

the price return, the best after, perfect your money,

C-S windows space, graphics earth, dos orbit, file years,

files nasa, thanks writes, microsoft medical,

image shuttle, gif article, win disease

R-T bike jews, car government, cars israeli, engine arab,

ride turkish, motorcycle war, honda by,

bmw people, riding children, bikes such

polysemous words so that we can perturb the dataset.
In the experiments, we perturb the datasets with arti-
ficially generating 40, 80, 120, 160 and 200 new vague
words respectively. After the perturbation, the occur-
rence ratio of polysemous words in the dataset varies de-
pending on the number of artificial polysemous words.
Table 15 shows the different polysemous words ratios
before and after perturbation.

When we perform MVPCA/VMVPCA and other al-
gorithms on the perturbed datasets, we get the results
in Table 16 and Fig.9. In Table 16, “B-E”, “E-K”, “C-
S”, “R-T” denote different sub-datasets. “AW” denotes
different settings of artificially generated polysemous
words. “Baseline”, “S”, “M”, “VM” denote the same
results as defined in Table 7. m and p are algorithm
parameters. Under different settings of m and p, we
compare the cross domain prediction accuracy between

Table 15. Polysemous Words Ratios with Perturbation

in Different Domains

No. Artificial Words B-E E-K C-S R-T

0 0.26 0.19 0.45 0.27

40 0.29 0.22 0.49 0.31

80 0.31 0.24 0.52 0.35

120 0.33 0.27 0.56 0.37

160 0.35 0.28 0.58 0.40

200 0.37 0.30 0.61 0.44

Table 16. Experiments on the Performance of MVPCA/VMVPCA under Different Quantities of Polysemous Words

AW Base- m = 100, p = 10 m = 100, p = 30 m = 100, p = 50 m = 100, p = 70

line S M VM S M VM S M VM S M VM

B-E 40 71.25 69.15 64.50 69.20 72.25 67.50 70.05 71.65 70.35 71.70 72.00 70.10 72.35

80 67.75 67.65 63.45 66.70 68.60 65.50 67.75 68.50 65.85 68.15 68.40 66.90 67.95

120 66.20 66.20 60.80 65.75 66.95 63.60 66.40 67.45 63.70 66.85 67.30 64.10 66.80

160 65.35 66.40 61.45 64.75 65.85 61.20 65.95 66.25 62.75 65.35 64.95 63.15 65.50

200 63.30 63.35 60.35 63.10 64.05 59.85 63.90 62.25 59.10 63.45 61.65 59.10 61.60

E-K 40 81.90 82.60 82.15 82.95 82.70 81.75 82.90 82.75 82.30 82.90 82.55 81.95 82.90

80 82.10 81.95 81.75 82.05 81.15 81.20 82.15 82.10 80.70 82.00 81.60 81.40 82.15

120 80.80 80.45 80.45 80.45 80.75 80.20 81.55 81.20 80.40 81.55 80.15 81.20 81.20

160 80.25 80.25 79.60 80.00 79.05 79.80 80.90 79.75 80.35 80.35 80.00 79.75 80.55

200 80.05 79.35 79.45 79.60 79.50 79.15 80.45 79.65 79.15 80.10 79.90 79.45 79.75

C-S 40 61.21 61.87 61.89 63.16 58.39 63.14 62.99 58.66 62.69 62.63 59.01 61.99 61.64

80 59.80 59.60 59.27 61.03 55.76 60.15 59.37 57.06 58.68 59.21 59.13 56.76 58.31

120 58.60 59.62 59.97 60.66 57.19 59.87 58.84 56.04 58.66 58.78 55.82 58.19 58.82

160 58.23 60.42 59.27 59.87 56.27 57.43 59.48 55.57 57.98 59.19 55.67 58.37 59.82

200 59.25 60.95 59.37 60.48 57.31 56.78 59.15 57.64 57.35 61.52 56.51 58.80 61.50

R-T 40 48.80 46.05 42.42 48.64 37.38 41.55 46.61 39.63 42.67 45.34 40.93 43.57 46.67

80 44.30 45.65 41.55 45.51 35.95 39.72 44.44 36.51 40.00 46.24 32.60 40.23 47.06

120 40.14 39.78 40.73 42.90 35.78 37.58 38.54 34.18 38.34 40.51 34.21 37.78 42.78

160 41.24 44.02 40.90 46.41 36.06 39.63 41.60 36.60 38.48 44.36 35.67 40.00 42.48

200 39.41 40.25 41.21 43.94 37.72 40.73 43.07 35.95 39.83 42.64 36.34 39.41 42.03
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Fig.9. Transfer learning performance vs. quantity of artificial polysemous words. (Every row corresponds to a sub-dataset, which is

labeled to the left of it. In each row, every subgraph illustrates the performances of all the algorithms under a fixed parameter setting.

In every subgraph, X axis denotes the number of artificial generated vague words, Y axis denotes the transfer prediction accuracy on

the perturbed dataset.) (a) m = 100, p = 10. (b) m = 100, p = 30. (c) m = 100, p = 50. (d) m = 100, p = 70.

SCL and MVPCA/VMVPCA. Numbers in bold with
underline show that MVPCA/VMVPCA are winners;
numbers in bold show that SCL wins. Table 16 il-
lustrates that VMVPCA achieves comparable perfor-
mance with SCL in the sub-dataset of B-E, while
MVPCA is hurt by the artificially generated polyse-
mous words performing worse than baseline and SCL.
In the sub-dataset of E-K, while MVPCA performs
comparable with SCL, VMVPCA performs better than
SCL at the 5% significance level. In the sub-datasets of
C-S and R-T, MVPCA/VMVPCA perform much bet-
ter than SCL under different settings of m, p and quan-
tity of artificial polysemous words. When m = 100,

p = 70 and AW = 80, VMVPCA improves the predic-
tion accuracy of SCL up to 44.56% on R-T sub-dataset.

One important advantage of VMVPCA over SCL
is that VMVPCA rarely perform worse than baseline
method when p > 30 shown in Fig.9. Another ad-
vantage of VMVPCA is that the performance of SCL
decreases much faster than VMVPCA, when the num-
ber of polysemous words increases. To understand why
VMVPCA does not improve SCL significantly on sub-
dataset B-E due to the artificial polysemous words, we
may need to refer to Blitzer et al.[2], who proposes a
distance measure between domains, which is called A-
distance. Measured by A-distance, Book and Electronic
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domains have so large a distance that incorporating 200
new polysemous words into B-E sub-dataset does not
change it much. Thus, the advantage of VMVPCA
over SCL is not significant. Another point needs to
be noted is that the improvement of VMVPCA over
SCL on C-S and R-T sub-datasets is much higher than
on B-E and E-K sub-datasets. This difference is caused
by the different polysemous word ratios of each sub-
dataset. In Table 15, C-S and R-T sub-datasets have
much higher polysemous words ratios than B-E and E-
K sub-datasets. With higher polysemous words ratio,
we can get more improvement of VMVPCA over SCL.
Based on above discussions, we recommend the multi-
view transfer learning algorithm VMVPCA compared
with SCL, especially when polysemous words occur a
lot in source and target domains.

5 Conclusion and Future Work

This paper proposes a new method called Multi-
View Principal Component Analysis for transfer learn-
ing. MVPCA/VMVPCA separates the single-view
of correspondences into several parts, which can be
regarded as multi-view correspondences. In these
separated correspondences, contradict correlations are
eliminated, and then the cross domain correlation
could be extracted by multi-view PCA. In this way,
MVPCA/VMVPCA learns a neater and cleaner seman-
tic space to help knowledge transfer.

However, in order to learn the semantic space
of multi-view correspondences, Canonical Correlation
Analysis[20-21] is a natural way to solve the problem.
In our future work, we will study Canonical Correla-
tion Analysis in depth, and apply it to transfer learning.
What is more, we can embed the discriminative infor-
mation to learn a cross domain semantic space[22-24].
Besides, considering text summarization[25], Canonical
Correlation Analysis could also be helpful. And there
are some open questions, for example, how to choose a
set of bridge features that are of high quality.
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