
Chen ZX, Du XN, Wu CH. Pseudo-randomness of certain sequences of k symbols with length pq. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 26(2): 276–282 Mar. 2011. DOI 10.1007/s11390-011-1130-y

Pseudo-Randomness of Certain Sequences of k Symbols with Length

pq

Zhi-Xiong Chen1,2 (陈智雄), Member, CCF, Xiao-Ni Du2,3,∗ (杜小妮)
and Chen-Huang Wu1 (吴晨煌), Member, CCF

1Department of Mathematics, Putian University, Putian 351100, China
2State Key Lab. of ISN, Xidian University, Xi’an 710071, China
3College of Mathematics and Information Science, Northwest Normal University, Lanzhou 30070, China

E-mail: {ptczx, ymldxn, wuchenhuang2008}@126.com

Received March 24, 2010; revised November 25, 2010.

Abstract The theory of finite pseudo-random binary sequences was built by C. Mauduit and A. Sárközy and later
extended to sequences of k symbols (or k-ary sequences). Certain constructions of pseudo-random sequences of k symbols
were presented over finite fields in the literature. In this paper, two families of sequences of k symbols are constructed by
using the integers modulo pq for distinct odd primes p and q. The upper bounds on the well-distribution measure and the
correlation measure of the families sequences are presented in terms of certain character sums over modulo pq residue class
rings. And low bounds on the linear complexity profile are also estimated.
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1 Introduction

In a series of papers starting from [1], Mauduit and
Sárközy (partly with further coauthors) introduced cer-
tain measures of pseudo-randomness and studied finite
binary pseudo-random sequences. For a finite binary
sequence of length N

EN = {e1, . . . , eN} ∈ {−1,+1}N .

The well-distribution measure of EN is defined by

W (EN ) = max
a,b,t

∣∣∣
t−1∑

j=0

ea+bj

∣∣∣,

where the maximum is taken over all a, b, t ∈ N such
that 1 6 a 6 a + b(t − 1) 6 N , and the correlation
measure of order ` of EN is defined as

C`(EN ) = max
M,D

∣∣∣
M∑

n=1

en+d1en+d2 · · · en+d`

∣∣∣,

where the maximum is taken over all D = (d1, . . . , d`)
and M such that 0 6 d1 < · · · < d` 6 N −M .

It was shown in [2] that for a “truly” random binary
sequence EN both pseudo-random measures W (EN )
and C`(EN ) are “small”. More precisely, the order of
magnitude of W (EN ) and C`(EN ) (for fixed `) is N1/2

and N1/2(log N)c(`) for some fixed value c(`), respec-
tively.

In [3] this theory was extended to sequences of k
symbols (or k-ary sequences) and further studied in [4-
6]. In particular, very recently the theory of pseudo-
random lattices of k symbols was built in [7]. There
are two different ways of extension which are shown to
be “nearly equivalent”[3]. The following one is more
suitable for our purpose.

Let k ∈ N, k > 2, and let A = {β1, β2, . . . , βk} be a
finite set of k symbols. Let

EN = {e1, e2, . . . , eN} ∈ AN

be a sequence of these symbols of length N . Write

x(EN , a, M, u, v)

= #{j|0 6 j 6 M − 1, eu+jv = a}
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for a ∈ A and

g(EN , w, M, D)

= #{n|1 6 n 6 M, (en+d1 , . . . , en+d`
) = w}

for w = (a1, . . . , a`) ∈ A` and D = (d1, . . . , d`) with
non-negative integers d1 < · · · < d`. Then following
[3], the well-distribution measure (more precisely, the
f -well-distribution measure in [3], where “f” for fre-
quency) of EN is defined as

δ(EN ) = max
a,M,u,v

∣∣∣x(EN , a, M, u, v)− M

k

∣∣∣,

where the maximum is taken over all a ∈ A and positive
M, u, v with u + (M − 1)v 6 N . Let

γ`(EN , D) = max
w,M

∣∣∣g(EN , w, M, D)− M

k`

∣∣∣,

where the maximum is taken over all w ∈ A` and M
such that M + d` 6 N , then the correlation measure of
order ` (i.e., the f -correlation measure of order ` in [3])
of EN is defined as

γ`(EN ) = max
D

γ`(EN , D),

where the maximum is taken over all D = (d1, . . . , d`).
It is expected that both δ(EN ) and γ`(EN ) (at least

for small `) are “small” in terms of N (in particular,
both are o(N) as N → ∞, and ideally it is N1/2+ε).
And EN is considered as a “good” pseudo-random se-
quence if both δ(EN ) and γ`(EN ) are “small”.

Certain construction of “good” sequences Ep =
{e1, e2, . . . , ep} of k symbols was defined in [3] using
a multiplicative character χ of order k (k is a divisor of
p− 1) of finite fields Zp by

en =
{

χ(n), if (n, p) = 1,

1, otherwise,
n = 1, 2, . . . .

Such a sequence satisfies

δ(Ep) ¿ p1/2 log p, γ`(Ep) ¿ `kp1/2 log p

for ` < p. This construction was extended in [4-5] using
polynomials f(x) ∈ Zp[x] with no multiple zeros.

For the purpose of applications, it is a natural idea to
construct other families of pseudo-random sequences of
k symbols. In this article, we will present new construc-
tions of pseudo-random sequences of k symbols using
Zpq , the residue class ring modulo pq.

Throughout this paper, the implied constant in the
symbol “¿” is absolute. We recall that the notation
U ¿ V is equivalent to the assertion that the inequality

|U | 6 cV holds for some constant c > 0. The notation
#C denotes the cardinality of the set C.

2 Sequences of k Symbols

2.1 Constructions

Throughout this paper, let N = pq , where p and q
are two distinct odd primes satisfying “RSA type”[8]

with
2 < p < q < 2p.

Let d = gcd(p− 1, q − 1) and e = lcm(p− 1, q − 1). By
the Chinese Remainder Theorem there exists a common
primitive root g of both p and q. In fact, suppose that
a is a primitive root modulo p, and b is a primitive root
modulo q, then we get the common primitive root

g ≡ qiqa + pipb (mod pq),

where qiq ≡ 1 mod p and pip ≡ 1 mod q. For example,
g = 5 for p = 3 and q = 7. There also exists an integer
ω satisfying

ω ≡ g (mod p), ω ≡ 1 (mod q).

Since g is a primitive root of both p and q, by the Chi-
nese Remainder Theorem again

ordN (g) = lcm(ordp(g), ordq(g))

= lcm(p− 1, q − 1) = e

where ordm(g) denotes the multiplicative order of g
modulo m.

In ZN = {0, 1, . . . , N−1}, the residue class ring mo-
dulo N , the (Whiteman) generalized cyclotomic classes
of order d are defined by

Di = {gsωi|s = 0, 1, . . . , e− 1}, i = 0, 1, . . . , d− 1.

It is easy to see that

Z∗N =
d−1⋃

i=0

Di, Di ∩Dj = ∅ for i 6= j.

We set

Q = {q, 2q, . . . , (p− 1)q}, Q0 = Q ∪ {0},
P = {p, 2p, . . . , (q − 1)p}.

The (Whiteman) generalized cyclotomic classes were
applied to constructing binary sequences in numerous
references, see, e.g., [8-15]. In this article, we will ex-
tend the constructions of binary sequences to sequences
of k symbols.

Let k be a positive integer. From now on, we always
suppose A = Zk = {0, 1, . . . , k − 1}. We define the
first family of sequences of k symbols using generalized
cyclotomic classes above.
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Definition 1. E
(1)
N = {e(1)

1 , e
(1)
2 , . . . , e

(1)
N } ∈ ZN

k is
defined by

e(1)
n =





j (mod k), if n ∈ Dj , 0 6 j < d,

A, if n ∈ P,

B, if n ∈ Q0,

for n = 0, 1, . . . , N − 1 and fixed elements A,B ∈ Zk.
We remark that if k = 2, E

(1)
N is the Jacobi sequence,

whose properties were studied by Rivat and Sárközy[8].
Let indp(x) denote the index (discrete logarithm) of

x (to the base g) so that

gindp(x) ≡ x (mod p).

We add the condition

1 6 indp(x) 6 p− 1

to make the value of index unique. Similarly, one can
define indq(x) ∈ [1, q − 1]. Then we define the second
family of sequences of k symbols.

Definition 2. E
(2)
N = {e(2)

1 , e
(2)
2 , . . . , e

(2)
N } ∈ ZN

k is
defined by

e(2)
n =





indp(n) + indq(n) (mod k), if n ∈ Z∗N ,

A, if n ∈ P,

B, ifn ∈ Q0,

for n = 0, 1, . . . , N − 1 and fixed elements A,B ∈ Zk.
Some related sequences are studied in [16-17], mainly

concentrating on the properties of linear complexity,
see, e.g., [18] for the notion.

2.2 Pseudo-Randomness

In this subsection, we consider the well-distribution
measure and correlation measure of E

(1)
N and E

(2)
N , re-

spectively. The theory of character sums plays an im-
portant role in our proofs.

For any positive integer m > 1, we identify Zm, the
residue ring modulo m, with the set {0, 1, . . . , m − 1}.
Z∗m = {x ∈ Zm| gcd(x,m) = 1} is a group under integer
multiplication modulo m. A group homomorphism

χ : Z∗m → C∗1

is called a (multiplicative) character modulo m, where
C∗1 is the multiplicative group of complex numbers of
absolute value 1. A character with χ(x) = 1 for any
x ∈ Z∗m is called the principal character and denoted
by χ0 = 1. We denote by Ẑ∗m the set of all multiplica-
tive characters of Z∗m. It is easy to see that Ẑ∗m forms
a group with the principal character χ0 as the neutral
element under the multiplication of characters.

For convenience, we extend χ to Zm only by defining
χ(x) = 0 for x with gcd(x,m) > 1.

Lemma 1[19]. Let #Ẑ∗m denote the cardinality of
Ẑ∗m. For any element x ∈ Z∗m,

∑

χ∈Ẑ∗m

χ(x) =
{

0, if x 6= 1,

#Ẑ∗m, otherwise.

And for any character χ ∈ Ẑ∗m,

∑

x∈Z∗m
χ(x) =

{
0, if χ 6= χ0,

#Z∗m, otherwise.

We remark that Z∗m and Ẑ∗m in Lemma 1 can be
replaced by any finite Abelian groups G and Ĝ, the
character group of G, respectively.

It is obvious that when m = pq (p, q are distinct
prime numbers), for each χ ∈ Ẑ∗m, there exist χp ∈ Ẑ∗p
and χq ∈ Ẑ∗q such that

χ(x) = χp(x)χq(x), x ∈ Z∗m.

Lemma 2[8]. Let p, q be distinct odd prime numbers
and h(x) = hlx

l + · · ·+ h1x + h0 ∈ Z[x] and a ∈ Z. Let
χ be a primitive multiplicative character modulo pq and
write χ = χpχq, where χp is a character modulo p of
order tp > 1 and χq is a character modulo q of order
tq > 1. Let X, Y be real numbers with 0 < Y 6 pq.

(i) If h(x), as a polynomial in Fp[x], is not a con-
stant multiple of a tp-th power of a polynomial in Fp[x]
and it has sp distinct zeros in Fp, then

∣∣∣
pq∑

x=1

χ(h(x))epq(ax)
∣∣∣ 6 spp

1/2q

and
∣∣∣

∑

X<x6X+Y

χ(h(x))
∣∣∣ 6 spp

1/2q(1 + log(pq)).

Similar results hold if we interchange the roles of p and
q with corresponding parameters tq and sq.

(ii) If conditions of (i) hold for both p and q, then
we have

∣∣∣
pq∑

x=1

χ(h(x))epq(ax)
∣∣∣ 6 spsqp

1/2q1/2

and
∣∣∣

∑

X<x6X+Y

χ(h(x))
∣∣∣ 6 spsqp

1/2q1/2(1 + log(pq)).
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Theorem 1. Suppose k > 1 and k|d for d =
gcd(p − 1, q − 1). Then the well-distribution measure
of E

(1)
N defined in Definition 1 satisfies

δ(E(1)
N ) ¿ N1/2 log N.

Proof. Let

H = {χd/k : χ ∈ Ẑ∗N , χ(gi) = 1, 0 6 i < e}.

Obviously H is a cyclic subgroup of Ẑ∗N with #H = k
by Theorem 5.6 of [19]. Let H∗ = H \ {χ0}. Each
χ ∈ H∗ is a primitive multiplicative character.

Let ω be defined as in Subsection 2.1. According to
the definition of E

(1)
N , we see that

e(1)
n ≡ j (mod k) ⇔ n ∈ Dj ⇔ χ(nω−j) = 1

for n ∈ Z∗N and χ ∈ H∗.
For all a ∈ Zk and positive integers M, u, v with

1 6 u + (M − 1)v 6 N , we use Lemma 1 to represent
the following equation

x(E(1)
N , a, M, u, v)

=#{j|0 6 j 6 M − 1, e
(1)
u+jv = a}

6
∑

06j6M−1
u+jv∈Z∗

N

1
k

∑

χ∈H
χ((u + jv)ω−a) +

∑
06j6M−1

u+jv∈P∪Q0

1

=
1
k

∑

χ∈H
χ(ω−a)

∑
06j6M−1
u+jv∈Z∗

N

χ(u + jv) + (p + q − 1)

6 M

k
+

1
k

∑

χ∈H∗
χ(ω−a)

∑
06j6M−1
u+jv∈Z∗

N

χ(u + jv) + (p + q − 1).

And hence we derive
∣∣∣x(E(1)

N , a, M, u, v)− M

k

∣∣∣

6 1
k

∣∣∣
∑

χ∈H∗
χ(ω−a)

∑
06j6M−1
u+jv∈Z∗

N

χ(u + jv)
∣∣∣ + (p + q − 1)

6 1
k

∑

χ∈H∗

∣∣∣
∑

06j6M−1
u+jv∈Z∗

N

χ(u + jv)
∣∣∣ + (p + q − 1)

6 (p + q − 1) +





p, if q|v,

q, if p|v,

N1/2(1 + log N), if v ∈ Z∗N .

The last inequality follows from Lemma 2. Together
with the restriction on p, q of “RSA” type, we complete
the proof. ¤

Theorem 2. Suppose k > 1 and k|d for d =
gcd(p − 1, q − 1) and D = (d1, . . . , d`) with ` < N and
0 6 d1 < · · · < d` < N .

(i) If d1 ≡ d2 ≡ · · · ≡ d` (mod p) or d1 ≡ d2 ≡
· · · ≡ d` (mod q), we have

γ`(E
(1)
N , D) ¿ `N3/4 log N.

(ii) If di 6≡ dj (mod p) and di 6≡ dj (mod q) for all
1 6 i, j 6 ` and i 6= j, we have

γ`(E
(1)
N , D) ¿ `2N1/2 log N.

In particular, the correlation measure of order 2 of E
(1)
N

satisfies
γ2(E

(1)
N ) ¿ N3/4 log N.

Proof. For all w = (a1, . . . , a`) ∈ Z`
k, and D =

(d1, . . . , d`) and M such that d1 < d2 < · · · < d` and
M +d` 6 N , there are at most `(p+q−1) many n ∈ ZN

such that n + di 6∈ Z∗N for all 1 6 i 6 `. So we have

g(E(1)
N , w, M, D)

=#{m|1 6 m 6 M, (e(1)
m+d1

, . . . , e
(1)
m+d`

) = w}

6
M∑

m=1

∏̀
j=1

m+dj∈Z∗N

(1
k

∑

χ∈H
χ((m + dj)ω−aj )

)
+

`(p + q − 1)

6 1
k`

M∑
m=1

∑

χ1,...,χ`∈H

∏̀
j=1

m+dj∈Z∗N

χj((m + dj)ω−aj )+

`(p + q − 1)

6 M

k`
+

1
k`

M∑
m=1

∑
χ1,...,χ`∈H

(χ1,...,χ`)6={χ0}`

·

∏̀
j=1

m+dj∈Z∗N

χj((m + dj)ω−aj ) + `(p + q − 1).

SinceH is a cyclic group of order k, let ψ be a generator
of H. All χj ∈ H can be written as χj = ψαj for some
integer 0 6 αj 6 k − 1. Then we derive

∣∣∣g(E(1)
N , w, M, D)− M

k`

∣∣∣

6 `(p + q − 1) +
1
k`

∑
06α1,...,α`6k−1

(α1,...,α`)6=0

·

∣∣∣
M∑

m=1
m+dj∈Z∗N

ψ((m + d1)α1 · · · (m + d`)α`)
∣∣∣.

Let F (x) = (x+ d1)α1 · · · (x+ d`)α` . If d1 ≡ d2 ≡ · · · ≡
d` (mod p), then di 6≡ dj (mod q) for all 1 6 i, j 6 `
and i 6= j, and hence F (x), as a polynomial in Zq[x], is
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not a constant multiple of a k-th power of a polynomial
in Zq[x]. So by Lemma 2, we have

γ`(E
(1)
N , D) 6 `pq1/2(1 + log N) + `(p + q − 1)

¿ `N3/4 log N.

Similarly, if d1 ≡ d2 ≡ · · · ≡ d` (mod q), we have

γ`(E
(1)
N , D) 6 `qp1/2(1 + log N) + `(p + q − 1)

¿ `N3/4 log N.

And if di 6≡ dj (mod p) and di 6≡ dj (mod q) for all
1 6 i, j 6 ` and i 6= j, we see that F (x) is not a con-
stant multiple of a k-th power of a polynomial neither
in Zp[x] nor in Zq[x]. So we have

γ`(E
(1)
N , D) 6 `2N1/2(1 + log N) + `(p + q − 1)

¿ `2N1/2 log N.

We complete the proof. ¤
Theorem 3. Suppose k > 1 and k|d for d =

gcd(p − 1, q − 1). Then the well-distribution measure
of E

(2)
N defined in Definition 2 satisfies

δ(E(2)
N ) ¿ N1/2 log N.

Proof. We write e(z) = e2π
√−1z ∈ C for real z and

ek(z) = e(z/k). Let

χp(x) = ek(indp(x))

for x ∈ Z∗p and

χq(x) = ek(indq(x))

for x ∈ F∗q . It is easy to see that χp (resp. χq) is a
multiplicative character modulo p (resp. q) of order k.
Let

φ = χpχq,

i.e., φ is a multiplicative character modulo N of order
k. Then for n ∈ Z∗N we have

ek(λ · e(2)
n ) = ek(λ · (indp(n) + indq(n)))

= ek(λ · indp(n)) · ek(λ · indq(n))

=χλ
p(n)χλ

q (n) = (χpχq)(nλ)

=φ(nλ),

where λ ∈ Zk.
The proof is similar to that of Theorem 1. We will

use φ here instead of χ in Theorem 1. Below we present
the main skeleton. For all a ∈ Zk and positive integers
M, u, v with 1 6 u + (M − 1)v 6 N , we get

x(E(2)
N , a, M, u, v)

6
∑

06j6M−1
u+jv∈Z∗

N

1
k

k−1∑

λ=0

ek(λ(e(2)
u+jv − a)) +

∑
06j6M−1

u+jv∈P∪Q0

1

6 M

k
+

1
k

k−1∑

λ=1

ek(−λa) ·
∑

06j6M−1
u+jv∈Z∗

N

φ((u + jv)λ) + (p + q − 1).

Hence we derive
∣∣∣x(E(2)

N , a, M, u, v)− M

k

∣∣∣

6 1
k

k−1∑

λ=1

∣∣∣
∑

06j6M−1
u+jv∈Z∗

N

φ((u + jv)λ)
∣∣∣ + (p + q − 1)

6 (p + q − 1) +





p, if q|v,

q, if p|v,

N1/2(1 + log N), if v ∈ Z∗N ,

which completes the proof. ¤
Theorem 4. Suppose k > 1 and k|d for d =

gcd(p − 1, q − 1) and D = (d1, . . . , d`) with ` < N and
0 6 d1 < · · · < d` < N .

(i) If d1 ≡ d2 ≡ · · · ≡ d` (mod p) or d1 ≡ d2 ≡
· · · ≡ d` (mod q) we have

γ`(E
(2)
N , D) ¿ `N3/4 log N.

(ii) If di 6≡ dj (mod p) and di 6≡ dj (mod q) for all
1 6 i, j 6 ` and i 6= j, we have

γ`(E
(2)
N , D) ¿ `2N1/2 log N.

In particular, the correlation measure of order 2 of E
(2)
N

satisfies
γ2(E

(2)
N ) ¿ N3/4 log N.

Proof. Using the multiplicative character φ, we will
get the result after following a similar path of the proof
of Theorem 2. ¤

2.3 Linear Complexity Profile

We recall that the linear complexity profile of a se-
quence S = {s1, s2, . . .} over the ring Zk is the function
L(S,M) defined for every positive integer M , as the
least order L of a linear recurrence relation over Zk

sn = c1sn−1 + · · ·+ cLsn−L,

for all L + 1 6 n 6 M , which S satisfies. The value

L(S) = sup
M>1

L(S,M)
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is called the linear complexity of the sequence S. For
the linear complexity of any periodic sequence of pe-
riod T one easily verifies that L(S) = L(S, 2T ) 6 T .
Linear complexity and linear complexity profile are im-
portant cryptographic characteristics of sequences and
provide information on the predictability and thus un-
suitability for cryptography. It is desirable to have se-
quences with high linear complexity (profile) so that
the necessary fragment approaches the length of the
sequence itself[18,20]. Very recently, the first author
and Winterhof[21] present some partial results of lin-
ear complexity profile of k-ary sequences in terms of a
new correlation measure related to the correlation mea-
sure defined in Introduction. So according to Theorem
1 and the proof of Proposition 2 of [21], for j = 1, 2, if
L(E(j)

N , n) < p we get

L(E(j)
N , n) > n− max

16`6L(E
(j)
N )+1

k`γ`(E
(j)
N , D),

from which one might derive a lower bound on linear
complexity profile for E

(1)
N and E

(2)
N , respectively. How-

ever, using the character sums directly, below we will
get stronger lower bounds.

Theorem 5. Suppose k > 1 and k|d for d =
gcd(p−1, q−1). The linear complexity profile L(E(1)

N , n)
of the first n terms of E

(1)
N defined in Definition 1 sa-

tisfies

L(E(1)
N , n) À n1/2N−1/4(log N)−1/2

for 1 6 n < N .
Proof. Let L(E(1)

N , n) = L and

e
(1)
i+L ≡ cL−1e

(1)
i+L−1 + · · ·+ c0e

(1)
i (mod k)

for all 1 6 i 6 n−L, where c0, c1, . . . , cL−1 ∈ Zk. Since
otherwise the bound is trivial, we always suppose that
L < p(< q). We note that at least n− L− (L + 1)(p +
q − 1) many i ∈ {1, 2, . . . , n− L} satisfy

i + l ∈ Z∗N , for all l = 0, . . . , L.

Let I = {i : 1 6 i 6 n − L, i + l ∈ Z∗N for all
l = 0, . . . , L}. Now for i ∈ I and χ ∈ H∗ defined
in the proof of Theorem 1, we obtain

1 = χ(1) = χ(ω0)

=χ(ωcLe
(1)
i+L+cL−1e

(1)
i+L−1+···+c0e

(1)
i )

=χ((i + L)cL(i + L− 1)cL−1 · · · ic0),

where ω is defined as in Subsection 2.1 and cL = −1.
So we have

∣∣∣
∑

i∈I
χ((i + L)cL(i + L− 1)cL−1 · · · ic0)

∣∣∣

>n− L− (L + 1)(p + q − 1).

Since L < p(< q), by Lemma 2 we get

n− L− (L + 1)(p + q − 1) 6 (L + 1)2N1/2(1 + log N).

After simple calculations, we obtain the desired result.
¤

Theorem 6. Suppose k > 1 and k|d for d =
gcd(p−1, q−1). The linear complexity profile L(E(2)

N , n)
of the first n terms of E

(2)
N defined in Definition 2 sa-

tisfies

L(E(2)
N , n) À n1/2N−1/4(log N)−1/2

for 1 6 n < N .
Proof. Let φ be the multiplicative character defined

in the proof of Theorem 3. Following the path of Theo-
rem 5 and using the equation

1 = ek(0)

= ek(cLe
(2)
i+L + cL−1e

(2)
i+L−1 + · · ·+ c0e

(2)
i )

=φ((i + L)cL(i + L− 1)cL−1 · · · ic0),

we obtain the result. ¤

3 Final Remarks

In this paper, we consider distribution and correla-
tion measures for two families of sequences of k-symbols
over integers modulo pq. The proofs depend on certain
character sums over Zpq. At the same time, we also
estimate a lower bound on linear complexity profile for
the resulting sequences. It is interesting to consider
their exact values of linear complexity. In particular in
[22], we present an exact value of linear complexity of
E

(1)
N when k is a prime.
The sequence E

(1)
N is related to the Whiteman-

generalized cyclotomic classes over ZN . Ding and
Helleseth introduced a new generalized cyclotomic
classes[23], which were called the Ding-Helleseth-
generalized cyclotomic classes in [11].

For k|d with d = gcd(p−1, q−1), the Ding-Helleseth-
generalized cyclotomic classes were defined by

D′
j =

{
gks+jxi : s = 0, 1, . . . ,

e

k
− 1, 0 6 i < d

}
,

where j = 0, 1, . . . , k − 1. Then one can define a se-
quence of k symbols E

(3)
N = {e(3)

1 , e
(3)
2 , . . . , e

(3)
N } ∈ ZN

k

by

e(3)
n =





j, if n ∈ D′
j , j = 0, 1, . . . , k − 1,

A, if n ∈ P,

B, if n ∈ Q0,
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for n = 0, 1, . . . , N−1 and A,B ∈ Zk. Indeed, a similar
sequence was introduced in [24]. According to the cor-
responding results in [24], one can find that E

(3)
N may

possess low k-error linear complexity and large autocor-
relation values, so we should be careful when using it.
Hence we will not consider the well-distribution mea-
sure and the correlation measure of order ` for E

(3)
N .

In this paper, we always suppose that k|d for d =
gcd(p − 1, q − 1). It is interesting to consider the case
of k - d.
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