
Wang J, Cao YT, Xie JY et al. Energy efficient backoff hierarchical clustering algorithms for multi-hop wireless sensor

networks. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 26(2): 283–291 Mar. 2011. DOI 10.1007/s11390-

011-1131-x

Energy Efficient Backoff Hierarchical Clustering Algorithms for

Multi-Hop Wireless Sensor Networks

Jun Wang1,2,3 (王 珺), Yong-Tao Cao4 (曹涌涛), Jun-Yuan Xie1,2 (谢俊元), Member, CCF
and Shi-Fu Chen1,2 (陈世福)

1State Key Lab for Novel Software Technology at Nanjing University, Nanjing 210093, China
2Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China
3Institute of Communication and Information Engineering, Nanjing University of Posts and Telecommunications

Nanjing 210003, China
4China Development Center, Trend Micro Corp., Nanjing 210012, China

E-mail: wang jun@njupt.edu.cn; roger cao@trendmicro.com.cn; {jyxie, chensf}@nju.edu.cn

Received July 8, 2009; revised January 21, 2011.

Abstract Compared with flat routing protocols, clustering is a fundamental performance improvement technique in
wireless sensor networks, which can increase network scalability and lifetime. In this paper, we integrate the multi-hop
technique with a backoff-based clustering algorithm to organize sensors. By using an adaptive backoff strategy, the algorithm
not only realizes load balance among sensor node, but also achieves fairly uniform cluster head distribution across the network.
Simulation results also demonstrate our algorithm is more energy-efficient than classical ones. Our algorithm is also easily
extended to generate a hierarchy of cluster heads to obtain better network management and energy-efficiency.
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1 Introduction

In wireless sensor networks (WSN), communication
bandwidth and energy are significantly more limited
than in a tethered network environment. These con-
straints require innovative design techniques to use the
available bandwidth and energy efficiently[1−3].

Clustering algorithms appeared from ad-hoc net-
works, which is inspired by wired networks, such as
the Internet. LEACH[4] is the first typical clustering
protocol designed for sensor networks. Because it is
the first mature clustering algorithm, LEACH becomes
a baseline for successors. Since the birth of LEACH,
more and more clustering algorithms have been pro-
posed and show their advantages in energy efficiency
and node management compared with flat routing pro-
tocols, such as directed diffusion[5]. HEED[6] is an-
other classical clustering approach proposed in 2004,
to achieve better load balance, HEED considers the
residual energy as the criterion to choose cluster-heads.
On the other hand, HEED is too strict to destroy the

randomness of the algorithm, which might lead to worse

energy efficiency. In order to realize more load balanc-
ing, Cao presents a new adaptive backoff strategy in [7]
to not only realize load balance among sensor node, but
also ensure that the elected cluster-heads are evenly-
distributed.

The above protocols share the commonality that
only one-hop clusters are considered. One-hop clus-
ters require any pair of sensor nodes in the same clus-
ter to be able to communicate directly (i.e., the sensor
nodes are within each other’s transmission range). In
large networks, this constraint may lead to a large num-
ber of cluster-heads, potentially increasing the efforts of
inter-cluster control information flow, which consumes
energy as well as network bandwidth. Moreover, even
if sensor nodes in the same cluster can communicate
directly, [4] proved that multi-hop communication is
more energy-efficient than direct communication. In
addition, one-hop clusters demand that all sensors are
equipped with the capability of tuning the power for the
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variable-range communication. However, in some cases,
sensors are very simple and all the sensors transmit at a
fixed power level, so data between two communicating
sensors who are not within each other’s radio range is
forwarded by other sensors in the network.

Hence, it is desirable to find an effective solution for
constructing multi-hop clusters, where the distance of
sensor nodes is no longer limited to one hop.

The Max-Min d-cluster algorithm proposed in [8]
generates d-hop clusters which can achieve better load
balance and generate fewer clusters than early algo-
rithms. But this algorithm does not ensure that the
total energy consumption is minimized. Moreover, the
Max-Min d-cluster algorithm suffers high implement
complexity, making it unsuitable for resource-limited
sensor networks. Assuming that sensors are distributed
according to a homogeneous spatial poisson process,
Bandyopadhyay et al.[9] first introduced a multi-hop hi-
erarchical clustering algorithm for wireless sensor net-
works, they prove that the algorithm can work better
than previous algorithms in multi-hop networks. But
the random property of the algorithm, a lot of “forced
cluster-heads” will appear in many cases, i.e., the node
has no cluster to join and has to communicate directly
with BS, which is often located far away from the node’s
vicinity. The resulting long-range transmission to the
BS is very energy demanding. Also the residual battery
energy has not been considered in their algorithm.

2 Energy-Efficient Backoff-Based
Clustering Algorithm

Taking into account sensor nodes’ residual energy,
our proposed algorithm in multi-hop sensor networks
can achieve better dynamic load balance than [9]. It
also achieves fairly uniform cluster head distribution
across the network. Moreover, it does not need any
prior knowledge about the topology information. Com-
pared with the Max-Min d-hop algorithm[8], the clus-
tering process in our algorithm terminates in O(1) ite-
rations and incurs low implementation complexity. Al-
though we borrow the backoff idea of [7], the proposed
algorithm in our paper is totally new because the back-
off strategy and the whole algorithm execution process
have been re-designed so that it can work well in much
complicated multi-hop networks. Both theoretical anal-
ysis and simulation experiments show the proposed al-
gorithm outperforms the previous ones.

2.1 Algorithm Description

The operation of our algorithm is divided into
rounds. Similar to other round-based clustering
algorithms[4,6-7,9], each round begins with a set-up
phase, and followed by steady-state phase, when the

data is sensed and transferred from nodes to cluster-
heads, finally reaches the base station (BS). The
steady-state phase is much longer than set-up phase
in most cases. In such round-based clustering algo-
rithms, clock synchronization is inevitable. Because
nodes need clock synchronization to not only start and
end each round, but also determine the time when data
is sensed. The nodes must all be time-synchronized in
order to start the set-up phase at the same time. Now
many mature clock synchronization methods are used
in sensor networks[10].

The parameters used in this algorithm are listed in
Table 1. All nodes are equipped with the same battery,
which has an initial energy Emax. And each node knows
its residual battery energy, which can be assured by
its circuit system[6]. TCF is the maximum clustering-
forming time, when TCF elapses, the whole networks
will enter the steady-state phase. The transmission
range of all messages is limited to k-hop to avoid “mes-
sage explosion”. Also each node has a unique node ID.

Table 1．．．Parameters Used in the Algorithm

Ei
res the estimated current residual energy in the node i

Emax the fully charged battery energy

TCF the maximal cluster-forming time

k number of hops

In the set-up stage, all nodes are initially in the wait-
ing mode. Each node i waits for a random amount of
ti according to the following equation before making an
attempt to be the cluster-head:

ti = − 1
λi

ln(1− xi) (1)

where xi is a random variable uniformly distributed
over the interval [0, 1]. That is, ti is a random variable
whose probability density function is f(ti) = λie

−λiti ,
so it only depends on λi. Here we set λi = α

Ei
res

Emax
,

where α is a constant. How to set the value of α will
be discussed in the Subsection 2.2.

Although the computing method of the waiting time
ti seems a little strange, it ensures that nodes with
higher residual energy are more likely to be triggered
earlier and become the cluster-head within a k-hop
neighborhood, which will be proved in implication of
Property 1 and Property 2 in Subsection 2.2.

When node i’s timer fires, that means node i has
not received any messages from other nodes in the time
period ti, node i elects itself as a cluster-head and
broadcasts an ADV CH message, which is a triplet of
(CH ID, RN ID, TTL). CH ID and RN ID represent
cluster-head ID and relay-node ID, and TTL is a time-
to-live value for the message. Here node i will broadcast
an ADV CH (i, i, k) message to its neighbors. Different
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from the one-hop-cluster formation in [4, 7], the ad-
vertisement is forwarded to all the sensors that are no
more than k hops away from the cluster-head, where k
is a system parameter set in the configuration.

Upon receiving an ADV CH (m,n, x) message, node
j will stop its timer and become a subordinate node. It
records the message information, including the cluster-
head ID m, the relay-node ID n and TTL x. Then it
decreases TTL of the message by one, if x is greater
than zero, it will forward ADV CH (m,n, x − 1) in a
broadcasting approach, otherwise the message will be
dropped. If one node simultaneously receives more than
one ADV CH message, i.e., it falls within the range of
more than one self-elected cluster-heads, it records all
messages which it received and generates a simple rout-
ing table to store the cluster-head ID, relay-node ID and
its hop to the cluster-head, that is k − x + 1. Such in-
termediate nodes will become a relay-node just like the
router in the Internet. In single-hop sensor networks,
all subordinate nodes will never keep any routing infor-
mation.

For a self-elected cluster-head, if it receives an
ADV CH message from other nodes, it will not forward
this message.

When TCF , the maximal time of set-up elapses, a
subordinate node j needs to decide to join which clus-
ter. It will firstly check its distance to those candidate
cluster-heads from its routing table. It will choose the
nearest cluster-heads. If the distance between the node
and two different cluster-heads are the same, the node
choose the cluster-head whose cluster ID is smaller.
Then the subordinate node will broadcast a JOIN mes-
sage, which is also a triplet of (CH−ID ,RN−ID ,myID).
Upon receiving a JOIN message, a subordinate node
checks whether it is the relay node. If it is the case,
it checks its routing table and finds the next-hop relay
node and generates a new JOIN message with the new
relay-node. Otherwise it will drop the message.

If a cluster-head receives such a JOIN message, it
checks if the destination cluster-head in the message
is itself. If it is the case, it records the subordinate’s
decision; otherwise it will drop the message.

When TCF elapses, a node which has not sent or
received any ADV CH message will become a “forced
cluster-head” during this round[4]. That is, any sen-
sor that is neither a cluster-head nor has joined any
cluster will become a cluster-head itself; we call these
cluster-heads the forced cluster-heads, and they have to
directly communicate with the remote base station. It
is well known that radio communication with low-lying
antennas and near-ground channels has an exponential
path loss, i.e., the minimum output power required to
transmit a signal over a distance d is proportional to

dn, 2 6 n 6 4. Since transmitting data directly to
the remote base station is very energy demanding, the
clustering algorithm should prevent too many nodes
from involving in such long-distance communications.
In the following subsection, we will discuss how to de-
crease the number of forced cluster-heads. After every t
units of time, the cluster-head transmits the aggregated
information to the processing center.

Then the whole networks complete the cluster-
formation phase and enter the steady-stage phase. An-
other set-up phase will begin until the next round.

2.2 Properties of the Algorithm

Through our analysis, we find our algorithm has the
following properties.

Property 1. For any two nodes 1 and 2, Pr [t1 <
t2] = λ1

λ1+λ2
.

Proof.

Pr [t1 < t2] =
∫ ∞

0

λ1e
−λ1t1

∫ ∞

t1

λ2e
−λ2t2dt2dt1

=
∫ ∞

0

λ1e
−(λ1+λ2)t1dt1 =

λ1

λ1 + λ2
. ¤

Implication of Property 1. Since we set λi =
αEi

res/Emax, we have Pr [t1 < t2] = E1
E1+E2

. In other
words, the algorithm ensures that the node with more
residual energy is more likely to become a cluster-head
since its timer is more likely to trigger earlier. In
contrast, Bandyopadhyay’s algorithm disregards nodes’
residual battery energy. Therefore, our cluster-head se-
lection algorithm is likely to perform better dynamic
load-balancing for wireless sensor networks.

Property 2. Consider nodes 1, 2, . . . , n with
λ1, λ2, . . . , λn respectively.

Pr [ti < tk∀k 6= i] =
λi∑
k λk

.

Proof. Similar to the proof of Property 1. ¤
Implication of Property 2. Different nodes have dif-

ferent numbers of nodes, n, as its k-hop neighbors. Pro-
perty 2, after plugging in λi = αEi

res/Emax, simply says
that the chance of a node becoming a cluster-head is
proportional to its own residue energy divided by the
“total energies” within k hops.

We also hope that the network elects enough cluster-
heads in one round before the time TCF elapses: for
instance at least 50% of nodes are expected to initial-
ize cluster-formation within one minute. The reason
is that when too few cluster-heads are elected, it is
very likely that there is no self-elected cluster-head in
some node’s proximity. So the node has to become a
“forced cluster-head” and communicates directly with
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BS, which is often located far away from the node’s
vicinity. Thus the selection of λ should satisfy the fol-
lowing inequation: p{t < TCF} > σ, for some target
percentage σ. In this case

∫ TCF

0

λe−λtdt > σ ⇒ λ > − ln(1− σ)
TCF

. (2)

Based on (2), we calculate that a λ of 0.013 86 is
needed to ensure that 50% of the nodes will initialize
the cluster-forming process within one minute (σ = 0.5,
TCF = 60 s).

Property 3. For any two nodes 1 and 2, Pr [|t1 −
t2| < Tc] = 1− λ1e−λ2Tc+λ2e−λ1Tc

λ1+λ2
, where Tc is the max-

imum node-to-node delay between two k-hop-away sen-
sor nodes.

Proof.

Pr [|t1 − t2| < Tc]

=
∫ ∞

0

λ1e
−λ1t1

∫ t1+Tc

t1−Tc

λ2e
−λ2t2dt2dt1−

∫ Tc

0

λ1e
−λ1t1

∫ 0

t1−Tc

λ2e
−λ2t2dt2dt1

=
λ1

λ1 + λ2
(eλ2Tc − e−λ2Tc)−

λ1

λ1 + λ2
(eλ2Tc − e−λ1Tc) + 1− e−λ1Tc

=1− λ1e
−λ2Tc + λ2e

−λ1Tc

λ1 + λ2
. ¤

Implication of Property 3. Substituting λi =
αEi

res/Emax, we get

Pr [|t1 − t2| < Tc]

= 1− E1
rese

−αE2
resTc/Emax + E2

rese
−αE1

resTc/Emax

E1
res + E2

res

.

To ensure Pr [|t1 − t2| < Tc] 6 ε, we need

f(E1
res , E

2
res)

∆=
E1

rese
−αE2

resTc/Emax + E2
rese

−αE1
resTc/Emax

E1
res + E2

res

> 1− ε. (3)

The function f(E1
res , E

2
res) will reach its minimum

when E1
res = E2

res = Emax. (The proof will not be
presented here because of page limit.)

So we have

f(E1
res , E

2
res) =

E1
rese

−αE2
resTc/Emax + E2

rese
−αE1

resTc/Emax

E1
res + E2

res

6 fmin(E1
res , E

2
res) = f(Emax, Emax) = e−αTc .

Thus, (3) is satisfied if

fmin(E1
res , E

2
res) = e−αTc > 1− ε. (4)

By choosing an appropriate α, i.e., α 6 − ln(1−ε)
Tc

,
we should be able to bound Pr[|t1− t2| < Tc]. The pro-
posed algorithm is able to ensure that the probability
that two nodes within each other’s cluster range are
both cluster-heads is small, i.e., cluster heads are well
scattered. For example, when ε = 0.01 and Tc = 0.001
(1ms), choosing α 6 10 can satisfy the above inequa-
tion.

Property 3 implies that elected cluster heads are
well scattered, namely, the volunteer cluster-heads are
evenly distributed in the working region. They will not
clump in one region so that most of ordinary nodes can
find one cluster-head in their neighborhood. As a re-
sult, compared with Bandyopadhyay’s algorithm, the
chance that a sensor node becomes a “forced cluster-
head” will be greatly decreased.

We can conclude that in comparison with Bandy-
opadhyay’s algorithm the proposed algorithm is a
promising clustering approach to use for extending sys-
tem life because it is able to not only perform dynamic
load-balancing, but also effectively decrease the number
of “forced cluster-heads”.

2.3 Simulation Experiments and Results

We conduct simulation experiments to evaluate the
performance of the proposed algorithm. The entire
simulation is conducted in a 100m × 100m region,
which is between (x = 0, y = 0) and (x = 100,
y = 100). 100 nodes with 2 Joule initial energy are ran-
domly spread in this region. The node-to-node trans-
mission range (r) and node-to-BS transmission range
are set to 15 meters and 200 meters respectively. Ini-
tially, each node is assigned a unique node ID and x, y
coordinates within the region. The base station locates
in the (50, 175). The maximum number of hops k is set
to 2.

We firstly try to find out the optimal α based on sys-
tem life measured in simulation experiments. Similar to
[7], assuming σ = 0.5, TCF = 60 seconds, ε = 0.01 and
Tc = 0.001, we choose 1 6 α 6 10 to satisfy (2) and
(4). Fig.1 shows how the choice of α impacts system
life (working rounds). The analytical optimal value of
α will be deduced in our future work. In this paper, we
choose α = 4 in the following simulation experiments.

Simulation experiments proceed with rounds. In
each round, one ordinary node, if it has enough resi-
dual energy to function properly, collects sensor data
and sends a packet (packet size L = 10000 bit) to its
CH or BS. Similar to [4], we also define “system life”
as the time (the working rounds in the paper) until the
first node dies.

Fig.2 and Fig.3 are the output of one of the sim-
ulations of the Bandyopadhyay’s algorithm and our
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Fig.1. System life vs. α.

Fig.2. Simulation result of Bandyopadhyay’s algorithm.

Fig.3. Simulation result of the proposed algorithm.

proposed algorithm. For Bandyopadhyay’s algorithm,
we set the optimal value p = 0.05. Note here we set
k = 2 and r = 15m, i.e., two-hop clustering networks
are formed in the simulation. In Fig.2 and Fig.3 the
“plus” and “circle” represent “cluster-head” and “or-
dinary node” respectively while “triangle” represents
“forced cluster-head”. These figures show that Bandy-
opadhyay’s algorithm and our approach both elect 11
cluster-heads. However, the number of “forced cluster-
heads” is quite different: only 4 “forced cluster-heads”

appear in the simulation of the proposed algorithm
while the number is 11 in Bandyopadhyay’s algorithm’s
operation. This is because cluster-heads elected by our
algorithm are well-scattered.

Next, we measure the system life for three cluster-
ing protocols: Bandyopadhyay’s algorithm, HEED and
our algorithm, where system life is the time until the
first node dies. HEED[9] can be extended for multi-hop
sensor networks. For HEED, we set pmin to 0.0005 and
CH prob to 5%. As mentioned in Section 1, each node in
HEED’s operation must distribute its own cost, which
is energy-consuming. Fig.4 illustrates our algorithm
outperforms Bandyopadhyay’s algorithm and HEED in
terms of system life.

Then we study the relationship between system life
and effective sensor data. Observing the simulation re-
sults of Fig.5. We can see that our algorithm will pro-
duce more effective sensor data than Bandyopadhyay’s
algorithm and HEED over time since our algorithm has
effectively reduced extra energy consumption.

Fig.4. System life using different clustering algorithms.

Fig.5. Number of survival nodes per given amount of effective

data packets sent.
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3 Backoff-Based Hierarchical Clustering
Algorithm

Multi-level hierarchical technique is an efficient tool
to organize large-scale networks such as Internet or
cellular networks. Imaging large-scale networks, such
as Internet or GSM networks, hierarchy is the only
choice for network management. The authors in [9, 11]
also mentioned that multiple levels of clustering might
decrease system energy consumption in wireless sensor
networks, although they did not give any detail plan.
Similarly, although the authors in [7] propose a back-off
algorithm, they did not try to extend the method to or-
ganize a multi-level networks. Our algorithm is inspired
by the above research work. We expect that such a
technology is able to reduce the total energy consump-
tion. Meanwhile, it also can serve for better network
management. In this section we extend the algorithm
introduced in Subsection 2.1 with the multi-level hier-
archical technique.

In an h-level clustering hierarchy, there are h levels
in the clustering hierarchy with level 1 being the low-
est level and level h being the highest. In the multi-
level clustering hierarchy, the total energy is the energy
spent by the sensors to communicate the information
to level-1 cluster-heads (CHs), plus the energy spent
by the level-1 CHs to communicate the aggregated in-
formation to level-2 CHs, plus the energy spent by the
level-h CHs to communicate the aggregated informa-
tion to the processing center[7].

3.1 Algorithm Description

The hierarchical clustering algorithm works in a
bottom-up fashion. Taking the advantage of the algo-
rithm described in Subsection 2.1, the level-1 cluster-
heads has been elected from the whole network. Then
level-2 cluster-heads are elected from level-1 cluster-
heads, and so on until the highest level cluster-heads
have been elected.

In the level j (j = 2, . . . , h), the i-th cluster-head of
level-(j− 1) waits for a random amount of tji according
to the following equation before making an attempt to
be the level-j’s cluster-head:

tji = − 1
λj

i

ln(1− xj
i ) (5)

where xj
i is a random variable uniformly distributed

over the interval [0, 1]. That is, tji is a random variable
whose probability density function is f(tij) = λi

je
−λi

jti
j .

Here we set λj
i = αj

Ei
res

Emax
, where αj is a constant re-

lated to level j. Generally for simplicity, we just set
the same expected ratio for each level, which means

α1 = α2 = · · · = αn = α. So we have a simple com-
putation method for λj

i , i.e., λj
i = α

Ei
res

Emax
, which only

depends on node i’s residual energy. As described in
Subsections 2.2 and 2.3, the analytical optimal value
of α is fairly difficult, so the experimental method
is recommended to compute the optimal α. We also
choose α = 4 in the following simulation experiments.

Each level-(j− 1) cluster-head (CH), which is to be-
come a level-j’s CH, advertises itself as a level-j cluster-
head. This advertisement is forwarded to all the sen-
sors within kj hops of the advertising CH. Similar to
level-1 cluster formation phase, here level-(j − 1) CH,
node i will broadcast an ADV CH (i, i, kj) message to
its neighbors.

Any node, which is either a level-(j − 1)’s CH or an
ordinary sensor, forwards the packets according to the
method which is introduced in Subsection 2.1. For ex-
ample, upon receiving an ADV CH (m,n, x) message,
node j will stop its timer if it is a level-(j − 1) CH.
Then it records the message information, including the
cluster-head ID m, the relay-node ID n and TTL x.
Then it decreases TTL of the message by one, if x is
greater than zero, it will forward ADV CH (m,n, x−1)
in a broadcasting approach, otherwise the message will
be dropped. If one node simultaneously receives more
than one ADV CH message, i.e., it falls within the
range of more than one self-elected cluster-heads, it will
record all received messages and generate a simple rout-
ing table to store the cluster-head ID, relay-node ID and
its hop to the cluster-head, that is k − x + 1.

When TCF elapses, each level-(j − 1) CH which
received advertisements chooses to join the cluster of
the closest level-j CH; the remaining CHs will become
forced level-1 CHs. In such a way, the level-j cluster-
heads are elected from level-(j − 1) CHs, and so on
until the highest level cluster-heads have been elected.
Note that any level-i CH is also a CH of level (i − 1),
(i− 2), . . . , 1. The detailed algorithm description could
be found in Subsection 2.1.

The optimal value of kj can be computed from Sec-
tion 4 in [9]. It is fairly complicated, so for lower imple-
mentation complexity, we can simply set kh = 2kh−1 =
· · · = 2h−2k2 = 2h−1k1 to try to keep network connec-
tivity, i.e., when k1 = 2, we have k2 = 4, . . . , kj = 2j−1.

The multi-level hierarchical protocol indeed in-
creases inner-cluster communications compared with
single-level clustering algorithm, so it is best applied
to those applications where the base station (BS) is far
from the sensor networks, such as an unmanned air-
plane or a satellite acts as the BS to collect data from
sensors deployed in the desert. The cost of inner-cluster
communication will become negligible in such cases.
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3.2 Optimal Parameters for the Algorithm

For simplicity, our analysis in this subsection as-
sumes a fixed mode in which λj = αj , which means
the residual energy would be considered in this anal-
ysis. Sure an adaptive mode would further improve
the results of our system, so the performance results of
the fixed mode can serve as a conservative bound for
those of the adaptive mode. In this subsection, we will
discuss how many cluster-heads should be deployed in
each level in the hierarchy, i.e., the tradeoff between re-
dundancy and performance should be considered. More
cluster-heads produced in the system will improve the
performance by diminishing so-called “forced cluster-
heads”, but inevitably increase the total cost.

To limit our scope, we will only consider the non-
adaptive mode in our analysis here. Specifically, we
would like to determine the optimal backoff constant
αj (j = 1, . . . , h) that minimizes the total energy con-
sumed. Note that αj also relates to the optimal number
of cluster-heads in the system. We use the same ana-
lytical process in [11].

For simplicity, we assume that the sensors are uni-
formly distributed in a circular region A of radius a
meters with the sink located at the center of the circle.
The analysis can be easily extended to accommodate
other shapes and sink locations. Sensors send packets
to their respective cluster-heads, using multi-hop paths
(if necessary). Each hop in these paths is roughly of
characteristic distance dchar

[4]. That is, each node for-
wards the data to a node that is approximately dchar

closer to the destination.
The analytical process is the same with [11]. So we

omit most analytical process here. During each cycle,
sensors collect data. The data generated is then sent
to the cluster-heads in a packet of r bits. Each cluster-
head compresses the data it receives from the sensors
of its cluster and then forwards the data to the sink.
We denote the number of cluster-heads at level-j by nj

(j = 0, 1, . . . , h). Note that n0 = n. The data is sent
out of a level-j node to its cluster-head at a rate of rj

bits/cycle and ro = r. Here we use analytical process
used in [11] to strengthen the validation of our algo-
rithm.

Let Eaj be the total energy consumed by all of the
aggregators of each level j in a single cycle for the com-
pression process. According to [11]’s analysis, we can
get:

Eaj = nj × fa

(nj−1

nj
× rj−1

)

where fa(x) = µx, µ for some constant.
We now consider Ecj , the total energy consumed by

sending data from level-j cluster-heads to level-(j + 1)
cluster-heads in a single cycle. From [11]’s analytical

process, we have Ecj = 2βanjrj

3n
1/2
j+1

. Thus, the total energy

consumed in a single cycle is

h∑

j=1

Eaj +
h∑

j=0

Ecj (6)

which is a function of the nj
[11]. Given values of r, a, β

and data compression payload for a particular system,
we can calculate the values of nj to minimize the above
total energy consumption.

Then we set pj = nj/nj−1 (j = 1, . . . , h).
From (5), we have

∫ TCF

0
λje−λjtdt = pj (TCF is the

cluster-formation time in each level), we can get the
optimal backoff constant as follows:

λj = αj =
− ln(1− pj)

TCF
.

These values can then be used to configure the pro-
posed protocol. The total cluster-formation time will
be hTCF .

3.3 Simulation Experiments

We use the algorithm to generate a clustering hierar-
chy with different numbers of levels in it to see how the
energy spent in the network conserves with the increase
in number of levels of clusters. Most of the parame-
ters in the experiment is the same with Subsection 2.3.
Different from Subsection 2.3, the location of the base
station is far from the networks because hierarchical
clustering networks are best applied to those applica-
tions where an unmanned airplane or a satellite will act
as the base station as we mentioned in Subsection 3.1.
The base station locates in the (50, 10000).

Fig.6. Energy consumptions vs. amount of effective data packets

sent.

The simulation experiments are conducted with h =
1, 2, 3 respectively, and we set k1 = 2, k2 = 4 and k3 = 8
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for three levels. We also set TCF = 60 seconds and
α = 4 in the experiments.

Firstly we compare the energy-efficiency in the net-
works with different number of levels. Fig.6 shows the
total number of effective sensor data sent by network
nodes to the base station for a given amount of energy.
From the results, we can conclude that as the number
of levels in the hierarchy increases, more effective sen-
sor data for a given amount of energy are sent, i.e., the
increase of levels can improve the energy efficiency.

Next, we measure the system life for the networks
with different numbers of levels. Fig.7 illustrates as the
number of levels in the hierarchy increases, the hier-
archical networks have better performance than single-
level clustering networks in terms of system life because
the energy-consuming long-range communication has
been greatly decreased in the hierarchical sensor net-
works.

Fig.7. System life in different numbers of levels of hierarchy.

4 Conclusion

In this paper, we have proposed a distributed algo-
rithm for organizing sensors into a hierarchy of clusters
with the objective to spread this energy usage over all
nodes and improve the system life in the wireless sensor
networks. We use the multi-hop technique in the intra-
cluster communications in order to save energy. The
algorithm not only uses an adaptive backoff strategy
to realize load balance among sensor node, but also en-
sures that the elected cluster-heads are well-distributed.
The desirable properties of our algorithm include even
distribution of energy load among sensor nodes, imple-
mentation simplicity and O(1) time complexity. Sim-
ulation results also indicate that our scheme reduces
the number of “forced cluster-heads” substantially and
prolongs the system life by nearly 30% compared with
previously proposed schemes.

In this paper, it is assumed that the communication
environment provided by underlying MAC protocol is
ideal; in the future we intend to consider an underlying
medium access protocol and investigate how that would
affect the optimal probabilities of becoming a cluster-
head and the run-time of the algorithm.
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