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Abstract Recently, a method known as pipeline stage unification (PSU) has been proposed to alleviate the increasing
energy consumption problem in modern microprocessors. PSU achieves a high energy efficiency by employing a changeable
pipeline depth and its working scheme is eligible for a fine control method. In this paper, we propose a dynamic method to
study fine-grained program interval behaviors based on some easy-to-get runtime processor metrics. Using this method to
determine the proper PSU configurations during the program execution, we are able to achieve an averaged 13.5% energy-
delay-product (EDP) reduction for SPEC CPU2000 integer benchmarks, compared to the baseline processor. This value is
only 0.14% larger than the theoretically idealized controlling. Our hardware synthesis result indicates that the proposed
method can largely decrease the hardware overhead in both area and delay costs, as compared to a previous program study
method which is based on working set signatures.

Keywords dynamic optimization, energy saving, fine-grained, pipeline stage unification, workload analysis

1 Introduction

In recent years, power consumption has become a
major restriction in the design of modern processors,
especially for the portable and mobile platforms where
the battery life and thermal problem are dominant
considerations. To relieve this performance scaling
restriction from the power consumption, many mecha-
nisms have been designed to reduce the certain parts
of the CMOS power function P = αCfV 2 + VI leak. As
an example, an adaptive depth pipeline (ADP) method
changes processor pipeline configurations which accor-
dingly reduces the “αCf” part under a light workload,
and thus saves the dynamic part of energy.

Pipeline stage unification (PSU)[1-2] and dynamic
pipeline scaling (DPS)[3] are two specific ADP imple-
mentations. A detailed study indicated that a pipeline
depth reconfiguration in PSU processors will only intro-
duce a nanosecond-level switch penalty, which makes it
eligible for a fine-grained energy optimization. To make

best use of PSU’s fast switch feature, we designed a
low-cost method in this paper to categorize program
behaviors at a very fine granularity. In this method,
the processor throughput, as represented by instruc-
tions per cycle (IPC), is studied continuously to pre-
dict suitable processor configurations that follow short-
term program phase behaviors. The control hardware
has been extensively optimized to meet the fine-grained
controlling target.

As compared to the static baseline processor ex-
ecution without an adaptive pipeline depth, the
fine-grained IPC-based mechanism achieves a 13.5%
EDP reduction, according to the energy-delay-product
(EDP) metric[4] which is commonly used for mobile
platforms. Meanwhile, this final averaged EDP result is
only 0.14% larger than the theoretically idealized exe-
cution, in which the processor is instructed from the
statistical profiling data. This EDP reduction is slightly
better than the predictor using signature history table
(SHT) to identify the program phases[5]. A detailed
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analysis indicates that the fine-grained analyzer has the
following major advantages, as compared to the SHT-
based method:

1) Better toleration of influences from very large in-
program code diversity;

2) Far smaller hardware complexity in implementa-
tion. The workload analysis only requires a one-cycle
delay by a well-tuned hardware design.

The remainder of the paper is organized as follows.
Section 2 describes the PSU framework as the baseline
technique and introduces some related work. Section
3 proposes the fine-grained workload study method for
the suitable PSU degree prediction and gives its hard-
ware implementation. Simulation methodology is de-
scribed in Section 4. In Section 5, the prediction accu-
racies and energy efficiency results are presented. Sec-
tion 6 concludes the paper.

2 Baseline Technique and Related Work

Currently, dynamic voltage/frequency scaling
(DVFS) is commonly used in commercial micro-
processors[6] to reduce processor working energy con-
sumption by decreasing the supply voltage V and the
frequency f as a sequence under a light workload. How-
ever, the voltage change in a modern processor[6] will
introduce an execution delay of tens of microseconds,
which may be ineligible to apply a very fine-grained
energy control.

Alternatively, Shimada et al.[1-2] and Koppanalil et
al.[3] presented a different method, which was expressed
as pipeline stage unification (PSU) or dynamic pipeline
scaling (DPS). Its main purpose is to reduce the pro-
cessor’s energy consumption via bypassing/inactivating
part of pipeline registers and use shallow pipelines un-
der a light workload. As described in [1], a pipeline
of 20 stages was employed as the baseline processor,
following a similar scheme of current microprocessors.
Three PSU degrees were assumed as different pipeline
configurations.

1) PSU degree 1 (U1): the normal mode without
bypassing any pipeline registers.

2) PSU degree 2 (U2): merge every pair of adja-
cent pipeline stages by bypassing and inactivating the
pipeline register between them. The new pipeline has
10 stages.

3) PSU degree 4 (U4): based on U2, merge the adja-
cent stages one step further. The pipeline now contains
5 stages.

Therefore, PSU has provided a pipeline with an
adaptive depth. Its shallow modes, as U2 and U4, con-
sume less energy than normal mode U1 from the gated
pipeline registers. In addition, [7-8] stated that the vari-
abilities in programs usually drive the optimal pipeline

depth to quite different depths when putting the em-
phasis on both energy and performance. As a solution
to the stated problems, PSU’s adaptive pipeline depth
is expected to fit a larger range of different programs.

A further study of the PSU mechanism reveals that
the latency of a PSU degree switch from Ui to Uj can
be decomposed into a pipeline flush and a frequency
scaling. Researches in [9-10] give designs to reduce the
dynamic frequency scaling to zero or nanosecond level.
Therefore, the latency of PSU degree switch becomes
comparable to a pipeline flush, which can be finished
in tens cycles. Compared to the relatively long voltage
scaling penalty in DVFS applications[6], PSU is eligible
to be scheduled more frequently.

As can be expected, a finer granularity based con-
troller may have efficiency in workload optimization.
Specifically, Fig.1 shows the ideal EDP reductions of
several different PSU degree control intervals, under our
employed environment which will be introduced in Sec-
tion 4. Four relatively complex benchmarks are used in
this figure. It can be observed that a finer granularity
tends to have better EDP reduction results. Bench-
mark bzip2 even displays negative EDP reductions un-
der large intervals.

However, the very small granularity introduces a
new restriction on the complexity of the workload ana-
lyzer itself. Methods in [11-13] are effective to detect
shifts of workload behaviors while their accurate but
complex analyzing procedures are expected to be cov-
ered by a millisecond-level control interval. Another
previously proposed signature history table based work-
load analyzer[5] will require a period of 50 clock cycles
to get the program interval clustering results. When
the granularity shrinks to a time slice of less than 100
cycles, the relatively complex method can no longer be
applicable. Therefore, to effectively use the fast PSU
degree switching feature, a low latency PSU control
mechanism is required, which serves as our goal in this
research.

Fig.1. Normalized ideal EDP reductions under different execu-

tion intervals.
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3 A Fine-Grained PSU Control Method

3.1 Analytical Model

Analyzing workload at a very fine granularity re-
quires a representative but easy-to-get characteristic
metric to balance accuracy and overhead. In this sub-
section, a rough analytical model is derived from previ-
ous researchers’ work for the selection of a simple pro-
gram characteristic representation.

Processor energy consumption is affected by both
performance and working power. First, we derive the
relationship between performance metric of cycles per
instruction (CPI ) and pipeline depth from the analysis
in [7-8, 14]. After abstraction, CPI can be expressed
as:

CPI (n) = CPI 0 + βn, (1)

where n is the number of pipeline stages and can be
controlled by PSU method. CPI 0 is defined to mea-
sure the instruction committing rate of a hazard free
pipeline and is thus independent of the pipeline depth.
The term “βn” represents the delay introduced by haz-
ards. This hazard delay increases linearly when pipeline
takes more stages due to the increased stalled cycles be-
fore the hazard is resolved. The parameter β denotes
the rate of CPI increasing with n.

To verify (1), Fig.2 gives the CPI results (y-axis) ver-
sus the number of three pipeline depths (x-axis) from
our practical simulation. The “0-stage” value in Fig.2
is the intersection points between CPI line and the y-
axis, which represents CPI 0 in (1). This figure gives a
rough vision of β and CPI 0 for different programs.

Fig.2. CPI s of different PSU degrees from simulation.

Similar to CPI, the power consumption in PSU pro-
cessor can also be expressed as a function of the number
of pipeline stages. Supposing that each pipeline regis-
ter has a capacitance of Cp, the total gate capacitance
is now Co + nCp, where Co is from units other than

pipeline registers. We can now extract the power func-
tion of Power = αCfV 2 into (2). Note that only the
dynamic part of power is considered in this model.

Power(n) = α(Co + nCp)f(n)V 2. (2)

where α is the averaged activity factor of processor
units. f(n) represents the different clock frequencies
under different PSU degrees. We follow the same de-
sign as [1] that the frequency scales down linearly as
the PSU degree goes from U1 to U2 and U4. Accord-
ingly, f(n) can be calculated as n·fbase/nbase, where the
“base” subscript indicates the values from the baseline
processor.

Thus, combining (1), (2) and the f(n), we can get
the analytical EDP value which is an energy efficiency
metric[4]. As EDP is calculated as power × delay2, we
can have:

EDP(n)
EDP(nbase)

=
(Co + nCp)(CPI 0 + βn)2 · nbase

(Co + nbaseCp)(CPI 0 + βnbase)2 · n.

(3)
Here, Co, Cp and nbase are predetermined values. Shi-
mada et al. stated in [15] that Co takes 70% and each
Cp takes 1.5% of the capacitance of a processor with a
20-stage pipeline. CPI 0 and β are workload dependent,
as shown in Fig.2. If CPI 0 and β can be predicted,
we can estimate the suitable number of pipeline stages,
which provides the most EDP reduction from this an-
alytical mode. Note that for simplicity, we assumed α
(in (2)) to be identical under the three PSU pipeline
depths in the derivation of (3)①.

Assuming CPI 0 takes the relatively stable value of
0.2 from Fig.2, we can have EDP(n)/EDP(20) values
versus β as in Fig.3(a). According to the three lines,
applications with different β have their preferred PSU
degrees. Specifically, PSU degree U1 may perform best
in bzip2 which has a very small β. When β increases,
U2 and U4 will outperform U1 consequently. In gcc and
mcf which are more sensitive to the hazards, PSU de-
gree U4 works the best.

As a verification, the detailed EDP simulation re-
sults are presented in Fig.3(b). Only gcc in Fig.3(b)
has different choice than Fig.3(a) due to the aggres-
sive clock gating in the practical simulation. However,
the relationship between best PSU degree and β has a
similar trend as Fig.3(a). We can thus use this rela-
tionship in our dynamic control method.

3.2 IPC Based Dynamic PSU Utilization

Based on the theoretical analysis in Subsection 3.1, a

①Strictly speaking, α tends to increase when the pipeline goes towards shallow with the application of an aggressive clock gating.
Latter simulations will use clock gating in Wattch Tool Set[16] to manage detailed α values.
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Fig.3. Estimation results of analytical model, together with simulated results. (a) Calculation from (4). (b) Simulation results (with

clock gating).

rough relationship can be established between the work-
load characteristic CPI and the suitable pipeline depth
configuration. When β = (CPI − CPI 0)/n increases,
larger PSU degrees — shallow pipelines tend to work
better under an EDP consideration.

The values CPI 0 and β are workload specific pa-
rameters. However, as observed from Fig.2, values
of CPI 0 are comparably similar among all the bench-
marks. Thus at each n we can roughly use CPI /n to
distinguish the program characteristic value β. Fur-
thermore, a range of (MIN CPI

n
, MAX CPI

n
) that de-

fines the boundary of different program behaviors can
actually be replaced by (MINCPI , MAXCPI ) under dif-
ferent n values. Here we introduced some approxima-
tion by using CPI under a predefined n to represent
β. This approximation can save one division operation
consequently, which can help decrease the calculation
time and apply a fast workload study.

Using these assumptions, we can employ a workload
characteristic detection method by checking CPI or its
reciprocal form, which is known as instructions per cy-
cle (IPC). Since IPC is relatively easy to extract by
counting the committed instructions in a certain inter-
val, it will be used as the major characteristic indicator
in this research.

Generally, a fine analyzing granularity can help use
PSU’s fast switching feature to an extend. However,
it is also important to make the dynamic analyzing
method able to tolerate the skews, especially when the
granularity is in the same order of L2 cache miss or even
the branch misprediction penalty. In this research, we

are trying to use the idea of moving average which is
widely used in the stock study field. The prediction
scheme is shown in Fig.4.

By using the idea of moving average, after each small
interval, the averaged IPC of the last m intervals will
be studied, where m is defined to be the window size of
recent IPC samples (8 is assumed to be the example of
m in Fig.4). With a well selected value of m, the very
short term skew of sudden IPC bursts or drops can be
concealed while the long or medium term changes can
still be reflected in the mean value if there are suffi-
cient accumulation. We predict the new IPC of the
next interval will follow this moving average and use
the predicted IPC value to determine next PSU degree.
By keeping the interval granularity at a small level, we
are still able to achieve an effective tracing of workload
weight shifting and thus manage possible opportunities
to switch the processor configuration.

Fig.4. A PSU control method by studying the moving averages

of IPC.
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3.2.1 Algorithm

We can use the following equation to get the i-th
sequential moving average, as MAi.

MAi = MAi−1 − Pi−m

m
+

Pi

m
. (4)

where Pi represents the value of performance metric at
the i-th interval, and m is the size of moving window.
(4) can be further simplified by taking out the division
part, and now the calculation takes a summary form as
in the following equation:

SUM i = SUM i−1 − Pi−m + Pi. (5)

This can be implemented within two simple carry-
save adders (CSA), with an m-sized buffer caching the
historical P values. After eliminating all divisions, it
will introduce less overhead for the workload weight
identifying procedure and is possible to satisfy the strict
delay requirement in working toward the fine granula-
rity target.

In addition, we might encounter the problem that
multiple PSU degrees are used in a single sampling win-
dow, as shown in Fig.4. According to the analytical
model in Subsection 3.1, although IPC can be a refer-
ence for the workload characteristics, it differs under
PSU degrees U1, U2 and U4 for a same program inter-
val, since the pipeline structure has been changed after
PSU degree switches. A simple conversion between the
IPCUx

values must be employed prior to the moving
average or summary calculation.

Different to the accurate analytical model in Sub-
section 3.1, we use approximation from empirical data
to speedup the procedure. Table 1 lists the IPC data
of different pipeline depths from the first 1.0 billion in-
structions’ execution of our simulated programs. By
training these values and proper approximation, we
can get two mappings between the PSU degrees U1,
U2 and U4, as IPCU2 = IPCU1 + IPCU1 À 1 and
IPCU2 = IPCU4 − IPCU4 À 2, respectively. Combined
with time slices of a fixed length and the correspond-
ing frequency of each PSU degree, the division of “per
cycle” can be taken out from these two equations. Af-
ter simplification, the conversion function can now be
expressed in the term of the number of committed in-
structions, as: NI U2 = NI U1 −NI U1 À 2, and

Table 1. IPC of 1.0 Billion Instructions from Simulation

U1 U2 U4 U1 U2 U4

bzip2 4.180 4.970 5.413 gcc 1.147 1.847 2.622

gzip 1.273 1.918 2.580 mcf 0.585 1.042 1.715

parser 1.067 1.705 2.389 perl. 1.077 1.754 2.536

vortex 1.725 2.672 3.602 vpr 1.370 2.064 2.729

NI U2 = NI U4 + NI U4 À 1, where NI stands for the
committed instruction number. The value of U2 is cho-
sen to be the conversion target because the correspond-
ing calculation can be most easily implemented by sim-
ple addition and shift.

After these preparations, Fig.5 shows the algorithm
we used to determine PSU degree by using the IPC
changes in a moving window as the indicator of work-
load characteristics. The algorithm core takes the com-
mitted instruction number per time slice as an input
and convert it by defined mappings, which is performed
by function convert to U2(). Variable num inst list
refers to the buffer that circularly stores the last m in-
struction samples. The access is via a pointer named
tail in Fig.5. The position pointed by tail holds the
oldest sampling value in the buffer, which is to be sub-
tracted from current moving summary, following (5).
The PSU degree is then determined by comparing the
summary with two thresholds, which are designed to
be the distinction points for heavy, medium and light
workloads.

After each interval Ik:

num inst Ux = sim num inst - last sim num inst;

last sim num inst = sim num inst;

/∗ num inst Ux is the number of committed

∗ instructions in interval Ik,

∗ under PSU degree Ux ∗/
new num inst U2 = convert to U2(num inst Ux,

psu degree);

sum m interval insts += new num inst U2;

sum m interval insts -= num inst list[tail];

num inst list[tail] = new num inst U2;

tail = (tail+1)% m;

if (sum m interval insts > THRESH1)

psu degree = UNI1;

else if (sum m interval inst < THRESH2)

new psu degree = UNI4;

else

new psu degree = UNI2;

if (new psu degree != psu degree)

switch to(new psu degree);

Fig.5. The dynamic PSU control algorithm by studying the mo-

ving summary of instruction numbers.

According to our tuning results, when the two
thresholds “TH 1, TH 2” in Fig.4 are set to be around
3.2 and 0.9 in IPCU2 form, the algorithm works the
best. Meanwhile, there is a range of good choice for
either TH 1 and TH 2. This possible range relieves the
method from strict predetermination.

3.2.2 Implementation and Hardware Cost

Fig.6 gives the corresponding hardware
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implementation of this PSU control method. The cir-
cular buffer is used to cache the historical IPC-related
values. Add 1 and Sub 1 implement convert to U2()
in Fig.5. Sub 2 and Add 2 together calculate the new
moving summary. The two comparisons after that help
give the prediction of the suitable PSU degree for the
coming interval. The ranges like “[8:2]” listed besides
each unit indicate their bit-widths.

Fig.6. Hardware implementation of the algorithm in Fig.5.

The parameters in Fig.6 are defined under the rule
of minimizing hardware cost without sacrificing the effi-
ciency of the design PSU control method. After tuning,
the interval is designed to be 64 cycles under PSU de-
gree U1 and the moving window size (as m in (5)) is
set to be 64-entry. These parameters can help set the
bit-widths of the hardware units, as shown in Fig.6.

We implemented this hardware design in Verilog
HDL (Hardware Description Language) and synthe-
sized it with Rohm 0.18 µm library. The time delay
to get the new PSU degree is about 10.7 Fan-Out-of-4
(FO4) inverters’ delay, which can be finished within 1
cycle by most modern processors. This 1-cycle delay
can be easily covered by normal pipeline hazards and
will not impede the processor throughput.

The synthesized result also shows that the area of
total logic circuits and buffers is equivalent to 1610
NAND2 gates under the Rohm 0.18µm technology.
Compared to modern processors which usually have
more than 1 million transistors, the area cost is trivial.
Compared to the previously designed signature history
table (SHT)-based PSU controller in [5], the extra area
cost decreases to 14.1%.

These hardware units implement the core algorithm
in Fig.5 to analyze the program behaviors and pre-
dict PSU degrees at a very low cost. Compared to
those hardware event driven based processor reconfi-
guration methods, such as the L2 cache misses based
dynamic voltage scaling[13,17], the IPC based method
tends to fit a comparatively large range of applications,

as the IPC has already encapsulated the factors of
data dependencies, cache misses and branch mispre-
dictions. Compared to other program phase detecting
based methods[5,11,18], this IPC based method exhibits
a relatively simple hardware requirement and may thus
be triggered at a finer granularity. The simple hardware
implementation makes it a good candidate for utilizing
the fast switching feature of PSU mechanism.

4 Simulation Methodology

We used a detailed cycle-accurate out-of-order exe-
cution simulator, SimpleScalar Tool Set[19] with the
Wattch Tool Set[16] to measure the processor energy
and performance. The pipeline in these tool sets has
been lengthened to 20 stages, following a similar scheme
of Intel Pentium 4 platforms. Table 2 lists the configu-
ration information of the baseline processor with a 20-
stage pipeline. As described in Section 2, the frequency
and delays of the processor units change according to
the PSU degree. These values are listed in Table 3,
which are similar to Shimada’s proposal[1].

Table 2. Baseline Processor Configuration

Processor 8-way out-of-order issue,

128-entry RUU, 64-entry LSQ,

8 int ALU, 4 int mult/div,

8 fp ALU, 4 fp mult/div,

8 memory ports

Branch Prediction 8K-entry gshare, 6-bit history,

2K-entry BTB,16-entry RAS

L1 Icache 64KB/32B line/2way

L1 Dcache 64KB/32B line/2way

L2 Unified Cache 2MB/64B line/4way

Memory 128 cycles first hit,

4 cycles burst interval

TLB 16-entry I-TLB,

32-entry D-TLB,

144 cycles miss latency

We evaluated the dynamic mechanism on eight in-
tegers and nine floating-point benchmarks from SPEC
CPU2000 suite with the train inputs. In the experi-
ments given in Section 5, 1.5 billion instructions are
simulated by fast-forwarding the first 1.0 billion instruc-
tions. Note that in latter parts, we mainly use inte-
ger benchmarks (bzip2, gcc, gzip, mcf, parser, perlbmk,
vortex, vpr) to show results and analysis as they provide
more variability. Results of floating-point benchmarks
will be listed as supplemental data.

In this paper, we mainly studied the reduction of
processor dynamic power via Wattch Tool Set[16]. Since
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Table 3. Assumptions of Latencies and Penalty

PSU Degree

U1 U2 U4

Clock Frequency Rate (%)

Latencies 100 50 25

Branch Mis-Pred. Resolution 20 10 5

L1 Icache Hit 4 2 1

L1 Dcache Hit 4 2 1

L2 Cache Hit 16 8 4

int Mult 3 2 1

fp ALU 2 1 1

fp Mult 4 2 1

Mem Access (first:burst) 128:4 64:2 32:1

TLB Miss 144 72 36

glitch power in recent years has also drawn more atten-
tion as the advancement of process technology, we add
the glitch ratio by following the calculation from [8],
assuming a same latch factor of 60%. In addition, dif-
ferent from the analytical model introduced in (2), we
used the cc3 style clock gating feature from Wattch[16]

to provide the detailed unit activity tracing. In cc3,
power is scaled linearly with port or unit usage, ex-
cept that unused units dissipate 10% of their maxi-
mum power. The application of clock gating usually
leaves little space for other power saving methods, in-
cluding the widely employed DVFS and the proposed
PSU methods[5]. However, our results show that, al-
though the chance of energy reduction in our model
is lowered by the application of clock gating, it is not
totally eliminated. Detailed results of dynamic PSU
control is presented in Section 5.

5 Results and Analysis

5.1 Comparison with Signature Based Method

To examine the efficiency of the proposed fine-
grained IPC study based PSU degree predictor, we pro-
vide comparisons with the previously proposed signa-
ture based PSU control mechanism[5]. The signature
history table (SHT) based predictor in that research
uses working set fingerprints from [18, 20] to detect the
program phases. By using a table structure to store his-
torical signatures and calculating the distance between
the signature of current working set with those cached
ones[5], the SHT method can detect recurrences of pro-
gram intervals and can thereby use the suitable PSU
degree from the historical tuning information.

Fig.7 tries to give the comparisons between
signature-based and fine-grained IPC-based methods.
Fig.7(a) shows the program behaviors represented by a
quantitative study of working set signatures, following
researches in [5, 18]. The vertical axis in Fig.7(a) is the
program stability, which is measured as the percentage
of all stable regions in the execution. The stable re-
gion here is defined as the continuous program period
in which the signatures of every two adjacent intervals
(of 10 K instructions) are similar. The horizontal axis
in Fig.7(a) shows the number of different signatures,
which can be used as a measure of the in-program code
diversity[18] since the signature is collected by tracing
the program counters (PC) of executed instructions.
According to these two measures, the 8 integer work-
loads can be roughly categorized into three groups, as
demonstrated in Fig.7(a).

We use prediction accuracies in Fig.7(b) to illustrate
the efficiency comparison between the two dynamic

Fig.7. Benchmark grouping and comparison of signature-based and fine-grained IPC-based PSU control methods.
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methods. The accuracy rates are obtained by compar-
ing with an idealized predictor, which was similar as in-
troduced in [5]. Based on post-simulation tracing data,
the optimal predictor (denoted as ideal predictor in lat-
ter parts) has the transcendental recognition of the op-
timal PSU degree for the coming program block and
can thus provides the most efficient processor pipeline
reconfiguration prior to the actual execution.

It can be obviously observed from Fig.7(b) that the
efficiencies of dynamic control methods vary due to the
different characteristics. For benchmarks in Group 1
which illustrate high stabilities and low/medium code
diversities, both SHT and fine-grained IPC based me-
thods have good prediction accuracies.

The advantage of the fine-grained IPC-based pre-
dictor can be observed with the complex benchmarks
in Group 2, compared with the SHT-based predictor.
Gcc and parser in this group illustrate high code di-
versities by experiencing a large number of working set
signatures, as Fig.7(a) shows. Therefore, SHT method
suffers from the increased misprediction because of
the complex relationships among the large number of
signatures[5]. However, as the major parts of these two
benchmarks are still stable, the fine-grained IPC-based
method is less affected because it mainly focuses on the
throughput and the changing tendency of a temporar-
ily short-term program period. Global code diversity
plays small impacts.

A different circumstance to Group 2 is shown in
Group 3, where benchmark mcf demonstrates high in-
stability while maintaining an average level of code di-
versity as shown in Fig.7(a). The SHT-based method
outperforms fine-grained IPC method in this bench-
mark.

Averagely, the fine-grained IPC-based predictor
manages a misprediction rate of 13.5%, in estimating
the PSU degree for next small duration of cycles. This
misprediction rate is slightly better than our previously
designed SHT-based predictor which indicates a mean
misprediction rate of 16.5%. From the studies of indi-
vidual applications, we can have a vision that the two
PSU degree predictor can be used in company with dif-
ferent sorts of applications, especially for benchmarks
in Groups 2 and 3.

5.2 EDP Savings

The final target of this dynamic processor optimiza-
tion framework is to achieve better power/performance
results by following workload characteristics and pro-
perly scheduling PSU pipeline configurations. Fig.8 il-
lustrates the obtained EDP results with our deployed
environments. All of these values are the results after
the application of clock gating, as introduced in Section

4. In Fig.8, the vertical axis lists the achieved EDP re-
sults of each benchmark, as normalized to the EDP of
the same benchmark under the baseline execution. The
four bars for each individual benchmark correspond to
different control methods in a PSU processor, as listed
in the figure.

Fig.8. EDP results of dynamic PSU control methods, as normali-

zed to the EDP of baseline processor.

With the comparably high prediction accuracy rates
introduced in [5] and Subsection 5.1, the two dynamic
PSU control methods can manage the PSU pipeline to
achieve EDP results very near to the ideal scenario. The
processor with the fine-grained IPC-based PSU degree
predictor achieves an averaged 86.5% EDP value, as
normalized by the baseline execution. This power/per-
formance result is only 0.14% larger than the ideal ex-
ecution. Compared to the priorly proposed SHT-based
predictor, this fine-grained IPC-based method demon-
strates a slight improvement — 2.1% decrease in the
average EDP result.

Considering the individual benchmarks with various
characteristics, we can find a very similar conclusion
as we did in Subsection 5.1 that these two dynamic
methods show different sensitivities to the specific pro-
gram characteristics. Specifically, the EDP savings of
fine-grained IPC-based predictor exceed the SHT-based
ones in benchmarks from Group 2 because of its insen-
sitivity to code diversities.

Fig.9 lists the normalized EDP results from floating-
point benchmarks by using these PSU control methods,
under their preferred working parameters. Averagely,
the ideal method can reduce around 7.53% EDP as com-
pared to the baseline processor. The two workload an-
alyzers predict PSU degree dynamically, and achieve
around 5% EDP reduction. The IPC-based method
works slightly better than the previously proposed
SHT-based method. However, further studies of the
optimized PSU degrees in the ideal method in Fig.9
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indicate that 2/3 floating-point benchmarks tend to
work well under the baseline processor which uses a
deep pipeline. This reduces the opportunities for power
saving methods to apply low energy modes. However,
necessity of dynamic PSU control can still be observed
in benchmarks ammp, equake and swim. For these
three benchmarks, both the two dynamic methods can
detect major EDP reduction points to achieve high en-
ergy efficiencies.

Fig.9. EDP results of floating-point benchmarks, under different

PSU control methods.

5.3 Overhead of PSU Degree Switches

As for the switching overhead concerns, Table 4 lists
the number of required PSU degree switches for each in-
teger benchmark to achieve the above EDP reductions
by the IPC-based method. For most of the benchmarks,
this number is not large because of the stability in pro-
gram behaviors. Only for the most unstable benchmark
mcf, PSU degree switch will be required per 1.3 K in-
structions. Considering the fast switching feature of
PSU, which is in the same order of a branch mispredic-
tion, we can regard this cost as negligible. Furthermore,
two policies can be applied to conceal the switch over-
head.

1) For mcf, our detailed study indicates that many of
the PSU degree switches, especially from deep to shal-
low pipeline depth, come together with long pipeline
hazards like cache misses or very frequent branch mis-
predictions. The control method can use the pipeline

Table 4. Number of PSU Degree Switches in

1.5× 109 Instructions

Bench. No. Switches Bench. No. Switches

bzip2 3.39× 104 gcc 7.78× 104

gzip 2.43× 105 mcf 1.14× 106

parser 2.68× 105 perl. 2

vortex 1.30× 105 vpr 1

empty zones in these hazards to trigger a PSU degree
switch, as to cover the switching overhead.

2) Modify the PSU logic to allow the degree switch-
ing in continuous cycles without waiting for an empty
pipeline. Assume that pipeline is divided into zones Z1,
Z2, Z3 and Z4. When instructions propagate toward Z4,
PSU degree switch can sequentially take place in Z1, Z2,
Z3 and finally Z4 by enabling or disabling corresponding
pipeline registers.

6 Conclusions

In this paper, we presented a dynamic control me-
chanism for a processor with pipeline stage unification
support. To accompany PSU’s very fast switching fea-
ture, an IPC-based fine-grained dynamic method is pro-
posed with a well-tuned hardware design. The simula-
tion results demonstrate that this fine-grained method
can control the PSU processor to achieve a 13.5% EDP
reduction for SPEC CPU2000 integer benchmarks, as
compared to the baseline processor. This value is very
near to the 100% ideal PSU control method. Compared
to a previously designed PSU control method based on
workload signature analysis, the fine-grained IPC-based
PSU controller can maintain the similar EDP reduction
with a largely decreased hardware overhead.

Combining these features, the PSU control method
in this paper is considered to be more applicable and
can meet the requirement in exploiting PSU’s fast con-
figuration switching feature.
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