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Abstract Software defect detection aims to automatically identify defective software modules for efficient software test

in order to improve the quality of a software system. Although many machine learning methods have been successfully

applied to the task, most of them fail to consider two practical yet important issues in software defect detection. First,

it is rather difficult to collect a large amount of labeled training data for learning a well-performing model; second, in a

software system there are usually much fewer defective modules than defect-free modules, so learning would have to be

conducted over an imbalanced data set. In this paper, we address these two practical issues simultaneously by proposing a

novel semi-supervised learning approach named Rocus. This method exploits the abundant unlabeled examples to improve

the detection accuracy, as well as employs under-sampling to tackle the class-imbalance problem in the learning process.

Experimental results of real-world software defect detection tasks show that Rocus is effective for software defect detection.

Its performance is better than a semi-supervised learning method that ignores the class-imbalance nature of the task and a

class-imbalance learning method that does not make effective use of unlabeled data.
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1 Introduction

Enabled by technological advances in computer
hardware, software systems have become increasingly
powerful and versatile. However, the attendant increase
in software complexity has made the timely develop-
ment of reliable software systems extremely challenging.
To make software systems reliable, it is very important
to identify as many defects as possible before releas-
ing the software. However, due to the complexity of
the software systems and the tight project schedule, it
is almost impossible to extensively test every path of
the software under all possible runtime environment.
Thus, accurately predicting whether a software module
contains defects can help to allocate the limited test
resources effectively, and hence, improve the quality of
software systems. Such a process is usually referred to
as software defect detection, which has already drawn
much attention in software engineering community.

Machine learning techniques have been successfully
applied to building predictive models for software defect
detection[1-7]. The static and dynamic code attributes

or software metrics are extracted from each software
module to form an example, which is then labeled as
“defective” or “defect-free”. Predictive models which
learn from a large number of examples are expected to
accurately predict whether a given module is defective.

However, most of these studies have not considered
two practical yet important issues in software defect
detection. First, although it is relatively easy to auto-
matically generate examples from software modules us-
ing some standard tools, determining whether a module
contains defect through extensive test usually consumes
too much time and resource, since the number of pro-
gram status grows exponentially as the complexity of
software increases. With limited time and test resource,
one can only obtain the labels for a small portion of
modules. However, the predictive models that learn
from such a small labeled training set may not perform
well. Second, the data in software defect detection are
essentially imbalanced. The number of defective mod-
ules is usually much less than that of the defect-free
modules. Ignoring the imbalance nature of the prob-
lem, a learner that minimizes the prediction error can
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often produce a useless predictive model that uniformly
predicts all the modules as defect-free. Without taking
these two issues into consideration, the effectiveness
of software defect detection in many real-world tasks
would be greatly reduced.

Some researchers have noticed the importance of
these two issues in software defect detection and tried
to tackle some of them based on machine learning tech-
niques. For instance, Seliya and Khoshgoftaar[8] em-
ployed semi-supervised learning to improve the perfor-
mance achieved on a small amount of labeled data
by exploiting the abundant unlabeled data; contrar-
ily, Pelayo and Dick[9] applied the resampling strategy
to balance the skewed class distribution of the dataset
before learning the predictive model for software de-
fect detection. Although attempting to tackle one is-
sue may gain performance improvement to some extent,
both methods suffer the influence of the other issue
that they have not considered. If conventional semi-
supervised learning is used, assuming that the learner
can accurately assign labels to the unlabeled data, the
learner may be easily biased by the overwhelming num-
ber of newly-labeled defect-free modules, and hence the
refined model would be less sensitive to the defect mo-
dules. The sensitivity drops fast as the iterative semi-
supervised learning proceeds. On the other hand, re-
sampling methods would become less effective if pro-
vided with only a few labeled examples, where overfit-
ting is inevitable no matter when it replicates the small
number of defective examples or reduces the number
of overwhelming defect-free examples. Therefore, to
achieve effective software defect detection, we need to
consider these two important issues simultaneously. To
the best of our knowledge, there is no previous work
that has considered these two issues simultaneously in
software defect detection.

In this paper, we address aforementioned two issues
by proposing a novel semi-supervised learning method
named Rocus (RandOm Committee with Under-
Sampling). This method incorporates recent advances
in disagreement-based semi-supervised learning[10] with
under-sampling strategy[11] for imbalanced data. The
key idea is to keep the individual learner focusing on
the minority-class during exploitation of the unlabeled
data. Experiments on eight real-world software defect
detection tasks show that Rocus is effective for soft-
ware defect detection. Its performance is better than
both the semi-supervised learning method that ignores
the class-imbalance nature of the tasks and the class-
imbalance learning method that does not exploit unla-
beled data.

The rest of the paper is organized as follows. Section
2 briefly reviews some related work. Section 3 presents

the Rocus method. Section 4 reports the experiments
over the software defect detection tasks. Finally, Sec-
tion 5 concludes this paper.

2 Related Work

2.1 Software Defect Detection

Software defect detection, which aims to automa-
tically identify the software module that contains cer-
tain defects, is essential to software quality insurance.
Most of the software detection methods roughly fall into
two categories. Methods in the first category leverage
the execution information to identify suspicious pro-
gram behaviors for defect detection[12-14], while me-
thods in the second category elaborate to extract static
code properties, which are usually represented by a set
of software metrics, for each module in the software
system[7,15-16]. Since it would be easier to measure the
static code properties than measure the dynamic pro-
gram behaviors, metric-based software defect detection
has drawn much attention. Widely-used software met-
rics include LOC counts describing the module in terms
of size, Halstead attributes measuring the number of
operators and operands in the module as the reading
complexity[17] and McCabe complexity measures de-
rived from the flow graph of the module[18].

In the past decade, machine learning has been
widely applied to construct predictive models based
on the extracted software metrics to detect defects in
the software modules. Typical methods include lin-
ear or logistic regression[7,15], classification and regres-
sion trees[3,19], artificial neural networks[1,16], memory-
based methods[20-21] and Bayesian methods[22-23]. In
order to further increase the robustness to the outlier
in the training data and improve the prediction perfor-
mance, Guo et al.[2] applied ensemble learning to the
software defect detection and achieved better perfor-
mance compared to other commonly-used methods such
as logistic regression and decision tree. Recently, Less-
mann et al.[4] conducted an intensive empirical study,
where they compared the predictive performance of 22
machine learning methods over the benchmark data
sets of software defect detection.

Note that few previous studies have ever considered
the characteristics of software defect detection (e.g., the
defective module is difficult to collect). It has been
showed that more accurate detection could be achieved
even if only one of such characteristics is considered du-
ring learning[8-9]. Since these characteristics are usually
intertwined with each other, better performance could
be expected if carefully considering them together du-
ring learning, which is what we do in this paper.
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2.2 Semi-Supervised Learning

In many practical applications, many unlabeled data
can be easily collected, while only a few labeled data can
be obtained since much human effort and expertise are
required. Semi-supervised learning[24-25] is a machine
learning technique where the learner automatically ex-
ploits the large amount of unlabeled data in addition
to few labeled data to help improving the learning per-
formance.

Generally, semi-supervised learning methods fall
into four major categories, i.e., generative-model-
based methods[26-28], low density separation based
methods[29-31], graph-based methods[32-34], and
disagreement-based methods[35-39].

Disagreement-based methods use multiple learners
and exploit the disagreements among the learners du-
ring the learning process. If majority learners are much
more confident of a disagreed unlabeled example than
minority learner(s), then the majority will teach the
minority of this example. Disagreement-based semi-
supervised learning originates from the work of Blum
and Mitchell[35], where classifiers learned from two suffi-
cient and redundant views teach each other using some
confidently predicted unlabeled examples. Later, Gold-
man and Zhou[36] proposed an algorithm which does
not require two views but require two different learning
algorithms. Zhou and Li[38] proposed using three clas-
sifiers to exploit unlabeled data, where an unlabeled
example is labeled and used to teach one classifier if
the other two classifiers agree on its labeling. Later,
Li and Zhou[37] further extended the idea in [38] by
collaborating more classifiers in training process. Be-
sides classification, Zhou and Li[39] also adapted the
disagreement-based paradigm to semi-supervised re-
gression. Disagreement-based semi-supervised learning
paradigm has been widely applied to natural language
processing (e.g., [40]), information retrieval (e.g., [41-
42]), computer-aided diagnosis (e.g., [37]), etc.

Few researches applied semi-supervised learning to
software defect detection, where the labeled training
examples are limited while the unlabeled examples are
abundant. Recently, Seliya and Khoshgoftaar[8] ap-
plied a generative-model-based semi-supervised lear-
ning method to software defect detection and achieved
performance improvement. Note that [8] adopted a
generative approach for exploiting unlabeled data while
the proposed method adopts a discriminative approach.
Thus, we did not include it in our empirical study for
the purpose of fair comparison.

2.3 Learning from Imbalanced Data

In many real-world applications such as software

defect detection, the class distribution of the data is im-
balanced, that is, the examples from the minority class
are (much) fewer than those from the other class. Since
it is easy to achieve good performance by keeping the
majority-class examples being classified correctly, the
sensitivity of the classifiers to the minority class may be
very low if directly learning from the imbalanced data.
To achieve better sensitivity to the minority class, the
class-imbalance problem should be explicitly tackled.

Popular class-imbalance learning techniques include
sampling[11,43-44] and cost-sensitive learning[45-46].
Since sampling technique is used in this paper, we in-
troduce sampling in more details.

Sampling attempts to achieve a balanced class dis-
tribution by altering the dataset. Under-sampling
reduces the number of the majority-class examples
while over-sampling increases the number of minority-
class examples[11], both of which have been shown
to be effective to class-imbalance problems. Sophis-
ticated methods can be employed to balance the
class distribution, such as adding synthetic minority-
class examples generated from the interpolation of
neighboring minority-class examples[43]; discarding the
non-representative majority-class examples to balance
the class distribution[44]; combining different sampling
methods for further improvement[47]; using ensemble
technique for exploratory under-sampling to avoid the
removal of useful majority class examples[48].

The class-imbalance learning method is seldom used
in software defect detection. Recently, Pelayo and
Dick[9] studied the effectiveness of Smote[43] over the
software defect detection, and found that balancing the
skewed class distribution is beneficial to software defect
detection.

3 Proposed Approach

Let L = {(x1, y1), (x2, y2), . . . , (xm0 , ym0)} denote
the set of labeled examples and let U = {xm0+1,
xm0+2, . . . ,xN} denote the set of unlabeled examples,
where xi is a d-dimensional feature vector, and yi ∈
{−1,+1} is the class label. Conventionally, +1 de-
notes the minority class (e.g., “defective” in software
defect detection). Thereinafter, we refer to class +1 as
the minority-class and −1 as the majority-class. Both
L and U are independently drawn from the same un-
known distribution D whose marginal distributions sat-
isfy PD(yi = +1) ¿ PD(yi = −1), and hence, L and U
are imbalanced datasets in essence.

As mentioned in Section 1, directly applying semi-
supervised learning to imbalanced data would be
risky. Since L is imbalanced and usually small, very few
examples of the minority-class would be used to initiate



Yuan Jiang et al.: Software Defect Detection with Rocus 331

the semi-supervised learning process. The resulting
model may have poor sensitivity to the minority-class
and hence can hardly identify the examples of the
minority-class from the unlabeled set. In this case,
learner would have to use little information from the
minority-class and overwhelming information of the
majority-class for model refinement, and this leads to
even poorer sensitivity to the minority-class. As the it-
erative semi-supervised learning proceeds, the learned
model would be biased to predict every example to the
majority-class.

In order to successfully conduct iterative semi-
supervised learning on the imbalanced data, the learner
should have the following two properties. First, the
learner should have strong generalization ability, such
that even if provided with a small labeled training set
with imbalanced class distribution, the learner would
not have zero sensitivity to the minority-class examples
during the automatically labeling process; second, the
influence of overwhelming number of the newly labeled
majority-class examples should be further reduced in
order to improve the sensitivity of the learner to the
minority examples after its refinement in each learn-
ing iteration. Based on these two considerations, we
propose the Rocus method to exploit the imbalanced
unlabeled examples.

To meet the first requirement, we train multiple clas-
sifiers and then combine them for prediction. The rea-
son behind this specific choice of the ensemble learning
paradigm is that an ensemble of classifiers can usually
achieve better generalization performance than a sin-
gle classifier. Such superiority is more obvious when
the training set is small[37] and the class distribution is
imbalanced[48]. Thus, by exploiting the generalization
power, the trained ensemble from L is able to identify
some minority-class examples from U effectively.

Since multiple classifiers are used, we employ the
disagreement-based semi-supervised learning paradi-
gm[10] to exploit the unlabeled examples in U . In de-
tail, after the initial ensemble of classifiers {h1, h2, . . .,
hC} are constructed, some individual classifiers select
some examples in U to label according to a disagree-
ment level, and then teach the other classifiers with
the newly labeled examples. Here, similar to [37], we
adopt a simple case where the classifiers H−i = {h1, . . .,
hi−1, hi+1, . . . , hC} are responsible for selecting confi-
dently labeled unlabeled examples in U for an individ-
ual classifier hi. Given an unlabeled example, we first
label this example using the majority voting of C−1 in-
dividual classifiers, and then estimate the labeling con-
fidence using the degree of agreement on the current
labeling among these classifiers. If the labeling confi-
dence is greater than that of a pre-set threshold θ, we

feed hi with this newly labeled example for its refine-
ment. Inspired by [27], we associate a weight (between
0 and 1) with each unlabeled example according to its
labeling confidence such that the contribution of those
less confidently labeled examples will be reduced during
the classifier refinement. To unify the representation,
the weight of a labeled example is fixed to 1.

Note that even if the ensemble of classifiers can pro-
vide accurate prediction for each selected example, the
sensitivity of the current classifier hi may not be im-
proved after its refinement with these newly labeled
examples. Since U itself is imbalanced, hi would still
lose its sensitivity to the minority-class after learn-
ing many newly-labeled majority-class examples in U .
Here, we employ under-sampling[11], an efficient stra-
tegy for class-imbalance learning, to tackle this prob-
lem. Specifically, let L̃it denote the newly labeled
set in the t-th round, where the total weights of the
minority-class examples in L̃it are pit; let L′it denote
the corresponding under-sampled set, where the total
weights of the minority-class examples are pit and that
of majority-class examples are pit/γ. Here, γ specifies
the expected ratio between the minority-class and the
majority-class and is usually fixed to 1 to produce a
balanced class distribution.

However, since under-sampling reduces the number
of newly labeled examples, even a little misclassifica-
tions of unlabeled examples can greatly increase the
noise rate of the newly labeled sets. Learning on noisy
dataset may humble the performance of resulting classi-
fier. Thus, we stop the iterative semi-supervised learn-
ing process if the datasets used for the classifier refine-
ment become too noisy to improve the performance of
the classifier. The relationship between the classifier’s
worst-case error and noise rate has been studied in [49],
and has been applied to deriving the stopping criterion
for some disagreement-based semi-supervised learning
methods[37-38,41]. Here, our derivation of stopping cri-
terion is almost the same as that of these methods. For
the self-containess of this paper, we include the deriva-
tion below.

W0 and Wi,t denote the total weights of examples in
L and L′i,t, respectively. Let êi,t denote the estimated
error rate of H−i, the ensemble of classifiers excluding
hi. Assume that the noise rate of original labeled set
L is very small, and hence the noise rate in the aug-
mented training set, i.e., L ∪ L′i,t for refining hi in t-th
iteration can be estimated by

ηi,t =
êi,tWi,t

W0 + Wi,t
. (1)

We can define the utility function of the refinement
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of classifier hi in the t-th round based on the relation-
ship between hi’s worst-case error εi,t, the (weighted)
number of examples in the augmented training set
(W0 + Wi,t) and its noise rate ηi,t as

ui,t ≡ c

ε2i,t
= (W0 + Wi,t)(1− 2ηi,t)2 (2)

where c is a constant that makes the equality hold.
Since ui,t is inverse-proportional to the square of

the worse case classification error εi,t, by enforcing
ui,t > ui,t−1 in the succeeded rounds, the performance
of hi will be improved after refinement in the t-th round.
By comparing the right hand side of (2) in the t-th
round and (t − 1)-th round, we have that ui,t > ui,t−1

holds if
0 <

êi,t

êi,t−1
<

Wi,t−1

Wi,t
< 1. (3)

In some cases, (3) might not hold since Wi,t may be
much greater than Wi,t−1. To make (3) hold again, we
randomly discard some examples of both the minority-
class and majority-class according to γ.

Note that we do not apply undersampling to L. The
rationality behind is that undersampling L will further
decrease the number of the original labeled examples
which are more reliable than the automatically labeled
examples. The benefit from balancing the training data
might be counteracted by discarding many reliably la-
beled data. However, in this case, the augmented train-
ing set for classifier refinement may be slightly imba-
lanced. In order to compensate for the effect caused by
such imbalance, we rescale the output of each classifier
hi using the minority-majority ratio of current training
examples ri and then combine them for final prediction:

H∗(x) =





+1,
1
C

∑

i

s(+1|hi(x))
s(+1|hi(x)) + ris(−1|hi(x))

,

> 0.5

−1, otherwise,
(4)

where s(y|h(x)) ∈ [0, 1] gives a score for the prediction
of x. If the score is greater than 0.5, x is predicted as
“+1”, and “−1” otherwise.

As pointed out by Li and Zhou[37], such a majority-
teach-one style process may gradually reduce the di-
versity between individual classifiers. Although the
performance of individual classifiers can be improved
through the semi-supervised learning process, the per-
formance of the ensemble may not be improved or even
degrade due to the rapid decrease of diversity. The
reason is that the “teachers” of two individual clas-
sifiers are quite similar, and thus the newly labeled
set of these two classifiers would be similar. Refining
over similar datasets makes these two classifiers more

similar. Following the suggestion of Li and Zhou[37],
we inject certain amount of randomness into the base
learner such that even if newly labeled examples are
similar, the learned classifiers can still be different.
Here, we call the ensemble of randomized classifiers
random committee. If we use random tree inducer
that generates a randomized decision tree as the base
learner, the ensemble is equivalent to what used in [37].
In this paper, we adopt another approach for random-
ness injection. Specifically, we project the data onto a
set of randomly generated unit vectors and construct a
classifier in this new space. We repeat this process to
achieve a number of new classifiers. The dimensionality
of the new space is usually smaller than the original one
in order to achieve further diversity between different
new spaces. Similar approach was used by Ho[50] for
constructing ensemble, where the random unit vectors
are enforced to be parallel to the basis of the original
space.

Table 1 presents the pseudo code of Rocus.
We firstly construct C classifiers from L by using
Bagging[51] with the base learning algorithm A. Any
learning algorithm that incorporates certain random-
ness may be used to instantiate A. In this paper, A
injects randomness by conducting random projection
before learning a classifier. In each semi-supervised
learning iteration, each classifier hi is refined using the
newly labeled examples selected by H−i, the ensemble

Table 1. Pseudo-Code of the Rocus Algorithm

Algorithm. Rocus

Input:

the labeled set L, the unlabeled set U ,

the confidence threshold θ, the minority-majority ratio γ,

the number of individual classifiers C,

the base learning algorithm A of the random committee

Process:

1. Learn a random committee {h1, . . . , hC} from L using

Bagging and the base learning algorithm A
2. Repeat Steps 3∼9 until none of the classifier in the

random committee changes

3. Set t (t ∈ N) as the current iteration number

4. For each i ∈ {1, . . . , C}, do Steps 4∼9

5. Estimate error ei,t of H−i on L

6. Label all the unlabeled examples with H−i

7. Add the unlabeled examples whose labeling con-

nfidence exceeds threshold θ to a newly labeled

set L′i,t
8. Undersample L′i,t such that the ratio of minority

class over the majority class is no less than γ

9. If (3) holds, retrain hi from L ∪ L′i,t using the

learning algorithm A
Output: Compute H∗(x) according to (4)
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of classifiers other than hi. Before the refinement,
under-sampling is employed to tailor the newly labeled
set such that its minority-majority ratio is roughly γ.
We use the condition in (3) as the stopping criterion
of the iterative learning process. As holding a separate
validation set is infeasible in semi-supervised learning
settings, the error rate êi,t of H−i is estimated on L
under an assumption that the training data and test
data have the same distribution.

Note that an alternative way to address the prob-
lems of “lack of sufficient labeled data” and “data imba-
lance” simultaneously by imposing a “class proportion”
constraint over a special type of base learner, which can
adjust the portion of labeling of unlabeled data accord-
ing to the constraint, just as what TSVM[31] does. How-
ever, such a strategy may exclude many good candidate
base learners that have good performance over some
particular defect detection problems but fail to adjust
their labeling according to the constraints. In contrast,
by incorporating under-sampling, disagreement-based
semi-supervised learning method can be easily adapted
to the exploitation of unlabeled data while the data are
imbalanced. Since the requirement of the base learner
in Rocus is no more than the ability of injecting ran-
domness, which can be easily achieved, we may choose
different base learners according to specific application
scenario, and hence applicability of Rocus will be bet-
ter.

4 Empirical Studies

We evaluate the effectiveness of Rocus on eight soft-
ware defect detection benchmark tasks. Each dataset
corresponds to different software projects in NASA
Metrics Data Program[52]. Some of these software
projects are developed for satellite flight control, while
others are used for the ground-system. All the soft-
ware projects are written in C/C++. Each project con-
sists of a number of software modules, each of which
is manually labeled as “defective” if one or more de-
fects were reported during the test phase and “defect-

free” otherwise. Typical software metrics such as LOC
counts, McCabe complexity measures derived from the
pathway of modules, Halstead attributes measuring the
number of operators and operands in the module as
the reading complexity, are extracted from each soft-
ware module using some standard code analysis tools①.
The detailed information of all the software metrics
used in the current study can be found in [5]. The
detailed information of the experimental datasets are
tabulated in Table 2, where Ratio denotes the inverse
of the minority-majority ratio of the datasets. It is ob-
vious from the table that the datasets are imbalanced
and the number of defective modules are smaller than
that of the modules without any defect.

For each dataset, we randomly select 75% examples
for training and keep the the remaining examples aside
for test. Since all the examples in the training set are
labeled, in order to simulate the case where only a small
portion of training data are labeled, we randomly par-
tition the training set into labeled and unlabeled sets
according to a labeled rate µ. For example, if a train-
ing set consisting of 1000 examples and µ = 10%, 100
examples are put into the labeled set with their labels,
while the remaining 900 examples are put into the un-
labeled set without their labels. In the experiment, we
use four different labeled rates: 10%, 20%, 30% and
40%.

In the experiments, the randomized base learner of
Rocus is instantiated as an AdaBoost[53] preceded
by a random projector. The random projector first ran-
domly generates 2d/3 random unit vectors and project
all the examples onto these random vectors. Here, d is
the number of features of the dataset. Following the
suggestions of [37], we fix the size of the random com-
mittee to C = 6, and the confidence threshold θ is set to
0.75, which indicates an unlabeled example is regarded
to be confidently labeled if more than 3/4 individual
classifiers of the random committee agree on its label-
ing. We set the minority-majority ratio γ = 1 to enforce
the newly labeled example set to be balanced.

Table 2. Software Defect Detection Datasets

Data No. Attr. No. Inst. No. Min./No. Maj. Ratio Description

jm1 21 10 885 2106/8779 4.2 A real-time predictive ground system

kc1 21 2 109 326/1783 5.5 A storage management system for receiving and processing ground data

kc2 21 522 107/415 3.9 Another part of kc1 project for science data processing

mw1 37 403 31/372 12.0 A zero gravity experiment system related to combustion

pc1 21 1 109 77/1032 13.4 Flight software for an earth orbiting satellite

pc3 37 1 563 160/1403 8.8 Flight software for an earth orbiting satellite

pc4 37 1 458 178/1280 7.2 Flight software for an earth orbiting satellite

pc5 38 17 186 516/16670 32.3 A safety enhancement of a cockpit upgrade system

①Please refer to http://www.locmetrics.com/alternatives.html for some freely-accessed tools.
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We compare the performance of Rocus with the fol-
lowing methods.
• Roca, standing for RandOm Committee using

All labeled and unlabeled examples, is a disagreement-
based semi-supervised learning method. Roca is al-
most the same as Rocus except it ignores the imba-
lanced class distribution. In each semi-supervised learn-
ing iteration, Roca directly uses all the automatically
labeled examples for classifier refinement.
• Labeled is a random committee learning only

from the labeled set. It can be regarded as the initial
status of Roca before exploiting any unlabeled exam-
ples.
• UnderSampling is a class-imbalance learning

method. It works in supervised settings. Although
it does not exploit the unlabeled data to improve its
performance of defect detection, it attempts to reduce
the influence of the imbalanced labeled set using under-
sampling. The minority-majority ratio after under-
sampling (γ) is set to 1.
• Smote[43] is another supervised class-imbalance

learning method. Unlike UnderSampling reducing
the number of the majority-class examples, Smote
balance the labeled dataset by generating many vir-
tual minority-class examples in the neighborhood of a
minority-class example.

Note that we use AdaBoost as the base learn-
ing algorithm for the 4 compared methods, just like
what is used in Rocus. Additionally, we use an Ad-
aBoost learning only on the labeled set as the baseline

for comparison. Since AdaBoost involves the training
of multiple classifiers, to make the learning process of
AdaBoost fast, we instantiate the base learner of Ad-
aBoost as decision stumps which make decisions based
on the value of only one feature. All the methods used
in the experiment are implemented using Weka[54].

To compare performances of different methods of de-
fect detection, we use two widely-used evaluation mea-
sures, namely F1-measure and AUC[55]. F1-measure
summarizes the precision and recall of the detection.
High precision and recall result in high F1-measure.
AUC measures the area under the ROC cure, which in-
dicates how well the test examples is ordered according
to the real-value output of the classifiers. AUC is large
if the test examples of the minority class are placed to
the top of the ordering. Note that, unlike F1-measure
that directly reveals how well the prediction over the
test examples is, AUC only shows the potential of a
classifier to produce good classifications over the test
examples. A classifier with high AUC can still produce
bad classification if the learned threshold over the real-
valued output is bad for the classification.

For each dataset at different labeled rates, we repeat
the random partition of labeled/unlabeled/test sets for
50 times, the performances of all the compared meth-
ods are averaged over the 50 runs. The average F1-
measures are tabulated in Tables 3∼6 and the average
AUCs are tabulated in Tables 7∼10. In each table, the
best performance among all the compared methods is
boldfaced in each experimental dataset. The columns

Table 3. F1-Measures of the Compared Methods When µ = 0.1

Dataset AdaBoost Labeled Smote UnderSample Roca Roca Imprv. (%) Rocus Rocus Imprv. (%)

jm1 0.097 0.150 0.369 0.416 0.109 −27.3 0.413 174.8

kc1 0.216 0.268 0.342 0.392 0.185 −31.0 0.419 56.3

kc2 0.484 0.444 0.482 0.492 0.433 −2.6 0.536 20.7

mw1 0.197 0.146 0.225 0.232 0.111 −24.5 0.238 62.8

pc1 0.133 0.167 0.213 0.191 0.081 −51.2 0.249 49.6

pc3 0.155 0.154 0.244 0.280 0.038 −75.3 0.267 74.0

pc4 0.316 0.238 0.434 0.417 0.050 −78.8 0.398 67.2

pc5 0.304 0.306 0.449 0.327 0.158 −48.4 0.487 59.3

Avg. 0.238 0.234 0.345 0.343 0.146 −42.4 0.376 70.6

Table 4. F1-Measures of the Compared Methods When µ = 0.2

Dataset AdaBoost Labeled Smote UnderSample Roca Roca Imprv. (%) Rocus Rocus Imprv. (%)

jm1 0.059 0.126 0.387 0.426 0.098 −22.1 0.428 240.0

kc1 0.206 0.241 0.366 0.408 0.189 −21.7 0.425 76.4

kc2 0.471 0.463 0.481 0.502 0.456 −1.4 0.529 14.3

mw1 0.206 0.220 0.226 0.221 0.147 −33.2 0.266 21.0

pc1 0.081 0.156 0.215 0.199 0.053 −66.0 0.300 92.1

pc3 0.127 0.133 0.272 0.305 0.032 −75.7 0.326 144.8

pc4 0.248 0.293 0.505 0.481 0.081 −72.4 0.475 61.9

pc5 0.228 0.317 0.478 0.357 0.230 −27.4 0.452 42.5

Avg. 0.203 0.244 0.366 0.362 0.161 −4.0 0.400 86.6
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Table 5. F1-Measures of the Compared Methods When µ = 0.3

Dataset AdaBoost Labeled Smote UnderSample Roca Roca Imprv. (%) Rocus Rocus Imprv. (%)

jm1 0.045 0.087 0.400 0.429 0.064 −26.4 0.426 388.9

kc1 0.159 0.265 0.387 0.417 0.219 −17.2 0.441 66.3

kc2 0.468 0.504 0.487 0.535 0.489 −3.0 0.556 10.3

mw1 0.219 0.153 0.219 0.225 0.099 −35.1 0.254 66.0

pc1 0.103 0.159 0.212 0.228 0.042 −73.6 0.347 117.9

pc3 0.053 0.117 0.279 0.315 0.021 −82.1 0.367 213.2

pc4 0.288 0.316 0.536 0.504 0.144 −54.5 0.497 57.5

pc5 0.226 0.317 0.470 0.375 0.266 −16.1 0.434 36.9

Avg. 0.195 0.240 0.374 0.379 0.168 −38.5 0.415 119.6

Table 6. F1-Measures of the Compared Methods When µ = 0.4

Dataset AdaBoost Labeled Smote UnderSample Roca Roca Imprv. (%) Rocus Rocus Imprv. (%)

jm1 0.042 0.087 0.396 0.432 0.074 −14.9 0.425 390.3

kc1 0.193 0.265 0.395 0.412 0.214 −19.4 0.443 67.1

kc2 0.473 0.480 0.524 0.520 0.496 3.2 0.562 17.1

mw1 0.195 0.175 0.246 0.202 0.090 −48.6 0.288 64.8

pc1 0.071 0.136 0.224 0.248 0.077 −43.4 0.353 159.5

pc3 0.040 0.098 0.275 0.328 0.024 −75.5 0.383 290.2

pc4 0.272 0.320 0.542 0.511 0.141 −56.0 0.504 57.4

pc5 0.228 0.330 0.480 0.378 0.291 −11.9 0.411 24.5

Avg. 0.189 0.236 0.385 0.379 0.176 −33.3 0.421 133.9

Table 7. AUCs of the Compared Methods When µ = 0.1

Dataset AdaBoost Labeled Smote UnderSample Roca Roca Imprv. (%) Rocus Rocus Imprv. (%)

jm1 0.680 0.697 0.694 0.687 0.698 0.1 0.698 0.1

kc1 0.756 0.773 0.757 0.747 0.773 0.1 0.780 0.9

kc2 0.774 0.777 0.759 0.759 0.790 1.7 0.806 3.7

mw1 0.641 0.680 0.635 0.604 0.661 −2.7 0.708 4.1

pc1 0.716 0.741 0.715 0.666 0.727 −1.9 0.740 −0.1

pc3 0.735 0.725 0.732 0.712 0.716 −1.2 0.734 1.3

pc4 0.871 0.806 0.878 0.825 0.807 0.2 0.816 1.3

pc5 0.947 0.955 0.949 0.943 0.956 0.1 0.957 0.2

Avg. 0.765 0.769 0.765 0.743 0.766 −0.5 0.780 1.4

Table 8. AUCs of the Compared Methods When µ = 0.2

Dataset AdaBoost Labeled Smote UnderSample Roca Roca Imprv. (%) Rocus Rocus Imprv. (%)

jm1 0.694 0.709 0.706 0.697 0.710 0.2 0.709 0.1

kc1 0.766 0.788 0.771 0.763 0.793 0.6 0.793 0.6

kc2 0.781 0.792 0.760 0.772 0.787 −0.7 0.806 1.8

mw1 0.694 0.705 0.686 0.648 0.686 −2.6 0.704 −0.1

pc1 0.758 0.798 0.770 0.705 0.794 −0.5 0.805 0.8

pc3 0.764 0.765 0.770 0.746 0.766 0.2 0.774 1.2

pc4 0.886 0.849 0.906 0.878 0.847 −0.3 0.851 0.3

pc5 0.950 0.963 0.955 0.953 0.963 0.0 0.962 −0.1

Avg. 0.787 0.796 0.791 0.770 0.793 −0.4 0.801 0.6

of “Roca imprv.” and “Rocus imprv.” report the
performance improvement of Roca and Rocus, respec-
tively, after exploiting the unlabeled data. Let a denote
the initial performance before exploiting any unlabeled

data and b denote the final performance after the semi-
supervised learning. The improvement is computed as
(b−a)/a. The last rows of the tables report the average
performances over all the experimental datasets.
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Table 9. AUCs of the Compared Methods When µ = 0.3

Dataset AdaBoost Labeled Smote UnderSample Roca Roca Imprv. (%) Rocus Rocus Imprv. (%)

jm1 0.698 0.707 0.713 0.696 0.706 −0.2 0.705 −0.3

kc1 0.769 0.800 0.780 0.773 0.800 0.0 0.800 −0.1

kc2 0.788 0.798 0.777 0.788 0.807 1.1 0.811 1.6

mw1 0.691 0.693 0.698 0.678 0.682 −1.6 0.704 1.7

pc1 0.774 0.837 0.796 0.747 0.834 −0.3 0.850 1.6

pc3 0.768 0.781 0.782 0.763 0.789 1.0 0.791 1.2

pc4 0.894 0.867 0.915 0.893 0.870 0.3 0.873 0.7

pc5 0.954 0.964 0.960 0.956 0.965 0.1 0.964 0.0

Avg. 0.792 0.806 0.803 0.787 0.807 0.1 0.812 0.8

Table 10. AUCs of the Compared Methods When µ = 0.4

Dataset AdaBoost Labeled Smote UnderSample Roca Roca Imprv. (%) Rocus Rocus Imprv. (%)

jm1 0.702 0.709 0.716 0.701 0.709 0.0 0.709 0.0

kc1 0.769 0.802 0.782 0.774 0.800 −0.2 0.800 −0.1

kc2 0.800 0.812 0.785 0.780 0.813 0.2 0.818 0.8

mw1 0.699 0.726 0.716 0.676 0.717 −1.2 0.717 −1.2

pc1 0.788 0.839 0.812 0.781 0.845 0.6 0.854 1.7

pc3 0.770 0.794 0.789 0.776 0.795 0.2 0.795 0.1

pc4 0.899 0.879 0.921 0.899 0.876 −0.3 0.882 0.3

pc5 0.954 0.965 0.960 0.956 0.966 0.0 0.965 0.0

Avg. 0.798 0.816 0.810 0.793 0.815 −0.1 0.818 0.2

Tables 3∼6 show that Rocus always outperforms
the other compared methods in software defect detec-
tion tasks. The average F1-measure of Rocus is al-
ways the highest at different label rates. By comparing
Rocus with its initial status Labeled, we can find
that, after carefully exploiting the unlabeled examples,
Rocus is able to dramatically improve its initial per-
formance. Even if only 10% training examples are la-
beled, the average performance improvement in terms
of F1-measure still reaches 70.6%. As µ increases, such
performance improvement can be even larger. Pairwise
t-tests at 95% significance level indicate that the per-
formance improvement on each dataset is of statistical
significance. This fact suggests that the unlabeled ex-
amples are beneficial to constructing better predictive
model in software defect detection.

We first compare Rocus with another disagreement-
based semi-supervised learning method Roca. Al-
though in the labeling strategy, the confidence estima-
tion and the stopping criterion are exactly the same
in both semi-supervised learning methods, the perfor-
mance of the learned predictive models are quite dif-
ferent. In contrast to Rocus which is able to improve
the performance using the unlabeled data, the perfor-
mance of the predictive model learned by Roca de-
grades as the semi-supervised learning proceeds. It can
be observed from the tables that, the final performance
of Roca is worse than Labeled, which is the initial

status shared by both semi-supervised learning meth-
ods, on almost all the datasets at different labeled rates.
The only exception is on kc2 when µ = 0.4, where Roca
appears slightly better than Labeled. Pairwise t-tests
at 95% significance level show that the performance
degradation is significant. In fact, the performance of
Roca is the worst among all the compared methods,
which is even worse than a simple AdaBoost directly
applied only on the labeled set. This fact verifies our
claim in previous sections that semi-supervised learn-
ing may not be effective on imbalance datasets, because
the overwhelming majority-class examples in the newly-
labeled set drive the focus of the predictive model away
from the minority-class. Note that the only difference
between these two semi-supervised learning algorithms
is that Rocus explicitly tackles the class-imbalance
problem using the under-sampling technique during the
exploitation of the unlabeled examples, while Roca
completely ignores the class-imbalance problem. There-
fore, it can be concluded that under-sampling is essen-
tial to the effectiveness of semi-supervised learning on
imbalanced datasets.

Second, we compare Rocus with the two supervised
learning methods Smote and UnderSample, which is
able to tackle the class-imbalance problem in learning.
It can be observed from the tables that although Smote
or UnderSample may achieve the best performance on
one or two datasets at a certain label rate, the average
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F1-measures are always much less than that of Rocus.
For example, when µ = 0.1, the average F1-measure of
Rocus is 0.376 while Smote and UnderSample are
0.345 and 0.343, respectively. Such superiority can be
more obvious when µ becomes larger. Moreover, Ta-
bles 3∼6 also show that Smote, UnderSample and
Rocus perform better than AdaBoost and Labeled,
both of which fail to consider the imbalanced class dis-
tribution in the learning process. Therefore, it can be
concluded that explicitly tackling the class-imbalance
problem is helpful to software defect detection, and the
performance of class-imbalance learning can be further
improved if the unlabeled data are exploited in an ap-
propriate way.

Tables 7∼10 tabulate the AUC values of all the com-
pared methods at 4 different label rates. The trends in
the 4 tables are similar to that of F1-measure shown
in Tables 3∼6. Specifically, Rocus always achieves the
best performance in terms of average AUC among the
compared methods. The exploitation of unlabeled data
in Roca can hardly lead to any improvement of the
average AUC values and it even causes performance de-
generation when µ is small. In contrast, after tackling
the class-imbalance problem explicitly, unlabeled data
become beneficial to Rocus. Moreover, the perfor-
mance of Smote is comparable to that of the methods

ignoring the class-imbalance problem (i.e., AdaBoost
and Labeled), and the performance of UnderSam-
ple is even worse than that of these two methods. In
contrast, by exploiting available unlabeled examples,
Rocus performs better.

Although Tables 3∼10 suggest that, in software de-
fect detection, Rocus can effectively exploit unlabeled
examples to achieve better performance even if the class
distribution is imbalanced, its performance may vibrate
under different degrees of imbalance. In order to study
the influence of the imbalance degree on Rocus, we
conduct additional experiments, where we alter the
class distribution of the dataset. In detail, a dataset
is tailored such that the number of the defective ex-
amples over the number of the non-defective examples
is roughly γ. In the experiments, 1/γ ∈ {1, 2, . . . , 10}.
If the original ratio is larger than γ, we randomly dis-
card some defective examples; otherwise, we randomly
discard some defect-free examples. We repeat the ex-
periment in each tailored dataset for 50 times, where
the labeled/unlabeled/test datasets are generated ac-
cording to the 4 label rates (i.e., 10%, 20%, 30%, 40%).
Since F1-measure directly reports how well the defect
detection is, we only illustrate the performances of the
compared methods in terms of the F1-measure.

We plot the average F1-measure versus the inverse

Fig.1. F1-measures of the compared methods on jm1 at different minority-majority rates. (a) µ = 10%. (b) µ = 20%. (c) µ = 30%.

(d) µ = 40%.
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Fig.2. F1-measures of the compared methods on kc1 at different minority-majority rates. (a) µ = 10%. (b) µ = 20%. (c) µ = 30%.

(d) µ = 40%.

Fig.3. F1-measures of the compared methods on pc1 at different minority-majority rates. (a) µ = 10%. (b) µ = 20%. (c) µ = 30%.

(d) µ = 40%.
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of the minority-majority ratio (1/γ) at different label
rates on the experimental datasets. Due to the space
limitation, we only report the results on datasets of
small size (pc1), median size (kc1), and large size (jm1),
as shown in Figs. 1∼3. Similar trends are observed on
the other datasets.

As expected, F1-measures of all the compared meth-
ods decrease as the dataset becomes more imbalanced,
but the influence of the increase of class imbalance on
Rocus is the smallest among the compared methods.
It can be observed from the figures that Rocus almost
always performs better than the other methods, and
such superiority is more obvious when the class distri-
bution becomes more imbalanced. We first consider the
two semi-supervised learning methods. When the class
distribution is balanced, Roca and Rocus appear to
be comparable. As 1/γ increases, the performance of
Roca degrades rather fast, especially when label rate
is small. For example, when only 10% of the train-
ing data from kc1 are labeled, the curve of Roca even
drops below that of AdaBoost after 1/γ grows larger
than 3. This fact suggests that the degree of imbal-
ance has great influence on the semi-supervised learning
method if it does not tackle the class-imbalance prob-
lem explicitly. Then, we compare Rocus, Smote and
UnderSample, each of which explicitly considers the
imbalanced class distribution in learning. The figures
show that there exists a gap between the curves of Ro-
cus and the other two methods, respectively. Such a
gap increases as 1/γ becomes larger, which indicates
that exploiting unlabeled data can help to improve the
performance of class-imbalance learning.

5 Conclusion

Detection of defects in software modules is impor-
tant in improving the quality of a software system.
However, many real-world data for software defect de-
tection are imbalanced and only a small portion of ex-
amples are labeled as “defective” or “defect-free” in
advance. In this paper, we address these two practi-
cal yet important issues simultaneously for software de-
fect detection. We propose a disagreement-based semi-
supervised learning method Rocus to exploit the abun-
dant unlabeled examples for better detection. Rocus
employs under-sampling to tailor the newly-labeled set,
which effectively reduces the chance that the refined
predictive model being less sensitive to the defective
examples during the iterative semi-supervised learning
process. Experimental results of real-world software

defect detection tasks show that Rocus can achieve
better detection performance than a semi-supervised
learning method that ignores the class-imbalance na-
ture of the tasks and a class-imbalance learning method
that is not able to exploit unlabeled data.

Note that Rocus maintains the diversity of the en-
semble between individual classifiers by injecting ran-
domness into the base learner. The diversity can also
be achieved by introducing selective ensemble[56]. Ex-
ploiting unlabeled data for improving the performance
of individual classifiers and the diversity between them
simultaneously in disagreement-based semi-supervised
learning is an interesting future work.

In software defect detection, it would be more use-
ful to predict the number of defects that may be con-
tained in certain software modules. Such a problem
can be formalized as an regression problem, just as
done in [57]. Recently, Zhou and Li[39] proposed a
disagreement-based semi-supervised regression method,
whose idea may be useful to extend Rocus to pre-
dicting the number of defects in each module in fu-
ture. Moreover, since misclassifying a defective module
as defect-free may lead to worse consequence than mis-
classifying a defect-free module as defective, extending
Rocus to cost-sensitive scenario, where the overall cost
rather than misclassification error is minimized during
learning, would be another interesting future work. Ad-
ditionally, in software defect detection settings, each
module is represented as a single feature vector based
on the metrics extracted from the module. It would be
interesting to find appropriate metrics to represent each
module with a set of feature vectors such that the defect
detection problem may be solved within multi-instance
learning[58] framework, which will be investigated in the
future.

Since the problems of “lack of sufficient labeled
data” and “data imbalance” may be tangled together,
exploiting the interaction between these two important
issues in influencing the problems similar to software
defect detection is expected to achieve better results,
which is another interesting work to be done in future.
Besides, it would be another interesting work to adapt
Rocus to other software engineering tasks or even to
the tasks beyond software engineering, where the data
distributions are essentially imbalanced and the labels
for examples are difficult to obtain.
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