Ma RH, Guan HB, Zhu EZ et al. Partitioning the conventional DBT system for multiprocessors. JOURNAL OF COM-
PUTER SCIENCE AND TECHNOLOGY 26(3): 474-490 May 2011. DOI 10.1007/s11390-011-1148-1

Partitioning the Conventional DBT System for Multiprocessors

Ru-Hui Ma (%4 #), Hai-Bing Guan (‘&#1%), Member, CCF, Er-Zhou Zhu (%4 _)4), Hong-Bo Yang (#7t)%)
Yin-Dong Yang (%4 4), and A-Lei Liang (Z2f%%), Member, CCF

Shanghai Key Laboratory of Scalable Computing and Systems, Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200240, China

E-mail: {ruhuima, hbguan, ezzhu, yanghongbo819, yasaka, liangalei}@sjtu.edu.cn
Received February 19, 2010; revised March 14, 2011.

Abstract Noticeable performance improvement via ever-increasing transistors is gradually trapped into a predicament
since software cannot logically and efficiently utilize hardware resource, such as multi-core resource. This is an inevitable
problem in dynamic binary translation (DBT) system as well. Though special purpose hardware as aide tool, through some
interfaces, provided by DBT enables the system to achieve higher performance, the limitation of it is significant, that is,
it is impossible to be used widely by another one. To overcome this drawback, we focus on building compatible software
architecture to acquire higher performance without platform dependence. In this paper, we propose a novel multithreaded
architecture for DBT system through partitioning distinct function module, which is to adequately utilize multiprocessors
resource. This new architecture devides couples the common DBT system (DBTs) working routine into dynamic translation,
optimization, and translated code execution phases, and then ramifies them into different threads to enable them concurrently
executed. In this new architecture, several efficient novel methods are presented to cope with intractable work that puzzles
most researchers, such as communication mechanism, cache layout, and mutual exclusion between threads. Experimental
results using SPECint 2000 indicate that this new architecture for DBT system can achieve higher performance — speed

up the traditional DBT system by about average 10.75%, with better CPU utilization.

Keywords

1 Introduction

For last two decades, more and more consumers de-
pend fully or partially on computers due to the contin-
ual performance improvement that enables many com-
plicated applications. The exponential performance
improvement is mainly from multi-core microprocessor
system!!2] since the relentless pace of Moore’s Law will
lead to mainstream multi-core microprocessor designs
with extensive on-die integration of a large number of
cores®l. Currently, lower performance of dynamic bi-
nary translators is deemed as the main development
bottleneck, since out-of-date structure of dynamic bi-
nary translation system (DBT) with uniprocessor can-
not provide enough power*7].

Multi-core microprocessor system offers an oppor-
tunity to improve the design and performance of dy-
namic binary translation system!*®, which encom-
passes the idea of providing independent computing
service for heterogeneous platforms. Currently, the con-
ventional DBT system, such as QEMUP!, UQDBTI®!,
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and StarDBT!)| remain its obsolete architecture that
is successfully applied in large, monolithic uniproces-
sors system. But this out-of-date architecture is not
competent for an eligible consumer to utilize full re-
source of multi-core microprocessor system. With chip
multiprocessor, ADOREMY is a research dynamic op-
timizer from the University of Minnesota. It uses a
separate OS level thread to perform profiling and opti-
mizations (e.g., prefetching) by taking the advantage of
Intel Itanium specific hardware counters. But this ar-
chitecture needs accurate prefetching. In contrast, Tri-
dent framework™!] focuses on adding lightweight hard-
ware to perform all of the profiling needed to guide
our dynamic optimizations. The hardware interacts
with the optimization framework by generating events
that helper threads consume to make optimization de-
cisions as well as to perform the optimizations. In com-
parison to ADORE, this event-driven hardware profi-
ling support avoids switching context to the additional
thread for profiling, and allows continuous monitoring
of more complex behavior. Although Trident overcomes
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the limitation caused by ADORE, extra hardware em-
ployed limits its extendibility. The important point is
that the architectures mentioned above only consider
their performance assisted by the outer factors, rather
than their essential features. For example, the DBT
system can achieve better performance through profil-
ing, hot trace, and linking, etc., but adjusting their ar-
chitecture under chip multiprocessor brings extra per-
formance improvement as well. As we can see, the latter
one has better universal property.

As widely noted in the DBT system research commu-
nity, a novel software architecture of DBT system must
extremely extract enough concurrency or parallelism to
keep most, even all cores busy. However, parallel pro-
gramming for DBT system is still a difficult research
topic because the worthless byproduct of new DBT ar-
chitecture puzzles most of researchers as well, such as
how to select available-parallel candidate, avoid mutual
exclusion, and promise programming logicality.

This paper exploits the design and implementation
of new architecture for DBT system under the multi-
In DBT system, tradi-
tional execution mode could be divided into two parts:
translation stage and execution stage. However, either
translation stage or execution stage has several impor-
tant operations to enable application to execute effi-
ciently, such as hot trace optimization, linking, and
even profile/instrumentation operation?. How to se-
lect the parts as the candidates to be concurrently ex-
ecuted is considered as the key to construct the novel
architecture. Then a quantitative analysis referring to
the overhead of each part is presented, and we par-
tition the traditional DBT system into several parts:
the translation part, execution part, and optimization
part, which can be concurrently executed in distinct
private thread. Then the new architecture — mul-
tithreaded architecture relying on the analysis result
above is built. The purpose of it is to reasonably and
efficiently utilize microprocessors resource. However,
like the inevitable problems occurring in most of par-
allel programming, the intractable software barriers in
multithreaded DBT system (e.g., mutual exclusion be-
tween threads, communication mechanism, assignment
scheduling, etc.) have been encountered. Therefore, se-
veral corresponding methods employed to address these
relentless obstacles are proposed, which directly impact
the system performance. In this paper, the method
of private code caches is presented to mutual exclu-
sion caused by code block stored in code cache com-
peting for the limited memory resources. In addition,
a lock-free communication mechanism — assembly lan-
guage communication mechanism (ALCM) is proposed,
which reduces much communication overhead between
hot trace thread and profile thread, compared to the
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tradition communication mechanism. The important
point is that branch tree module (BTM) is used to
schedule different threads in multithread DBT system.
There are two contributions of this paper that are dif-
ferent from other DBT system as well.

e In this paper, the main stages that directly impact
DBT system performance have been rendered. This
paper also analyzes their relationship, and shows the
parallel-available candidates.

e To take advantage of full resource of multi-core
system and achieve more performance improvement,
a new multithreaded architecture for DBT system is
presented. It is constructed through decomposing the
main stages into separate, low-level threads, which are
suitable for concurrent execution, that is, some stages
(e.g., translation, execution, hot trace building, context
switch, and profile, etc.) executed in sequential will be
divided into several groups to be concurrently executed
in corresponding threads, according to the result from
elaborate quantitative analysis.

The following sections are organized as follows. Sec-
tion 2 introduces the main stages that affect DBT sys-
tem performance. In Section 3, we depict the archi-
tecture of the multithreaded DBT system, and several
efficient methods to cope with arduous problems en-
countered. Moreover, Section 4 gives the evaluation of
new architecture. And Section 5 reviews the related
work. Finally, we conclude the paper in Section 6.

2 Overview of DBT System

Dynamic binary translation system has been widely
used for many years. Its purpose is to transform source
binary code into target binary code, either by emulating
features of the source machine or by identifying such
features and then transforming them into equivalent
target machine features. Indeed, this execution flow —
providing independent service for heterogeneous plat-
forms is widely applied in various research domain, such
as virtualization!™®, legacy binary codel", co-design
infrastructure(!171 and others(7-18-23],

Without loss of generality, DBT system always
adopt two-phase execution process: translation stage
and execution stage. During running, the system be-
gins with looking up the target block in the code cache
via one hash table that stores each cached block’s target
program counter (TPC) and source program counter
(SPC). If successful, context switch will be trigged to
execute the target block continuously. Therein, another
monitor operation — profile is also acted in this block
to achieve more information (e.g., execution counter,
branch information, etc.) in order to recognize pro-
gram hot spots!”18:20 for optimizations. Through pro-
filed hot spots, the system will construct and optimize
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efficient hot traces that have only one entrance and sev-
eral exits. However, if the target block is not cached in
the code cache, the translation stage will be awakened
to retranslate the target block. The translated target
block will be committed to the code cache for next use.
Note that, some indispensable optimization methods
have already adopted by almost all the DBT system,
such as linking (or chaining). Linking is an optimiza-
tion method performed in all the basic blocks and hot
traces by modifying the machine codes after they have
been executed for oncel24.

2.1 Qualitative Analysis for DBT System

As the main execution flow of DBT system is intro-
duced above, we will profoundly analyze some stages
that affect entire system performance, to find out which
parts can be concurrently executed.

Here the DBT system discussed in this paper em-
body the intermediate representation named interme-
diate instruction (II) layer, which is used to unify the
representation of various sources and target instruction
sets. It mainly functions on quickly adding guest/host
platforms for the DBT system designers. Not taking
initialization overhead into account, we found several
main stages that influence overall performance of DBT
system.

e Look-Up Stage. During running, the look-up ope-
ration is to find that whether the target block is stored
in code cache. If successful, the entry address of tar-
get block is returned. On the contrary, if it comes to a
miss, the translation stage is trigged.

o Context Switch Stage. After the entry address is
achieved, dispensable context switch will occur to trans-
fer control to the translated target block. When the ex-
ecution of this block completes, another context switch
is reactive to back across control.

o Translation Stage. When there exists a miss for
target block, that is, the target one cannot be found
in the code cache, the translation stage is awakened to
translate or retranslate it. The translation overhead
includes several parts: decode, intermediate code opti-
mization, and encode.

e Fzxecution Stage. It is the native execution of
the translated code blocks. The better the quality of
translation algorithm applies, the less time it would
take. Additionally, optimizing intermediate representa-
tion of executed block either statically or dynamically
will reach to performance improvement as well. The
execution overhead is only from the execution process
of translated code blocks.

e Linking Stage. In order to keep the original pro-
gram behavior and relieve context-switch counter, link-
ing is employed to chain the block that is being executed
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with the next one.

e Profile Stage. By way of accelerating the applica-
tion execution, DBT system use runtime information to
detect hot (frequently executed) code and optimize it.
Currently, either special hardware support or software
support for profile has been widely used, but in this
paper, to improve general-purpose DBT system perfor-
mance, we only consider software profile method. The
profile method is to add several codes into each code
block to get its running information. Due to several
codes inserted into each code block, the execution time
for each block is extended, so the profile overhead is
decided by the added codes and the blocks’ execution
time.

e Hot Trace Building Stage. It is essential to build
hot trace for DBT system to achieve significant perfor-
mance improvement, according to hot spots monitored.

In fact, the overall running time of DBT system is
composed of two parts: all the execution time of each
target block, and the sum of each target block’s run-
ning time. The overall running time of DBT system is
depicted as:

Ttotal = Texecution + Trunning; (1)

where Teyecution = E?zl Te;, Trunning = Z?:l Tr;. In
traditional DBT system, the execution time of target
block Te; is only affected by the quality of translated
code, that is to say, it is a fixed value since translation
mode is invariable. However, the running time of target
block T'r; is variable, involving with several elements.
There are three main factors that drastically impact
system running overhead. The first one is unlinking
that causes much unnecessary overhead. For example,
if code block unlinked by others is to be executed before
long, transferring control to system will occur, that is,
lookup, context switch will be reactive orderly. We can
see that this leads to two parts overhead: Tiookup and
Teontext-switch, Which are expressed as follows,

Tunlink = Tlookup + Tcontext—switch- (2)

Another one is miss penalty. When cache miss ta-
king place, new translation stage will be reactive to
translate target block. The new one translated is com-
mitted to code cache with another linking. In this
process, interpret operation happens before translation,
while cache replacement cannot be fully abandoned. (3)
exposes cache miss penalty in detail.

T’Iniss = JLinterpret + Ttranslate + Treplace + 71link- (3)

The last one is hot trace building optimization.
In fact, hot trace building depends on enough block
executing information collected by profile operation.



Ru-Hui Ma et al.: Partitioning the Conventional DBT System

Although accurate profile information is able to give us
chance to implement optimization for some blocks, the
expensive overhead caused by profile operation cannot
be negligible. This overhead is described in (4).

Toptimization = Tproﬁle + Thot—trace~ (4)

Finally, the running time of DBT system based on
analysis above can be expressed as follows:

Ttotal = Texecution + Tlookup + Tcontext—switch"‘
Tinterpret + Ttranslate + Treplacement + Tlinking +
Tproﬁle + Thot—trace~ (5)

Similar to evaluating CPU via average accessing
time from physical cache, the performance of DBT sys-
tem is able to be evaluated by average executing time of
target block as well. The running time of DBT system
— Tiotal could be considered as:

Ttotal - Nblock X Tblock + Thot—trace~ (6)

In (6), almost all the main stages that impact system
performance can be represented by per-block time con-
sumption except the stage — hot trace building, since
not all translated basic block will be used to comprise
different hot traces. Nploek is the number of blocks
treated. Its value equals the time of look-up opera-
tions. It is determined by the code inflation rate, the
cache size, and the replacement strategy/algorithm of
code cache. The smaller the inflation rate, the bigger
the cache size would certainly benefit the DBT system
at runtime. On the other hand, Tyocx is the per-block
time consumption, and it is shown in (7):

Tblock = Tave—execution + Tave—proﬁle'
Runlink X (ﬂookup + Tcontext—switch) +

Rmiss X (ﬂnterpret + Ttranslate + Treplace + 71link)-
(7)

The Runlink parameter stands for the percentage of
the translated blocks unlinked. It is complementary to
the linking rate — Ry which is composed of two cate-
gories sorted by the blocks’ exit type. Commonly, they
are of the direct control-transfer type, and the indirect
control-transfer type. The former may be a constant
at runtime. But the linking rate is contrary. It is af-
fected by the possibility of the indirect control-transfer
linking failures. A relatively stable linking rate can be
reached, but it is brought down when the code cache
system evicts some translated blocks.

The R parameter represents the miss rate of the
code cache system. It is commonly determined by the
cache size, the binary inflation rate, and the replace-
ment strategy. The foremost factor is the cache size.
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Commonly, if the size of the text section of the guest
platform (guest binaries’ size) multiplying the binaries’
inflation rate of the DBT system does not exceed the
size of code cache, or not much larger than it, the
miss rate is low and consequently leads to the good
system performance. Otherwise, replacement happens
frequently.

The per-block profile overhead — Thye-profile is that
profiling basic blocks require code instrumentation and
executing instrumentation code. Since instrumentation
code together with each basic block is indistinctive, re-
gardless of which profile method employed (e.g., hot
spot profile, edge profile, and trace profile, etc.), it
brings about the same overhead for each block.

The per-block execution time — Taye-oxecution Means
the per-block execution time of the native binaries
wrapped in the translated blocks. The per-block
hashmap look-up time — Tjgokup together with the per-
block context switching time — Ttontext-switch, COMES as
the penalty for the blocks-unlinked condition. We call
it the unlinked penalty — Pynjink:

Punlink - ﬂookup + Tcontext—switch~ (8)

However, without the replacement of code cache,
translated blocks may be well linked. But another in-
tractable issue encountered is that as the size of new
software releases grows, unbounded code cache sizes
will grow proportionately or exponentially. The ideal
method of addressing this problem is to provide ade-
quate cache size without any replacement strategy, but
the memory resource is significantly limited so that this
is unavailable. Currently, the best avenue is to assign
certain cache size with efficient replacement algorithm.

When the code cache system misses, there are se-
veral kinds of miss penalty — Piss: per-block interpret
time (Tinterpret); per-block translating time (Tiransiate),
per-block replacement algorithm time (Treplacement) and
per-block linking time (Tjink)-

Pmiss = Linterpret + Ttranslate + Treplace + Tlink- (9)

The replacement not only brings about miss penalty,
but also brings up the unlinked rate as mentioned
above. What is more, the number of blocks treated
also rises. Under such a condition, the whole system
processing time is determined by the Riss. The per-
block consumption is:

Tblock = Tave—execution + Tave—proﬁle +

Runlink X Punlink + Rmiss X Pmiss-
(10)

And the system running time is:

Ttotal = Nblock X (Tave—execution + Tave—proﬁle +
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Runlink X Punlink + Rmiss X Pmiss) +
Thot—trace (11)

or

Ttotal = Nblock X (Runlink X Punlink + Rmiss X

Pmiss) + Texecution + Tproﬁle + Thot-trace-
(12)

(11) shows all the factors. Generally, if the Rypiss
is low enough, the whole system processing time is
still dominated by the Tayve-execution- HOWever, when
it grows up, the Ryniink grows too, and the system exe-
cution time will not be predominated by a single factor.
Any stage may harm or benefit the Tioa1. At last, when
the Rpyiss reaches up to a certain level, miss penalty will
be the dominator. In addition, Tprofle is dominated by
the execution counter of basic block and also deemed as
a considerate overhead. But it brings about another at-
tracting advantage for system to indicate optimization
— hot trace building, without compromising weighty
overhead. Although the optimization on the Texecution
is welcome in most of the cases, such as hot trace build-
ing, other optimizations on any of the stages are not
welcome because they may be the candidates of the sys-
tem bottleneck as the execution environment changes.
So, in this paper, DBT system only employ hot trace
building method to enable more performance.

(12) indicates several main factors affecting sys-
tem performance. To better analyze the experimen-
tal result, we present A Translate to represent Npjock X
(Runlink X Punlink + Rmiss X Pmiss), S0 (12) can also be
concluded as:

Ttotal = ATranslate + Texecution + Tproﬁle + Thot—trace~
(13)

2.2 Quantitative Analysis for DBT System

According to (12) and (13), we only can be conscious
of several parts affecting DBT system performance, but
we still do not know which one is the most important
factor. So we want to know their relationship that can
judge whether they can be concurrently executed via
reasonable yet convincing experiments. In this paper,
CrossBit!??], as a resourceable and retargetable DBT
system with intermediate instruction, is selected as the
experiment platform, which is developed mainly to pro-
vide the platform independent computing service for a
new virtualized execution environment. Until recently,
it has fully or partially supported guest platforms inclu-
ding simplescalar, IA32, MIPS, SPARC, and has fully
supported the TA32, SPARC host platform. On the
other hand, the experiments are taken on the host plat-
form (CPU: Intel 4-Core, 2.66 GHz; memory: 8GB)
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with Linux Kernel Version 2.6.22. The benchmark pro-
grams are some selections from the SPECint 2000[26!.

- Texecution . ATranslate
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Fig.1. Several stages execution ratio in the conventional DBT

system — CrossBit.

From Fig.1, we can see that DBT system — CrossBit
have a relative-stable overhead ratio. For example, the
main running time cost is execution stage, and its con-
suming proportion about 70% ~ 72%, while translation
stage changes about 17% from 20%. Additionally, op-
timization stage — profile and hot trace building takes
the proportion about 8% ~ 13%. Since each bench-
mark has its own architecture, the experimental result
is so distinct but with rough rule. Although execution
stage is the first main factor, other overheads cannot
be ignored. If we can reduce the overheads except exe-
cution stage, the overall performance may be enhanced
extremely.

First, in the overhead of ATranslate mentioned in
(13), context switch overhead is caused by control
transferring, which can be fully avoided if anyone or
anything is not allowed to influence target block to be
normally executed, that is, another thread utilized to
look up target block and return its entry address is un-
available to interwine execution thread.

On the other hand, hot trace building from optimiza-
tion phase is executed in the translation mode as well.
Indeed, when it is running, translation mode translat-
ing basic block is instantly ceased to retranslate blocks
used to construct hot trace. This leads to another over-
head that is also obviated via extra thread. Therein, it
is the fact that several translation threads executed con-
currently also bring another chance: two or more basic
blocks can be translated synchronously. It may reduce
some overhead with correct program logic. There is an-
other reason that drives us decoupling translation mode
and execution mode. Unfortunately, there is one thing
inevitable for DBT system running upon one single-core
uniprocessor: the translation mode and execution mode
have to share the native registers which cause the regis-
ter context-switch overhead. Under certain condition,
the context-switch overhead could still be the foremost
factor influencing DBT system. One suggestion is that
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the translation mode and execution mode share the tar-
get machine registers under the control of some static
or dynamic monitoring mechanisms. However, for the
DBT system developers, they handle only the regis-
ters’ usage of translated code, which is determined in
the translation phase (mostly done by the register allo-
cation algorithms). But the register context of execu-
tion mode is determined by the compiler ahead of time.
It is almost impracticable or inefficient to make them
co-workers because the code under execution mode is
always built prior to that of translation mode, and is
changed by versions if the developer does not make any
modification to the local compilers. As well, the later
Subsection 3.5 will depict context-switch overhead elim-
ination.

Finally, DBT system still sustain the inevitable pro-
file overhead. Virtually, profile overhead embodies two
kinds of overhead: inserting profile instruction over-
head as well as executing profile instruction overhead.
The former one results in further less overhead than
the latter one, for it only inserts some codes into each
basic block. However, the size of basic block fluctuates
about 100 ~ 200 bytes, while that of profile code is
about 50 bytes or more. When each translated basic
block is executed, profile codes embedded will also be
executed. Therefore, the latter will drive much more
overhead due to its large size. Suppose that insert-
ing profile code is only empowered when basic block
translating, while the other operation — executing this
profile code is permitted in different thread associated
with another core. This cannot impact applications to
be executed properly with much overhead, but another
performance improvement will come due to well taking

‘ T _ ‘ Handler
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advantage of multi-core resource. In a word, multi-core
architecture offers an opportunity to improve the design
and performance of DBT system.

3 Multithreaded DBT System

As the processor technology is evolving into the
multi-core age, there is another possibility to decou-
ple several parts. The simple concept is to make the
parts be separated by threads. And the threads may
be then mapped into different processor cores on the
fly. Through qualitative analysis and quantitative anal-
ysis for DBT system above, we conclude that several
parts can be concurrently executed, such as translation
thread, execution thread, and profile thread. Mean-
while, translation thread includes two kinds of threads:
one hot trace building thread, one or more basic block
translation threads.

In fact, the design of new execution engine mainly
aims at reducing the Tiunning overhead. One obvious
advantage is that either the translation mode or the
execution mode has its own register context. Con-
sequently, the elimination of the context switching
overhead achieves. Additionally, tangled profile over-
head is extremely depressed in different threads, via
efficient communication mechanism. Except for avoid-
ing context switch and decreasing profile overhead, an-
other goal of the new architecture is to reduce the cost
of translation time. This profit not only comes from
independently constructing hot trace, but also simul-
taneously translates basic block. As mentioned in the
previous section, the long-time translation phase may
greatly prolong the total running time of DBT system

v v
“Translation Threads B rofile Threa (Execution Thread )
Branch Tree .
Module Execute PC)
Translation Hot Trace
Thread Thread
Interpreten (Collect I1. Dispatcher \
v > 7
1L Opt 1. Opt ) 1
; ,//
(Translator, (Translator Lookup
i‘_aae 0 Memory Manager i Execution
o 4 A 4

Fig.2. Architecture of multithreaded DBT system.
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if the frequent replacements from code cache occur.
This is not occasional since there are many memory-
limited embedded processors planning to have multi-
cores. The simple implementation is that the execution
mode issues several translations at one time. If the pre-
diction of translation is always correct, the translation
mode can get more code to execute and have less time
waiting for the long time translation.

3.1 Architecture of Multithreaded DBT
System

Fig.2 is the architecture of multithreaded DBT sys-
tem. According to the decoupling principle as men-
tioned above, the traditional DBT system can be di-
vided into three parts: translation threads, profile
thread, and execution thread. This new architecture
is not only simply divided, but also adopts several
novel parts to address arduous problems encountered.
BTM, as the controller of dispatching tasks to trans-
lation threads, is added into the new one. On the
other hand, a lock-free communication mechanism is
responsible for transferring information between pro-
file thread and hot trace thread. In most traditional
DBT system, unitary code cache is always utilized to
cache translated basic block or hot tracel*®!| while some
DBT systems select two-level or heterogeneous code
cache to improve system performance. However, in this
new architecture, unitary code cache is out of state,
that is, it cannot accommodate multithreaded execu-
tive environment(2”. So private code caches employed
are advantageous to obviate unpredict data mutual ex-
clusion without lock/unlock mechanism.

The engine starts from bootstrapper. The transla-
tion Threads perform the overall translation for basic
block, including translating source binaries, wrapping
translated code into blocks and committing them to the
code cache. The other task for translation threads is
to collect hot spots to build hot trace, translate them,
and then insert the hot trace into the corresponding
private cache. Note that hot trace thread is not con-
trolled by BTM, and it is only affected by profile thread.
The BTM is the controller of threads’ work dispatch-
ing. The translation thread for basic block asks the
BTM for a source PC address from which the entry ad-
dress translation starts. At the end of each translation,
the translation thread commits a translated code block
to the code cache. As mentioned above, all the com-
mitments are out of order. And then the translation
thread would query the BTM for next translation. De-
finitely there is a mechanism inside the branch to make
the work of translation thread valuable. This would be
introduced later.

Meanwhile, profile thread gets each block’s
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execution information from execution thread, and this
process only needs a lower-cost queue. Then the infor-
mation about hot spot is passed to hot trace thread
through a new communication mechanism — ALCM.
In addition, the execution thread is initialized and gets
to work. However, it is a much easier work to look up
the translated code blocks from code cache and perform
the target block circularly.

3.2 Branch Tree Module

BTM is the key data structure to enable the para-
llel translation and the translation/execution/profile
decomposition. In this subsection, we will give
the architecture of BTM that possesses three mod-
ules: BranchTree, BranchCodeGrabber, and Thread-
Dispatcher, which are depicted in Fig.3 as follows.

Fig.3. Architecture of branch tree module.

3.2.1 BranchCodeGrabber

The module of BranchCodeGrabber assists Branch-
Tree to achieve the branch instruction’s target ad-
dress of relocated binary code, and it provides
BranchTree with the following interface Bltem Get-
NextBranch(MemAddr blockentry), where blockentry
represents the basic block’s entry address. The return
value of this function is an architecture body that em-
bodies all the indirect-branch target addresses of the
basic block and their information about instruction

type.
3.2.2 ThreadDispatcher

ThreadDispatcher is also the important member
of multithreaded DBT system, responding to con-
stantly assigning work to the translation thread, and
it is outer interface defined as MemAddr Sched-
uleThread (MemAddr curAddr). Through looking up
BranchTree, the engine will receive the information of
block to be translated, and its entry address as the re-
turn value can be achieved as well. Note that Thread-
Dispatcher controls the assignment algorithm that is
the key point to affect system performance, which is
depicted as follows.
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Suppose that there are several translation threads.
If translation thread A has completed translating Block
X, it will pass QueryNextEntry to BranchTree to re-
quire the next block.

e Then Block X is tagged with “done”.

e If the left (right) child node is tagged with
“undone”, this sign will be altered and shown as “do-
ing”, and the entry address of this block being trans-
lated is returned.

e If there does not exist the node tagged with “un-
done”, nulla address will be returned. When translation
thread receives nulla address, it will go to sleep until the
architecture of BranchTree is modified.

We can see that when there is a request from trans-
lation thread, it selects the most valuable and available
node from the BranchTree for next translation. The se-
lection algorithm determines the accuracy of prediction
(branch prediction of instructions accordingly). In the
current version, the new architecture presented imple-
ments a simple selection algorithm based on tree struc-
ture as mentioned above.

3.2.3 BranchTree

BranchTree, as the kernel of BTM, has the respon-
sibility to provide sufficient interfaces for other mod-
ules, such as translation thread interface and execution
thread interface. The translation thread employs the
former interface to gain the next translated block’s en-
try address, which is defined as MemAddr QueryNez-
tEntry(MemAddr curentry). Indeed, translation thread
is only to do query and translation operations. The
latter one is used to not only receive the SPC (source
program counter) to fulfill execution thread, but also
adjust BranchTree’s architecture. It is described as
Status BranchTakenAt(MemAddr spc). The following
steps introduce modifying algorithm for BranchTree.

e Looking up the node corresponding with SPC in
BranchTree.

e If the node is null, this is caused by register ad-
dressing branch instruction. Meanwhile, the engine will
delete the original BranchTree and rebuild BranchTree,
the root of which is SPC.

e If the node is BranchTree’s root, there is no alter-
ation for BranchTree.

o If the node is not the root node in the BranchTree,
the engine will protect it and its subtree, delete other
nodes, and complement it. Specially, the complement
principle is that the depth of rebuilt BranchTree is the
max depth formulated by system, and the root of it is
the node protected.

Notice that either the initialization of BranchTree
or dynamically adjusting its architecture absolutely
depends on the binary code’s address information
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analyzed by BranchCodeGrabber. And dispatching the
work for the threads is done in accordance with the al-
gorithm provided by ThreadDispatcher and the current
architecture of BranchTree.

In multithreaded DBT system, the BranchTree is the
description of control flow ignoring any loop conditions,
and is organized as a binary tree. The BranchTree has
the following features:

e every tree node represents a basic block, and
tagged with the block entry address;

e the root of BranchTree represents the block last
being executed;

e the subnodes are the exits (destine address of
branching) of this block.

Whenever the execution thread finishes a block exe-
cution, it will update the global-shared Source PC vari-
able. Then whenever the translation thread queries for
new task, it may find out the dismatch between the
BranchTree root and the global shared variable. Then
the translation thread may update the BranchTree data
structure according to the change. This mechanism
ensures that the translation thread never delays in
response to the real requirement from the execution
thread. What is more, it limits the synchronization
overhead.

3.3 Assembly Language Communication
Mechanism

From Fig.2, we can see that the communication hap-
pens when the profiling module is going to pass the in-
formation of hot spots to the hot trace building thread.
It is well known that an adaptable and effective com-
munication mechanism is a key point to pass the impor-
tant information of hot spots between threads. How-
ever, traditional threads’ communication mechanisms,
such as monitor or producer/consumer, do not fit DBT
system effectively due to their drawbacks.

Monitor. A monitor supports synchronization
through condition variables as a part of monitor(28.
Indeed, this model forms the backbone of almost all
the event-driven multithreaded software system in the
world. The advantage is that all the threads waiting
on the condition variables only require signals to run,
instead of competing for the processor time slice all
the time. Unfortunately, the fatal disadvantage of this
mechanism does not make it adapt to our framework.
As when there is no thread waiting on condition x, then
the execution of csignal(x) has no effect at all. In other
words, the hot trace building thread will lose the signals
sent by the profile thread if it is still building the hot
trace, rather than waiting on the condition variables.

Producer/Consumer. — This model®8) makes all
threads operate their critical section, which employs
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extra semaphore operations such as SemSend() or
SemWait(). The critical section refers to the portion
of the program that uses a single non-sharable global
resource which is accessed by two or more threads.
All these operations are required to be done at the
same language level. The following is the procedure of
the detailed conventional communication mechanism in
producer/consumer.

1) The system firstly initializes the writing
semaphore S = 1, which controls the producer (main
thread) to write into critical section, and the reading
semaphore C' = 0, which controls the consumer (helper
thread) to read from critical section.

2) When producer brings new data to be inserted
into the critical section, the writing semaphore S will
be decreased by 1, and then the main thread obtains
the control of critical section. Meanwhile, the critical
section is represented as the program code that accesses
the critical resource (critical resource is the sharable re-
source that is utilized by only one thread).

3) When the write thread accomplishes the writing
operation with global variable, the value of the two
communication semaphores will be added by 1. Then
the read thread gains the control to decrease the value
of reading semaphore by 1, and successively, accesses
to the critical section.

We can see that producer/consumer needs a
lock/unlock algorithm to prevent mutual exclusion in
the critical section, which is associated with extra over-
head. Otherwise, in multithreaded architecture, the
profiling module in Fig.2 is realized by the assembly
instructions in each basic block while the hot trace
building thread is implemented by C++, so we must
introduce some extra overheads, if we still employ this
model. This disadvantage comes from the redundant
context switching operation, which is used to exit the
back-end execution process to perform semaphore ope-
rations like Sem Wait (). The reason why context switch
occurs frequently in multithreaded architecture is that
once the profile module finds a hot spot, the context
switch is trigged to back to high level language to com-
plete passing hot spot information. Additionally, the
critical section of this model, a section of memory, al-
lows only a sort of operation to access. Since in this cri-
tical section, only two sorts of operations — write/read
— exist, if the write operation (producer) is being ex-
ecuted, the read operation (consumer) must wait to be
executed until another execution is completed (or vice
versa). Note that the waiting time cannot be fully ig-
nored.

In multithreaded DBT system, profile thread reads
the edge information in a simple queue, which links two
translated blocks. Through filtering, hot spot should be
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passed into hot trace thread. To make our architecture
more effective and sound, a new communication mech-
anism that acts between profile thread and hot trace
thread is proposed.

As shown in Fig.4, the new multithreaded architec-
ture uses a new threads’ arguments lock-free communi-
cation mechanism called ALCM which is implemented
at assembly language level. Compared with pro-
ducer/consumer communication method, ALCM does
not have to suspend the target-machine codes’ execut-
ing process of the main thread to make any semaphore
operations. And several operations can be simulta-
neously executed in critical section. This mechanism
based on producer/consumer is also composed of three
parts: producer, consumer, critical section, but it has
its bright feature.

Basic Block 4

...Profiling codes...

//%ret //this line is eliminated.
1. movw & ProducerCount, %ecx
2. movw  %ecx, %edx
3. shl ecx, $2

4. add %0xa0000000, %ecx
5.

6.

7.

ALCM

movw Y%ecx, &pointerA — entryAddress
inc Y%edx
movw %edx, & ProducerCount

...set flags...

NotAHotSpot:

Fig.4. Detailed implementation of the producer of ALCM.

Fig.4 describes the producer of ALCM that is in-
serted into the translated basic block in the wake of
profiling codes. It is trigged only by a hot spot disco-
vered, or else it is skipped. The processing procedure
of it is as follows in detail: if the hot spot just dis-
covered has not been stored in the memory space —
M, the value of ProducerCount will be moved into the
arithmetic register — %ecx and the backup register —
%edx. In addition, the variable ProducerCount is used
as the writing semaphore. Then the arithmetic register
is moved left by 2 bits, that is, it is equal to multi-
plying 4, for the hot spot to be cached in the memory
space needs 4 bytes space (the entry address of hot spot
is an unsigned integer variable). We select shift opera-
tion, instead of multiplying operation, due to the former
outperforming the latter. We will get the real memory
address of the hot spot that is equal to the value of mod-
ified arithmetic register adding with the first address of
M. After the entry address of hot spot is stored via
movw operation, the original value of ProducerCount
from %edx is added by 1.

In hot trace thread, it firstly reads the value of
ProducerCount, which is to be compared with the
value of ConsumerCount (reading semaphore). If the
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comparison result is unequal, this indicates that the
ProducerCount is modified by the profile thread be-
cause the initial values of them are 0. Due to hot trace
thread built by high-level language — C++, the first
address of sucessive memory space is easily achieved by
addressing mode used in high-level language. When the
work of building hot trace is finished, the hash map is
also updated. On the other hand, when the comparison
result is equal, the hot trace thread will continuously
wait until the ProducerCount is altered.

The exclusive architecture of critical section is de-
picted as follows.

1) Resembling producer/consumer, the critical sec-
tion of ALCM is similarly a segment successive memory
space, but it is a software queue. The advantage of it
is that more than one hot spots can be cached in the
critical section while only one hot spot is cached in pro-
ducer/consumer’s critical section. In addition, the fre-
quency of replacement in producer/consumer’s critical
section should be considered.

2) The producer and consumer of ALCM that dis-
pense with the lock/unlock algorithm (it is lock-free),
can be simultaneously executed in the critical section.
That is, producer is writing hot spots’ information,
while consumer can read it at the same time. In ALCM,
the so-called critical section is not the real critical sec-
tion in the strict sense, for more than one threads can
be executed in it at the same time. We can see that
this mode is able to avoid the extra overhead caused by
asynchronous waiting.

Compared with producer/consumer communica-
tion method, ALCM does not have to suspend the
target-machine codes’ executing process of the pro-
file thread to make any semaphore operations. Fig.5
shows the performance comparison of ALCM and pro-
ducer/consumer communication mechanism applied in
the new architecture (the experiment setup informa-
tion is: CPU, Intel 4-Core, 2.66 GHz; memory, 8 GB,
with Linux kernel version 2.6.22). The result is that
the decreased execution time of multithreaded DBT
system with ALCM unexpectedly reaches 10.7 seconds
on average, and this indicates that ALCM outperforms
the Producer/Consumer method when it comes to the

0 ALCM [ Producer/Consumer

1000
800 [
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200}

Runtime (s)
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Fig.5.

nsumer strategy.

Performance comparison of ALCM and producer/co-
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multithreaded architecture.

3.4 Private Code Caches

Code cachel?939 ytilized to store translated blocks
has been widely employed in traditional DBT system.
Compared to physical cache, it is much easier to be
controlled, since it is only a software cache — a section
of successive memory space. Moreover, since a trans-
lated block inserted into code cache is to be executed or
replaced, the writing policy in code cache need not be
considered, which must be seriously considered in phy-
sical cache. In software code cache, stored blocks are
independent of other sections of memory space. Multi-
threaded DBT system also select code cache to amortize
miss penalty, but it does not take advantage of mono-
lithic code cache.

If multithreaded DBT system still choose monolithic
code cache, the relentless mutual exclusion will drasti-
cally strike the new architecture. For example, there
are two or more writing operations (inserting translated
blocks into unitary code cache) simultaneously acting
on the critical section — unitary code cache to com-
peting for the same address, mutual exclusion must be
reactive. To avoid it, lock/unlock algorithm is compe-
tent for this work but with huge overhead caused by
asynchronous waiting time. Therefore, to solve this se-
rious problem with lower overhead, we present a lock-
free and no waiting-time method — private code caches,
that is, rationally dividing monolithic code cache into
several parts. In detail, one part is used to store hot
trace, while the other parts are assigned to store trans-
lated basic block. Note that it is not merely the result
that comes from dividing the unique code cache into
several special caches, and each cache is thread-private
cache, but the objects stored in the distinct caches can
communicate with each other through linking. Along
with writing basic blocks into the respective transla-
tion caches, the operations about reading/writing with
translation caches are controlled by hash function. The
detailed mapping relationship of hash function is: the
last four bits of hexadecimal entry address are the key
to acquire the corresponding mapping result. For in-
stance, assuming that the entry address is denoted as
0x4005678, simultaneously, and the offset of it is 5678;
the data, 5678, as the exclusive memory addressing
data, indirectly indicates that the simplest address-
ing mode further consolidates the memory management
without extra cost. In addition, the explicit partition-
ing proportion for code cache is also in accordance with
system architecture. This will be introduced later.

3.5 Context-Switch Elimination

In multithreaded DBT system, the context-switch
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overhead is not necessary for the system any more.
This overhead mentioned in Subsection 2.2 still puzzles
many DBT systems under uniprocessor physical ma-
chine. As Fig.6 shows, the execution thread involves
some shared contexts, including the shared variables
such as BranchTree represented as btree, code caches
represented as cache, and SysCall Handler represented
as syscall, etc. When the optimization options are se-
lected by the native compilers, shared variables may
also be compiled and optimized into registers. This
may lead to unpredictable runtime behaviors of execu-
tion thread.

while (1) {
//Lookup the translation cache 0/1 for the target code
block,
//if success, execute it.
curtblock = cache — lookup(*lookupAddr);
if (curtblock == NULL){
btree — BranchTakenAt(*lookupAddr);

continue;

}

//TBlock retrieved, execute it
((void(*)()) curtblock — enterAddr()) ();

if (*ezitReason == TBlock:ExitReason::SYSCALLEXIT)
{
//Exit syscall
if (syscal — syscode() == 0z1) {
exit(0);
}
(*syscall) ();
}
}

Fig.6. Main flow of execution thread.

However, with clear definition of threads’ categories,
the shared variables inside the execution thread are
under control. In fact, all the shared variables may
be protected by the compiler-supported keyword (like
“volatile” in C++) which makes sure that they would
not be optimized into registers, that is, they cannot
be affected when target code block is running. And
the protected variables does not occupy the registers
required by the execution thread when target block
is running. Compared to the register context in con-
ventional DBT engine, the shared variables are less in
quantity. The programmer can protect them all eas-
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ily. Moreover, the DBT system version changes do not
affect the correctness either.

4 Evaluation

Recently, many traditional DBT systems have been
popularly applied in various research domains. Al-
though some differences still exist, most parts are basi-
cally uniform. So this paper selects conventional DBT
system — CrossBit as the experimental platform for
the new architecture. In addition, CrossBit is running
on the physical machine (Intel(R) Xeon(R) CPU (4-
core) 2.66 GHz, 8 GB memory) with Linux Kernel Ver-
sion 2.6.33.4. And the test benchmark is selected from
SPECint 20001261,

Since the code cache is one main factor that im-
pacts on system overall performance in DBT system,
we should firstly ascertain its cache layout. In this pa-
per, the size of total code cache is defined as 1 MB.
Note that, the lower miss rate — Rpiss in (12) sys-
tem produces the performance we achieve. KimB has
been proved that with lower overhead and cache miss
rate, replacement strategy FIFO (first-in-first-out) out-
performs others. So in this paper, FIFO algorithm is
employed for each cache. In DBT system, hot trace
is defined as the compositive block constructed by fre-
quently executed blocks. Though the number of it is
further less than that of basic block, almost all the
performance is from the execution of hot trace. For
instance, Table 1 depicts the contribution for system
performance when hot traces and basic blocks from
benchmark mcf and crafty are respectively executed at
runtime.

In Table 1, we can see that the system performance is
mainly from frequently executing hot trace (hot trace’s
execution time: that of basic block ~ 1000 : 1), yet
without considering the proportion of hot trace either
in mcf or in crafty. As we know, a program spends 90%
(or more) of its execution time in 10% (or less) of its
code. Likewise, the execution of hot trace insists on
keeping to this principle. It is concluded that if hot
trace can be executed at once when called, that is, it
is stored in hot trace cache, higher performance will be
normally achieved.

In fact, the method of addressing the problem men-
tioned above is to prolong residence time of hot trace
in its private cache, which can reduce cache miss rate.
There are two main factors that can fully influence hot

Table 1. Comparison of Hot Trace and Basic Block in SPECint 2000

Benchmark Size (KB) Total Blocks (block) Hot Traces (block) Execution Time (hot trace vs. basic block)
mcf 286.0 1703 901 911212689 vs. 895790
crafty 1228.8 7083 6332 641 538 402 vs. 767935
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trace’s residence time: adequate cache size; reasonable
replacement strategy. Note that cache size is the only
one thing that should be considered, while FIFO is se-
lected as the replacement algorithm candidate. In mul-
tithreaded DBT system, monolithic code cache is di-
vided into several code caches to satisfy the requirement
of each thread in translation mode. So, how to divide
the monolithic code cache becomes the focus, that is to
say, the dividing proportion for each code cache should
be precisely decided.

020%/80% M 30%/70% B 40%/60% B 50%/50% B Crossbit
con: 3077, 2854, 2914, 2998, 3167

)

Runtime (X 10-s)

Fig.7. Performance of multithreaded DBT system with genera-

tional code caches.

Fig.7 compares the performance of three instances of
generational code cache configurations in multithreaded
DBT system with 4 threads to that of traditional DBT
system — CrossBit and native execution. While the
best cache configuration varied by benchmark — a gen-
erational code cache with a 30~70% size ratio between
basic block cache and hot trace cache, respectively,
performs best overall. The performance improvement
compared with traditional DBT system — CrossBit, is
about 10.75%. From Table 1, the execution time of hot
trace is far longer than that of basic block, while the for-
mer gets more space size than the latter. As compared
to others in multithreaded DBT system, the small cache
size of hot trace will lead to inadequate hot traces in
its private cache to cause more retranslation overhead,
while the large one will result in less basic blocks in
their caches when total cache size is invariable. Indeed,
the hot trace miss penalty is even greater than that of
basic block, since each hot trace is composed of 2 or
more basic blocks (average number is 4 block blocks,
yet the max number is about 23). The overhead of
context switch is fully obviated, while intractable pro-
file overhead is concurrently executed, and these bring
performance enhancement as well. Meanwhile, the per-
formance of benchmark crafty is enhanced to 14.59%
in degree, due to its special architecture (the propor-
tion of hot trace is 89.40%). On the other hand, less
hot trace in the benchmark mcf and its small size can
be considered as the main handicap to achieve more
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performance, and more basic blocks stored in smaller
code caches will cause more miss rate.

Obviously, the benchmark gap brings down entire
system’s performance due to its special program archi-
tecture as well. The benchmark gap has multiple parts:
one part of it is the standard gap speed-benchmark,
exercising mostly the combinatorial functions and big
number library, then some test functions for the finite
field, permutation group and subgroup lattice compu-
tations, a program comparing two different methods of
finding normalizers in solvable groups and finally a test
exercising the collector for so-called ag-groups, and this
is a piece where the bulk of the computation is not done
by the interpreter. The benchmark gap is designed for
mostly computing in groups, that is, it used to test most
large or complex codes. Indeed, in multithreaded DBT
system, if the executing process has many large basic
blocks or special basic blocks (less loops) to run with-
out encountering the ret instructions which are used
to suspend the executing of target-machine codes, the
hot trace linking module cannot access its critical sec-
tion immediately after the hot trace is built. This may
cause the hot traces linked into other blocks later than
function-call. This fact has weakened the improvement
brought by hot trace building as well as multi-threaded,
such as gap in Fig.7. We can see that compared to
conventional DBT system — CrossBit, multithreaded
DBT system have a good performance through adding
several threads. The essence of this new architecture is
to utilize multi-core resource reasonably.

If cache size is not considered, that is, unlimited
cache size is provided to accommodate all the blocks,
the system performance will be enhanced significantly.
Clearly, the novel one presented gains more perfor-
mance from multi-core resource than traditional DBT
system, and even this benefit is larger than the multi-
threaded DBT system with limited code cache, since
there does not exist cache miss. However, this un-
bounded code cache cannot be widely applied32.

Another research focus is CPU utilization when mul-
tithreaded DBT system is executed on multi-core phys-
ical machine. The goal of the novel architecture — mul-
tithreaded DBT system is to efficiently use multi-core
resource to get more performance for DBT system. Ad-
ditionally, to examine the bearing capacity of this new
architecture, another experiment is done through scal-
ing threads in DBT system, that is, whether this ar-
chitecture can make more performance with gradually
adding threads into DBT system is important. The
tradeoff between threads (cores) number and overall
performance is valuable, which can fully show the sen-
sitive degree of this architecture for multi-core system.

Fig.8 shows that thread number can affect CPU
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utilization and system overall performance. With the
increment of thread number, the performance of mul-
tithreaded DBT system is synchronously enhanced.
Though the advantage from multi-core resource is large,
the slope of curve that represents performance improve-
ment goes to decrease gradually, that is, this advantage
is also from bad to worse. This is mainly caused by
thread layout, communication mechanism, and thread
scheduling, etc. And the detailed threads layout for
multithreaded DBT system is listed in Table 2. While
the new architecture that has dual threads is rebuilt
from traditional DBT system with only one thread, the
new one has a good performance improvement. Mean-
while, this new architecture extremely reduces redun-
dant overhead caused by interrupted processing for ex-
ecution operation to cope with cache miss. Then based
on this dual threads architecture, the harvester — mul-
tithreaded DBT system with 4 threads even benefits
from optimization operation explained in (12). The
burdensome overhead from optimization operation —
building hot trace and profile is decreased via this op-
eration executed in parallel with other threads. In this
process, extra context switch is completely avoided, and
the efficient communication mechanism brings another
performance.

However, the fact that 8 threads or more are in-
serted into multithreaded DBT system cannot produce
more performance but a little. Compared to 4-thread
multithreaded DBT system, this one has the ability
to efficiently translate basic block utilizing 5 transla-
tion threads. This is very beneficial for huge applica-
tion procedure to amortize translation overhead. But
this leads to one side-effect — thread scheduling. If
this scheduling algorithm, such as BTM in this pa-
per, is not efficient enough to accomplish scheduling
between threads, the performance cannot be improved
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significantly. Moreover, the benchmark SPECint 2000 is
only to test correctness, rationality and validity of the
new architecture, but it cannot be deemed as general
huge application.
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Fig.8. Relationship of thread number and CPU utilization\perfo-

rmance improvement.

Fig.8 also compares CPU utilizations of distinct mul-
tithreaded DBT system with different numbers of cores.
As we know, each thread occupies one core. And the
curve that stands for CPU utilization decreases from
98.32% to 95.58% in Fig.8, that is to say, the trend
of it is declined absolutely. When the novel architec-
ture has only one thread to do translation, execution
and optimization operations, the performance cannot
be good but with high-efficient CPU utilization. If
translation operation is independently performed, ex-
tra context switch can be entirely obviated. But either
the process of translation or execution operation can-
not take the advantage of its core fully, since translation
thread follows on-demand service for execution thread.
If cache miss occurs, execution thread is hanged to wait
for the target block translated by translation thread.
In this process, the latency time leads to low-efficient
CPU utilization. However, another two threads — pro-
file thread and hot trace thread jointly give the system

Table 2. Detailed Threads Layout for Different Cores

One Core

Dual Core Quad Core

Thread Number 1

Detailed Threads Only one thread

2 4
Translation thread Translation thread
Hot trace thread
Profile thread

Execution thread

Execution thread

Table 3. More Translation Threads Layout on Multi-Core Physical Machine

One CPU (4-core)

Dual CPU (8-core)

Thread Number 4
Detailed Threads

Translation thread
hot trace thread
profile thread

execution thread

5/6/7/8
2/3/4/5 translation threads
hot trace thread
profile thread

execution thread
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more latency time. It is because building hot trace is
not continuously executed, and its cache size is large
enough to accommodate more hot traces. So the fact
is that a lower CPU utilization is reasonable.

We should notice that this new architecture — mul-
tithreaded DBT system can not only bring another
performance improvement for DBT system, but also
achieve a good CPU utilization. Through evaluation
above, we also know that it is able to adequately bear
the pressure from incremental threads. We conclude
that multithreaded DBT system can efficiently utilize
multi-core resource and gain more performance, and it
also takes an excellent extendibility with the develop-
ment of CPU technique.

—#- CPU Utilization Ratio
—&- Performance 10
Improvement Ratio

CPU Utilization (%)
o0
N

Performance Improvement (%)

Thread Number

Fig.9. Impact of adding translation threads for CPU utilization

and performance improvement.

We want to achieve another performance improve-
ment through adding several translation threads into
multithreaded DBT system, but this is handicapped.
And the following reason is depicted in detail. The
fact that 5 translation threads or more are inserted
into multithreaded DBT system cannot produce more
performance but a little. Compared to 4-thread multi-
threaded DBT system, ours has the ability to efficiently
translate basic block utilizing 5 translation threads.
This is very beneficial for huge application procedure
to amortize translation overhead, but the experimental
results cannot satisfy us. That is because lots of hard-
ware resource employed by added translation threads
cannot bring another performance improvement. In-
deed, these extra threads are not able to work all the
time. Even though they can be executed simultane-
ously assisted by the branch tree module, the schedul-
ing overhead trigged is too high. From Table 1, we can
see that hot trace is the most important element, since
the multithreaded DBT system spends 90% (or more)
of its execution time in these codes. However, these
extra threads aim at translating basic blocks. So an-
other performance improvement cannot be reached, and
even it brings performance to descend compared to that
of 4-thread multithreaded DBT system. Additionally,
adding extra thread must bring extra overhead, which
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is trigged by the scheduling of branch tree, and extra
memory accesses, etc. So we do another experiment
on dual-CPU (4 core, 4 core, 2.66 GHz, 8 GB memory)
physical machine, with the new architecture achieved
by adding several translation threads, and then the
threads are assigned to different cores through hard-
ware affinity. In Fig.9, we can see that with the incre-
ment of translation threads, the performance enhance-
ment is gradually decreased, and the CPU utilization
also drops down significantly. First, the CPU utiliza-
tion is decreased from 95.58% to 64.39%, since more
translation threads are idle to wait for next translation
work, and even if the branch tree module as the sched-
uler has the responsibility to assign different transla-
tion work to each translation thread (the scheduling
overhead cannot be ignored). Then the asynchronous
waiting time and scheduler must cost lots of resource
(they are too expensive), and more writing operations
applied on each private cache, that is, many memory
accesses existing, bring extra overhead as well. In con-
clusion, all kinds of overheads mentioned above drasti-
cally impact on overall performance, and even bring it
down. We can see that adding extra translation thread
is not a good idea to enhance entire performance.

So we move to multithreaded execution part, also
called compiler part. Although it is difficult, this is our
research work currently.

5 Related Work

Dynamic binary translation is an invaluable tech-
nique for translating one ISA (instruction set archi-
tecture) to another ISA transparently. Until recently,
there exist many of popular dynamic binary transla-
tors such as StarDBT!", QEMUP!, and FX!32033]. All
these binary translators can be simply divided into
two types. Omne type can only translate single ISA
into another specific ISA like StarDBT (from IA32 to
IA32), FX!32 (from x86 to Alpha), DAISY (from Pow-
erPC to VLIW)34, BOA (from PowerPC to EPIC)[%]
and even the Transmeta Crusoe processor (from IA32
to VLIW)[BG]. The other type is designed to be re-
sourceable and retargetablel?”! to support the transla-
tion between various instruction sets, such as Stratal37],
Walkabout®8], and UQDBTIS!. Typically, the UQDBT
dynamic translator, which is based on the famous static
UQBTBY framework, uses specifications to specify the
guest /host architectures at various levels of abstraction,
and simultaneously completes binary translation dy-
namically by going through several intermediate repre-
sentations. One significant advantage of resourceability
and retargetability is that it can be applied to a variety
of hardware platforms transparently. However, the per-
formance of binary translators attributed to the latter
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type is not very well, like QEMUI?! (the execution time
of it is even 3~4 times longer than that of the native
machine).

A large set of dynamic optimization systems are
designed to be partly or completely transparent to the
software, the hardware, as well as the user of the sys-
tem. These systems are characterized by a native opti-
mization engine that is designed to tailor the applica-
tion to its runtime environment without any interven-
tion or special preparation by the user or application
writer2”). There have been several software dynamic
optimization systems, such as Dynamo, DynamoRIO,
and Mojo. Dynamo!*8! is implemented entirely in soft-
ware and its operation is transparent which means no
programmer’s assistance is required at runtime. It ob-
serves the program’s behavior through interpretation
to dynamically select hot instruction traces from the
running program. Several successors to Dynamo have
since surfaced, such as DynamoRIOM®?!, which executes
on [A-32 machines running Windows or Linux devel-
oped by HP and MIT. Mojol*!), which is similar to Dy-
namo, is one of the first dynamic optimizers to specifi-
cally target large, interactive Windows applications. A
common attribute of these systems mentioned is that
the optimization is typically performed in the same
thread as the main execution within a single hardware
context, or optimization is sometimes executed in an-
other thread utilizing special hardware. However, shar-
ing the same hardware context requires pausing the
current program’s execution to perform optimization.
This also introduces additional runtime overhead due
to heavy weight user-level context switching between
execution, profiling, and optimization™. Meanwhile,
some researchers focus on the special hardware sup-
port for better performance, so gradually, there ap-
pear co-designed dynamic optimization systems, such
as ADORE!Y Trident!']. The binary optimization
framework ADORE based on hardware profiling mec-
hanism proposed by Jiwei Lu et al. focus on using
performance monitoring hardware to detect the hot re-
gions and bottlenecks instead of instrumentation. The
Trident is the closest runtime multithreaded framework
to our new architecture. But it employs hardware sup-
port to identify the hot path during the execution of the
program, and simultaneously uses spare threads which
are called helper threads on a multi-core processor to
perform dynamic optimizations.

6 Conclusion and Future Work

With the development of CPU technique, more and
more researchers focus on how to efficiently utilize
multi-core resource. Dynamic binary translation sys-
tem also employs multi-core power to make higher
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performance. Therefore, we have presented a novel mul-
tithreaded dynamic binary translation system which
utilizes several threads to concurrently perform trans-
lation, execution and optimization operations. As well,
multithreaded DBT system on multi-core system has
many barriers to overcome. In the process of build-
ing multithreaded DBT system, several daunting chal-
lenges have been encountered. The first one is cache
layout. To address this arduous problem, private code
caches are employed to better solve mutual exclusion
between threads. Furthermore, ALCM is competent
for the task of passing hot spot information between
profile thread and hot trace thread. Finally, a new
efficient thread scheduling method — BTM is intro-
duced, which can better solve mutual exclusion between
translation threads. Through many experiments, mul-
tithreaded DBT system are proved that it gives us a
chance to control multi-core resource to achieve higher
performance with better CPU utilization.

In the future work, the execution part of multi-
threaded DBT system will be executed concurrently to
achieve higher performance. It also involves the bet-
ter branch prediction mechanism. Furthermore, opti-
mization methods for execution thread will also be the
research focus. And as the number of processor cores
grows, we expect to have more experiments on these
new platforms.
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