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Abstract With continuous technology scaling, on-chip structures are becoming more and more susceptible to soft errors.
Architectural vulnerability factor (AVF) has been introduced to quantify the architectural vulnerability of on-chip structures

to soft errors. Recent studies have found that designing soft error protection techniques with the awareness of AVF is greatly
helpful to achieve a tradeoff between performance and reliability for several structures (i.e., issue queue, reorder buffer).
Cache is one of the most susceptible components to soft errors and is commonly protected with error correcting codes
(ECC). However, protecting caches closer to the processor (i.e., L1 data cache (L1D)) using ECC could result in high
overhead. Protecting caches without accurate knowledge of the vulnerability characteristics may lead to over-protection.
Therefore, designing AVF-aware ECC is attractive for designers to balance among performance, power and reliability for
cache, especially at early design stage. In this paper, we improve the methodology of cache AVF computation and develop

a new AVF estimation framework, soft error reliability analysis based on SimpleScalar. Then we characterize dynamic
vulnerability behavior of L1D and detect the correlations between L1D AVF and various performance metrics. We propose
to employ Bayesian additive regression trees to accurately model the variation of L1D AVF and to quantitatively explain the
important effects of several key performance metrics on L1D AVF. Then, we employ bump hunting technique to reduce the
complexity of L1D AVF prediction and extract some simple selecting rules based on several key performance metrics, thus
enabling a simplified and fast estimation of L1D AVF. Based on the simplified and fast estimation of L1D AVF, intervals
of high L1D AVF can be identified online, enabling us to develop the AVF-aware ECC technique to reduce the overhead of

ECC. Experimental results show that compared with traditional ECC technique which provides complete ECC protection
throughout the entire lifetime of a program, AVF-aware ECC technique reduces the L1D access latency by 35% and saves
power consumption by 14% for SPEC2K benchmarks averagely.

Keywords AVF (architectural vulnerability factor) prediction, BART (Bayesian additive regression), AVF-aware ECC

(error correction codes)

1 Introduction

Soft errors are becoming an important concern
for microprocessor designs in ultra-deep submicron
technology. As the largest structures in a proces-
sor, memory elements are most susceptible to soft
errors[1-2]. It is reported that 50% soft errors hap-
pen in memory elements[3]. Caches, typically imple-
mented as static random access memory (SRAM) ar-
rays, face more serious challenges from soft errors in
sub-100nm technologies[4-5]. The per-bit soft error rate
(SER) in modern SRAM is reported to be higher than
0.0001FIT/bit[6-7]. One failure in time (FIT) is defined
as 1 failure in 109 hours of device operation.

Recently, researches have found that not all raw
soft errors affect the final program output, many raw

errors can be masked at the architecture level[8-9], po-
tentially motivating high level tradeoffs among reliabi-
lity, performance, power consumption, area and other
metrics. Mukherjee et al.[8] introduced the concept of
architectural vulnerability factor (AVF) which is de-
fined as the probability that a transient fault in the
structure would result in a visible error in the final
output of a program. Many researches have charac-
terized the time varying AVF characteristics of several
important structures[10-11]. Furthermore, AVF pre-
diction/estimation mechanisms have been introduced
and incorporated into the dynamic fault tolerant sys-
tem design to make tradeoffs between reliability and
performance[11-13]. To our knowledge, they focused on
a few given micro-architecture structures, e.g., issue
queue (IQ), reorder buffer (ROB) and register file, but
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not including caches.
Parity and error correction codes (ECC) based pro-

tection schemes have been widely adopted in modern
microprocessors and systems[14-21]. Although ECC
protection techniques enable the hardware to maintain
a high level of reliability, they bring about significant
area, performance and power costs. Moreover, protect-
ing higher levels of cache (e.g., L1 data cache (L1D))
using ECC would induce higher overheads. Previous
studies showed that single-error correction and double-
error detection (SEC-DED) in L1 cache would increase
its access latency by up to 95%, power consumption by
up to 22%, and area cost by up to 18%[22-24]. A variety
of techniques have been proposed to reduce the area,
performance and power costs of ECC[25-30].

However, all these techniques assumed that the
probability a soft error would result in an erroneous pro-
gram outcome (i.e., AVF) is 100%, and therefore pro-
vided ECC protection throughout the entire execution
lifetime of programs. Considering that protecting cache
without accurate knowledge of the vulnerability charac-
teristics may lead to over-protection, AVF-aware ECC
techniques which apply ECC protection only to the ex-
ecution points of high vulnerability would reduce the
power consumption and memory access latency brought
by ECC to some extent. Since L1D is on the critical
path for data accesses, it is important to provide soft
error protection for L1D with minimum impacts on per-
formance and power consumption.

Following the idea, we characterize the dynamic
L1D AVF behavior and investigate the correlation be-
tween the L1D AVF and several key performance met-
rics. Then by using Bayesian additive regression trees
(BART)[31], we accurately predict L1D AVF across dif-
ferent execution phases of SPEC2K benchmarks. Fur-
thermore, to facilitate the use of L1D AVF prediction,
we employ bump hunting technique[32] to reduce the
complexity of L1D AVF prediction. Therefore, runtime
L1D vulnerability can be predicted based on several key
performance metrics and execution points of high L1D
AVF can be identified. This facilitates the implementa-
tion of the AVF-aware dynamic ECC technique based
on simplified L1D AVF prediction.

In summary, the main contributions of this paper
are as follows.

1) We improve the methodology of cache AVF com-
putation and develop a new AVF estimation frame-
work, SS-SERA (Soft Error Reliability Analysis based
on SimpleScalar). To evaluate our improved method,
we estimate AVF of write-back L1D and compare
against Sim-SODA which is a publicly available AVF
calculation framework. Experimental results show that
our method generates more accurate L1D AVF results.

Based on the simulation results, we further characterize
the dynamic vulnerability of L1D across different exe-
cution phases of SPEC2K benchmarks, and detect the
correlations between L1D AVF and several key perfor-
mance metrics.

2) We propose to use BART for accurate L1D AVF
prediction across different execution phases of SEPC2K
programs with different train/test splits. Then, a com-
prehensive performance comparison between BART
and other competitive methods (i.e., the linear re-
gression model and boosted regression trees (BRT))
is conducted, revealing the superiority and robust-
ness of BART for L1D AVF prediction across different
test/train splits and different model sizes.

3) We further employ bump hunting technique to
achieve a simplified and fast estimation of L1D AVF,
enabling an online L1D vulnerability estimation to
identify the execution intervals of high L1D AVF. Then,
an AVF-aware ECC technique which enables ECC pro-
tection only for the intervals of high L1D AVF is im-
plemented and evaluated, to motivate new studies in
AVF-aware design. Experimental results show that
compared with traditional ECC technique which pro-
vides complete ECC protection throughout the entire
lifetime of a program, the dynamic AVF-aware ECC
technique reduces the L1D access latency by 35% and
saves power consumption by 14% for SPEC2K bench-
marks averagely.

The remainder of this paper is organized as follows.
Section 2 discusses the related work. Section 3 describes
the SS-SERA AVF estimation framework. Section 4
introduces the BART method and its basic features.
Section 5 describes experimental setup and experimen-
tal evaluation results. Section 6 proposes the simplified
and fast L1D AVF estimation. Finally, we conclude in
Section 7.

2 Related Work

2.1 Estimation of AVF

There have been several representative architecture
level tools developed for early quantitative evaluation
of soft errors. Mukherjee et al.[8] introduced the con-
cept of Architectural Vulnerability Factor (AVF) for
the measurement of soft error rate, and employed Ar-
chitecturally Correct Execution (ACE) analysis on the
high level performance model to provide an early es-
timation of AVF. Biswas et al.[33] further computed
AVFs of address-based structures on the same perfor-
mance model. Fu et al.[34] implemented ACE analysis
method on a cycle-accurate performance simulator and
developed Sim-SODA, which is a unified simulation
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framework used to calculate AVFs of various structures.
Li et al.[35] developed SoftArch which is a probabilis-
tic model of error generation and propagation process,
and integrated the model into a trace-driven perfor-
mance simulator to determine the soft error rates of
some hardware structures.

Furthermore, studies have shown significant AVF
variation of several microarchitectures across different
execution phases of applications[10-11]. Fu et al.[10] in-
vestigated the fuzzy correlations between AVFs and
several special performance metrics. Walcott et al.[11]

extended their idea, and explored multivariate statis-
tical relationships between AVF and a wide variety of
performance metrics. Then they created a linear model
of multiple variables to predict runtime AVF properly.
Duan et al.[12] further proposed a versatile AVF predic-
tor which was calibrated for different workloads, exe-
cution phases and processor configuration, and deve-
loped a fast AVF estimation to identify the intervals
with high AVF for several structures (i.e., issue queue,
reorder buffer).

2.2 Low-Cost ECC

ECC-based techniques are commonly employed in
modern microprocessors to improve the reliability of
cache, but incurring severe performance and power
costs. Many studies have focused on low-cost ECC
schemes[25-30].

Mohr and Clark[25] employed two-dimensional parity
schemes to detect and correct single bit errors within
a word. They applied product codes to memory ar-
rays and used horizontal byte-parity codes to enable
low-latency error detection with a minimal increase in
area. Kim[26] proposed two-dimensional error coding
which separated the high overhead multi-bit error cor-
rection from low overhead error detection, thus correc-
ting multi-bit errors in cache with significant small la-
tency. Li et al.[27] employed decoupled ECC which pro-
tected clean cache blocks with parity and dirty blocks
with ECC, and reduced the power consumption of on-
chip ECC by power-gating the SEC-DED ECC por-
tion of clean cache lines, with only parity active. They
proposed an early-write-back scheme to enhance the
ability of using a less powerful error protection scheme
for a longer time without sacrificing much reliability.
Sadler et al.[28] proposed a new Punctured ECC Re-
covery Cache (PERC) scheme, where cache reads only
reduced error detection to save energy while writes up-
dated both detection and correction information.

Very recently, the above decoupled ECC was gene-
ralized for Memory-Mapped ECC (MME)[29]. More
expensive error correction bits were stored within the
memory hierarchy as data and only detection codes

were maintained on chip for caches. Furthermore, Yoon
and Erez[30] extended their work on MME to the virt-
ualized ECC-based memory error tolerance mechanism,
which mapped redundant information needed to correct
errors into the memory namespace itself. They used
this mechanism to develop two-tiered error protection
techniques that separated error detection from the rare
error correction, thus saving energy.

3 SS-SERA AVF Estimation Framework

3.1 AVF for Different Types of Soft Error

There are two types of soft errors: silent data corrup-
tion (SDC) and detected unrecoverable errors (DUE).
SDC only happens in structures with no soft error pro-
tection, and induces the system to generate an erro-
neous outcome. Once a structure is protected by error
detection schemes, SDC turns into DUE. DUE is fur-
ther subdivided into false DUE and true DUE according
to whether the detected error would indeed affect the
final output of a program. False DUE represents benign
detected errors which would not affect the correctness
of outcome, and the remaining DUE which would in-
duce the system to generate incorrect outputs is true
DUE.

Architectural Vulnerability Factor (AVF)[8] is used
to measure the soft error rate of on-chip structures, in-
cluding caches[33]. A structure’s soft error rate is the
product of its raw error rate and its AVF. According
to different types of soft errors, AVF is also subdivided
into SDC AVF and DUE AVF. Soft error rate of a struc-
ture with no error protection is computed by (1). For
a structure only protected with an error detection me-
chanism (without error correction), soft error rate of the
structure is computed by (2). Soft error detection tech-
nique (such as parity) adds extra check bits in cache,
thus potentially increasing true DUE. The true DUE
AVF of a structure using soft error detection is no less
than SDC AVF of the unprotected one.

soft error rate = raw error rate × AVFSDC (1)
soft error rate = raw error rate × AVFDUE

= raw error rate × AVF true DUE

� raw error rate × AVFSDC . (2)

Note that DUE AVFs of write-through and write-
back data caches are different. For write-through data
cache only protected by error detection techniques, its
DUE AVF is zero, because data can be re-fetched from
lower-level cache when detecting an error. For write-
back data cache only protected by error detection tech-
niques, DUE would induce the system to generate er-
roneous outputs, its DUE AVF could not be zero.
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Protecting cache with error recovery schemes could pos-
sibly reduce SDC and DUE to zero.

3.2 Improved Methodology of Computing
Cache AVF

There have been several representative architecture-
level tools developed for SDC AVF estimation[33-35]. To
our knowledge, Sim-SODA is the only publicly avai-
lable architecture level simulator for AVF calculation,
whereas it has its own limitations. Firstly, it is not
proper to employ Sim-SODA to estimate cache AVF for
floating point workloads, because the baseline simula-
tor (i.e., sim-Alpha[36]) does not model floating point
pipeline accurately. Secondly, it lacks accuracy for
cache AVF calculation based on Sim-SODA.

To address the issues, we integrate an improved
cache AVF computing model in a more popular simula-
tor (i.e., SimpleScalar[37]), and developed an improved
AVF estimation framework, named SS-SERA.

3.2.1 AVF Computing Equations in SS-SERA

Activities occurring during the lifetime of a bit
in cache include “idle”, “fill”, “read”, “write”, and
“evict”. Based on the lifetime analysis technique, a
bit’s lifetime is divided into ACE, un-ACE and un-
known components according to the activities during
the periods. Fig.1 shows an example of lifetime classi-
fication of the data array of a write-back cache.

Fig.1. Example of lifetime classification of a write-back data

cache. “End” represents the end of benchmark simulation.

The granularity of the lifetime analysis has a big im-
pact on L1D data array’s AVF. Empirically, we main-
tain the lifetime information at byte granularity. There-
fore, AVF of L1D data array (DA AVF) is the fraction
of all bytes’ lifetime during which the bytes are in the
ACE state, computed by (3).

DA AVF =
∑B

i=1 ACE i

B × total exec cycles
(3)

B is the total number of bytes of data array. ACE i

represents the total residency cycles of byte i in ACE
state.

The lifetime analysis for tag array is performed at
bit granularity. Therefore, AVF of L1D tag array
(TA AVF) is the fraction of all bits’ lifetime during

which the bits are in the ACE state, computed by (4).

TA AVF =

∑M
i=1

∑N
j=1 ACE ij

M × N × total exec cycles
(4)

M is the total number of entries of tag array, and N is
the bit length of each entry. ACE ij represents the total
residency cycles of bit j of entry i in ACE state.

3.2.2 Improved Lifetime Classification in SS-SERA

Based on traditional lifetime classification, ACE
fraction of a byte/bit lifetime can be computed. For
write-back data array, some un-ACE periods can condi-
tionally be ACE, such as fill-to-evict and read-to-evict.
Fig.2(a) shows the situation when fill-to-evict is ACE.
Considering two consecutive bytes in the same cache
line (i.e., A and B), if only A is written into, then the
fill-to-evict period of B becomes potentially ACE due
to the inevitable written back of the entire cache line
to the next cache level.

We eliminate the potential ACE situations by adding
“dirty” bits associated with different portions of a cache
line and adding an extra activity called “dirty evict”.
We can identify the modified bytes according to their
dirty bits values. When a byte is modified, its “dirty”

Fig.2. (a) Potential ACE condition. (b) Eliminating potential

ACE.
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Fig.3. False negative and false positive situations.

bit is set to 1. We distinguish “dirty evict” from
“evict”. “dirty evict” represents the eviction of a mo-
dified byte, and “evict” denotes the eviction of an un-
modified byte. If the “dirty” bit of a byte is set to 0,
eviction of the byte would not result in a written back
event. Then above fill-to-evict period of B is no longer
ACE, as shown in Fig.2(b).

Although adding each byte of a cache line with a
“dirty” bit may induce additional area overhead which
is similar to that of providing a parity bit for each byte,
hardware overhead of this byte-level dirty bit scheme is
acceptable with relaxed die area target. If the die area
is relatively constrained, we could add “dirty” bits at
a larger granularity (e.g., a dirty bit per word). Com-
pared with byte-level dirty bit scheme, the area over-
head of the word-level dirty bit scheme could be reduced
by 75%.

For tag array, lifetime analysis has been extended to
identify false negative and false positive cases. Fig.3
illustrates the situation of false negative and false po-
sitive.

False negative match happens when an error on the
primary matched tag bits, thus inducing the primary
match to a mismatch. False negative match does harm
to modified data entries of a write-back cache, be-

cause the modified data would be written back to incor-
rect location of the next cache level due to the faulty
tag. We also employ the extra activity “dirty evict”
to tackle false negative match. For a tag entry, write-
to-dirty evict period is always identified as ACE, and
there is no write-to-evict period. Note that write corre-
sponds to the first write to any byte in the data array.

False positive match represents the match that
should have mismatched, causing incorrect data trans-
fer from wrong data entry. False positives only arise
on the tag entries which are one bit different from the
incoming tag bits. We employ Hamming-Distance-One
(HDO) analysis technique[33] to identify the entry’s par-
ticular bit whose fault will introduce the false positive
match. If the bit exists, the bit is viewed as ACE, and
the remaining bits in the same tag entry are un-ACE.

Accordingly, we list our improved classification of
lifetime in Table 1. Note that since all tag bits asso-
ciated with a modified data entry are ACE from the
time that any byte in the entry was first modified un-
til its eviction, there is no write that happened before
each period in Table 1. Experimental results in Sub-
section 5.2 shows that SDC AVF of write-back L1D is
reduced by 26.58% based on our improved classification
of lifetime.

Table 1. Improved Lifetime Classification for Write-Back L1D

ACE un-ACE unknown

Data Array
(per-byte granularity)

fill-to-read, read-to-read, write-to-read,
write-to-end, read-to-dirty evict, write-to-
dirty evict

idle, fill-to-write, fill-to-evict, read-to-evict,
read-to-write, write-to-write, evict-to-fill,
evict-to-end, dirty evict-to-end

fill-to-end,
read-to-end

Tag Array
(per-bit granularity)

fill-to-HDO, read-to-HDO, write-to-HDO,
write-to-read, write-to-write, write-to-
dirty evict, write-to-end,

idle, fill-to-read, fill-to-write, read-to-write,
fill-to-evict, read-to-evict, HDO-to-read,
HDO-to-write, HDO-to-evict, HDO-to-end,
evict-to-end, dirty evict-to-end

fill-to-end,
read-to-end
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4 Prediction Methodology

Several predictive modeling approaches have been
developed in the past few years, including linear re-
gression, neural networks, multivariate adaptive re-
gression splines (MARS)[38], support vector machines
(SVM)[39], random forests[40], boosting regression trees
(BRT)[41], and Bayesian additive regression trees
(BART)[31], each of which uses different techniques to
fit the predictive model.

Sum-of-trees-based predictive method, which is an
ensemble technique, fits a large number of tree mo-
dels and combines them for prediction. Compared to
other models, such as a single tree model, the sum-
of-trees model is more flexible and adaptive. Random
forest, boosting, and BART are typical sum-of-trees-
based methods, which use different patterns of tree
models fitting.

BART consists of three essential parts: the sum-of-
trees model, the regulation prior and the backfitting
MCMC (Markov Chain Monte Carlo) algorithm. As a
representative sum-of-trees modeling method, each of
the trees in BART explains a small part of the overall
model. A regulation prior shrinks each tree to be small
and simple, preventing the effect of individual tree from
being overly influential. BART uses Bayesian backfit-
ting MCMC algorithm to iteratively sample from the
posterior distribution, in order to achieve a convergent
fitting quickly. The induced samples can provide a va-
riety of inferential quantities of interest, such as partial
dependence functions and variable selection.

4.1 Fitting of BART Model

Considering a fundamental predictive problem in
which a dependent variable Y needs to be predicted
from a p-dimensional vector of input variables X =
(x1, . . . , xp):

Y = f(X) + ε, ε ∼ N(0, σ2). (5)

For BART, f(X) is approximated by a summation
of regression trees, computed by (6):

f(X) = β0 +
m∑

j=1

gj(X) (6)

gj denotes a regression tree for BART, and m is the
number of trees.

Let T denote a regression tree with a set of interior
and terminal nodes. Each interior node is associated
with a binary decision rule. Suppose the number of
terminal nodes is B, and each terminal node of T is
associated with a parameter value μb (b = 1, . . . , B).
Each input variable X = (x1, . . . , xp) is associated with

one of the B terminal nodes of regression tree T , and
assigned with the μb value of the terminal node.

Thus, gj in (6) can be presented as gj(X ; Tj, Mj),
and BART predictive model can be transformed into
(7):

Y = β0 +
m∑

j=1

gj(X; Tj, Mj) + ε, ε ∼ N(0, σ2),
(7)

Mj = {μj1, μj2, . . . , μjB}.

The flexibility and adaptability of the BART model
are determined by the number of trees and the com-
plexity of each individual tree jointly. Therefore, a reg-
ulation prior is imposed on the parameters of BART
model, i.e., β0, μb, the variance σ2 of Gaussian noise ε,
and m. The prior is specified conservatively in order to
keep the individual tree effects from being overly influ-
ential. As a result, the size of each tree is small, and
trees are turned into “weak learners”.

To facilitate the use of BART, the prior is spe-
cified by several interpretable hyperparameters (i.e.,
(υ, q, k, m)). These hyperparameters can either be re-
gulated via cross-validation, or be set to the defaults (3,
0.90, 2, 200). In this paper, BART-default is employed.

Furthermore, to fit the sum-of-trees model,
BART uses the Bayesian backfitting MCMC to
iteratively samples from the posterior distribution
P ({Tj , μj}m

j=1, β0, σ|y). Using MCMC, a sequence of
draws of ((T1, μ1), . . . , (Tm, μm)) is generated to con-
verge to the posterior distribution. At each iteration,
both the tree structures and associated parameters are
updated. Iterations are repeated until satisfactory con-
vergence is obtained.

Based on the sum-of-trees model, regulation prior
and MCMC algorithm, the final BART model is con-
structed and fitted suitably. Given an input value
X ′(x1, . . . , xp), BART predicts the response value Y ′

by an average of draws of all sampled trees.

4.2 Partial Dependence Function

Partial dependence function[41] reveals the marginal
effect of a subset of variables on the response. Di-
vide the p-dimensional variables X(x1, . . . , xp) into two
parts: xs (variables of interest) and xc (complement of
xs), the partial dependence function is defined as:

f(xs) =
1
n

n∑
i=1

f(xs, xic) (8)

xic is the i-th observation value of xc, and n is the total
number of observations.

In BART, the backfitting MCMC algorithm gene-
rates a sequence of draws of functions f∗

1 , . . . , f∗
K , which
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is regarded as an approximate of the “true” predictive
function f(X). For each draw, f(xs) in (8) is computed
using (9):

f∗
k (xs) =

1
n

n∑
i=1

f∗
k (xs, xic), k ∈ {1, . . . , K}. (9)

Then, the average of f∗
1 (xs), . . . , f∗

K(xs) yields an
estimate of f(xs):

f(xs) =
1
K

K∑
k=1

f∗
k (xs). (10)

4.3 Predictor Variable Selection

By observing the variable usage frequency in a se-
quence of draws of functions f∗

1 , . . . , f∗
K , BART can also

be used to select the most influential variables for ex-
plaining the variation of response variable Y . Consider-
ing the i-th component of X, the number of times that
the variable is selected for splitting (denoted as zik) is
obtained from each function f∗

k . Then weighting zik by
the number of input data points present in the node,
we can get the weighted usage frequency of the variable
in each sampled function f∗

k (denoted as z∗ik). Finally,
the average weighted usage frequency of the variable is
computed using (11):

vi =
1
K

K∑
k=1

z∗ik. (11)

The variable with larger vi indicates better predic-
tion for the response variable. Such variable selec-
tion approach is model-free because it is not based on
the usual assumption of an encompassing parametric
model[31].

In summary, BART model consists of an ensem-
ble of (hundreds to thousands of) regression trees, and
the hardware implementation of BART-based predic-
tive model is highly complex. In order to interpret the
BART-based predictive model better, partial function
and variable selection are employed in our experiment
for better understanding the model.

5 Experimental Evaluation

5.1 Experimental Setup

All of the experiments are conducted with SS-SERA.
SPEC2K INT and FP benchmarks compiled for the Al-
pha ISA are evaluated, and each of them is run for
all of the 100-Million Instruction SimPoints[42]. Each
SimPoint is partitioned into 25 intervals of 4 million
instructions. The baseline configuration of SS-SERA is

Table 2���Baseline Configuration

Parameter Value

Fetch/decode/issue/ 8

commit width

Fetch queue size 16

Reorder buffer size 128

Load/store queue size 64

Integer ALUs/multipliers 6/2

FP ALUs/Multipliers 4/2

L1 D-cache 64KB, 4-way, 32B line-size

L1 I-cache 64KB, 4-way, 32B line-size

Unified L2 cache 512 KB, 4-way, 64 B line-size

ITLB 128 entries, 4-way set-associative

DTLB 256 entries, 4-way set-associative

TLB miss-latency 30 cycles

Main memory latency 200 cycles

listed in Table 2. To simulate a SimPoint, we should
fast forward Numforward instructions, calculated using
(12):

Numforward = (SN SimPoint − 1) × SizeSimPoint (12)

SN SimPoint is the serial number of the SimPoint in
a program, SizeSimPoint is the size of the SimPoint
(i.e., 100M). For example, for SimPoint1942, simula-
tion of the SimPoint starts just after fast forwarding
1941 × 100M instructions from the start of program.

Because computing L1D AVF values of small in-
tervals is quite involved, we have proposed to employ
checkpoint mechanism and cooldown technique in SS-
SERA to guarantee the correctness of AVF computa-
tion and to improve the accuracy of AVF estimation re-
spectively. We have reduced the unknown components
of L1D AVF computation to be less than 2% using ap-
propriate cooldown period sizes. Besides, for SPEC2K
benchmarks, the unknown components are shown to be
mostly un-ACE, with little increase for SDC AVF[33].
We believe L1D AVF computation with unknown com-
ponent less than 2% is accurate enough to represent
the vulnerability of L1D. The detail of our schemes for
estimating L1D AVF of small intervals is discussed in
another paper.

We employ BART to predict cache AVF accurately
across different execution phases of programs. Further-
more, the basic features of BART, including model-free
variable selection and estimation of partial dependence
functions, are used to achieve a better interpretation
and visualization of the BART method. Meanwhile, we
also conduct a comparison between BART and other
competing methods which have been employed for AVF
prediction (i.e., linear regression method and BRT).
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Fig.4. SDC AVF comparison of write-back L1D data array.

Fig.5. Profile of time-varying L1D AVF and several performance metrics.
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5.2 Validating the Improved Methodology of
Computing L1D AVF

As described in Section 3, we implement the im-
proved cache AVF computing model in SS-SERA, to
eliminate the potential ACE situations. In order to
validate the improved methodology of computing cache
AVF, we compare the L1D AVF results of SS-SERA
with that of Sim-SODA. Fig.4 shows the comparison
results.

Form left to right, the two bars associated with each
benchmark represent SDC AVF of write-back cache
computed using Sim-SODA and SS-SERA respectively.
On average, using our improved lifetime classification,
SDC AVF of write-back L1D is reduced by 26.58%.

5.3 Characterizing Time-Varying Behavior of
L1D

Fig.5 shows the profile of runtime L1D AVF and
several key performance metrics over several SimPoints
of two benchmarks (i.e., mcf and swim). Other Sim-
Points and benchmarks exhibit similar time-varying be-
havior and their results are omitted for brevity. Each
100M-sized SimPoints contains 25 points of plots which
represent the L1D AVF and performance information of
4M-sized intervals.

5.3.1 L1D AVF Variation

Experimental results show that L1D AVF exhibits
different varying characteristics across different Sim-
Points and different programs. Take mcf for exam-
ple, L1D AVF of SimPoint142 varies in a larger range
(4.01%∼20.33%) than SimPoint37 (23.91%∼27.45%).
Variation of L1D AVF is large for SimPoint1942 of swim
(0.2%∼66.45%), but is much small for SimPoint219 of
mcf (24.54%∼27%).

Table 3 lists the variance of L1D AVF for SEPC2K
programs. Variance of L1D AVF is represented by
Weighted Coefficient of Variation (WCoV). Coefficient
of Variation (CoV) is the standard deviation divided
by the mean. Since each SimPoint of a program has
an associated weight, WCoV of a program is the sum
of the weighted CoV of each SimPoint, as (13) shows.
Lower WCoV indicates that intervals of a program ex-
hibit more similar AVF behavior.

WCoV program“x” =
∑

si∈program“x”
CoV si × weightsi

,

CoV si = sdsi/meansi (13)

si represents one of the representative SimPoints of pro-
gram “x”. sd si is the standard deviation of L1D AVF

for si, and meansi is the average L1D AVF of si.

Table 3. Variance of L1D AVF

Benchmarks WCoV Benchmarks WCoV

gzip graphic 0.08 vortex one 0.17

gzip log 0.10 vortex two 0.22

gzip program 0.14 vortex three 0.12

gzip random 0.11 crafty 0.06

gzip source 0.14 ammp 0.08

vpr route 0.14 applu 0.80

gcc 166 0.10 apsi 0.85

gcc 200 0.15 art 110 0.09

gcc expr 0.17 art 470 0.20

gcc integrate 0.26 equake 0.56

gcc scilab 0.30 facerec 0.29

mcf 0.45 fma3d 0.70

parser 0.39 galgel 0.27

perlbmk diffmail 0.09 lucas 0.01

perlbmk makerand 0.22 mgrid 0.13

perlbmk perfect 0.02 sixtrack 0.10

perlbmk splitmail 0.37 swim 0.32

gap 0.21 wupwise 0.60

mesa 0.11

5.3.2 Correlations Between L1D AVF and
Performance Metrics

Although L1D AVF exhibits significant variation
during program execution, there still exist fuzzy cor-
relations between cache AVF and several performance
metrics.

As the most frequently used metric for time-varying
performance and vulnerability predictions[10-11,43], IPC
exhibits a fuzzy relationship with L1D AVF. We can
see that residence time of the ACE bytes and total exe-
cution cycles of a program in (3) are both affected by
IPC, indicating that IPC definitely has significant in-
fluence on L1D AVF. Whether IPC shows positive or
negative effects on L1D AVF, it further depends on the
memory access characteristics of programs.

As shown in Fig.5, IPC has either positive or nega-
tive effects on L1D AVF for different SimPoints. The
curves of IPC bear a strong resemblance to the pro-
file of L1D AVF on SimPoint142/241 of mcf, showing
the positive effects of IPC on L1D AVF. However, IPC
curves change in an opposite direction to the L1D AVF
profile on SimPoint37/219 of mcf, indicating the nega-
tive effects of IPC on L1D AVF.

The profiles of sim num stores and writebacks L1D
accord with the profile of L1D AVF for swim, but dis-
agree with the profile of L1D AVF for mcf. The curves
of miss rate L1D bear a weak similarity to the profile
of L1D AVF of mcf and swim.

In summary, it is inadequate to use only several
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special performance metrics to track L1D AVF, thus
motivating us to characterize L1D AVF with a larger
space of performance metrics.

5.4 Robust and Accurate Prediction of L1D
AVF

The trends existing in Fig.5 suggest that it is inade-
quate to use only several special performance metrics
to track L1D AVF. Simple predictive models, such as
the simple linear regression model and multivariate re-
gression model, are not powerful enough for accurate
L1D AVF prediction for SPEC2K benchmarks. Hence,
we employ BART which provides substantially higher
predictive performance than previous models to model
L1D AVF across different SimPoints and different pro-
grams.

Our dataset contains the performance metrics and
L1D AVF for 7200 intervals of 288 SimPoints of
SPEC2K benchmarks. Firstly, we create 18 indepen-
dent train/test splits by randomly selecting 5/6 of the
dataset as a train set and the remaining 1/6 as a test
set. Thus, the train set contains the data of 6000 inter-
vals, and the test set contains the data of 1200 inter-
vals. We train the BART model on the train set, then
apply the model to predict L1D AVF for the test set
and compute the predictive RMSE of the 18 train/test
splits respectively. RMSE is computed as (14). We con-
sider relative RMSE (RRMSE), which is RMSE divided
by the minimum RMSE, to facilitate the comparisons

among different train/test splits.

RMSE =

√
1
n

∑n
i=1(y − ŷ)2 (14)

n is the number of intervals in test set, y and ŷ are
the true and the predictive response variables of each
interval respectively.

Fig.6. RRMSE values of the 18 train/test splits.

Fig.6 shows that RRMSE ranges in (1, 1.6), indicat-
ing that all the RMSE values are close to each other,
further revealing the robustness of BART with different
train/test splits.

We choose the train/test split of the minimum
RMSE for the following illustrations of features of
BART. Partial dependence function (explained in Sub-
section 4.2) can be used to obtain the marginal effects of
a subset of variables on the response variable. We show
the partial dependence plots for five influential variables
in Fig.7(a), and their importance to representing the

Fig.7. (a) Partial dependence of five influential variables. (b) Partial dependence of five insignificant variables.
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variation of L1D AVF is testified by the nonzero
marginal effects of them. By comparison, Fig.7(b)
shows the insignificant effects of other five variables
on L1D AVF, reflected by the zero marginal effects of
them.

Besides, BART can be used to select the most influ-
ential variables for explaining the variation of response
variable (i.e., model-free variable selection described in
Subsection 4.3). Fig.8 shows the values (computed by
(11)) for all the predictor variables. We can identify
10 variables which show relatively strong influences on
L1D AVF.

Fig.8. Usage percentage of variables.

Although BART works well for L1D AVF predic-
tion, variables used in BART fitting are overmuch. For
purpose of facilitating the use of L1D AVF predictor,

the predictor must be of low-dimensional function. In
other words, the number of variables used to fit BART
model should be controlled. Therefore, BART model is
refitted using the 10 most influential variables based on
the best train/test split above. Fig.9 shows the refitted
BART inferences.

Fig.9 shows the sequence of σ draws over the itera-
tions. The draws of σ nicely wander around the value
σ = 2, implying that BART model is fitted well. Fig.9
plots posterior mean estimate f̂(x) against the true re-
sponse value y. Vertical lines indicate the 90% posterior
intervals for the response value. We can see that most
f̂(x) values correlate well with the true response values,
and the intervals tend to cover the true response values.

In order to visualize the results of prediction better,
we compare the measured and predicted L1D AVF pro-
files on the test set, shown in Fig.10. We can see that
BART predictive method faithfully detects the time-
varying behavior of measured L1D AVF, and predicts
L1D AVF with high fidelity.

5.5 Comparison of L1D AVF Predictive
Methods

We conduct a comparison between BART and
other competing methods, including the linear regres-
sion method and BRT which have been employed
for architectural vulnerability prediction of several
microarchitectures[11-12].

Fig.9. Refitted BART inferences.

Fig.10. Measured and predicted L1D AVF profiles on the test set.
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Firstly, we compare the three predictive models
across different test/train splits.

Using the same 18 test/train split as used in Subsec-
tion 5.4, we compute the mean absolute error (MAE)
of the three different predictive methods on both train
set and test set, shown in Fig.11. For each of the
three predictive models, MAEs on train set are close to
each other across different train/test splits, yet MAEs
on test set differentiate among different splits. In the
mass, MAEs of BART are less than that of linear model
and BRT on both train set and test set across different
splits.

To further confirm the superiority of BART across
different train/test splits, we use Multiple R-Squared
(denoted as R2) which is the square of correlation co-
efficient to explain the predictive results. R2 varies be-
tween 0 and 1, computed by (15). Larger R2 represents
a better predictive fit, indicating that the correspond-
ing performance metric correlates well with L1D AVF.

R2 =
Total Sum of Squares − Residual Sum of Squares

Total Sum of Squares

Total Sum of Squares =
n∑

i=1

(yi − ȳ)2

Residual Sum of Squares =
n∑

i=1

(yi − ŷi)2 (15)

yi is the response value (i.e., L1D AVF) of each inter-
val, ȳ is the average L1D AVF of all the intervals in
a program, and ŷ is the predicted L1D AVF of each
interval.

Fig.12 shows R2 of different models on train set and
test set. Each split corresponds to three items, each
of which represents R2 on train set and test set respec-
tively. From left to right, the three items indicate R2 of
the simple linear model, BRT and BART. On average,
R2 of the simple linear model, BRT and BART on the
train set is 40%, 80%, and 99%, and R2 of the three
models on the test set is 31%, 65%, and 80% respec-
tively. BART achieves higher R2 than the simple linear
and BRT models on both train set and test set.

Secondly, using the best train/test split in Subsec-
tion 5.4, we compare these three predictive models over
different model sizes, shown in Fig.13. R2 of three mo-
dels on the train set increase monotonously when the
model size is no more than 4. When the model size con-
tinues to increase, R2 of three models on the train set
gradually achieves a stable value. R2 of three models
on the test set varies irregularly when the model size is
less than 8. We can see that R2 of three models on the
test set arrives at a stable value with model size equal
to or more than 8. Compared with the simple linear

and BRT models, BART obtains the best R2 on train
set and test set.

Fig.11. Mean absolute error of different models on 18 train/test

splits.

Fig.12. R2 of different models on 18 train/test splits.

Fig.13. R2 of different models over different model sizes.

Thus, the above comparisons demonstrate the supe-
riority and robustness of our BART model across dif-
ferent test/train splits and different model sizes.

6 Simplified and Fast Estimation of L1D AVF

6.1 Simplified and Fast L1D AVF Predictor

In order to integrate the AVF prediction into AVF-
aware dynamic fault tolerant management schemes, we
consider reducing the complexity of L1D AVF pre-
diction to get a simplified and fast AVF predictor.
BART method is proved to perform well for L1D
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AVF prediction, but the dimensionality of the predic-
tive function is high, even the refitted BART function
which relies on only 10 variables is not suitable for dy-
namic prediction. So we further employ bump hunting
technique[32] to obtain the simplified L1D AVF predic-
tor. The goal of bump hunting is to partition the fea-
ture space into box-shaped regions and to seek boxes
with a high average of the response variable, and it has
been successfully used for fast estimation of AVF of IQ
and ROB[12]. In our study, we aim to find the top 10%
intervals of high L1D AVF. We apply bump hunting
technique to our dataset and extract 5 simple selecting
rules on several key performance metrics, to identify
intervals of high L1D AVF.

Fig.14 shows the simple selecting rules extracted by
bump hunting technique. The rules can be simply im-
plemented using several NAND and INV gates in hard-
ware. Besides, since the dependent performance met-
rics of the rules can be easily monitored during runtime,
simplified and fast L1D AVF prediction is available us-
ing the selecting rules in Fig.14.

if (sim num loads > 777284.2

& & sim num stores > 380936.7

& & IPC > 1.88

& & ruu occupancy > 35.367

& & bpred add rate > 0.86)

{
L1D is regarded to exhibit high architectural vulnerability

across this interval.

}
Note: sim num loads and sim num store are total numbers
of loads and stores committed respectively. IPC is instruc-
tions per cycle. ruu occupancy is the average RUU occupancy.
bpred addr rate is the branch address-prediction rate.

Fig.14. Simple selecting rules extracted by bump hunting tech-

nique.

We employ the selecting rules on part of test set,
and the result is illustrated in Fig.15. Generally, we

can identify intervals of high L1D AVF correctly, but
there are also some intervals of low L1D AVF mistaken
as intervals of high L1D AVF. Totally, 2.7% intervals
of test set are falsely identified. The number of falsely
identified intervals is considerably small, so we believe
that the above simple selecting rules work effectively
for fast L1D AVF estimation.

Fig.15. Fast estimation of L1D AVF on the test set.

6.2 AVF-Aware ECC Technique

ECC-based protection techniques have been widely
employed in the modern microprocessor design to im-
prove the reliability of cache, and SEC-DED is a rep-
resentative of them. Previous studies[22-24] have shown
that implementing SEC-DED can increase L1 cache ac-
cess latency by up to 95%, and power consumption by
up to 22%.

Provided that L1D ECC checker, consisting of en-
coder and decoder, is on the critical data path, we
implement AVF-aware ECC technique in SS-SERA to
reduce the potential over-protection by enabling ECC
protection only for the execution points of high vulner-
ability.

In our experiment, cache is initially simulated with
ECC (i.e., SEC-DED) disabled. To identify the top
10% intervals of high L1D AVF, the cache AVF thresh-
old is set as 47. Every two million cycles, we get the
instantaneous L1D AVF value using our simplified AVF
predictor. If L1D AVF is above the threshold, ECC

Fig.16. Normalized access latency.
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Fig.17. Normalized power.

protection is enabled for the following simulation in-
tervals. Once ECC protection is enabled, we need a
criterion to disable it. Hence, we disable ECC after ten
million cycles in our experiment.

We use CACTI 6.0[44] which is modified for more
detail modeling of ECC technique to determine the la-
tency and power of L1D with/without ECC protection.
Using these latency and power values, we simulate the
SPEC2K benchmarks in SS-SERA again. We evaluate
the access latency and power consumption of L1D for
different schemes (i.e., traditional full-ECC, AVF-aware
ECC, without ECC), as shown in Fig.16 and Fig.17.
We normalize the access latency and power consump-
tion values to that of unprotected L1D.

The experimental results show that most programs
benefit from AVF-aware ECC technique. On average,
for SPEC2K benchmarks, AVF-aware ECC technique
reduces the access latency by 35% and the power con-
sumption by 14% compared with traditional full ECC
protection technique.

7 Conclusion

In this paper, we propose an improved methodo-
logy of computing cache AVF. Based on the more ac-
curate estimation of L1D AVF, we characterize the
time-varying L1D vulnerability behavior and detect the
correlations between L1D AVF and several key perfor-
mance metrics. We propose to employ BART to model
the variation of L1D AVF, and the experimental results
show that BART works well for accurate L1D AVF pre-
diction. Then, in order to incorporate the AVF predic-
tor into runtime fault tolerant management schemes,
we employ bump hunting technique to reduce the com-
plexity of L1D AVF prediction. Some simple selecting

rules on several key performance metrics are extracted
by bump hunting technique, thus enabling a simplified
and fast estimation of L1D AVF. Based on the simpli-
fied estimation of L1D AVF, intervals of high L1D AVF
can be identified online, thus motivating the develop-
ment of AVF-aware ECC technique. We demonstrate
that AVF-aware ECC technique could provide perfor-
mance and energy gains without sacrifice much reliabi-
lity.

With dramatic scaling in feature size of VLSI tech-
nology, processor designers are required to more care-
fully trade off performance, power and reliability. With
the ability to predict AVF fast and accurately at run-
time, comes the opportunity of AVF-aware fault toler-
ant technique. Our proposed AVF-aware ECC tech-
nique suggests computer architect a unique way of
cache design which achieves good tradeoffs among relia-
bility, performance and power, and it has significant ad-
vantages especially for applications which are tolerant
to soft errors but more severe to performance/power.
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