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Abstract Event detection in wireless sensor networks (WSNs) has attracted much attention due to its importance in
many applications. The erroneous abnormal data generated during event detection are prone to lead to false detection
results. Therefore, in order to improve the reliability of event detection, we propose a dirty-event cleaning method based
on spatio-temporal correlations among sensor data. Unlike traditional fault-tolerant approaches, our method takes into
account the inherent uncertainty of sensor measurements and focuses on the type of directional events. A probability-
based mapping scheme is introduced, which maps uncertain sensor data into binary data. Moreover, we give formulated
definitions of transient dirty-event (TDE) and permanent dirty-event (PDE), which are cleaned by a novel fuzzy method
and a collaborative cleaning scheme, respectively. Extensive experimental results show the effectiveness of our dirty-event
cleaning method.
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1 Introduction

Wireless sensor networks (WSNs) are constituted
by a large number of tiny autonomous nodes each
with sensing, computing and wireless communication
capabilities[1]. These unreliable, low-cost sensor nodes
are deployed in the physical surroundings to gather and
process information of the physical world[2-5]. One of
the most important applications of WSNs is to monitor,
detect, and report the occurrences of interesting events
based on the presence of abnormal measurements. For
example, pollutants in the air are monitored by chemi-
cal sensors to announce the presence of unusual high
chemical concentration. Another example comes from
the fire alarm system consisting of smoke detectors,
which will give warnings when detects an unexpected
fire event. These event-based applications require sen-
sor nodes to report events to a sink node in a timely
manner once an event is detected. Event detection
techniques are different from data-driven and query-
driven techniques, where nodes regularly report sensor

readings to the sink node or respond to the queries pe-
riodically issued by a sink node.

There are two primary challenges for event detec-
tion. First, sensor nodes are often deployed in harsh
or hostile environments, thus they are likely to have
faults or subject to measurement errors. Faulty sensor
nodes are prone to generate erroneous abnormal data,
which possibly lead to false event reports. Second, due
to the imperfection of physical devices and communi-
cation delay, it is often infeasible for sensors to obtain
accurate readings. In other words, an important pro-
perty of sensor data is uncertainty, which is an inherent
aspect of the data. To solve the first problem, several
fault-tolerant techniques have been studied [6-11]. All
of the existing solutions, however, focus on event detec-
tion over certain sensor data. In this paper, we focus
on effective event detection over uncertain data, which
has not been addressed before to our best knowledge.

The primary contributions of this paper are as fol-
lows. 1) A novel cleaning model based on binary data
mapping is proposed. Unlike traditional approaches,
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the proposed mapping method considers the inherent
uncertainty of each measurement. 2) Formulated defi-
nitions of dirty events and monitored events are de-
scribed. Based on a binary data sequence, the dirty
events are classified into two types, namely transient
dirty-event (TDE) and permanent dirty-event (PDE).
3) A fuzzy cleaning method for TDE is proposed,
which associates data cleaning with fuzziness. More-
over, a collaborative PDE cleaning scheme for the type
of directional monitored events is proposed, which is
based on ring-structured clusters. 4) Extensive exper-
iments show the effectiveness of the proposed cleaning
methods.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the related work. The cleaning model
is described in Section 3. We discuss our cleaning meth-
ods in Section 4 and show our experimental results in
Section 5. Section 6 concludes this paper.

2 Related Work

Our work is related with the existing work in two ma-
jor categories: fault-tolerant event detection and proba-
bilistic data managing.

2.1 Fault-Tolerant Event Detection

Event detection in WSNs has attracted much atten-
tion due to its importance in many applications[12-14].
In order to detect events accurately, several fault-
tolerant event detection schemes are proposed to solve
the fault-event elimination problem in WSNs[6-11]. To
guarantee the detecting accuracy, a distributed proba-
bilistic Bayesian fault-tolerant algorithm is proposed in
[6] to eliminate and correct the faulty sensor readings by
considering the spatial correlation of the readings from
nearby sensors. Luo et al.[7] proposed a fault-tolerant
energy-efficient event detection paradigm. Ding et al.[8]

proposed localized fault-tolerant event boundary detec-
tion algorithms for the identification of faulty sensors
and the detection of the events, which are purely locali-
zed and scale well to large sensor networks. However,
these studies focus on the spatial information to detect
faulty nodes, whereas we consider both the temporal
and spatial information in our work. Elmoustapha and
Riley[11] presented preliminary steps leading to a geo-
metric based approach to fault-tolerance in distributed
detection using sensor networks. In [9], a fault-tolerant
event boundary detection algorithm using the cluster-
ing technique based on a maximum spanning trees is
presented. Sensor nodes are classified into two clus-
ters by the distances, based on which the event boun-
dary nodes are determined. Sorabh et al.[10] proposed
a scalable and efficient scheme for detecting large-scale
physically-correlated events in sensor networks. The

scheme in this work estimates the size of an event by
a small subset of the nodes in WSNs, and infers the
presence or absence of a significant event just from the
signals received from this subset. However, this paper
does not take into account the uncertainty of signals
from sparse samples of the nodes, which is significantly
different from our works. In addition, the scheme in
[10] is only suitable for large-scale physically-correlated
events, and this constraint is not required in our work.
The algorithms explored in [15-16] are designed for 0/1
decision predicate computation, in which no collabo-
ration among neighboring sensors is considered. Niu et
al.[17] proposed a maximum likelihood estimator, which
uses binary readings that are communicated to a cen-
tral processing unit to estimate the event position. The
algorithm proposed in [18] is designed to address a
new research area of collaborative signal information
processing.

However, all these traditional approaches are not di-
rectly applicable to uncertain sensor data since they are
proposed for certain data. Moreover, our work focuses
on “fuzzy cleaning” for successive uncertain sensor data
and develops a “collaborative cleaning” scheme for the
type of the events with directional diffusion, which has
not been studied before.

2.2 Probabilistic Data Managing

The probabilistic uncertainty model was first intro-
duced in [19] for continuous sensor data. A flexible
model of uncertainty, which is defined by a lower and
upper bound and a probability density function of the
values inside the bounds, is proposed. In [20], the prob-
lem of indexing one-dimensional uncertain data for an-
swering “probabilistic threshold range query” is stu-
died. Tao et al.[21] extended the indexing solution to
support uncertain data in high-dimensional space. In
[22], Cheng et al. investigated a cleaning problem for
uncertain and probabilistic databases, with the goal of
optimizing the expected quality improvement under a
limited budget. The PWS-quality metric introduced
in the paper is a measure that quantifies the ambigu-
ity of query answers under the possible world seman-
tics, whereas our work focuses on cleaning the data
whose uncertainty is given by a continuous distribu-
tion. Khoussainova et al.[23] presented a system for
correcting input data errors probabilistically using user-
defined integrity constraints. However, the cleaning
system was designed for missed and duplicated RFID
(Radio Frequency Identification) data, which is unsui-
table for event detection in WSNs.

Tan et al.[24] proposed a probabilistic disc model by
extending the existing analytical results based on a clas-
sical disc model to the context of stochastic detection.
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This model is used for real-time target detection. By
considering the probability of detecting targets within
a sensing range, the model captures the stochastic
characteristics of real-world intrusion detection, such as
probabilistic detecting ability and false alarms. A series
of studies are based on the proposed probabilistic disc
model[25-27]. The authors studied the impact of data
fusion on the delay of detecting mobile targets[25] and
extended the study to the general cases of signal decay
and target speed[26]. In [27], Tan et al. adaptively cali-
brated the fusion parameters to increase system sensing
performance in the presence of dynamics of environ-
ment and monitored phenomenon. In summary, our
probabilistic model focuses on the inherent uncertain
property of sensor measurement, whereas the proba-
bilistic disc model mentioned above is derived from
sensing range.

3 Cleaning Model

In this section, the cleaning model adopted in this
paper is introduced. We propose a binary mapping
method which is based on a novel uncertain sensor data
model. According to the mapped binary data sequence,
we address the formulated definitions of two types of
dirty-events.

3.1 Uncertain Data Model

Usually, the uncertainty of sensor data is represented
by probabilistic distributions of attributes[28-29]. Under
this model, the value of a given attribute is represented
as a collection of alternative values, each with an associ-
ated probability, or a range of values with an associated
probability density function (pdf ). Specifically, each
sensor stores a pdf of the “original” attribute value,
where “original” means the true reflection of surround-
ings. This uncertainty model of original data can be ob-
tained by Bayesian cleaning approach in [30]. The dis-
tribution is denoted by fo(x), which is considered as a
Normal distribution, i.e., x ∼ N(µo, σ

2
o), where µo and

σ2
o are the mean and variance of x, respectively. Gene-

rally, about 99.7% of values drawn from N(µo, σ
2
o) lie

within three standard deviations (3-sigma rule). There-
fore, we give [µo − 3σo, µo + 3σo] as the interval of nor-
mal values for fo(x). To be more precise, we specify
the interval by different values of ωo(ωo ∈ R), that is

F (µo + ωoσo;µo, σ
2
o)− F (µo − ωoσo;µo, σ

2
o)

=Φ(ωo)− Φ(−ωo) = 2Φ(ωo)− 1 = erf
( ωo√

2

)
,

(1)

where Fo(x) is the cumulative distribution function
(cdf ) of fo(x) and erf(x) = 2√

π

∫ x

0
e−t2dt is the error

function.

Now we discuss the problem of checking whether a
sensor measurement is a normal data or not according
to the above uncertain data model. In the previous
work of certain sensor data, an empirical normal in-
terval is given for the abnormity checking. However,
this approach cannot be used in our work since the un-
certainty of the measurement needs to be considered.
Thus, we introduce a novel checking method as follows.

As we know, the measurements of sensors are usua-
lly contaminated by additive random noises from sens-
ing devices. We assume that the random noise ns at
each sensor follows a normal distribution fr(ns), i.e.,
ns ∼ N(µr, σ

2
r). Given a sensor measurement vk, let

fm(zk) = vk − fr(ns), where z also follows a normal
distribution, i.e., zk ∼ N(vk − µr, σ

2
r). Hence, we ob-

tain the probability of vk being a normal data by

pk =
∫ +ωoσo

−ωoσo

fm(zk)d(zk). (2)

3.2 Binary Data Mapping

As is well known, sensor nodes have limited resources
(processing capabilities, memory and power). There-
fore, it makes sense to use binary data since a binary
decision is an “easier” problem to solve. In addition, bi-
nary data require “lower” communication cost, which
benefits the energy cost of sensor nodes. Therefore,
we give the following mapping rule which maps sensor
measurements into binary data.

bk =
{

0, if pk > pth,

1, if pk < pth,
(3)

where pth is an empirical probability threshold. For
example, a sensor has a pdf fo(x) ∼ (26, 62) of true
temperature values. Device noise ns ∼ N(0, 52) and
ωo = 1.96. Therefore, we obtain the normal value inter-
val [21.2, 30.8]. If successive measurements v1 = 24.5,
v2 = 23.6, v3 = 33.9, then we obtain p1 = 0.92, p2 =

Fig.1. Example of binary data mapping.
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0.85, p3 = 0.09, which are mapped into b1 = 0, b2 = 0,
b3 = 1, according to pth = 0.7 as shown in Fig.1. We
focus on a single attribute for simplicity in this paper,
and the extension to multiple attributes can be achieved
easily by associated pdf.

3.3 Dirty-Event Definitions

Intuitively, when a remarkable change in a sensor
data is detected, i.e., measurements of the sensor are
mapped into abnormal binary data, something must
have happened to the sensor. The cases in which sen-
sor measurements are especially prone to be abnormal
are summarized as follows.

Case 1 (Device Noise). As mentioned above, the
data are collected from the real world by imperfect sens-
ing devices with random noises.

Case 2 (External Noise). Sensors are sensitive to the
noise from external source, due to which the changes of
sensor measurements appear randomly. For instance,
the electromagnetic signal from a mobile phone can
cause the abnormal measurements of nearby sensors.

Case 3 (Hardware Failure). The performance of sen-
sors tends to deteriorate when the sensors are suffering
a hardware failure, such as exhausted battery power.

Case 4 (Monitored Event Occurrence). A moni-
tored event is defined as a particular phenomenon that
changes the real-world state, e.g., forest fire, chemical
spill, air pollution, etc. In the usage for monitoring
these events, sensors will generate abnormal data when
a monitored event happens in a geographic region where
the sensors are deployed.

In particular, abnormal measurements appear diffe-
rently in the above cases. Device noise has minor effects
on the sensor measurements, which is removed in Sub-
section 3.1. The errors brought by external interference
(Case 2) are considered as random errors[30]. The ex-
ternal interference usually comes from transitory envi-
ronment change. In another word, the variation of en-
vironmental conditions in Case 2 lasts for a short time,
thus the resultant abnormal data are generated with
low frequency. In contrast to Case 2, a sensor generates
successive abnormal data which last for a relatively long
time when it is in Cases 3 and 4. In particular, it can
be considered that a monitored event has occurred if
numerous abnormal data are caused. According to the
definition of Case 4, environment variations can be con-
sidered as monitored events if they caused abnormal
data uninterruptedly, i.e., monitored events are repre-
sented by abnormal readings which last for a longer
time. For example, in fire alarming applications, the
rising of the temperature and the smoke density in the
monitored area are the monitored events. Furthermore,
if most neighboring sensors generate abnormal readings

simultaneously, a monitored event occurs. On the other
hand, the abnormal data are caused by hardware fail-
ures if the changes appear in geographically indepen-
dent sensors. In a word, abnormal measurements due
to faulty devices are likely to be uncorrelated, while
the sensors which have detected monitored events are
spatially correlated. In this paper, we consider the
abnormal data caused by Cases 1, 2 and 3 as “erro-
neous data”. Therefore, these erroneous data should be
cleaned in order to eliminate their negative influence on
the reliability of event detection. We use “dirty-event”
to refer to an erroneous data as well as the case it comes
from, that is, the occurrence of an erroneous measure-
ment is considered as an atomic dirty-event.

The dirty-events caused by Cases 1 and 2 break the
temporal correlation of the readings. Specifically, the
sensor nodes are required to periodically perform ob-
servation as they are monitoring the events. The na-
ture of the physical phenomenon caused by a moni-
tored event constitutes of the temporal correlation be-
tween each consecutive reading of a sensor node. How-
ever, the degree of the correlation between consecutive
sensor measurements may vary irregularly and disor-
derly due to Cases 1 and 2. Therefore, the dirty-events
caused by these two cases are considered as a type of
dirty-event, namely TDE, which can be cleaned by tem-
poral information of individual sensors. On the other
hand, the dirty-events caused by Case 3 cannot affect
the temporal correlation significantly since the abnor-
mal data appear consecutively and incessantly. But
this kind of dirty-events breaks the spatial correlations
of the measurements of neighbor sensor nodes, based
on the fact that the sensor failures (Case 3) are likely
to be stochastically independent, while the monitored
event measurements (Case 4) are likely to be spatial
correlated due to the dense deployment. Therefore, the
dirty-events caused by Case 3 are considered as a type
of dirty-event, namely PDE, which can be cleaned by
the spatial information of neighbor sensor nodes.

We assume that sensor si processes streaming data
within a sliding window w, and the size of the win-
dow is denoted by lw. Such an assumption is con-
sistent with existing wireless sensor systems. Let
(〈bp, tp〉, 〈bp+1, tp+1〉, · · · , 〈bq−1, tq−1〉, 〈bq, tq〉) denote
the mapped binary data stream, where tj is the times-
tamp of bj . Assume the sliding window is tuple-based,
such that lw = q− p. According to the different “beha-
vior” of erroneous data mentioned above, dirty-events
are classified into two types as follows.

Definition 1. For all the dirty-events in m-
sliding windows of sensor si, if 0 <

∑m
k=1 NA b(wk)/∑m

k=1 lk < Θ, the dirty-event here is considered as a
transient dirty-event (TDE), otherwise, the dirty-event



946 J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6

is considered as a permanent dirty-event (PDE), where
NA b(wk) denotes the total number of the abnormal bi-
nary data in k-th sliding window, Θ is a user-specific
threshold.

The intuition of setting threshold Θ is that, when a
PDE or a monitored event occurs, there will be changes
in the readings of the sensors that are affected by the
event during the event period. According to the defi-
nition, the value of threshold Θ is an important fac-
tor in events cleaning. Therefore, a threshold selection
scheme is given here to determine the value of Θ effi-
ciently, that is, Θ is set to ΘM(1 + tq−tp

Tpe
), where Tpe

is the expected period of PDEs in a real application
and ΘM is a user-specific threshold which can be set
according to the historic data.

4 Cleaning Dirty-Events

In this section we discuss two novel dirty-events
cleaning methods, which are respectively proposed for
TDE and PDE.

4.1 TDE Cleaning

Generally, external interferences take place ran-
domly and the details are unknown to the users in prac-
tical applications. Therefore, in this part, we propose
a fuzzy cleaning method for TDE based on fuzzy sets
theory so as to make TDE cleaning procedure more ef-
fective and scalable for various kinds of interferences.
We adopt a fuzzy set to include TDEs of a sensor,
namely TDE fuzzy set. Given a binary data sequence
Bw = (bp, bp+1, . . . , bq−1, bq) in a sliding window w, the
definition of TDE fuzzy set is addressed as follows.

Definition 2. Let OB = {Bw1 , Bw2 , . . . , Bwm} be
the domain of the fuzzy set, element Bwk

is a binary
data sequence of the k-th sliding window, TDE fuzzy
set is defined as

T F :OB → [0, 1]

Bwk
→ T F (Bwk

),

where T F (Bwk
) is the membership function.

Note that given two binary data sequences
with the same number of abnormal data,
Bwk

= (0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0) and Bwk′ =
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1), the abnormal binary data
in Bwk

are more likely to belong to TDE fuzzy set.
Therefore, we extract three types of subsequences from
Bw to obtain more effective fuzzy membership func-
tion,namely 3-subsequence extracting method.

We exemplify that the 3-subsequence extracting
method is optimal for dirty-event cleaning in the follow-
ing. According to the temporal correlation of the sen-
sor measurements, the precondition of the extracting

method is that we merely focus on the subsequences
of which the middle element is abnormal. If we
extract 2-subsequences in the binary data sequence,
namely 2-subsequence extracting method, only three
types of 2-subsequences can be extracted, i.e., sub-
sequences (0, 1), (1, 0) and (1, 1). Hence, the
extracted 2-subsequences of a binary data sequence
may lose exact representations of the temporal con-
secutiveness. If we extract 4-subsequences in the bi-
nary data sequence, namely 4-subsequence extracting
method, twelve types of 4-subsequences can be ex-
tracted since there are two middle elements, i.e., subse-
quences (0, 1, 0, 0), (1, 1, 0, 0), (1, 1, 0, 1), (0, 1, 0, 1),
(0, 0, 1, 0), (1, 0, 1, 0), (0, 0, 1, 1), (1, 0, 1, 1),
(0, 1, 1, 0), (1, 1, 1, 0), (0, 1, 1, 1), (1, 1, 1, 1). Obvi-
ously, these 4-subsequences cause more complex compu-
tations, which will lead to much more time-consuming
of dirty-event cleaning. To balance the cleaning accu-
racy and computation time, we employ 3-subsequence
extracting method, of which the details are presented in
Table 1. In order to reduce computational complexity,
we only extract the 3-subsequence in which the mid-
element is an abnormal binary data, that is, we ignore
the subsequences (1, 0, 1), (1, 0, 0) and (0, 0, 1).

Table 1. Three Types of Subsequences

Denotation Extracting Rules

s B1 s B1 = (bp, bp+1, bp+2) when bp+1 = 1 and
bp = bp+2 = 0, i.e., s B1 = (0, 1, 0)

s B2 s B2 = (bp, bp+1, bp+2) when bp = bp+1 = 1
and bp+2 = 0, or bp+1 = bp+2 = 1 and bp = 0,
i.e., s B2 = (1, 1, 0) or (0, 1, 1)

s B3 s B3 = (bp, bp+1, bp+2) when bp = bp+1 =
bp+2 = 1, i.e., s B3 = (1, 1, 1)

Moreover, we adopt a one-by-one extraction method
in order that the subsequences can indicate the succes-
sion of abnormal binary data maximally. The extrac-
tion procedure is illustrated in Fig.2.

Fig.2. One-by-one extraction.

As mentioned above, the succession of abnormal
readings caused by external interference is much worse
than those caused by Cases 3 and 4. Therefore, the
abnormal binary data of s B1 should be cleaned di-
rectly, by the way of being converted to normal binary
value “0”. According to Definition 1 (consider m = 1
for simplicity), two fuzzy membership functions of sub-
sequences s B2 and s B3 are given by Lemma 1 and
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Lemma 2, respectively.
Lemma 1. Let Ns B2(Bw) denote the number of

s B2 on Bw, where λs B2 ∈ [2,Θ lw], such that

T Fs B2(Bw) =





1, if 1 6 Ns B2(Bw) < λs B2 ,

lw − 2−Ns B2(Bw)
lw − 2− γs B2

,

if γs B2 6 Ns B2(Bw) 6 lw − 2,
(4)

where T Fs B2(Bw) is the TDE trapezoidal membership
function of s B2.

Proof. In the case that all the extracted s B2 from
Bw are connected with each other, such as (0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0). Ideally, we have NA b(w) =
Ns B2(Bw). On the contrary, if the extracted sub-
sequences are definitely disconnected, such as (0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0), we have NA b(w) =
lw − 2 (Ns B2(Bw) = 2). Therefore, NA b(w) satis-
fies Ns B2(Bw) 6 NA b(w) 6 lw − 2. By Definition
1, critical value Θ l and λs B2 are substituted to the
inequation, we thus have 2 6 λs B2 6 Θ lw. ¤

Lemma 2. Let Ns B3(Bw) denote the number of
s B3 on Bw, where λs B3 ∈ [Θlw

3 ,Θ lw − 2], such that

T Fs B3(Bw) =





1, if 1 6 Ns B3(Bw) < λs B3 ,

lw − 2−Ns B3(Bw)
lw − 2− λs B3

,

if λs B3 6 Ns B3(Bw) 6 lw − 2,
(5)

where T Fs B3(Bw) is the TDE trapezoidal membership
function of s B3.

Proof. Similarly, if all the extracted s B3 from
Bw are connected with each other, such as (0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0). Ideally, we have
NA b(w) = Ns B3(Bw) − 2. Moreover, there exists
NA b(w) = 3Ns B3(Bw) when the extracted subse-
quences are definitely disconnected, such as (0, 1, 1,
1, 0, 1, 1, 1, 0, 1, 1, 1, 0). Therefore, NA b(w) satisfies
Ns B3(Bw) − 2 6 NA b(w) 6 3Ns E3(Bw). We have
Θlw

3 6 λs B3 6 Θ lw − 2 by substituting Θ l and λs B3

to the inequation. ¤
Based on Lemma 1 and Lemma 2, the fuzzy mem-

bership functions of subsequence s B2 and s B3 are ob-
tained, which are employed to clean TDEs in a sliding
window. Fig.3 gives an example of the TDE trapezoidal
membership function of s B2. In Fig.3, we observe that
if the number of s B2 is less than or equal to λs B2 , the
value of membership function T Fs B2(Bw) is 1, that is,
λs B2 corresponds the inflexion point of TDE member-
ship function, which indicates that the abnormal data
in Bw are more likely to be considered as a PDE if
γs B2 6 Ns B2(Bw) 6 lw − 2. Therefore, λs B2 is a key
point that belongs to interval [2,Θ lw] according to

Fig.3. Example of TDE membership function.

Lemma 1. Lemma 2 has similar meaning as Lemma 1,
which is omitted here due to the space limitation.

In the following, we address our fuzzy TDE clean-
ing procedure. Firstly, we clean the sudden abnor-
mal data by extracting subsequence s B1 and con-
verting the mid-element to normal binary data. Se-
condly, we calculate the overall membership grade of
s B2 and s B3, which is obtained by PTDE = hs B2 ·
T Fs B2(Bw) + hs B3 · T Fs B3(Bw), where hs B2 and
hs B3 are the contributive weights of s B2 and s B3 in
Bw, respectively. Thus hs B2 = Ns B2 (Bw)

Ns B2 (Bw)+Ns B3 (Bw)

and hs B3 = Ns B3 (Bw)

Ns B2 (Bw)+Ns B3 (Bw) . We use an overall
TDE cleaning threshold Θ∗ (Θ∗ is considered as an
application-based threshold) to check the existence of
TDEs. The cleaning procedure is illustrated in Fig.4.
For each sensor si with PTDE > Θ∗, it sends message
Mes P[i] to cluster head sc. Mes P[i] consists of a node
id and its PTDE value. Then, based on Mes P from all
the nearby sensors, sc decides whether or not to clean
the abnormal data in Bw, i.e., sc needs to find out the
abnormal data are caused by which case. If sensor si

receives informing message Mes F[i] from sc, it needs to
forward binary sequence Bw to be PDE-cleaned, that

Input: binary data sequence Bw

Output: TDE-cleaned Bw

1 foreach abnormal element bi in Bw do

2 if bi−1 = bi+1 = 0 then

3 convert to bi = 0

4 end

5 end

6 calculate the overall membership grade PTDE

7 if PTDE < Θ∗ then

8 foreach abnormal element bi in Bw do

9 convert to bi = 0

10 end

11 else

12 sensor si sends message Mes P[i]

13 if si receives message Mes F[i] then

14 forward binary sequence Bw to be PDE-cleaned

15 end

16 end

Fig.4. TDE cleaning algorithm.
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is, the abnormal data in si are caused by Case 3 or 4.
TDE cleaning method does not need numerous data

exchange among nearby sensor nodes. Therefore, less
neighboring information exchange is required during
the TDE cleaning and the energy consumption is much
lower. However, if abnormal data appear frequently,
i.e., PDEs occur, there is not redundant of temporal
correlated information that can be used. As a result,
PDEs cannot be efficiently cleaned by TDE cleaning
method.

4.2 PDE Cleaning

In this subsection, we propose a collaborative dirty-
event cleaning scheme for PDEs based on spatial corre-
lations among neighboring sensor data. First, we make
the following assumptions.

Assumption 1. The nodes are uniformly deployed
in a field of detecting area and they are static. Their po-
sitions are known by localization devices, e.g., a small
fraction of the sensor nodes use GPS, while the rest
of them estimate their locations using localization algo-
rithms.

Assumption 2. The source of a monitored event
causes a continuous affect that diffuses toward some di-
rection and there are no environmental changes outside
the affected region.

Assumptions 1 is quite common and reasonable for
WSNs. Assumption 2 defines an event diffusion model
that is appropriate for the situation where some sub-
stance is released in the environment. For example,
wind pushes the substance toward some direction.
However, Assumption 2 may not be appropriate for the
source that emits a continuous signal, which diffuses
uniformly in all directions, such as sound or electro-
magnetic waves.

To perform PDE cleaning effectively, we adopt a
ring-structured clustering method as shown in Fig.5,

Fig.5. Ring-structured clusters.

which is suitable for our monitored events. Specially,
the nodes are clustered into several ring-structured clus-
ters, which support energy-efficient cleaning by working
in turns. Since the clustering method is not the focus
of this paper, we omit the details of the clustering pro-
cedure, as well as the cluster head selection mechanism.
Now we discuss the collaborative cleaning procedure for
PDE.

Coordinate Conversion Phase. According to the
above ring-structured clusters, we convert the positions
of each sensor with Cartesian coordinate (xc, yc) to po-
lar coordinate (θc, rc), clearly, such conversion is

rc =
√

x2
c + y2

c , (6)

θc =





0, if xc = 0 and yc = 0,

arcsin
(yc

rc

)
, if xc > 0,

−arcsin
(yc

rc

)
+ π, if xc < 0.

(7)

Since the ring-structured clustering method clusters the
sensors with similar radial coordinate, we assume that
sensors s1, s2, . . . , sk within one cluster have the same
radial coordinate, i.e., r1 = · · · = rk = r∗, where r∗

denotes the radius of the corresponding outer ring of
the cluster.

Collaborative Cleaning Phase. We consider the sen-
sor with abnormal readings as alarmed sensor. Each
alarmed sensor si sends an alarming report message
Mes A[i] to the cluster head sc, which consists of a
node id, a polar coordinate and the membership grade
PTDEi

. Once having received Mes A[i] from all the
alarmed sensors, sc computes their correlations on the
abnormal binary sequence and geographic position.
Hence, the following correlation coefficient is adopted
in this paper.

Jc =
1

Nal − 1

Nal∑

i=1

χi(θi − θ)2, (8)

where Nal is the number of all the alarmed sensors that
have sent Mes A[i], and χi is similarity weight of the
binary data sequence, which is obtained by PTDEi

as
follows.

χi =
PTDEi∑Nal

i=1 PTDEi

. (9)

Upon calculating Jc, sc cleans the PDEs of the
alarmed sensors by following rules: if correlation co-
efficient Jc exceeds a correlation threshold Jη, abnor-
mal readings of the alarmed sensors indicate the oc-
currence of a monitored event. The abnormal infor-
mation Mes E is sent to sink node by sc. Else, the
abnormal readings are caused by hardware faults since
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the alarmed sensors are spatially uncorrelated. Sequen-
tially, sc sends a cleaning message Mes C[i] to each
alarmed sensor si, which informs the sensors to clean
the PDEs. The above cleaning procedure is illustrated
in Fig.6.

Input: Bw of alarmed sensors in working cluster

Output: PDE-cleaned Bw

1 foreach alarmed sensor si do

2 si sends message Mes A[i] to sc

3 sc calculates Jc

4 if Jc < Jη then

5 sc sends message Mes C[i] to si

6 foreach abnormal element bi in Bw do

7 convert bi = 1 to bi = 0

8 end

9 else

10 send Mes E to the sink node

11 end

12 end

Fig.6. PDE cleaning algorithm.

PDE cleaning method needs frequent exchanges of
data among neighboring nodes, which will cause high
energy consumption. However, PDE cleaning method
leads to the efficient cleaning of PDEs, which TDE
cleaning method cannot complete. In the traditional
methods, e.g., majority voting scheme, abnormal data
cannot be considered as dirty-events if they are sensed
by most of the nodes in a cluster. However, these meth-
ods are based on the assumption that the monitored
events diffuse all around. Therefore, traditional meth-
ods are less efficient when the monitored event diffuses
within a fan shaped zone with small angel, e.g., the
event shown in Fig.7. In particular, majority voting
scheme is prone to take the abnormal data caused by
monitored events as the results of hardware failure. On
the other hand, our PDE cleaning method is superior
to the traditional methods when the monitored events
have above behaviors since our method adopts polar co-
ordinate instead of Cartesian coordinate, which is veri-
fied in the experiments in Section 5.

Fig.7. Example of the simulated events.

5 Experimental Evaluation

In this section, we present a set of simulation results
to analyze the performance of our dirty-event cleaning
method. We first describe our experimental settings,
and then discuss the experimental results and evaluate
the effectiveness of our approach.

5.1 Experimental Setup

Our experiments are conducted on a 1.86GHz In-
tel Core 2 6300 CPU and 2 GB RAM. In the simula-
tion, 400 sensors are randomly deployed with a uni-
form distribution in a square detection area of size
800 × 800. Real-world sensor data observing the en-
vironment (NEU lab[31]) temperature are collected in
our lab by distributed MTS101 sensor boards. How-
ever, due to the constraint on resource and environ-
ment, the original data are collected with coarse granu-
larity on time scale and incomplete samples on the
space scale. Therefore, we generate a more detailed
synthetic dataset for the experiments based on the raw
data shown in Fig.8.

Fig.8. Sampling sequences of temperature.

According to Assumption 2, the behaviors of the
monitored events are modeled as a diffusion toward
some direction. The diffusing range is a fan shaped
zone with angel θe and radius Re as shown in Fig.7.

Moreover, the event source point is selected ran-
domly for each generated event. The uncertain data
model of each sensors are obtained from the above pro-
cessed datasets. To test the cleaning efficiency of our
method, we use the following parameters: device noises
ns ∼ N(0, 12), sampling period Ts = 5 s and the size of
sliding window lw = 30Ts. In addition, external inter-
ference and monitored events are generated at a period
of Tint = δintTs and Te = δeTs, respectively. The moni-
toring duration is fixed at 5000Ts.
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5.2 Performance Study

We use two metrics E-recall and E-precision to
evaluate the performance of our cleaning scheme. E-
recall is defined as the fraction of monitored events that
are reported correctly. E-precision denotes the fraction
of reported events that are actually monitored events.
In the simulation, we did a comparative study on three
possible cleaning approaches: 1) DEC: our proposed
dirty-event cleaning method; 2) T DEC: DEC method
which is modified by abandoning the fuzzy theorem-
based strategy; 3) P DEC: DEC method which adopts
the well-known majority voting scheme in PDE clean-
ing phase.

First, we test the performance of DEC against the
other two methods in terms of E-recall and E-precision.
In order to make the comparison of the two met-
rics more convincing, we employ another dataset from
the Intel Lab Data①, which is collected from 54 sen-
sors. The Intel Lab data cannot be directly used for
dirty-event cleaning, hence, we preprocess the dataset
(namely Intel Lab data) in the same way as the above
dataset (namely NEU data). Also, the parameters of
monitoring events are set differently for the purpose
of effective comparison. Fig.9 shows the E-recall re-
sults for various threshold Θ (Θ = 0.1, 0.3, 0.5, 0.7, 0.9),
while Fig.10 shows the E-precision results. It can be
seen in Fig.9 that with the increase of Θ , E-recall of
the three methods drops rapidly. This is because the

Fig.9. E-recall comparison. (a) NEU data. (b) Intel Lab data.

Fig.10. E-precision comparison. (a) NEU data. (b) Intel Lab

data.

abnormal data caused by monitored events are prone
to be cleaned as TDEs when Θ increases.

Note that even a few of abnormal data in a sliding
window are prone to be considered as the results of PDE
or monitored events when Θ decreases, so that smaller
E-precision of the three methods are achieved as shown
in Fig.10. From the above sets of experiments, we ob-
serve that Θ = 52% ∼ 54% leads to an optimal balance
of E-recall and E-precision. Therefore, the default value
of Θ is set to 53% in the following experiments.

Moreover, in all cases, DEC approach achieves best
performance, specially for E-recall. As expected, DEC
outperforms T DEC since the fuzzy scheme gives more
effective TDE estimation on abnormal data by extract-
ing different kinds of subsequences. DEC also out-
performs P DEC since the majority voting scheme is
prone to take the abnormal data caused by monitored
events as the results of hardware failure (θe = 30◦).
In addition, we give a comparative study for DEC and
P DEC by changing the diffusion angle θe of the moni-
tored events. As shown in Fig.11, our scheme signif-
icantly outperforms the majority voting scheme until
θe ≈ 190◦.

Fig.11. E-recall comparison.

Our algorithm with different time duration of moni-
tored events is simulated to show the values of E-recall
in Fig.12, where the E-recall of the conventional spatial
correlation majority voting scheme (namely SFT) is in-
cluded as well for comparison. From Fig.12, we observe
that the E-recall of both methods decrease as the time
duration of event increases since dirty-events caused by
Cases 1 and 2 may be taken for abnormal data caused
by Case 4. Furthermore, it is observed that SFT leads

Fig.12. E-recall comparison.

①http://db.csail.mit.edu/labdata/labdata.html
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to a worse E-recall when the time duration of event in-
creases. This is because DEC considers the uncertainty
of sensor data as it performs cleaning, while SFT only
processes the detection over certain data. In addition,
our algorithm cleans both TDEs and PDEs using spa-
tial and temporal correlation, while SFT only considers
the spatial correlation.

In order to investigate the applicability and robust-
ness of our cleaning scheme, several cases are simulated.
As illustrated in Fig.13, our scheme consistently per-
forms well with various percentages of faulty sensors
(Rfa = 0.1 ∼ 0.4). Specially, even for a high hardware
failure probability at 40%, DEC scheme can achieve
about 85% in E-recall. While DEC also bears frequent
external interference with various percentages of inter-
fering range (Rin), which is shown in Fig.14. By clean-
ing the abnormal data which appear suddenly in sub-
sequence s B1, most of the abnormal data caused by
external interference are ignored during the detection.
Therefore, the dirty-events caused by more frequent ex-
ternal interference can also be cleaned effectively, as we
note that, DEC still exhibits good performance when
δint = 5.

Fig.13. E-recall vs Rfa vs θe.

Fig.14. E-recall vs δint vs Rin.

The E-recall and E-precision curves for different
threshold values in Fig.15 and Fig.16 show that higher
E-recall can be achieved by sacrificing E-precision. An-
other observation obtained from Fig.15 and Fig.16 is
that the values of the two metrics increase as the gene-
ration period of the monitored events becomes longer,
which indicates that our cleaning method works more
effectively for less frequent events.

In the following, we compared the total energy
consumption of TDE cleaning method, PDE cleaning
method and TPDE cleaning method. TPDE cleaning

Fig.15. E-recall vs Θ vs δe.

Fig.16. E-precision vs Θ vs δe.

method is the method that uses both temporal and
spatial information to clean both types of dirty-events.
From Fig.17, we observe that the consumed energy of
TDE cleaning method is the least among these three
methods since it needs little information exchanges.
As we know, the energy consumption caused by com-
puting is much cheaper than communicating, and in-
formation exchanging frequency is an important part
of energy consumption during the dirty-event clean-
ing procedure. It is also observed that TPDE cleaning
method consumes much more energy than TDE clean-
ing method and PDE cleaning method. This is because
TPDE needs more information exchanges when it is
utilized to clean both types of dirty-events. Thus we
conclude that, the proposed separated cleaning scheme
is much more energy-efficient than non-separated clean-
ing method.

Fig.17. Energy consumption comparison.

6 Conclusions

Processing over uncertain data in WSNs has become
increasingly important due to the inherent uncertainty
in sensor data. Previous studies on fault-tolerant event
detection are addressed in the context of certain sen-
sor data. In this paper, we focus on the dirty-event
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cleaning over uncertain sensor data, which, to the best
of our knowledge, no other work has studied before. A
probability-based mapping scheme is introduced, which
maps the uncertain data into binary data so as to re-
duce the computation and communication cost. Fur-
thermore, we propose two novel cleaning approaches,
which effectively clean the two types of dirty-events
(i.e., TDE and PDE) during the detection of directional
monitored events. Extensive experiments demonstrate
the effectiveness of our methods, under various settings.
Based on the proposed uncertainty model of sensor
data, exploring dirty-event cleaning methods for other
types of monitored events (e.g., non-directional diffus-
ing events) are our future focus.
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