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Abstract Developed from the dynamic causality diagram (DCD) model, a new approach for knowledge representation and
reasoning named as dynamic uncertain causality graph (DUCG) is presented, which focuses on the compact representation
of complex uncertain causalities and efficient probabilistic inference. It is pointed out that the existing models of compact
representation and inference in Bayesian Network (BN) is applicable in single-valued cases, but may not be suitable to be
applied in multi-valued cases. DUCG overcomes this problem and beyond. The main features of DUCG are: 1) compactly
and graphically representing complex conditional probability distributions (CPDs), regardless of whether the cases are
single-valued or multi-valued; 2) able to perform exact reasoning in the case of the incomplete knowledge representation;
3) simplifying the graphical knowledge base conditional on observations before other calculations, so that the scale and
complexity of problem can be reduced exponentially; 4) the efficient two-step inference algorithm consisting of (a) logic
operation to find all possible hypotheses in concern for given observations and (b) the probability calculation for these
hypotheses; and 5) much less relying on the parameter accuracy. An alarm system example is provided to illustrate the
DUCG methodology.
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1 Introduction

Knowledge representation and reasoning deal
with uncertain causalities crucial for intelligent sys-
tems. Many frameworks have been developed such
as Certainty Factors[1], Evidence Reasoning[2], PRO-
SPECTOR[3], Fuzzy Logic[4], Bayesian Network
(BN)[5-30]. Among them, BN is in wide-spread use.
The compact knowledge representations and efficient
inference algorithms are usually the core issues of BN.

The typical representation of conditional probability
distributions (CPDs) in BN is conditional probability
tables (CPTs). But too many parameters are needed
to specify a CPT[23]. For the example of one child
variable and five parent variables with five states each,
the number of conditional probabilities in the CPT is
56 = 15 625. On the other hand, the logic relations
among variables are mixed and hidden in the CPT pa-
rameters, resulting in that BN relies much on the pa-
rameter accuracy. To get these parameters, a large
number of statistic samples/data are needed. How-
ever, in many cases such as fault diagnoses of nuclear
power plants, the fault samples are rare, resulting in

the difficulty in obtaining CPTs. In fact, one of the
bottlenecks of applying artificial intelligence technology
is the lack of data, particularly in the area of engineer-
ing systems such as power plants, chemical engineering
systems, electricity networks. Moreover, the compu-
tation amount of inference with CPTs is an NP hard
problem, which means that the computation amount
is exponential to the scale of problem. The com-
pact representation models directly represent the un-
certain causalities among variables, which may easily
use the domain engineer’s experience/knowledge/belief,
rely less on the parameter accuracy and have less infer-
ence computation amount.

In order to provide the compact representation,
many efforts have been made, such as noisy-OR[6],
context-specific independence (CSI)[14], independence
of causal influence (ICI)[15], dynamic causality diagram
(DCD)[31]. However, many of them are presented for
or illustrated with only binary variables, while actu-
ally these cases are single-valued but not multi-valued.
This paper points out that the single-valued cases
are essentially different from the multi-valued cases.
This means that the compact representations and the
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corresponding inference algorithms applicable in single-
valued cases may not be suitable to be applied in
multi-valued cases.

The so called single-valued case or multi-valued case
means that the child variable is single-valued or multi-
valued. The definitions of the single-valued and multi-
valued variables are given below.

Definitions 1. The single-valued variable is such a
child variable for which only the causes of its one state
(denoted as the true state) are specified. The multi-
valued variable is such a child variable for which the
causes of its more than one states are specified sepa-
rately.

For the well-known example of the burglary and
earthquake alarm system given in [6], the alarm can
be caused by either burglary or earthquake. The alarm
variable has two states: “on” (true) and “off” (false).
Usually, only the causes of “on” are specified and the
causes of “off” are not specified, because “off” has been
specified as the complement of “on”. According to the
definition, the alarm variable is single-valued.

For the example of the temperature in a refrigera-
tor, the temperature variable may have three states:
“normal”, “high” and “low”. The state “high” may be
caused by a failure of the compressor. The state “low”
may be caused by a failure of the temperature sensor.
The causes of more than one state of the temperature
variable are specified separately. According to the defi-
nition, the temperature variable is multi-valued.

It is important to note that the meaning of multi-
valued variables is different from the meaning of multi-
state variables. A multi-state variable means that the
states of the variable are more than two. Otherwise, it
is binary. A binary variable has two states, e.g., on/off,
male/female. A binary variable can be either single-
valued or multi-valued. The above alarm variable is
binary and single-valued. A sex variable is also binary
but usually multi-valued, because the biological causes
of its two states are usually specified separately.

A multi-state variable is usually multi-valued. The
above temperature variable is a multi-state and multi-
valued variable. This is because a single-valued multi-
state variable is meaningless. As a single-valued varia-
ble, all states except the true state can be combined
as one state: false, which is the complement of the
true state. In other words, the single-valued multi-state
variable is actually a single-valued binary variable.

It seems that, in many papers, the single-valued
variables are misunderstood as binary variables, while
the multi-valued variables are misunderstood as multi-
state variables. As a consequence, the compact repre-
sentations and inference algorithms applicable in single-
valued cases are improperly extended to multi-valued
cases by simply applying an imposed normalization.

This paper points out that such an extension is
mathematically improper, and is unclear in represent-
ing knowledge, may be self-inconsistent, inexact and
even impractical. To overcome these problems and oth-
ers, the dynamic uncertain causality graph (DUCG)
model is presented.

In Section 2, we begin with the detailed discussion on
the essential difference between the single-valued and
multi-valued cases. In Section 3, the dynamic causa-
lity diagram (DCD) presented in [31] is briefly intro-
duced in the way compared with the well-known noisy-
OR and CSI, where the cases are actually single-valued
only. This section also extends DCD as the single-
valued DUCG (S-DUCG). Section 4 presents the com-
pact representation model applicable in multi-valued
cases (M-DUCG). Section 5 combines S-DUCG and M-
DUCG as DUCG that actually achieves the sufficiency
and separability desired for compact representations[19]

in both single-valued and multi-valued cases. Mean-
while, an important property of DUCG, i.e., the exact
inference with incomplete representation of CPDs, is
discussed. Section 6 presents the method to simplify
DUCG based on the observed evidence including the
occurrence order of events regardless of any query, by
which the qualitative solution of the inference may be
found before numerical calculation. Section 7 presents
the inference algorithm based on the simplified DUCG.
Section 8 concludes this paper and outlines the future
work briefly.

Due to the length, only the discrete, certain evidence
and directed acyclic graph (DAG) are addressed.

2 Essential Difference Between Single-Valued
and Multi-Valued Cases

In many cases, people only specify the causes of the
true state of a binary variable Xn, where n indexes
the variable. Suppose state 1 represents the true state
and state 2 represents the false state. For example, the
burglary (X1), earthquake (X2) and alarm (X3) men-
tioned above, X3 = x31 (alarm on) can be caused by
either X1 = x11 (burglary appears) or X2 = x21 (earth-
quake occurs) independently. It is easy for the domain
engineers to give the individual conditional probabili-
ties (will be explained later) of X3 = x31 caused by
X1 = x11 and X2 = x21 respectively, while it is not
easy for them to give the CPT directly. This is because
the burglary and earthquake are different domains and
their combination samples are difficult to be obtained.
However, it should be noted that in this example, only
the causes of X3 = x31 are specified, while the causes
of X3 = x32 (alarm off) must not be specified, be-
cause X3 = x32 has been specified as the complement
of X3 = x31.

Fig.1 illustrates this binary single-valued case, in
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which written as Pnk;ij in text represents the
state level causal link, where subscripts “nk; ij” indicate
that Xn = xnk is caused by Xi = xij . The subscript
before “;” is for the child variable and the subscript
after “;” is for the parent variable. The special arrow
shape and the green color of the directed arc in-
dicate that this causal link is different from the CPT
type causal link drawn as in BN.

Fig.1. Illustration for the binary single-valued case.

However, the real world is not always so simple. For
the example of a simple digital memory circuit, it has
two identical states/outputs: “01” and “10”. This is a
typical binary variable. Similar to the alarm variable,
we may denote this variable as X3 with X3 = x31 rep-
resenting state “01” and X3 = x32 representing state
“10”; but differently, both X3 = x31 and X3 = x32 can
be caused by different events. For example, X3 = x31

may be caused by X1 = x11, and X3 = x32 may be
caused by X2 = x21, with independently given individ-
ual conditional probabilities p31;11 and p32;21 respec-
tively. The reason why the word “individual” is put
in front of “conditional probabilities” is because usu-
ally pnk;ij 6= Pr{Xn = xnk|Xi = xij}. In fact, pnk;ij

is the probability of the linkage event Pnk;ij in DCD,
i.e., pnk;ij ≡ Pr{Pnk;ij}. pnk;ij is also the probability
of the complement of the inhibitor in noisy-OR (see [6]
and Subsection 3.1 for details). Similar notations are
also used in [13] in which p31;11 and p32;21 are denoted
as cX11(X31) and cX21(X32), so that the two types of
conditional probabilities are distinctive.

As mentioned in Section 1, another typical example
of binary multi-valued case is sex variable (X3) that
has two identical valued states: “male” (X3 = x31)
and “female” (X3 = x32). The biological causes (e.g.,
X1 = x11 and X2 = x21) of the two states are usually
different and specified separately. This simple binary
multi-valued case can be illustrated in Fig.2.

Fig.2. Illustration for the binary multi-valued case.

The essential difference between Fig.1(b) and

Fig.2(b) is that in Fig.2(b), the causes of X3 = x31 and
X3 = x32 are specified separately. Note that Figs. 1(a)
and 2(a) are the same. This means that the essen-
tial difference between the two cases is hidden at the
variable/node level. This concealment does not make
sense in CPT representations, because the difference
has been included in the parameters of CPTs; but it
does make sense in compact representations, which will
be explained later.

It is well known that the probabilities of all states of
a variable must sum up to 1 in any case, because the
states of a variable are exclusive and exhaustive. This
probability law can be called normalization. The single-
valued cases always satisfy the normalization, because
the false state is just the complement of the true state.
In multi-valued cases, however, the normalization is
usually not satisfied because the individual conditional
probabilities are given separately. As illustrated in
Fig.2, suppose the probability of X1 = x11 causing
X3 = x31 is given as p31;11 ≡ Pr{P31;11} = 0.6, and
the probability of X2 = x21 causing X3 = x32 is given
as p32;21 ≡ Pr{P32;21} = 0.8. If we simply treat every
valued state of a multi-valued variable as a single-valued
state, we have: X3 = x31 is irrelevant to X2 and X3 =
x32 is irrelevant to X1, because the causes of X3 = x31

and X3 = x32 are specified separately. In other words,
conditioned on E = (X1 = x11) ∩ (X2 = x21), we have
Pr{X3 = x31|E} = Pr{X3 = x31|X1 = x11} = p31;11

and Pr{X3 = x32|E} = Pr{X3 = x32|X2 = x21} =
p32;21 separately for the two single-valued states. As
X3 = x31 and X3 = x32 are exclusive, we further have

Pr{(X3 = x31)∪ (X3 = x32)|E}
=Pr{X3 = x31|E}+ Pr{X3 = x32|E}
= p31;11 + p32;21 = 0.6 + 0.8 = 1.4 > 1,

i.e., the normalization of X3 is not satisfied. This is
because X3 = x31 and X3 = x32 are correlated by the
exclusion between them, while their causes are specified
separately as if they were separately single-valued. The
existing methods to solve this problem are usually to
apply (1)[22]:

Pr{Xn = xnk|E} =
Pr{(Xn = xnk) ∩ E}∑
k Pr{(Xn = xnk) ∩ E}

=
Pr{Xn = xnk|E}∑
k Pr{Xn = xnk|E} , (1)

in which, E represents any evidence or condition. How-
ever, (1) is valid only when

∑
k Pr{Xn = xnk|E} = 1

(the precondition), while it is the consequence to be
achieved as shown in (2),
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Pr{Xn = xnk|E} =
Pr{(Xn = xnk) ∩ E}

Pr{E}
=

Pr{(Xn = xnk) ∩ E}
Pr{E}∑

k Pr{Xn = xnk|E}

=
Pr{E}Pr{Xn = xnk|E}

Pr{E}∑
k Pr{Xn = xnk|E}

=
Pr{Xn = xnk|E}∑
k Pr{Xn = xnk|E} . (2)

If we use the individual conditional probabilities to cal-
culate Pr{Xn = xnk|E} separately as in a single-valued
case,

∑
k Pr{Xn = xnk|E} = 1 is usually not satis-

fied. The above example has shown this. Note that this
problem does not exist in CPT representation, because∑

k Pr{Xm = xnk|E} = 1 is always satisfied, where
E represents a state combination of parent variables.
Only in compact representations, will this imposed nor-
malization problem exist.

The underlining difficulty in multi-valued cases is
that the compact representations have to solve the con-
flict between (a) satisfying the normalization of the ex-
clusive (correlated) states of a child variable, and (b)
specifying the causes of the multi-valued states (not
necessarily all states) of a child variable separately.
It is obvious that (a) has to be satisfied and (b) is

required for compact representations. To solve this
conflict, the present methods use (1). But mathe-
matically, it is improper because the consequence of∑

k Pr{Xn = xnk|E} = 1 is used as the precondition.
Following examples further illustrate four practical

problems of applying (1) in multi-valued cases.

2.1 Unclearness

For the example shown in Fig.3, which is Fig.1 in
[14], all variables are binary.

With the CSI representation, the left branch indi-
cates true and the right branch indicates false. For sim-
plicity, event Xn = xnk is briefly denoted as Xnk, e.g.,
X1 = x11 is denoted as X11; the j-th state combination
of the parent variables of X4 is denoted as SCPV 4;j ,
e.g., SCPV 4;1 = X11X21X31, where the multiplication
of events means logic AND. In this example, if only the
causes of X41 are specified, while the causes of X42 are
not specified separately, it is a single-valued case, be-
cause X42 is implicitly specified as the complement of
X41. Suppose we separately specify the causes of X42

as shown in Fig.4, not as the complement of X41, the
case becomes multi-valued. Note that X1 is not a par-
ent variable of X42, while X1 is a parent variable of
X41. In general, different states of a child variable may
have different parent variables in multi-valued cases.

Fig.3. CSI specification for the causes of X41 ≡ (X4 = x41).

It is obvious that Pr{X41|SCPV 4;j} + Pr{X42|
SCPV 4;j} 6= 1 by combining Figs. 3 and 4. Now we
look at what happens when we apply (1). Denote
Ej = SCPV 4;j , (1) can be further written as:

Pr{Xnk|Ej} =
Pr{Xnk|Ej}∑
k Pr{Xnk|Ej} = αn;jPr{Xnk|Ej},

(3)

αn;j ≡ 1
/ ∑

k

Pr{Xnk|Ej}, (4)

in which, αn;j is called normalization factor. In both
(3) and (4), the Pr{Xnk|Ej} on the right side is the
separately calculated conditional probability and the
Pr{Xnk|Ej} on the left side of (3) is the normalized
conditional probability. Note that in (4), αn;j is not a

constant but a variable depending on Ej = SCPV n;j .
According to (3) and (4), the CPT and αn;j can be
calculated as shown in Table 1.

It is seen that the calculated CPT shown in Table 1
is based on so many different α4;j , j ∈ {1, . . . , 8}. In

Fig.4. CSI specification for the causes of X42 ≡ (X4 = x42).
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Table 1. CPT and αn;j Calculated from (3) and (4)

j Ej = SCPV 4;j Pr{X41|Ej} Pr{X42|Ej} α4;j

1 X11X21X31 1/3 2/3 1/0.6
2 X11X21X32 1/2 1/2 1/0.4
3 X11X22X31 2/9 7/9 1/0.9
4 X11X22X32 2/9 7/9 1/0.9
5 X12X21X31 1/2 1/2 1/0.8
6 X12X21X32 2/3 1/3 1/0.6
7 X12X22X31 6/13 7/13 1/1.3
8 X12X22X32 8/15 7/15 1/1.5

general, the number of αn;j equals the number of Ej =
SCPV n;j , which can be huge. For the example of five
states and five parent variables, the number of SCPV n;j

is 55 = 3125. This is too many for domain engineers
to realize when they specify the causes and parameters
of the states of child variable Xn separately. The ques-
tions are: Why do we need so many implicit and diffe-
rent normalization factors? Are these different norma-
lization factors realized by domain engineers when they
specify the causes and parameters for the multi-valued
states separately? In other words, are these different
normalization factors what the domain engineers want?
Do these implicit factors represent the knowledge of do-
main engineers? It seems that these questions have not
been clearly realized and answered when people apply
(1) or (3) and (4). Therefore, simply treating every val-
ued state of a multi-valued variable as a single-valued
state is questionable (as an approximation may be ac-
ceptable but is not concerned in this paper).

2.2 Inconsistency

If we change the values of pi in Figs. 3 and 4 (the old
set of pi in Table 2) as the new set of pi in Table 2, the
calculated CPT remains the same as in Table 1, while
αn;j changes.

This is another problem that domain engineers may
not realize. In fact, although the two sets of pi cor-
respond to a same CPT, they have different influences
in the probability propagation through causality chains
when we apply the chaining inference algorithms. To
illustrate this, consider the BN for the refrigerator
temperature shown in Fig.5, in which the events are
defined as follows:

X11 = {coolant leakage};

Fig.5. BN for a refrigerator temperature.

X12 = {no coolant leakage};
X21 = {temperature sensor failure};
X22 = {no temperature sensor failure};
X31 = {high temperature};
X32 = {low temperature};
X33 = {normal temperature};
X41 = {food spoil};
X42 = {no food spoil};
X51 = {high power consumption};
X52 = {no high power consumption}.
In terms of CSI, the causes of X31, X32, X33 and

X41 can be specified as shown in Fig.6, in which all
variables split from left to right according to the state
index sequence (1, 2, . . .).

Fig.6. CSI representations for X31, X32, X33 and X41. (a) For

X31. (b) For X32. (c) For X33. (d) For X41.

As shown in Fig.6, X31 (abnormally high temper-
ature) can be caused by X11 (coolant leakage) with
probability 0.6; X32 (abnormally low temperature) can
be caused by X21 (temperature sensor failure) with
probability 0.8; X41 (food spoil) can be caused by X31

with probability 0.7. Moreover, X51 (abnormally high
power consumption) can be caused by X32 with proba-
bility 0.5; X42 (no food spoil) is the complement of X41

(food spoil), i.e., X42 = X41; X52 (no high power con-
sumption) is the complement of X51, i.e., X52 = X51. It
is obvious that X3 is multi-valued, while X4 and X5 are
single-valued, because more than one states of X3 are
specified separately, while only one state of X4 and X5

Table 2. Comparison Between Two Sets of pi

Old Set of pi New Set of pi

j Ej = SCPV 4;j Pr{X41|Ej} Pr{X42|Ej} α4;j Pr{X41|Ej} Pr{X42|Ej} α4;j

1 X11X21X31 p1 = 0.2 p5 = 0.4 1/0.6 p1 = 0.1 p5 = 0.20 1/0.30
2 X11X21X32 p1 = 0.2 p6 = 0.2 1/0.4 p1 = 0.1 p6 = 0.10 1/0.20
3 X11X22X31 p1 = 0.2 p7 = 0.7 1/0.9 p1 = 0.1 p7 = 0.35 1/0.45
4 X11X22X32 p1 = 0.2 p7 = 0.7 1/0.9 p1 = 0.1 p7 = 0.35 1/0.45
5 X12X21X31 p2 = 0.4 p5 = 0.4 1/0.8 p2 = 0.2 p5 = 0.20 1/0.40
6 X12X21X32 p2 = 0.4 p6 = 0.2 1/0.6 p2 = 0.2 p6 = 0.10 1/0.30
7 X11X22X31 p3 = 0.6 p7 = 0.7 1/1.3 p3 = 0.3 p7 = 0.35 1/0.65
8 X11X22X32 p4 = 0.8 p7 = 0.7 1/1.5 p4 = 0.4 p7 = 0.35 1/0.75
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are specified respectively. Given Ej = X11X21, if we
treat X31, X32 and X33 as three single-valued states
separately, according to Fig.6, we have

Pr{X31|X11X21} = 0.6, (5)

Pr{X32|X11X21} = 0.8, (6)

Pr{X33|X11X21} = 0.0. (7)

By applying (1), the CPT of X3 conditioned on X11X21

can be calculated as follows:

Pr{X31|X11X21

/∑

k

Pr{X3k|X11X21}

=0.6/(0.6 + 0.8 + 0) = 0.428 6, (8)

Pr{X32|X11X21}
/∑

k

Pr{X3k|X11X21}

=0.8/(0.6 + 0.8 + 0) = 0.571 4, (9)

Pr{X33|X11X21}
/∑

k

Pr{X3k|X11X21}

=0/(0.6 + 0.8 + 0) = 0.0. (10)

Suppose we change the parameters in Fig.6 or (5)∼(7)
as

Pr{X31|X11X21} = 0.3, (11)

Pr{X32|X11X21} = 0.4, (12)

Pr{X33|X11X21} = 0.0. (13)

By applying (1), we still have

Pr{X31|X11X21}
/∑

k

Pr{X3k|X11X21}

=0.3/(0.3 + 0.4 + 0) = 0.428 6, (14)

Pr{X32|X11X21}
/∑

k

Pr{X3k|X11X21}

=0.4/(0.3 + 0.4 + 0) = 0.571 4, (15)

Pr{X33|X11X21}
/∑

k

Pr{X3k|X11X21}

=0/(0.3 + 0.4 + 0) = 0.0. (16)

That is, the calculated CPT of X3 remains unchanged.
Now, look at the calculations of Pr{X41|X11X21}

and Pr{X42|X11X21}. Note that X4 is single-valued
and (1) is not needed for satisfying the normalization.
According to Fig.5, we have

Pr{X41|X11X21} =Pr{X41|X31}Pr{X31|X11X21}+

Pr{X41|X32}Pr{X32|X11X21}+

Pr{X41|X33}Pr{X33|X11X21}.
(17)

According to Fig.6(d), we have Pr{X41|X31} = 0.7,
Pr{X41|X32} = 0.0 and Pr{X41|X33} = 0.0. Thus,
(17) becomes

Pr{X41|X11X21} = 0.7Pr{X31|X11X21}. (18)

Now we have two choices to apply the value of
Pr{X31|X11X21}. One is to use the CPT value as
shown in (8) or (14). Then we have

Pr{X41|X11X21} =0.7× 0.428 6 = 0.3, (19)

Pr{X42|X11X21} =1− Pr{X41|X11X21}
=1− 0.3 = 0.7. (20)

(20) is because X4 is single-valued. This choice means
to base our inference only on the calculated CPT and
give up the chaining inference algorithm associated with
the compact representation. Obviously, this giving up
is not desired.

Another choice is to use the value shown in (5) or
(11), which means to propagate the probability calcu-
lated from the compact representation directly through
the causality chain before applying (1). By using (5),
(19) and (20) become

Pr{X41|X11X21} =0.7× 0.6 = 0.42, (21)

Pr{X41|X11X21} =1− Pr{X41|X11X21}
=1− 0.42 = 0.58. (22)

By using (11), (19) and (20) become

Pr{X41|X11X21} =0.7× 0.3 = 0.21, (23)

Pr{X41|X11X21} =1− Pr{X41|X11X21}
=1− 0.21 = 0.79. (24)

It is seen that the results of (19)∼ (20), (21)∼(22) and
(23)∼(24) are different. In other words, although the
two sets of parameters shown in (5)∼(7) and (11)∼(13)
correspond to a same CPT, the inference results are
different. This means that the two sets of parameters
have different influence on the probability propagation
through the causality chains. This different influence
may be what domain engineers really want when they
specify different set of parameters. However, the diffe-
rent results are inconsistent with each other.

2.3 Inexactness

To apply (1), it is necessary to calculate the condi-
tional probabilities of all states of a multi-valued varia-
ble separately, where every valued state of the multi-
valued variable must be treated as a single-valued state.
And then, all states of a multi-valued variable must
be specified with their causes separately. For example,
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the causes of X31, X32 and X33 must be specified in
Figs. 6(a), 6(b) and 6(c) separately.

However, the separate specification shown in
Fig.6(c) for the cause of X33 is inexact, because X33 6=
X12X22. For example, even though both X11 and X21

are true, X33 may still be true, because X11X21 is not
enough to cause X31 or X32. The exact representa-
tion should be X33 = X31X32. In other words, X33 is
the complement of X31 +X32, where “+” means XOR.
That is, Pr{X33|X11X21} = 1 − Pr{X31|X11X21} −
Pr{X32|X11X21}.

Note that the complement is not a separate speci-
fication and cannot be applied in (1). Otherwise, a
conflict will appear. For the above example, to cal-
culate Pr{X33|X11X21}, we have to know the nor-
malized Pr{X31|X11X21} and Pr{X32|X11X21}; but
to calculate the normalized Pr{X31|X11X21} and
Pr{X32|X11X21}, we have to know Pr{X33|X11X21}.
We cannot use the values of Pr{X31|X11X21} and
Pr{X32|X11X21} before normalization to calculate
Pr{X33|X11X21}, because according to (5) and (6),

Pr{X33|X11X21} = 1− Pr{X31|X11X21}−
Pr{X32|X11X21} = 1− 0.6− 0.8 = −0.4. (25)

This value is unreasonable. Hence, if we insist on apply-
ing (1), the inexact representation may be unavoidable.

2.4. Impracticalness

By using (11) and (12), (25) is changed as

Pr{X33|X11X21} = 1− Pr{X31|X11X21}−
Pr{X32|X11X21} = 1− 0.3− 0.4 = 0.3. (26)

This is an acceptable value. In spite of this, however,
in addition to the risk of (25), this approach is still im-
practical when more than one states are specified as the
complement of other states. For the above example, if
X32 and X33 are both specified as the complement of
X11 + X33 and X11 + X32 respectively, the approach
shown in (26) is impractical, because

Pr{X32|X11X21} = 1− Pr{X31|X11X21}−
Pr{X33|X11X21} = 1− 0.3− Pr{X33|X11X21},

Pr{X33|X11X21} = 1− Pr{X31|X11X21}−
Pr{X32|X11X21} = 1− 0.3− Pr{X32|X11X21}.

It should be pointed out that the domain engineers
usually pay attention to only the causes of the states in
concern (e.g., X31 as the only meaningful cause of X41

expressed in (18)), but not those not in concern. This
results in that the separate specifications for the causes
of the states not in concern may be impractical, not

only because of the unnecessary and difficult work, but
also because domain engineers may not know how to
specify these causes separately, not as the complement
of other states.

3 S-DUCG Model Applicable in Single-Valued
Cases

In this section, the dynamic causality diagram
(DCD)[31] is introduced, which provides the basis of the
dynamic uncertain causality graph (DUCG). Before in-
troducing DCD and presenting DUCG, a new set of
notations are defined as follows.

In DCD/DUCG, the uppercase letters denote varia-
bles or events, the lowercase letters denote the proba-
bilities of the corresponding events, the first subscript
of a variable/event indexes the variable, and the second
subscript indexes the state of the variable. Obviously,
a state of a variable is an event.

For example, Xn denotes a variable indexed by n,
Xnk denotes the k-th state of variable Xn or the event
that Xn is in its state k. Correspondingly, xnk ≡
Pr{Xnk}. The difference between variable Xn and
event Xnk is that Xnk has two subscripts. They can
be separated by “,”. But in this paper, “,” is ignored
for simplicity without confusion.

Since this section discusses only the single-valued
cases, all variables except logic gates are binary. Read-
ers should note that some expressions in this section
may not be valid in multi-valued cases.

3.1 Introduction to DCD Model

Although DCD[31] was presented two years earlier
than CSI[14] and ICI[15], DCD is not well known in
the community, while noisy-OR, CSI and ICI are well
known. For simplicity, this subsection will introduce
DCD by briefly comparing DCD with noisy-OR and
CSI, so as to help readers understand DCD. Note that
DCD was originally presented in [31], not in this paper.
Therefore, the systematical comparison between DCD
and other models is not the purpose of this paper.

The well known noisy-OR can be illustrated with the
example shown in Fig.7(c) that is similar to Fig.4.20
in [6], in which state 1 denotes true and state 2 de-
notes false. In this example, Pr{X31|X11X22} = 0.3
and Pr{X31|X12X21} = 0.6 (the two expressions are
valid only in the single-valued case).

According to noisy-OR, the CPT of Fig.7(b) is cal-
culated as shown in Fig.7(a).

It is seen that only two parameters 0.3 and 0.6 are
needed in noisy-OR to represent the eight parameters
in the CPT. However, for the CPT shown in Fig.8(a),
noisy-OR is not convenient, because X11 and X21 are
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Fig.7. Illustration for noisy-OR.

Fig.8. Illustration for CSI.

not in OR relation. CSI provides a solution as shown
in Fig.8(b) in which the left branch represents state 1
(true) and the right branch represents state 2 (false).
It is seen that the eight parameters in the CPT are re-
duced to three: 0.3, 0.6 and 0.2. Nevertheless, for the
CPT shown in Fig.9(a), although CSI is applicable and
the result is shown in Fig.9(b), the representation is
not compact enough, because the real meaningful pa-
rameter is only one: 0.3. In DCD, this case can be
represented as shown in Fig.10.

Fig.9. Another example of CSI.

Fig.10 explicitly represents that any one of X11 and
X21 or they together may cause X31 with probability
0.3. That is what the CPT in Fig.9(a) really tells us.
In fact, the cases shown in Figs. 7 and 8 can also be
represented by DCD as shown in Figs. 11(a) and 11(c)
respectively. In Fig.11(a), the default logic relation
between X11 and X21 is defined as OR (see [31] for
details).

A logic gate variable denoted as G4 is used in Fig.11
(b) to specify the complex logic relation between X1

and X2. In this example, G4 is a special parent

Fig.10. DCD representation of Fig.9.

Fig.11. DCD representation of Figs. 7 and 8 respectively.

variable of X3 and has three exclusive states denoted
as G41, G42 and G43 respectively. The three states of
G4 can cause X31 with probabilities 0.3, 0.6 and 0.2 re-
spectively. As an extension to DCD, this paper presents
that any logic gate in DCD can be specified as shown in
Table 3. This table is called the logic gate specification
(LGS).

Table 3. Logic Gate Specification (LGS i)

j Gij

1 Event expression 1
2 Event expression 2
...

...
m Event expression m

For the example of Fig.10, LGS 4 is specified as
G41 = X11 ∪ X21, where G4 represents the OR gate
variable and has only one active state, while G4 in
Fig.11(b) has three active states. It is seen that the
graphical symbols of the logic gates for different logic
relations do not have to be different. We only need to
draw a logic gate as and specify LGS i as illustrated
in Table 3, in which i is the index of the logic gate and
is different from the indexes of other variables. Thus,
we can use a same symbol to represent all type logic
gates.

Obviously, Fig.11(a) is equivalent to Fig.7(c). What
Fig.11(a) tells us is that X11 and X21 can cause X31

independently and the relation between X11 and X21 is
OR (the default relation defined in DCD).

In DCD, the conditional probabilities Pr{X31|
X11X22} and Pr{X31|X12X21} in Fig.11(a) are viewed
as the probabilities of the independent linkage events
P31;11 and P31;21 respectively, i.e., Pr{X31|X11X22} =



Qin Zhang: Dynamic Uncertain Causality Graph for Knowledge Representation and Reasoning: Discrete DAG Cases 9

Pr{P31;11} = p31;11 and Pr{X31|X12X21} = Pr{P31;21}
= p31;21. In fact, when people give Pr{X31|X11X22},
they think only X11 but not X22. They are even not
aware of the existence of variable X2. The situation
for Pr{X31|X12X21} is the same. This is because X1

and X2 are usually in different domains (e.g., the bur-
glary and earthquake are different domains, while both
can cause the vibration invoking alarm). This can be
further interpreted as shown in Fig.12.

Fig.12. Interpretation for Fig.11(a).

In Fig.12, X31 can be caused by either X31;11 or
X31;21. X31;11 denotes the event that X31 is caused by
X11 only; X31;21 denotes the event that X31 is caused
by X21 only. There is an uncertain physical mecha-
nism between X31;i1 and Xi1, i ∈ {1, 2}. Given Xi1,
when the corresponding mechanism functions, X31;i1

occurs; otherwise, X31;i1 does not occur. This inde-
pendent random uncertain physical mechanism is rep-
resented by an independent random event P31;i1. Thus,
X31;i1 = P31;i1Xi1. Only when both P31;i1 and Xi1 oc-
cur, will X31;i1 occur.

Definition 2 (Some Variable Types in DCD and
DUCG). “X” represents the consequence or effect varia-
ble drawn as circle. It can also be a cause variable.
“B” represents the basic or root variable drawn as
square and can only be an independent cause. “G”
represents the logic gate variable. “P” represents the
linkage event, and P n1;i represents the event vector
(Pn1;i1, Pn1;i2, . . . , Pn1;im).

Fig.13 is an illustration for the use of these variables.

Fig.13. Illustration for some type of variables/events.

As illustrated in Fig.13(a), Pn1;i1, Pn1;h1 and P n1;g

represent the directed arc from parent events/variable
Xi1, Bh1 and Gg to child event Xn1 respectively. As
a single-valued variable, Xn has only one valued state:
Xn1. As the parent variables of Xn1, Xi has one ac-
tive state Xi1, Bh has one active state Bh1, and Gg has

more than one active state. That is why events Pn1;i1

and Pn1;h1 and event vector P n1;g are used respectively.
For simplicity, Pn1;i1, Pn1;h1, P n1;g and the states of
variables are usually ignored in the graph as shown in
Fig.13(b). The detailed information is hidden in the di-
rected arcs and the logic gate. It should be noted that
in single-valued cases, although parent variables may
have multiple active states, the child variable has only
one valued state (Xn1 in this example). Only the causes
of the single-valued state of a child variable should be
specified by directed arcs. Otherwise, the case is multi-
valued.

With the P type events, we can express the uncer-
tain causalities between X31 and its parents X11 and
X21 in Fig.11(a) as an event expression in the form of
sum-of-products:

X31 = X31;11 ∪X31;21 = P31;11X11 ∪ P31;21X21. (27)

Conditioned on X11X21, we have X31|X11X21 =
P31;11 ∪ P31;21. By applying the well known inclusive-
exclusive principle or De Morgan’s laws of probabilities,
we have

Pr{X31|X11X21} = Pr{P31;11 ∪ P31;21}
=Pr{P31;11}+ Pr{P31;21} − Pr{P31;11}Pr{P31;21}
= p31;11 + p31;21 − p31;11p31;21

=0.3 + 0.6− 0.3× 0.6 = 0.72,

or

Pr{X31|X11X21} = Pr{X31|X11X21}
=1− Pr{X31|X11X21}
=1− Pr{P31;11X11 ∪ P31;21X21|X11X21}
=1− Pr{P31;11 ∪ P31;21}
=1− Pr{P 31;11P 31;21}
=1− Pr{P 31;11}Pr{P 31;21}
=1− (1− 0.3)(1− 0.6) = 0.72.

The latter is what noisy-OR tells us. In noisy-OR,
1 − pnk;ij ≡ Pr{Pnk;ij} is viewed as the probability
of the inhibitor Ii as shown in Fig.7(c).

We can treat X11 and X21 as new child events and
work out their event expressions as we have done for
X31 in (27). This process can continue until the B type
variables are reached, given that the graph is a DAG.
This process is called event outspread. Any event or
event group in any logic relation can be outspreaded as
such event expressions. During the outspread, the var-
ious event algorithms, such as AND, OR, XOR, NOT,
absorption, exclusion, complement, can be applied. For
example, suppose our query is Pr{Hkj |E} =?, where
Hkj denotes a hypothesis event or event expression
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in concern (e.g., H11 = B12, H21 = X21B13, H22 =
X22B12, etc.), and E denotes a group of events in the
AND relation. We have

Pr{Hkj |E} =
Pr{HkjE}

Pr{E} . (28)

We can outspread HkjE and E as two event expres-
sions composed of only P and B type events by ap-
plying the various event algorithms, and then calculate
the probabilities of the two event expressions by simply
replacing these P and B type events with their prior
probabilities (lowercase letters p and b respectively).
Of course, the event expressions must be in the form of
disjoint/exclusive sum-of-products.

To get the disjoint sum-of-products, we can apply
the following algorithm (see [31] for details):

C1∪C2 ∪ · · · ∪ Cn = C1 + C1C2 + C1C2C3 + · · ·+
C1C2 · · ·Cn−1Cn, (29)

C =V1j1V2j2 · · ·Vmjm
= V 1j1 + V1j1V 2j2 +

V1j1V2j2V 3j3 + · · ·+ V1j1 · · ·Vm−1jm−1V mjm
,
(30)

where “+” denotes XOR, V ∈ {X, P, G,B}, C =
V1j1V2j2 · · ·Vmjm

, and ji is the second subscript of
variable Vi. C is usually called cutset that is an event
product at any event outspread level. By repeatedly
applying (29) and (30), meanwhile applying the event
absorption and exclusion, etc., we can get the disjoint
sum-of-products composed of only P and B type events.
In this way, we divide the computation as two steps: 1)
event outspread; 2) numerical calculation. Sometimes,
only the first step is needed. For some diagnostic case,
we may find that only HkjE 6= 0 while all HgyE = 0,
where Hgy represents all the other hypothesis events
or event expressions in concern. Then we can conclude
that Hkj is the only possible hypothesis event in con-
cern without any numerical calculation, which means
that the probability parameters are not needed. In fact,
this two step approach can bring us a lot of benefits in
knowledge representation and inference.

Before ending the introduction to DCD, it should
be noted that DCD is capable of representing various
complex uncertain causalities such as but not limited
to those shown in Figs. 14∼21.

Fig.14. AND logic gate.

Fig.15. NOT logic gate.

Fig.16. XOR logic gate.

Fig.17. NOT-AND logic gate.

Fig.18. NOT-XOR logic gate.

Fig.19. 2/3 logic gate.

Fig.20. Special log combination.
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Fig.21. Completely combined logic gate.

Theoretically, any CPT can be represented by DCD
with a completely combined logic gate as illustrated
in Fig.21, in which j indexes the state combinations
of parent variables. A completely combined logic gate
is equivalent to a CPT, which is the worst case and
no compactness is achieved. However, the completely
combined logic gate does show the ability of DCD to
represent complex uncertain causalities in the way as
compact as possible.

Note that a logic gate can be the input of other logic
gates, more than one logic gate can be the parents of
a same child variable, and the logic gates can be par-
tial parents of a child variable (e.g., Fig.20). Therefore,
logic gate is a flexible tool for the compact representa-
tion of complex logic relation among variables.

3.2 S-DUCG Extended From DCD

The S-DUCG model is developed from DCD by
adding additional properties: the conditional linkage
events and the default events.

3.2.1 Conditional Linkage Events

It is interesting to note that in Fig.20, the simul-
taneous occurrence of X11 and X21 causes X31 with
the probability 0.72 rather than 0.6, while 0.6 might
be intuitively conceived. The intuitive idea of Fig.20
might be: when only X11 occurs, X31 may occur with
probability 0.3; when X11X21 occurs, X31 may occur
with probability 0.6. However, as the relation between
P31;11 and P31;41 is OR, the probability of X31 caused
by X11X21 is increased from 0.6 to 0.72, which may
not be what people want to represent. To avoid this in-
crease, Fig.20 can be modified as Fig.22, in which
is defined as a conditional linkage event. The condition
of P31;11 is denoted as Z31;11 = X21 = X22. That is,
when X21 does not exist, P31;11 exists; otherwise, P31;11

Fig.22. Conditional linkage event.

does not exist. Here, P31;11 is associated with Z31;11

and can be expressed as P31;11Z31;11 = P31;11X22.
In general, the condition of the conditional linkage

event Pnk;ij or event vector P nk;i is denoted as Znk;ij or
Znk;i respectively, and the conditional Pnk;ij or P nk;i

is expressed as Pnk;ijZnk;ij or P nk;iZnk;i respectively,
where, in the single-valued cases, k indexes the valued
state of the child variable. For the example of Fig.22,
in terms of event expressions, we have

X31 = P31;11Z31;11X11 ∪ P31;41G41

= P31;11X22X11 + P31;41X11X21,

Pr{X31} = Pr{P31;11X22X11 + P31;41X11X21}
= Pr{P31;11}Pr{X11X22}+

Pr{P31;41}Pr{X11X21}
= 0.3Pr{X11X22}+ 0.6Pr{X11X21},

Pr{X31|X11X22} = Pr{(P31;11X22X11 +

P31;41X11X21)|X11X22} = Pr{P31;11} = 0.3,

Pr{X31|X11X21} = Pr{(P31;11X22X11 +

P31;41X11X21)|X11X21} = Pr{P31;41} = 0.6.

It is obvious that the conditional linkage events can
be applied in many other cases, and the representation
capability of DCD is significantly extended. For the
burglary example in [6], if the burglary (X11) and earth-
quake (X21) share the same mechanism: vibration, in
causing the alarm (X31), we can use Fig.23 rather than
Fig.18(b) to represent the uncertain causalities, where
Z31;11 = X21 = X22. The situation in Fig.23 is that
only when there is no earthquake, will the burglary’s
vibration make sense. Otherwise, the burglary cannot
enhance the vibration, because the earthquake vibra-
tion exceeds the upper bound of the vibration sensor.
What is still uncertain is the state of the alarm device:
normal or failed. Therefore, the simultaneous occur-
rence of X11 and X21 has just the probability 0.9 in
causing the alarm, instead of 0.9+0.8−0.9×0.8 = 0.98.

Fig.23. Burglary and earthquake example in conditional causa-

lity.

Furthermore, suppose the rat (X41) can also cause
the alarm with probability 0.6. That is, rat, bur-
glary and earthquake share the same mechanism (vi-
bration) in causing the alarm, while rat does not en-
hance the burglary vibration, and rat and burglary
do not enhance the earthquake vibration. Then the
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uncertain causalities are represented in Fig.24, in which
Z31;41 = X12X22 and Z31;11 = X22.

Fig.24. Rat, burglary and earthquake example.

Based on the observed evidence or the result of the
event outspread, Znk;ij may be met or not, i.e., Znk;ij

may equal to 1 (true or complete set) or 0 (false or null
set). When Znk;ij is not given in the evidence received,
the user should be prompted to get the information,
e.g., to do some experiment or physical check to deter-
mine the state of Znk;ij . Otherwise (Znk;ij + Znk;ij)
should be multiplied with the event expression and the
prior probability distribution of Znk;ij should be given
(this case is unusual, because Z type event is defined
as observable). The multiplication algorithm will be
illustrated later in Subsection 4.3.

The condition Znk;ij associated with the conditional
linkage event Pnk;ij can be very flexible. In fact, Znk;ij

can be any event observable, not only the states of
the parent variables of Xn, but also the occurrence or-
der of events, the states of other variables anywhere in
the graph, and even the event not related to the state
of any variable in the graph. For example, Znk;ij =
Phy;gmXgm, Znk;ij = {|λ− β| 6 σ}, Znk;ij = {λ > β},
Znk;ij = {

√
λ2 + β2 > σ} and Znk;ij = {E1 appears

earlier than E2}, in which Xgm and Phy;gm can be any-
where in the graph; λ, β and σ can be any physical
parameters not drawn in the graph; E1 and E2 can
be any events included or not included in the graph.
Therefore, the conditional linkage events presented in
this paper can represent more complex situation than
CSI and Contingent Bayesian Network (CBN)[27]. Only
when Znk;ij represents the events indicating the states
of parent variables of Xn, will the conditional linkage

event representation be similar to CSI or CBN, but
the inference algorithms are different. In the case of
being limited to the parent variable states, the condi-
tional linkage event representation can be replaced by
the logic gate of DCD. However, even in such a simple
case, the conditional linkage event representation can
be more intuitive and easier to be treated.

The conditional linkage event representation cannot
be simply viewed as a compact representation of the
ordinary CPT. Actually, in a CPT, once the state com-
bination of the parent variables are given, the condi-
tional probability distribution of the child variable is
given. However, in the case of the conditional linkage
event including non-parent event of the child variable or
including the occurrence order of events, the CPT de-
pends on not only the state combination of the parent
variables, but also other events. Therefore, the con-
ditional linkage event representation presented in this
paper is beyond the CPT representation in BN.

3.2.2 Default Events

It is pointed out in [7, 9-10] that in many cases, the
causes of a child variable may not be modeled com-
pletely. In other words, even all parent variables are in
the false state, the child variable may still have its de-
fault probability distribution different from (0, 1). This
probability distribution is caused by some unknown or
inexplicitly expressed causes. These causes can be rep-
resented by a leak[7,10] or dummy[9] variable. The state
of the leak/dummy variable is only one: “true”, i.e., it
is an inevitable event with the occurrence probability
always equal to 1. However, for convenience, it is still
called a variable, although its state never changes.

In S-DUCG, such unknown or inexplicit cause of Xn

is defined as the default variable Dn and is explicitly

drawn as . Similar to other parent variables, there
is a linkage event between Xnk and Dn, i.e., Pnk;nD.
The only difference between Dn and the other parent
variables is that Dn has only one inevitable state, i.e.,
Pr{Dn} ≡ 1.

In some cases, only when all the explicit parent
variables are in the false state, will Dn functions to
explain the default probability distribution of Xn. For
the example shown in Fig.25(c), suppose the condition

Fig.25. Default event in S-DUCG.
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of P31;11 is Z31;11 = X21 = X22, and the condition of
P31;3D is Z31;3D = X11X21 = X12X22, we have the
CPT as shown in Fig.25(a). Compared with Fig.22,
Pr{X31|X12X22} = 0.1 rather than 0. This is because
of the contribution of Dn. Of course, Dn can also be
used in various other ways. For the example above,
we may define Z31;3D = X11 = X12, the CPT becomes
Fig.25(b). For another example, Dn can be an ordinary
parent variable and Pnk;nD becomes an ordinary link-
age event, where Dn is a background of other parent
variables.

4 M-DUCG Model Applicable in Multi-Valued
Cases

Based on the generalization of noisy-OR[7], two simi-
lar models dealing with multi-valued cases are pre-
sented in [9] and [10] respectively and can be called as
noisy-MAX[17]. But this model is limited to the child
variables with graded states[30]. The M-DUCG model
presented in this paper does not have this limitation.

4.1 Basic Concept of M-DUCG

The M-DUCG model is based on the following as-
sumption.

Assumption 1. Suppose Vi, V ∈ {X, B, G, D}, are
the parent variables of Xn,

Xnk =
∑

i

(rn;i/rn)
∑

ji

Ank;iji
Viji

. (31)

And then

xnk =
∑

i

(rn;i/rn)
∑

ji

ank;ijiviji , (32)

where ji indexes the state of parent variable Vi; rn;i

is defined as the causal relationship intensity between
Xn and Vi; rn ≡ ∑

i rn;i; “/” means divided by; the
lowercase letters represent the probabilities of the cor-
responding events represented by the uppercase letters.
Similar to Pnk;ij , Ank;iji is defined as the random event
that Viji

does cause Xnk given that Viji
is true, regard-

less of other parent variables. To be distinguished from
the linkage event in S-DUCG, Ank;iji is called the func-
tional event from Viji

to Xnk.

The illustration for this assumption is shown in
Fig.26, in which, for simplicity, i ∈ {1, 2, . . . , m} and
n 6∈ {1, 2, . . . , m}. Note that the arrow shape and color
of the directed arc is , instead of , nor .
In DUCG, indicates the member of parent varia-
bles in a CPT; indicates the linkage event vari-
able; and indicates the weighted functional event
variable F n;i ≡ (rn;i/rn)An;i, where An;i is an event
matrix with Ank;iji as its elements in which k indexes
the row and ji indexes the column, and F n;i is the brief
notation of (rn;i/rn)An;i named as the weighted func-
tional event variable that is a matrix composed of the
elements: Fnk;iji

≡ (rn/rn;i)Ank;iji
. For simplicity, ji

can be simply written as j in the case without confu-
sion.

The interpretation for Ank;ij is similar to that for
Pnk;ij defined in S-DUCG applicable in single-valued
cases and illustrated in Fig.12. There are two signifi-
cant differences between Figs. 12 and 26: 1) in Fig.12,
the relation between X31;11 and X31;21 is OR, while in
Fig.26, the relation between Xnk;ij and Xnk;ij′ , j 6= j′,
is XOR in effect, which means that the probabilities of
Xnk;ij can be simply summed up as shown in (32); and
2) in Fig.26, there is a weighting factor (rn;i/rn) at-
tached with Ank;ij , while Fig.12 does not have similar
weighting factors.

Similar to Fig.12, Xnk;ij = (rn;i/rn)Ank;ijVij , in
which Ank;ij represents the uncertain physical mecha-
nism that Vnk;ij does cause Xnk;ij resulting in Xnk,
given Vij is true. Although the logic among Xnk;ij in
Fig.26 is XOR in effect, Ank;ij are not exclusive with
different parent variables indexed by i, because they
represent independent uncertain physical mechanisms
and are independent random events. Note that Ank;ij

is exclusive with Ank′;i′j′ given k 6= k′, because Xnk

is exclusive with Xnk′ . These features of the weighted
events are newly defined in DUCG, which is different
from the ordinary set theory and some of its special
algorithms will be presented later in Section 7. This
newly defined set theory may be called as the weighted
set theory.

In M-DUCG, ank;iji
≡ Pr{Ank;iji

}, or simply
ank;ij ≡ Pr{Ank;ij}, are the original parameters given
by domain engineers independently for different i. Nor-
mally, they satisfy the following constraint:

Fig.26. Illustration for the M-DUCG model.
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∑

k

ank;iji
= 1 or simply

∑

k

ank;ij = 1.
(33)

This corresponds to
∑

k

Ank;iji = 1 or simply
∑

k

Ank;ij = 1. (34)

The meaning of rn;i is as follows. In some cases, the
domain engineer is not sure whether or not there exi-
sts causal relationship between Xn and Vi. This type
of uncertainty is quantified by rn;i. That is, 1) when
the domain engineer is sure that the causal relationship
exists, rn;i = 1; 2) when the domain engineer is sure
that the causal relationship does not exist, rn;i = 0;
3) the situation between 1) and 2) is represented by
1 > rn;i > 0. Since 2) cannot be reached, rn;i 6= 0, be-
cause otherwise Vi is not a parent variable of Xn. Then
we have 1 > rn;i > 0. Since rn;i always appears in the
form of (rn;i/rn), it does not matter whether or not
rn;i 6 1. Sometimes, rn;i > 1 is allowed to emphasize
the importance of the causal relationship between Xn

and Vi over other parent variables. Then the constraint
1 > rn;i > 0 can be loosed as rn;i > 0. (rn;i/rn) is then
the normalization/weighting factor and is the weight
of the probability distribution contributed from Vi to
the probability distribution of Xn. With the weighting
factor (rn;i/rn), although Ank;ij can cause Xnk;ij and
then Xnk independently, the intensity is reduced to a
degree of (rn;i/rn) and the influence of Ank;ij to Xnk;ij

is balanced by Ank;i′j′ , i′ 6= i, which means that every
Ank;ij for different k and j but same n and i has the
same weight (rn;i/rn) in causing Xnk;ij and then Xnk.

In nature, Assumption 1 is based on the following
cognition:

Every parent variable independently contributes a
weighted probability distribution over the states of the
child variable. The sum of the weighted probability dis-
tributions from all parent variables is the final probabil-
ity distribution of the child variable. The state of the
child variable is decided randomly according to this final
probability distribution. This cognition is actually the
intuitive understanding of the domain engineers to the
real world. It is also very simple. Therefore, M-DUCG
can be easily applied, in particular in the case when
parameters are the subjective beliefs given by domain
engineers in the case without enough statistic data.

In M-DUCG, the parent variables are correlated by
the weighting factors (rn;i/rn), while all the parame-
ters including ank;ij and rn;i are independently given
for individual parent variables. Therefore, M-DUCG
provides a solution to the conflict between the correla-
tion of the exclusive states of a child variable and the
independence of the causal links from different parent

variables, which enables the compact representation of
CPTs in multi-valued cases. For the example of five
states and six variables, the number of parameters in
the CPT is 56 = 15 625, while the number of parame-
ters in M-DUCG is only 53 + 5 = 130.

It is seen that the causes of different states of a
child variable are specified separately by (31) and (32).
Therefore, (31) and (32) are applicable in multi-valued
cases without limitation.

Theorem 1.∑
k Xnk =

∑
k

∑
i(rn;i/rn)

∑
ji

Ank;iji
Viji

= 1.
Proof. By applying

∑
k Ank;iji

= 1,
∑

ji
Viji

= 1
and rn ≡

∑
i rn;i, we have

∑

k

Xnk =
∑

k

∑

i

(rn;i/rn)
∑

ji

Ank;iji
Viji

=
∑

i

(rn;i/rn)
∑

ji

Viji

∑

k

Ank;iji = 1.
¤

Theorem 1 indicates that (31) and (32) satisfy the
normalization automatically. Thus, we can use (31) and
(32) to calculate the probability of the state in concern
only, without considering the other states. In other
words, even though the parameters needed to specify a
CPT are not given completely, we can still calculate the
exact probability of the state in concern, given that the
causes of the state in concern are specified. This means
that DUCG is able to perform the exact inference with
the incomplete knowledge representation, which brings
us a great convenience in knowledge base construction
and probabilistic reasoning.

According to (31) and by applying the event algo-
rithms (e.g., V11|V11V22 = 1 and V11|V12V22 = 0), we
can easily get the following results:

Pr{Xnk| ∩i Viji
} =

∑

i

(rn;i/rn)ank;iji
, (35)

xnk ≡Pr{Xnk} =
∑

i

(rn;i/rn)
∑

ji

ank;ijiPr{Viji}

=
∑

i

(rn;i/rn)
∑

ji

ank;iji
viji

. (36)

In the same way, readers can find solutions to the cases
conditional on partial parent variable states.

It should be pointed out that (35) and (36) look
similar to those in [19]. The equations in [19] similar to
(35) and (36) can be expressed as

Pr{Xnk| ∩i Viji
} =

∑

i

(rn;i/rn)Pr{Xnk|Viji
}, (37)

Pr{Xnk} =
∑

i

(rn;i/rn)
∑

ji

Pr{Xnk|Viji}Pr{Viji},

(38)
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in which (37) is an assumption. However, (37) and
(38) are different from (35) and (36) in nature, because
ank;iji ≡ Pr{Ank;iji} 6= Pr{Xnk|Viji}.

Proof. According to (31),

Pr{Xnk|Viji
} = (rn;i/rn)Pr{Ank;iji

}+∑

i′ 6=i

(rn;i′/rn)
∑

ji′

Pr{Ank;i′ji′}Pr{Vi′ji′}

6=Pr{Ank;iji}. ¤

The average model presented in [28] is a special case
(rn;i = 1) of M-DUCG, but its knowledge represen-
tation and inference algorithm are different. Moreover,
the denominators in the weighing factors of the average
model and then the weighing factors themselves are
fixed, not dynamically changeable as in M-DUCG. Fi-
nally, [19] points out that the sufficiency and separabi-
lity are desired for compact representations. M-DUCG
does achieve them.

4.2 Logic Gate in M-DUCG

Similar to the logic gate in S-DUCG (see Subsection
3.1), the logic gate Gi in M-DUCG can also be speci-
fied with LGS i as shown in Table 3. For the example
shown in Fig.27, suppose B1, X2, X4 and B5 are bi-
nary variables and LGS 3 is as shown in Fig.28. X4 has
two direct parent variables: G3 and B5. Note that the
real parent variables of X4 are B1, X2 and B5. G3 is a
virtual but direct parent variable of X4.

Fig.27. Illustration for the logic gate in M-DUCG.

i G3j

1 B11 ∪X21 = B11 + B12X21

2 B12X22

Fig.28. LGS3 in Fig.27.

By applying (31) and LGS 3 shown in Fig.28, we have

X4k =(r4;3/r4)
2∑

j=1

A4k;3jG3j + (r4;5/r4)
2∑

j=1

A4k;5jB5j

=(r4;3/r4)(A4k;31(B11 ∪X21) + A4k;32B12X22)+

(r4;5/r4)
2∑

j=1

A4k;5jB5j

=(r4;3/r4)(A4k;31B11 + A4k;31B12X21 +

A4k;32B12X22) + (r4;5/r4)
2∑

j=1

A4k;5jB5j .

As in S-DUCG, the logic gate in M-DUCG can be
as compact as possible, and the most complex logic re-
lation can be expressed with the completely combined
logic gate. For the example above, suppose G3 is a
completely combined logic gate, which is equivalent to
a CPT, we have

X4k =(r4;3/r4)(A4k;31B11X21 + A4k;32B12X21+

A4k;33B11X22 + A4k;34B12X22)+

(r4;5/r4)
2∑

j=1

A4k;5jB5j .

4.3 Conditional Functional Event in M-DUCG

An example is shown in Fig.29, in which A4k;1j are
the conditional functional events. Suppose the condi-
tion is Z4;1 = X21, i.e., only when X21 does not exist,
will A4k;1j be possible.

Fig.29. Illustration for the conditional functional events in M-

DUCG.

In general, Zn;i denotes the event matrix with ele-
ments Znk;ij , or denotes a single condition event associ-
ated with all Ank;ij . Under this condition, when X21 is
observed or given (Z4;1 = 0), r4;1 = 0 (causal link be-
tween X4 and X1 does not exist); otherwise (Z4;1 = 1),
the condition is met and A4k;1j become ordinary func-
tional events. Then the dashed directed arc between
X1 and X4 becomes solid.

In this example, by applying (31), we might intu-
itively have

X4k =(r4;1/r4)Z4;1

∑

j1

A4k;1j1X1j1+

(r4;2/r4)
∑

j2

A4k;2j2X2j2 +

(r4;3/r4)
∑

j3

A4k;3j3X3j3

=(r4;1/r4)X2,1

∑

j1

A4k;1j1X1j1 +

(r4;2/r4)
∑

j2

A4k;2j2X2j2 +

(r4;3/r4)
∑

j3

A4k;3j3X3j3 .

However, this expression is not precise. Moreover, it
should be noted that r4 is uncertain depending on
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whether or not Z4;1 is satisfied. Usually, based on the
received evidence, the state of Z4;1 can be determined,
because Znk;ij should be observable as defined. If the
state of Z4;1 is not observed, the prior probability of
Z4;1 has to be given or calculated. In this example,
Pr{Z4;1} = Pr{X21} = 1 − Pr{X21}, and Pr{X21}
can be either given or calculated from the event out-
spread of X21. As same as in S-DUCG, when Z4;1 is
not determined, the precise expression of X4k should
be multiplied with (Z4;1 + Z4;1):

X4k =(Z4;1 + Z4;1)X4k = (X21 + X21)X4k

=(X21 + X21)
(
(r4;1/r4)X21

∑

j1

A4k;1j1X1j1 +

(r4;2/r4)
∑

j2

A4k;2j2X2j2 +

(r4;3/r4)
∑

j3

A4k;3j3X3j3

)

=(r4;2/(r4;2 + r4;3))A4k;21X21 + (r4;3/(r4;2 +

r4;3))X21

∑

j3

A4k;3j3X3j3 +

(r4;1/(r4;1 + r4;2 + r4;3))X21

∑

j1

A4k;1j1X1j1+

(r4;2/(r4;1 + r4;2 + r4;3))
∑

j2 6=1

A4k;2j2X2j2+

(r4;3/(r4;1 + r4;2 + r4;3))X21

∑

j3

A4k;3j3X3j3 ,

(39)

in which, X21 =
∑

j2 6=1 X2j2 , and therefore
∑

k X4k =
1 can be satisfied. Consequently,

X4k|X1j1X21X3j3 = (r4;2/(r4;2 + r4;3))A4k;21 +

(r4;3/(r4;2 + r4;3))A4k;3j3 , j2 = 1,

X4k|X1j1X2j2X3j3

=(r4;1/(r4;1 + r4;2 + r4;3))A4k;1j1+

(r4;2/(r4;1 + r4;2 + r4;3))A4k;2j2+

(r4;3/(r4;1 + r4;2 + r4;3))A4k;3j3 , j2 6= 1. (40)

By replacing the uppercase letters in (39) and (40)
with their corresponding lowercase letters, we can cal-
culate Pr{X4k} and Pr{X4k|X1j1X2j2X3j3} easily. In
the same way as illustrated above, readers can find so-
lutions to more complex cases of the conditional func-
tional events. Similar to the condition event in S-
DUCG, the condition Zn;i of An;i can be flexible, i.e.,
not limited to the events of the states of the parent
variables of Xn, and is therefore beyond the ordinary
CPT representation in BN.

4.4 Default Event in M-DUCG

The default variable Dn in M-DUCG is defined as
same as in S-DUCG. However, the linkage event Pnk;nD

in S-DUCG is changed to the weighted functional event
(rn;D/rn)Ank;nD, where Ank;nD denotes the functional
event between Xnk and Dn; rn;D denotes the causal
relationship intensity between Xnk and Dn. Com-
pared with Ank;ij , Ank;nD has only one parent variable
state, because Dn has only one state. For convenience,
Ank;nD can also be represented by Ank;ij , where i = n
and j represents D.

In multi-valued cases, although the states of a child
variable are identical, there is sometimes a special state
called normal state. This state is indexed by η and usu-
ally η is assigned as 0. For example, suppose Xi rep-
resents temperature. We may define Xi0 =“normal”,
Xi1 =“low”, Xi2 =“high”, Xi3 =“very low” and
Xi4 =“very high”, where Xiη = Xi0 is the normal state
and Xij , j 6= 0, are the abnormal states.

In practice, the normal state is usually not in con-
cern and its causes and consequences are usually not
specified. In other words, ai0;mg and ank;i0 may not
be given by domain engineers. This is benefited from
the property of the incompleteness of DUCG (see Sec-
tion 5 for details). In such a case, when all other
parent variables are observed in normal states, the
probability distribution of the child variable Xn will be
caused by only Dn, i.e., (rn;n/rn)Pr{Ank;nD}Pr{Dn} =
Pr{Ank;nD} = ank;nD. This is because in such a case,
all other Ank;ij , i 6= n, do not exist and rn = rn;D.
Usually, Ank;nD is a conditional functional event with
the condition Znk;nD = {All other parent events do not
function to affect Xn}. In terms of matrix, An;n is
conditioned on Zn;n = Znk;nD, where Ank;nD are the
elements of An;n, Znk;nD are the elements of Zn;n, and
all Znk;nD are equal. In the graph, An;n is drawn as the
dashed directed arc from Dn to Xn. Of course, Dn can
also be treated as an ordinary parent variable serving
as a background of the other parent variables and the
dashed directed arc becomes solid.

5 DUCG and Its Property of Incompleteness

DUCG is composed of S-DUCG or M-DUCG or the
combination of them. The selection of S-DUCG or
M-DUCG depends on the specific module that is com-
posed of a child variable and its parent variables in-
cluding those linked by only logic gates. For a specific
module, when the child variable is single-valued, either
S-DUCG or M-DUCG can be used; when the child
variable is multi-valued, only M-DUCG can be used.
The mixed use of S-DUCG and M-DUCG for differ-
ent modules simply connected together in one graph is
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called DUCG. The common thought of S-DUCG and
M-DUCG is to use the independent events Pnk;ji or
Ank;ij along with weighting factors rn;i, combined with
logic gates Gi, conditions Zn;i and default events Dn, to
compactly represent the uncertain causalities between a
child variable (X type) and its real parent variables (X,
B and D types). In S-DUCG, the linkage events Pnk;ij

are involved. In M-DUCG, the functional events Ank;ij

attached with (rn;i/rn) are involved. Both Pnk;ij and
Ank;ij represent the mechanism: a parent event does
cause a child event. An illustrative example of DUCG
is shown in Figs. 30 and 31.

Fig.30. DUCG of an alarm system detecting intruder with its

modules.

j G6j

1 (X42 + X43)X52

2 X43X53

3 Remnant, i.e., G61G62 = X41 ∪X51 + X42X53

Fig.31. LGS6 of G6 in Fig.30.

In Fig.30, Z5;1 = Z5;2 = B32. X4 and X5 have
three states each and are multi-valued. B1, B2 and
X7 are binary, in which X7 is single-valued, because
only the causes of X71 are specified. The definitions of
{B,X, D} type events are follows:

B11 ≡ {Rat appears}; B12 ≡ {No rat};
B21 ≡ {Intruder appears}; B22 ≡ {No intruder};
B31 ≡ {Earthquake occurs};
B32 ≡ {No earthquake};
X41 ≡ {No infrared}; X42 ≡ {Slight infrared};
X43 ≡ {Strong infrared};
X51 ≡ {No vibration}; X52 ≡ {Slight vibration};
X53 ≡ {Strong vibration};
X71 ≡ {Alarm on}; X72 ≡ {No alarm};
D7 ≡ {Unknown cause of alarm on}.
This alarm system has two sensors: the infrared sen-

sor and vibration sensor. The signals (X4 and X5) of
the two sensors have three states each. Some states

may invoke the alarm. The alarm responses to the sig-
nals according to the logic specified in LGS 6 shown in
Fig.31. The signal state combination represented by
G63 cannot invoke the alarm, i.e., P71;63 = 0. However,
even G63 is true, the alarm may still be invoked by some
unknown cause (e.g., malfunction of the alarm), which
is represented by D7. The causes of X4j , j ∈ {1, 2, 3},
are two: B11 and B21. The causes of X5j , j ∈ {1, 2, 3},
are three: B11, B21 and B31. B11 and B21 function only
when there is no earthquake, i.e., A5j;11 and A5j;21 are
conditioned on Z5;1 = Z5;2 = B32. Moreover, B12, B22

and B32 have no causal relation to X4 and X5. The
weights from B1, B2 and B3 to X4 and X5 respectively
are equal, i.e., r4;1 = r4;2 = r5;1 = r5;2 = r5;3 = 1. The
other parameters in concern in this example are given
below:

a4;11 = ( 0.7 0.3 0 )T ; a4;21 = ( 0 0.3 0.7 )T ;

a5;11 = ( 0.6 0.4 0 )T ; a5;21 = ( 0 0.6 0.4 )T ;

a5;31 = ( 0 0.1 0.9 )T ;

p71;6 = ( 0.9 0.7 0 ) ; p71;7D = 0.005;

b1 = ( 0.1 0.9 )T ; b2 = ( 0.1 0.9 )T ;

b3 = ( 0.01 0.99 )T ,

in which, an;i1 ≡ (an1;i1 an2;i1 an3;i1)T, p71;6 ≡
(p71;61 p71;62 p71;63) and bi ≡ (bi1 bi2)T.

Note that the parameters of an;i2 ≡
(an1;i2 an2;i2 an3;i2)T are not given, which means that
B12, B22 and B32 are not related to X4 nor X5. There-
fore, this DUCG is incomplete. In fact, the CPTs
in Fig.30 cannot be calculated from the incomplete
parameters given above, unless we further give an;i2,
n ∈ {4, 5} and i ∈ {1, 2, 3}. In other words, the incom-
plete DUCG does not include all CPTs. People need
only to give the parameters in concern, but not the
parameters not in concern. This property of DUCG
results in that DUCG is just the representation of the
state-of-knowledge of people to the real world, but
not necessarily the joint probability distribution over a
set of variables, although DUCG is able to represent.
Therefore, DUCG is not only a new representation of
BN (the worst case is that all logic gates are completely
combined) but also beyond BN.

The reason why DUCG can be incomplete is because
the chaining inference of DUCG is self-relied, which is
resulted from Theorem 1. The calculation of Pr{Xnk}
in DUCG has nothing to do with Pr{Xnk′}, nor ank′;ij ,
given k 6= k′. When we calculate Pr{Xnk}, we do not
have to know ank′;ij , k 6= k′. This means that some
of the parameters in DUCG can be absent, without af-
fecting the exact calculation in concern.

For example, suppose B1, B2 and X3 are binary
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variables and X32 = F32;11B11 + F32;22B22. When only
X32 is in concern, the domain engineers need only to
give a32;11 and a32;22 but not a32;12, a32;21, a31;11, a31;12,
a31;21 and a31;22. In terms of probability expression,

Pr{X32} =Pr{F32;11}Pr{B11}+ Pr{F32;22}Pr{B22}
= f32;11b11 + f32;22b22

=(r3;1/r3)a32;11b11 + (r3;2/r3)a32;22b22,

in which, fnk;ij ≡ Pr{Fnk;ij} = Pr{(rn;i/rn)Ank;ij} ≡
(rn;i/rn)Pr{Ank;ij} = (rn;i/rn)ank;ij .

In effect, not in concern or not being given is equi-
valent to being given as 0 (not a cause). Hence, the
constraint

∑
k ank;ij = 1 in (33) can be loosed as∑

k ank;ij 6 1. Similarly, the constraint
∑

j bij = 1
can be loosed as

∑
j bij 6 1.

6 Simplify DUCG Conditioned on Evidence

Once evidence E is received, DUCG can be initially
simplified by fixing the states of the observed variables
in E. For example, suppose E = E1E2 = B32X71,
where E1 = B32 and E2 = X71, the DUCG in Fig.30
is initially simplified as shown in Fig.32, in which B32

and X71 are fixed. This initial simplification has been
presented in [26], in which the power of compiling BN
with evidence is proved. In Fig.32, the observed state
normal variable is filled with green color, the observed
state abnormal binary variable is filled with gray color,
and the state unknown (including D type) variable is
not filled with any color.

Fig.32. Initially simplified DUCG based on Fig.30, conditioned

on E.

In this paper, further simplifications applicable for
DUCG are presented. The basic ideas are the same as
in [12, 26], i.e., to eliminate the variables contradicting
with E or irrelevant to any query in concern.

Consider the example in Fig.32. As Z5;1 and Z5;2

are satisfied, the conditions of A5;1 and A5;2 are met
and the arcs from B1 and B2 to X5 become solid. More-
over, as a5;32 is not given, B32 cannot be a cause of X5.
Therefore, A5;3 is eliminated, which results in the sim-
plified DUCG as shown in Fig.33.

In general, we can apply the following rules to fur-
ther simplify the initially simplified DUCG.

Rule 1. If E shows that Zn;i is not met, F n;i or
P n;i is eliminated from the DUCG. If E shows that

Fig.33. Simplified DUCG based on Fig.32, conditioned on E.

Zn;i is met, the conditional F n;i or P n;i becomes the
ordinary F n;i or P n;i.

Rule 2. If E shows that Vij, V ∈ {B,X}, is true
while Vij is not a parent event of Xn, F n;i or P n;i is
eliminated from the DUCG.

For example, suppose X32 is not a parent event of
X5. When E shows that V32 is true, F 5;3 is eliminated
from the DUCG.

Rule 3. If E shows that Xnk is true while Xnk can-
not be caused by any states of Vi, V ∈ {B,X, G}, F n;i

or P n;i is eliminated from the DUCG, except that Vi is
included in a hypothesis, or is a descendant of an event
included in a hypothesis and the causality chain between
them is not blocked by any known event.

For example, suppose X53 cannot be caused by any
state of X2, X2 is not included in a hypothesis, and X2

is not a descendant of an event included in a hypothe-
sis, or the causality chain between X2 and a hypothesis
is blocked by known events. When E shows that X53 is
true, F 5;2 is eliminated. The exception in Rule 3 is be-
cause when Xnk is not caused by any state of Vi, while
Xnk′ , k 6= k′, is expected to be caused through a causa-
lity chain including Vi by Vhg included in a hypothesis,
the evidence Xnk is a negative evidence that reduces the
probability of Vhg, resulting in that Xnk is correlated to
the probability of the hypothesis. If the causality chain
between Vi and Vhg is blocked by known events, Xnk

cannot reduce the probability of Vhg through Vi. Then,
the causal link between Xn and Vi is irrelative to the
probability of the hypothesis, so that F n;i or P n;i can
be eliminated.

Rule 4. If E shows that Xnk and Vij, V ∈ {B,X},
are true while Xnk cannot be caused by Vij, F n;i or
P n;i is eliminated from the DUCG.

For example, when E shows that Xnk and Bij are
true, and ank;ij = 0 or is not given, F n;i is eliminated.

Rule 5. If the state unknown Xn without input
variable or Gn without input variable is encountered,
Xn or Gn and its output directed arcs are eliminated
from the DUCG.

This is because such Xn or Gn is meaningless and
is out of concern. By definitions, they have to have
at least one input, otherwise they are meaningless. As
Xn or Gn is eliminated, its output directed arcs are
also meaningless and should be eliminated. It should
be noted that Dn is an input of Xn. When Dn exists,
Xn should not be eliminated.
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Rule 6. If Gi without any output is encountered for
any reason, Gi is eliminated from the DUCG.

For example, suppose Gi has two child variables X1

and X2, if E shows X11 and X21, while X11 and X21

cannot be caused by any state of Gi, F 1;i and F 2;i are
eliminated according to Rule 3, resulting in that Gi

has no output, Gi is then eliminated. This is because
a logic gate without any output is meaningless.

Rule 7. If 1) the state of Xn is unknown, 2) Xn

does not have any output, and 3) Xn is not predeter-
mined in concern, Xn and all its input directed arcs are
eliminated from the DUCG.

For example, suppose the state of X3 is unknown, it
has no output and it is not predetermined in concern,
then X3 and F 3;i are eliminated. This is because given
E, X3 and F 3;i do not have any influence in finding
the possible hypotheses and updating the probabilities
of these hypotheses.

Rule 8. If E shows that Xnk and Vij, V ∈ {B,X},
are true and Xnk appears earlier than Vij, which means
that Vij cannot be the cause of Xnk, the F or P type
variables (they are the members of the causality chain
from Vij to Xnk and are not related to any other up-
stream causality chain of Xnk) are eliminated from the
DUCG.

For example, suppose X43 appears earlier than its
ground parent event B22, and between them is the par-
ent variable X1, F 4;1 and F 1;2 can all be eliminated,
provided that no other ancestor of X43 has causality
connection with X43 through X1. However, if B3 is
also a parent variable of X1, which means that B3 can
cause X43 through F 43;1, only F 1;2 can be eliminated
while F 4;1 cannot be eliminated, because F 43;1F 1;3B3

is a possible causality chain.
It should be noted that this rule is about a specific

type of evidence: the occurrence order of events. This
type of evidence has been presented in [31]. Rule 8 is
only an extension of the result in [31] from DCD to
DUCG.

Rule 9. If there is such a group of variables (named
as the independent group) that have no causal connec-
tion with those variables related to E, and no variable
in this group is predetermined in concern, this inde-
pendent group of variables can be eliminated from the
DUCG.

For example, suppose B1 and X2 along with F 2;1

become independent of (without any causal connection
with) the other variables related to E, meanwhile B1

and X2 along with F 2;1 are not predetermined in con-
cern, B1, X2 and F 2;1 are eliminated, because they
have nothing to do with the inference for the hypothe-
ses in concern, given E.

Rule 10. If E shows Xnk is true while Xnk does not

have any input due to any reason, add a virtual parent
event Dn to Xnk with ank;nD = 1 and ank′;nD = 0,
k 6= k′. rn;D can be any value. The added virtual Dn

can be drawn as in the simplified graph.

For example, if E shows that X51 is true and all
its input directed arcs are broken due to the simplifi-
cation, X51 is then without any input and should be
eliminated according to Rule 5. However, suppose X51

is the parent of X61. Then, X51 should not be elimi-
nated. The problem is that X51 should have an input
in the given DUCG, otherwise it cannot be observed.
But by some mistake or other reason, this input is not
given in the DUCG. Therefore, there must be an un-
known cause (a51;5D = 1) for X51. This unknown cause
is represented by the virtual event D5, so that X51 is
not eliminated. This is another property of DUCG, i.e.,
DUCG is able to point out the absence of meaningful
events in the DUCG graph. Of course, the detailed
contents of such events can only be explained by the
domain experts after they are informed the existence of
such events.

Rules 1∼10 can be applied in any order, at any time
and repeatedly, except that Rule 10 has the priority
over Rule 5.

It should be pointed out that the simplification by
Rules 1∼10 is different from the variable elimination
(VE) presented in [12], because VE is based on a given
query Pr{Xnk|E}, while Rules 1∼10 are based on only
E. The simplified DUCG can be applied for any query
remaining in concern after the simplification. Of course,
based on the simplified DUCG, for a given query, VE
can be applied to further simplify the DUCG as a query-
specific DUCG.

It is noted that the {X, B} type variables in the
original DUCG are divided, by applying the above
rules, into two groups indexed by the index sets Sin

and Sout respectively. The variables indexed by Sin are
those included in the simplified DUCG. The variables
indexed by Sout are those eliminated by Rules 1∼10,
and are no longer in concern given E. Therefore, the
{B,X} type variables in concern have been reduced
from Sin + Sout to Sin conditioned on E. For the ex-
ample shown in Figs. 30 and 33, Sin = {1, 2, 4, 5, 7}
and Sout = {3}. Usually, Sin ¿ Sin + Sout . Therefore,
Rules 1∼10 can dynamically reduce the scale of prob-
lem greatly.

In what follows, we will focus on the variables in-
dexed by Sin only. In other words, the following dis-
cussion is based on only the simplified DUCG, and only
those hypotheses included in the simplified DUCG will
be considered. For the application of diagnoses, this
means that the root causes to be found are reduced to
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only the state unknown B type variables indexed in
Sin . Sometimes, there is only one state unknown B
type variable in Sin . Then the diagnosis is finished,
because the root cause has been exactly found. Note
that such a qualitative solution can be found before
any numerical calculation. Therefore, the probability
parameter accuracy in DUCG is not as important as in
BN. This is another benefit of DUCG.

7 Probabilistic Reasoning Based on the
Simplified DUCG

Suppose Hkj is the hypothesis in concern condi-
tioned on evidence E =

∏
h Eh =

∏
h Vhyh

, where Hkj

is composed of {X, B, P,A} type events (P and A type
events can be included in a hypothesis or query is an-
other benefit of DUCG), k indexes the variables in Hkj

(e.g., Hk = B1X2) and j indexes the state combination
of these variables (e.g., Hkj = B11X23); Eh = Vhyh

and
V ∈ {X, B}. The probability updating can be given as

hs
kj ≡Pr{Hkj |E} =

Pr{HkjE}
Pr{E} =

Pr{Hkj

∏
h Vhyh

}
Pr{∏h Vhyh

} ,

(41)

where hs
kj is called the state probability of Hkj . Based

on the simplified DUCG, there are two alternative ap-
proaches to calculate hs

kj .
The first is to calculate the CPTs still included in the

simplified DUCG, provided that the simplified DUCG is
not incomplete. By applying the existing algorithms of
BN, the inference can be done. However, for an incom-
plete DUCG, not all CPTs can be calculated. Then,
only the second approach presented in this paper is
applicable.

The second is the event outspread approach origi-
nally presented in [31] for DCD and is extended for
DUCG in this paper. It is seen that (41) needs to
outspread

∏
h Vhyh

and Hkj

∏
h Vhyh

respectively into
the form of the sum-of-products composed of only the
{B,A, P,D} type events, so that the probability can be
calculated by simply replacing these events with their
probabilities. During the event outspread, the following
rules are applied.

Rule 11. Given V ∈ {B,X, G, D}, j 6= j′ and inte-
ger y > 2, (Vij)y = Vij and VijVij′ = 0.

Proof. Vij is an event. Therefore, (Vij)y = Vij is
obvious. By definition, the different states of a variable
are exclusive. Therefore, VijVij′ = 0. ¤

There are many ways to apply Rule 11. For example,
suppose E1 = Xnk = Fnk;ijXij and E2 = Xij , we have
E1E2 = Fnk;ijXijXij = Fnk;ijXij = E1. For another
example, Fnk;ijXijXij′ = 0.

Rule 12. Given integer y > 2, k 6= k′ and j 6= j′,

then (Fnk;ij)y = (rn;i/rn)yAnk;ij, Fnk;ijFnk′;ij = 0,
Fnk;ijFnk;ij′ = 0 and Fnk;ijFnk′;ij′ = 0.

Proof. By definition, (Fnk;ij)y = ((rn;i/rn)Ank;ij)y.
Since Ank;ij is an event, (Ank;ij)y = Ank;ij . There-
fore, (Fnk;ij)y = ((rn;i/rn)Ank;ij)y = (rn;i/rn)yAnk;ij .
According to Rule 11, when k 6= k′, XnkXnk′ = 0,
which means that Ank;ij cannot appear simultane-
ously with Ank′;ij . Thus Ank;ijAnk′;ij = 0; Simi-
larly, when j 6= j′, VijVij′ = 0, V ∈ {X, B, G},
which means that Ank;ij cannot appear simultane-
ously with Ank;ij′ . Thus Ank;ijAnk;ij′ = 0. There-
fore, we have Fnk;ijFnk′;ij = (rn;i/rn)2Ank;ijAnk′;ij =
0, Fnk;ijFnk;ij′ = (rn;i/rn)2Ank;ijAnk;ij′ = 0 and
Fnk;ijFnk′;ij′ = (rn;i/rn)2Ank;ijAnk′;ij′ = 0. ¤

For example, suppose E1 = Fnk;ijXij + Fnk;gyBgy,
E2 = Fnk;gyBgy and E3 = Fnk′;ijXij , where k 6= k′.
We have

E1E2 =Fnk;ijXijFnk;gyBgy + (Fnk;gyBgy)2

=(rn;irn;g/r2
n)Ank;ijXijAnk;gyBgy +

(rn;g/rn)2Ank;gyBgy,

E1E3 =Fnk;ijXijFnk′;ijXij + Fnk;gyBgyFnk′;ijXij = 0.

Rule 13. Let Sm denote the variable index set m,
m ∈ {1, 2, . . . , M}, and S1 ⊆ S2, S1 ⊆ S3, . . . , S1 ⊆
SM . Then

M∑

M=1

∏

i∈Sm

Fnk;ijiViji

=
( M∑

M=1

∏

i∈Sm

(rn;i/rn)
) ∏

i∈S1

Ank;ijiViji .

Proof. Suppose E1 and E2 are two events. From
the set theory, E1 ∪ E1E2 = E1 = E1 ∪ E1, i.e., once
E1E2 is true, E1 is true, and once E1 is true, the whole
equation is true, which is equivalent to E1E2 is true.
Thus, we can use E1 to replace E1E2 in this equation.
Similarly,

M∑
m=1

∏

i∈Sm

Fnk;iji
Viji

=
M∑

m=1

∏

i∈Sm

(rn;i/rn)Ank;iji
Viji

=
M∑

m=1

( ∏

i∈Sm

(rn;i/rn)
∏

i∈Sm

Ank;ijiViji

)

=
M∑

m=1

( ∏

i∈Sm

(rn;i/rn)
∏

i∈S1

Ank;ijiViji

)

=
( M∑

m=1

∏

i∈Sm

(rn;i/rn)
) ∏

i∈S1

Ank;ijiViji .
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The third “=” is because once
∏

i∈Sm
Ank;iji

Viji
is true,∏

i∈S1
Ank;iji

Viji
is true, and once

∏
i∈S1

Ank;iji
Viji

is true, the whole equation is true, which is equiva-
lent to

∏
i∈Sm

Ank;iji
Viji

is true. Thus, we can use∏
i∈S1

Ank;iji
Viji

to replace
∏

i∈Sm
Ank;iji

Viji
, condi-

tioned on S1 ⊆ S2, S1 ⊆ S3, . . . , S1 ⊆ SM . ¤
For example,

F31;11V11 + F31;11V11F31;22V22

=(r3;1/r3)A31;11V11+

(r3;1/r3)A31;11V11(r3;2/r3)A31;22V22

=(r3;1/r3 + (r3;1/r3)(r3;2/r3))A31;11V11,

where S1 = {1}, S2 = {1, 2} and M = 2.
It should be noted that Rule 13 actually defines a

new algorithm different from the ordinary set theory.
This is because in M-DUCG, the A type events are
always attached with the weighting factors (rn;i/rn).
Rule 13 says that the event absorption of set the-
ory is applicable, but the weighting factors cannot
disappear due to the event absorption. For the ex-
ample above, suppose E1 = (r3;1/r3)A31;11V11 and
E2 = (r3;2/r3)A32;22V22. According to the set theory,
E1E2 should be absorbed by E1; but the weighting
factors (r3;1/r3)(r3;2/r3) attached with E1E2 should
not be absorbed but be added to (r3;1/r3) that is at-
tached with E1. In other words, the event opera-
tion and the weighting factor operation should both
be done simultaneously. That is why we need to write
E1 ∪ E1E2 = E1 ∪ E1.

Rule 14. Let j = ji, Fnk;ijVij(
∑

i′ Fnk;i′ji′Vi′ji′ ) =
Fnk;ijVij.

Proof. i is one of i′. With the same concept of Rule
13, we have

Fnk;ijVij

( ∑

i′
Fnk;i′ji′Vi′ji′

)

=(Fnk;ijVij)2 + Fnk;ijVij

∑

i′ 6=i

Fnk;i′ji′Vi′ji′

=(rn;i/rn)2Ank;ijVij + (rn;i/rn)
∑

i′ 6=i

(rn;i′/rn)·

Ank;i′ji′Vi′ji′Ank;ijVij

=(rn;i/rn)2Ank;ijVij + (rn;i/rn)·∑

i′ 6=i

(rn;i′/rn)Ank;ijVij

=
(
(rn;i/rn)2 + (rn;i/rn)

∑

i′ 6=i

(rn;i′/rn)
)
Ank;ijVij

=
(
(rn;i/rn)

∑

i′
(rn;i′/rn)

)
Ank;ijVij

=(rn;i/rn)Ank;ijVij = Fnk;ijVij . ¤

Rule 14 may be viewed as if Fnk;ij from different par-
ent variables were exclusive with each other, i.e., given
i 6= i′, Fnk;ijFnk;i′j′ = 0 while (Fnk;ij)2 = Fnk;ij . How-
ever, this is incorrect, because 1) Ank;ij and Ank;i′j′

are actually independent of each other (being indepen-
dently given) and 2) (Fnk;ij)2 = (rn;i/rn)Fnk;ij (Rule
12) instead of (Fnk;ij)2 = Fnk;ij .

As an application, for the example shown in Fig.32,
after simplifying the DUCG as shown in Fig.33, the
hypotheses in concern become H11 ≡ B11, H21 ≡ B21

and H71 ≡ P71;7D. In other words, denote SH as the
possible hypothesis space conditioned on E, we have
SH = {H11,H21,H71} that is the qualitative solution
to this diagnostic problem. Since the influence of evi-
dence E1 = B32 has been included in Fig.33 and B32

is irrelevant to the simplified DUCG, we know that
Pr{B21|B32X71} is equivalent to Pr{B21|X71}. Accord-
ing to (41), we have

hs
21 ≡Pr{B21|B32X71}

=Pr{B21|X71} =
Pr{B21X71}

Pr{X71} .

By outspreading X71 and B21X71 respectively and not-
ing D7 = 1, we have

X71 = (P71;61G61 + P71;62G62) ∪ P71;7DD7 = (P71;61G61 + P71;62G62)P 71;7D + P71;7D = (P71;61(X42 + X43)X52+

P71;62X43X53)P 71;7D + P71;7D = P71;61P 71;7X42X52 + P71;61P 71;7DX43X52 + P71;62P 71;7DX43X53 + P71;7D

= P71;61P 71;7D(F42;11B11 + F42;21B21)(F52;11B11 + F52;21B21) + P71;61P 71;7D(F43;11B11 + F43;21B21)·
(F52;11B11 + F52;21B21) + P71;62P 71;7D(F43;11B11 + F43;21B21)(F53;11B11 + F53;21B21) + P71;7D

= P 71;7D




P71;61(F42;11F52;11B11 + (F42;11F52;21 + F52;11F42;21)B11B21 + F42;21F52;21B21+
F43;11F52;11B11 + (F43;11F52;21 + F52;11F43;21)B11B21 + F43;21F52;21B21)+
P71;62(F43;11F53;11B11 + (F43;11F53;21 + F53;11F43;21)B11B21 + F43;21F53;21B21)


 + P71;7D, (42)

B21X71 = B21

(
P 71;7D




P71;61(F42;11F52;11B11 + (F42;11F52;21 + F52;11F42;21)B11B21 + F42;21F52;21B21+
F43;11F52;11B11 + (F43;11F52;21 + F52;11F43;21)B11B21 + F43;21F52;21B21)+
P71;62(F43;11F53;11B11 + (F43;11F53;21 + F53;11F43;21)B11B21 + F43;21F53;21B21)


 + P71;7D

)

= B21

(
P 71;7D




P71;61(F42;11F52;11B11 + (F42;11F52;21 + F52;11F42;21)B11 + F42;21F52;21+
F43;11F52;11B11 + (F43;11F52;21 + F52;11F43;21)B11 + F43;21F52;21)+
P71;62(F43;11F53;11B11 + (F43;11F53;21 + F53;11F43;21)B11 + F43;21F53;21)


 + P71;7D

)
. (43)
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The {b, p, a, r} type parameters have been given in Section
5. Remember Pr{Fnk;ij} = fnk;ij = (rn;i/rn) ank;ij . By re-
placing the uppercase letters with their corresponding lower-
case letters in the above event expressions, we can easily cal-
culate out Pr{X71} = 0.027 29 and Pr{B21X71} = 0.020 38.
Finally, hs

21 = 0.746 5 is calculated from (41). Similarly, we
can calculate out hs

11 = 0.231 4 and hs
71 = Pr{H71|E} =

Pr{P71;7D|X71} = 0.183 2. Based on that B11, B21 and
P71;7D are the only hypotheses given E, the conditional
rank probabilities of B11, B21 and P71;7D are calculated as
hr

11 = 0.199 3, hr
21 = 0.642 9 and hr

71 = 0.157 8 respectively,
where the conditional rank probability is defined as

hr
kj ≡

hs
kj∑

Hkj∈SH
hs

kj

=
Pr{HkjE}∑

Hkj∈SH
Pr{HkjE} . (44)

It satisfies ∑
Hkj∈SH

hr
kj = 1. (45)

Note that if there is only hr
kj = 1 one hypothesis Hkj in

SH , according to (44), we know hr
kj = 1 without calculating

hs
kj . In the diagnostic inference, when only one hypothesis

Hkj is found possible after simplifying DUCG based on E,
even though HkjE 6= E, the diagnostic inference is finished
without numerical calculation, because we know hr

kj = 1 for
sure. Meanwhile, the parameter accuracy is less important
in DUCG, because 1) the qualitative solution SH has been
found before numerical calculation, and 2) the numerical
calculation is limited to the possible hypotheses in SH such
that the data accuracy has less impact on the calculation.

It is noted that Fig.33 is a multiply connected graph.
In this example, it is shown that the inference of DUCG in
the case of the multiply connected graph does not rely on
the application of the clustering or cutset conditioning algo-
rithm as in BN. The correlations of the multiple connections
in DUCG are automatically broken through the event out-
spread without any special computation, no matter whether
the DUCG is singly or multiply connected. This is another
benefit of applying DUCG.

8 Conclusions and Future Work

In this paper, it is pointed out that the compact un-
certain causality representations applicable in single-valued
cases may not be suitable to be applied in multi-valued
cases, because the imposed normalization is improper. As a
solution, DUCG is presented, which is applicable in both
single-valued case (S-DUCG) and multi-valued case (M-
DUCG), while the M-DUCG model can also be applied
in the single-valued case. The sufficiency and separability
mentioned in [19] for the compact knowledge representa-
tion and efficient inference algorithm are actually achieved
by DUCG. Moreover, based on the simplified DUCG con-
ditioned on the observed evidence including the occurrence
order of events, DUCG provides a new tool, i.e., the event
outspread algorithm to deal with the probabilistic reason-
ing, regardless of whether the simplified DUCG is singly or
multiply connected. A set of rules of simplifying DUCG and
the event outspread are presented. Sometimes, the simpli-
fied DUCG can provide the qualitative or even final solution

to the problem without any numerical calculation. More-
over, benefited from Theorem 1 that enables the self-relied
chaining inference algorithm, DUCG can be incomplete in
representing CPTs, i.e., it is not necessary for DUCG to
represent the causal knowledge not in concern, although the
complete representation is necessary for representing CPTs.
Mathematically, DUCG may not represent a joint proba-
bility distribution over a set of variables, although DUCG
is able to. This, along with the capacities of representing
complex conditional uncertain causalities and utilizing the
occurrence order of events, makes DUCG a new framework
including and beyond BN. Finally, a new event algorithm
beyond the ordinary set theory is presented to deal with
the logic operation of the weighted events newly defined in
M-DUCG.

Limited to the length, only the discrete, certain evidence
and directed acyclic graph (DAG) are addressed in this pa-
per. It will be shown that DUCG is able to deal with di-
rected cyclic graph (DCG) in a future paper; otherwise, the
presented modularized construction of DUCG is inapplica-
ble. The more efficient inference algorithm in terms of ma-
trixes is also to be addressed in a future paper. Moreover,
DUCG also aims at dealing with the dynamic change of on-
line received evidence, dynamically changed causality func-
tions, cases involving the initiating and non-initiating events
in process systems, overlap of causality functions from con-
tinuous past time with varying weight, freely mixed certain
and uncertain causalities in a same DUCG, uncertain/fuzzy
evidence, freely mixed continuous and discrete variables in
compact representations, etc. Many of these methodolo-
gies are being applied in a project for the online fault fore-
cast, diagnosis and prediction of the nuclear power plants of
China Guangdong Nuclear Power Group. All these issues
are planned to be addressed in the future papers.
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