
Zhou JF, Ling TW, Bao ZF et al. Related axis: The extension to XPath towards effective XML search. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 27(1): 195–212 Jan. 2012. DOI 10.1007/s11390-012-1217-0

Related Axis: The Extension to XPath Towards Effective XML Search

Jun-Feng Zhou1,2 (周军锋), Member, CCF, Tok Wang Ling3 (林卓旺), Senior Member, ACM, IEEE
Zhi-Feng Bao3 (鲍芝峰), and Xiao-Feng Meng2 (孟小峰), Senior Member, CCF, Member, ACM, IEEE

1School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2School of Information, Renmin University of China, Beijing 100872, China
3School of Computing, National University of Singapore, 117417, Singapore

E-mail: zhoujf@ysu.edu.cn; {lingtw,baozhife}@comp.nus.edu.sg; xfmeng@ruc.edu.cn

Received September 6, 2010; revised July 22, 2011.

Abstract We investigate the limitations of existing XML search methods and propose a new semantics, related relation-
ship, to effectively capture meaningful relationships of data elements from XML data in the absence of structural constraints.
Then we make an extension to XPath by introducing a new axis, related axis, to specify the related relationship between
query nodes so as to enhance the flexibility of XPath. We propose to reduce the cost of computing the related relationship
by a new schema summary that summarizes the related relationship from the original schema without any loss. Based on
this schema summary, we introduce two indices to improve the performance of query processing. Our algorithm shows that
the evaluation of most queries can be equivalently transformed into just a few selection and value join operations, thus avoids
the costly structural join operations. The experimental results show that our method is effective and efficient in terms of
comparing the effectiveness of the related relationship with existing keyword search semantics and comparing the efficiency
of our evaluation methods with existing query engines.

Keywords XML, XPath, related axis, entity graph, schema summary

1 Introduction

As a de facto standard for information representa-
tion and exchange over the Internet, XML has been
used extensively in many applications and huge volumes
of data are organized or exported in XML format. Ex-
tracting desired information from XML data collections
using an effective and efficient approach is an important
research issue. In practice, however, the feature that
data can be flexibly organized with different structures
results in two challenges: (C1) the underlying schemas
may be too complex to be fully understood by most
users; (C2) the given XML documents may be of struc-
tural heterogeneity. Together the two challenges make
the task of retrieving desired information from the given
XML documents no longer a trivial task.

Traditionally, a structured query language, e.g.,
XQuery 1O or XPath 2O, can convey complex semantics
and therefore extract precisely the desired information
from XML data. However, a prerequisite is that users

must fully understand the underlying schema so as to
correctly formulate their query expressions, which will
impose great burden on most users and is likely infea-
sible in practice. Moreover, when searching heteroge-
neous XML documents, any single structured query ex-
pression is infeasible in such a case. Using tree pattern
queries in conjunction with data integration mapping
rules[1] is complex and error-prone, since maintaining
the mapping relationship may involve extensive manual
intervention. Therefore, structured query methods[2-6]

are infeasible to C1 and C2.
Keyword search methods[7-23], on the other hand,

free users from the great burden of understanding the
underlying schema. However, as shown in Example 1,
they may return too many irrelevant results for two rea-
sons: 1) the meaningfulness of an answer is determined
by only structure information, 2) structural constraints
are prohibited from pruning irrelevant answers.

Example 1. Consider the document D in Fig.1. Us-
ing keyword search method, Q1 and Q2 in Fig.1 can

Regular Paper
This research was partially supported by the National Science and Technology Major Project of China under Grant No.

2010ZX01042-002-003, the National Natural Science Foundation of China under Grant Nos. 61073060, 61040023, 61070055, 91024032,
the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University of China under
Grant No. 10XNI018.

1Ohttp://www.w3.org/TR/xquery/
2Ohttp://www.w3.org/TR/xpath20/
©2012 Springer Science +Business Media, LLC & Science Press, China

196 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

be written as {Mike, John, item} and {Mike, America,
person}, respectively. The basic semantics of [7-9, 11,
13-15, 17-23] are based on tree model, thus they can-
not capture the meaningful relationships conveyed by
IDREF. They may consider f1, f2, f4 (for Q1) and f5

(for Q2) of Fig.2 as matched data fragments. The key-
word search semantics of [10, 12, 16] are based on graph
model (IDREF considered), thus they can find more
answers. They may consider f1 to f4 as matched data
fragments of Q1, f5 and f6 as matched data fragments
of Q2. However, we cannot identify the relationships

of the entity (entity has the same meaning as that of
ER model) instances (video and person) in f1 and f5,
since the two nodes (videos and persons) connecting
the two video nodes in f1 and the two person nodes
in f5 do not convey any useful information. f2 and f4

mean that both “Mike” and “John” provide “videos”
that contain useful information about the same item
named “bowlder” and “bow”, respectively. f3 means
that “Mike” bought the item named “gem” which was
sold by “John”. f6 means that “John” lives in “Ame-
rica” and he traded with “Mike” in an “auction”.

Fig.1. Example auction XML document D, where solid arrows denote the containment relationship, dashed arrows denote the reference

relationship, the number beside each node is the id of this node.

Fig.2. Example data fragments for keyword queries {Mike, John, item} and {Mike, America, person}. (a) f1. (b) f2. (c) f3. (d) f4.

(e) f5. (f) f6.

Jun-Feng Zhou et al.: Related Axis: The Extension to XPath Towards Effective XML Search 197

According to the semantics of [16], each pair of entity
instances cannot have sibling relationship, however,
node 5 and node 8 in f4, node 13 and node 15 in f2 are
entity instances and do not meet this condition, thus f2

and f4 are considered as meaningless data fragments.
If the users’ search intention is themeaning conveyed
by f2 and f4, this method will lose meaningful answers.

By combining keyword search semantics and struc-
tured query language together, the methods proposed
in [15-16, 24-26] provide users with a relaxed-structure
query mechanism and return approximate answers.
The effectiveness of such methods is affected by two
factors: 1) keyword search semantics and 2) the re-
quirements on users about the underlying schema. The
limitations of the first factor are discussed in Example
1. For the second factor, [15, 24-26] need users to un-
derstand partial schema information so as to specify the
value-join conditions in the where clause of the XQuery
expression. For example, for Q1, users are required to
explicitly specify how auction is associated with person
and item. [16] uses a schema summary[27] to help users
to formulate their query expressions. The usability
of the schema summary is very sensitive to the given
query. In some cases, the expanded schema summary
may be almost the same as the original schema and dif-
ficult for users to understand. Although these methods
provide users with more flexibility, they all suffer from
the same problem as the structured query methods do
since structural constraints are indispensable in some
cases.

We argue that when confronting challenges C1 and
C2, a good query mechanism should be both effective
and flexible. “effective” means that each answer should
come from a data fragment that describes the meaning-
ful relationships of entity instances. Such a requirement
is based on the observation that users just care about
the relationships of the representative data nodes (e.g.,
photo, video, item, person and auction in Fig.1) which
we call entities in ER model and in most of the time
their query semantics are based on the relationships of
entities. The “flexible” means that users can freely in-
corporate whatever knowledge of the given schema into
their query expressions to prune irrelevant answers,
while system does not impose any requirements about
the schema on users. From the above discussion we
know that when confronting C1 and C2, no existing
method is both effective and flexible, since they may
either return meaningless results (e.g., keyword search
methods) or require that users understand (at least
partial) the schema (e.g., structured query methods
and [15-16, 24-26]).

Motivated by C1, C2 and the above discussion, in
this paper, we focus on providing users with an effective

and flexible query mechanism to extract the desired in-
formation from the given XML documents.

For “effective”, we propose a new semantics, related
relationship, to capture the meaningful relationships
of data elements from the given XML documents in
the absence of structural constraints. For example, ac-
cording to the related relationship, f1 and f5 in Fig.2
will not be considered as meaningful data fragments.
The related relationship considers only semantic re-
lationships of data elements, which may be organized
with different structures in practice. When formulating
query expressions, users can just focus on the desired
semantics, rather than the complex or heterogeneous
hierarchical structures. Therefore, C1 and C2 are no
longer challenges for the related relationship.

For “flexible”, we make an extension to XPath by in-
troducing a new axis, related axis, to specify the related
relationship of two query nodes. Thus users can freely
incorporate whatever structural constraints, which are
not the necessary conditions, into their query expres-
sions to prune irrelevant answers. Further, an extended
XPath expression can be seamlessly incorporated into
an XQuery expression to convey complex semantic con-
straints as done in [15-16], and at the same time, have
a more concise format.

Example 2. Using the extended XPath, Q1 in Fig.1
can be written as //item[/related::∗ ∼“Mike”][/related::
∗ ∼“John”], where “∗” is a query node of any name,
“∼” has the same meaning as the built-in function
“contains()” of XQuery, which denotes that “Mike” or
“John” is contained by the value of the “∗” node. This
expression will find all items that have the related rela-
tionship with the entity instances that contain “Mike”
and “John” as their attribute value. For D in Fig.1,
there are three entity instances (nodes 8, 15 and 23)
containing “Mike”, three entity instances (nodes 5, 13
and 20) containing “John”. According to the related
relationship, node 2 is related with nodes 5 and 8, node
10 is related with nodes 13 and 15, node 17 is related
with nodes 20 and 23, i.e., f2, f3 and f4 are considered
as meaningful data fragments. Then nodes 2, 10 and
17 will be returned as matched results.

If we want to search data fragments in which
“Mike” and “John” are contained by the value of the
name attribute of two person nodes, we can inco-
rporate structural constraints into the above expre-
ssion, which is then rewritten as //item[/related::
person//name∼“Mike”] [/related::person//name∼“Jo-
hn”].

According to the related relationship, only f3 (f2

and f4 are pruned) is considered as a meaningful data
fragment, then node 17 is returned as a matched result.

As the related relationship captures meaningful

198 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

relationships that may be organized in different forms,
especially for heterogeneous XML documents, a query
expression with related axes may correspond to mul-
tiple query expressions without related axes. We call
the former abstract tree pattern (ATP) and each one
of the latter a query pattern (QP), which consists of a
set of tree (or twig) pattern (TP) queries connected to-
gether by reference edges. We show in Section 4 that to
evaluate an ATP query, we need to solve the following
problems.

P1: identifying all QPs from the underlying schema.
P2: evaluating all QPs against the given XML data.
For P1, we propose to use an entity graph as a

schema summary that is generated from the original
schema graph by removing the non-entity nodes and
preserving the entity nodes and their connection rela-
tionships. Based on an entity graph, our method em-
ploys a delay-checking strategy so as to avoid the costly
I/O operations (compared with [10, 28]) and avoid los-
ing meaningful QPs (compared with [12, 16]).

For P2, we introduce two indices to improve the
query performance. The first is an inverted list called
partial path index. For each keyword k, partial path in-
dex stores 1) all entity instances that contain k as their
attribute or attribute value and 2) paths from these
entity instances to k. The second is also an inverted
list called entity path index. Entity path index stores
all matched entity instances of entity pairs, where for
each entity pair, entity nodes are joined by an edge
of the entity graph. Compared with [29], our indices
are more flexible and materialize the ID/IDREF rela-
tionship. Based on the two indices, the costly struc-
tural join operations in most queries can be equiva-
lently transformed into just a few selection and value
join operations.

In summary, our contributions are as follows.
• We propose a new semantics, related relationship,

to capture the meaningful relationships of data ele-
ments, then make an extension to XPath by introducing
a new axis, related axis, to specify the related relation-
ship of two query nodes so as to provide users with a
query mechanism of both effective and flexible.

• We propose to use an entity graph as a schema
summary, based on which our method employs a delay-
checking strategy to avoid the costly I/O operations
and reduce the CPU cost of computing QPs.
• We propose to use partial path index and entity

path index to improve the performance of query pro-
cessing. We further prove the high efficiency of our
method, that is, the costly structural join operations of
most queries can be equivalently transformed into just
a few simple selection and value join operations.
• We conduct an extensive experimental study. The

experimental results with datasets of various charac-
teristics demonstrate that our method is effective and
efficient in terms of various evaluation metrics.

The rest of the paper proceeds as follows. In Section
2, we introduce preliminaries. In Section 3, we intro-
duce the related relationship and the extended XPath.
In Section 4, we present our query evaluation method.
In Section 5, we report our experimental results. Sec-
tion 6 is dedicated to related work. We conclude this
paper in Section 7.

2 Preliminaries

Schema S. We assume that the schema is always
available, as we can use the methods proposed in [30-
31] to infer the schema (if unavailable). We use a node
labeled directed graph S to model a schema. Formally,
S = (VS , ES), where VS denotes a set of schema ele-
ments each with a distinct tag name, ES denotes a set
of directed edges between schema elements. As shown
in Fig.3, there are two kinds of edges in S. The first is
the containment edge, which is drawn as a solid arrow
from an element (e.g., person) to its child element (e.g.,
name). Containment edge denotes the parent-child (P-
C) relationship of data elements in an XML document.
The second is the reference edge, which is drawn as
a dashed arrow from the attribute (e.g., @person) of
referrer element (e.g., bidder) to referee element (e.g.,
person).

Node Categories. In the following discussion, entity
and attribute refer to the notions defined in ER-model,

Fig.3. Example schema S derived from XMark.

Jun-Feng Zhou et al.: Related Axis: The Extension to XPath Towards Effective XML Search 199

rather than that defined in XML specification 3O. To
facilitate our discussion, entity denotes the entity-type,
which is an entity node in a schema graph; entity in-
stance is the instance of entity in XML data. Gen-
erally speaking, two kinds of methods can be used to
specify the category of schema elements, which are 1)
automatic methods using heuristic inference rules[13,16]

and 2) manual method done by database administrator
(DBA) or domain expert. The inference rules of [13,
16] are as follows.

1) A node represents an entity if it corresponds to a
∗-node in the document type definition (DTD).

2) A node denotes an attribute if it does not corre-
spond to a ∗-node, and only has one child, which is a
value.

3) A node is a connection node if it represents nei-
ther an entity nor an attribute. A connection node can
have a child that is an entity, an attribute or another
connection node.

The automatic method can avoid the cost of man-
ual intervention, but it may not be quite correct. The
example, for the schema in Fig.3, person is a ∗-node,
thus by rule 1), person represents entity, instead of the
attribute of site. However, according to the above infe-
rence rules, phone will be considered as an entity, which
is unreasonable. By using manual method from scratch,
we can get the accurate category of each schema node,
but it may impose great burden on DBA or domain
experts.

Therefore, to achieve accurate node categories while
paying minimum manual intervention, we first em-
ploy the above rules to get an approximate catego-
rization, followed by a minor manual adjustment from
DBA or domain expert. In this way, they can ac-
complish this task easily, even if for heterogeneous
schemas. For example, there are twenty-two XML
datasets provided in the website http://www.cs.wa-
shington.edu/research/projects/xmltk/xmldata/www/
repository.html, using our method, all the schema infor-
mation can be analyzed easily, including XMark bench-
mark, which has a complex schema[16]. In the following
discussion, we take phone and watch as multi-value
attributes of their entities, and the underlined nodes as
entities in Fig.3.

Such a method is similar to [32], where users are re-
quired to participate in the task of identifying entities,
the difference is that in this method, users are isolated
from the task. Further, this method is different from
the “entity extraction” of [33], where entity is assumed
to be loosely defined on the contents of web pages, not
schema, by a generic category.

In this paper, we mainly focus on designing an

effective and flexible query mechanism based on the
results of existing classification methods, not how to
improve the accuracy of existing classification meth-
ods. The notations used in our discussion are shown in
Table 1.

Table 1. Summary of Notations

Notation Description

MEW Meaningful entity walk
ATP Abstract tree pattern
QP Query pattern
TP Tree (or twig) pattern
PPI Partial path index
EPI Entity path index

3 Related Relationship

Before formally defining the related relation-
ship, having an intuitive impression on the data
organization of meaningful relationship will fa-
cilitate understanding our definitions. From
Fig.1, we know that person “Mike” bought
the item “gem”, which can be expressed as
R1: “personL99@person←buyer←auction→itemref→
@item99Kitem”. R1 denotes that a meaningful rela-
tionship between entity instances may contain edges
of different directions (mixed directions problem) and
cannot be identified by simply traversing the docu-
ment. Even if we omit the direction of each edge,
directly traversing an XML document of large size is
usually time consuming. An alternative way is finding
such relationship from a schema graph, which has much
smaller size. However, some relationships produced in
this case may be meaningless (meaningfulness prob-
lem). For example, R2: “item→name←person” is a
possible relationship produced by traversing the undi-
rected schema graph Su of S in Fig.3, such relationship
is meaningless since according to S, person and item
must have different child element named “name” in
XML documents, which contradicts R2. Thus, we need
an effective way to capture both “mixed directions”
and “meaningfulness”, so as to avoid losing meaningful
relationships (e.g., R1) by traversing directed graph
and producing meaningless relationships (e.g., R2) by
traversing undirected graph.

Definition 1 (Walk). A v0 − vk walk W : v0, e1,
v1, e2, v2, . . . , vk−1, ek, vk of the undirected schema
graph Su is a sequence of vertices of Su beginning
with v0 and ending at vk, such that each two con-
secutive vertices vi−1 and vi are joined by an edge
ei of Su. The number of edges of W is called the
length of W , which is denoted as L(W). For any
two nodes u and v of Su, if there exists at most one
edge joining u and v in Su, W can be written as

3Ohttp://www.w3.org/TR/REC-xml/

200 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

W : v0, v1, . . . , vk after removing edges. Any vi − vj

walk W ′ : vi, ei+1, vi+1, . . . , vj−1, ej , vj (0 6 i 6 j 6 k)
extracted from W is called a sub-walk of W , which is
denoted as W ′ ⊆ W .

Intuitively, a walk denotes a possible connection re-
lationship of two schema nodes where direction is not
considered. Note that Definition 1 does not require the
listed vertices and edges to be distinct, there may be
more than one walk between two nodes. We define walk
so as to avoid the problem of “mixed directions”, and
Definition 2 is used to avoid the problem of “meaning-
fulness” and capture the meaningful connection rela-
tionship of two entities.

Definition 2 (Meaningful Entity Walk, MEW). Let
S be a schema graph, a v0 − vk walk W of the undi-
rected schema graph Su is a meaningful entity walk of
S if both v0 and vk are entity nodes and
• L(W) 6 1, or
• W does not contain a sub-walk W ′ that has the

form u → v ← w in S, where “→” denotes a solid ar-
row from u(w) to v in S. Moreover, if W ′ has the form
u ← v → w in S, v must be an entity node.

Example 3. Consider the walks in Table 2, where
person, photo, video, item and auction are five entities.
As two keywords may be attributes or attribute val-
ues of the same entity instance, according to Definition
2, W1 is an MEW. W2 is not an MEW according to
Definition 2, the reason was discussed in the first para-
graph of this section, where W2 is denoted as R2. W3

means that a person is watching an auction, according
to Definition 2, W3 is an MEW. W4 means that both
photo and video belong to the same item, according to
Definition 2, W4 is an MEW. We cannot explain in-
tuitively the relationship of person and item in W5 as
they are connected together through a connection node,
i.e., site. According to Definition 2, W5 is not an MEW
since W5 has the form “item←site→person” and site is
not an entity. W6 means that both the two items are
sold in the same auction. According to Definition 2,
W6 is an MEW.

Table 2. Example Walks

W1 person
W2 person→name←item
W3 person→watches→watch→@auction99Kauction
W4 photo←photos←item→videos→video
W5 item←site→person
W6 itemL99@item←itemref←auction→itemref→@item99Kitem

Note that for simplicity, we do not mention in Defi-
nition 2 other constraints of the given XML documents
and the schemas. For example, both W4 and W6 are
MEWs according to Definition 2. However, from Fig.1
we know that no instance of W4 exists, from Fig.3 we
know that each auction corresponds to just one item,
which contradicts W6. Thus W4 and W6 should be

discarded, which will be further discussed in Examples
5 and 6.

In practice, users may just provide attributes or at-
tribute values rather than entity names when submit-
ting their queries. For example, for query Q1 in Fig.1,
the meaningful relationship is not based on item and
“Mike”, but item and entities that have entity instances
containing “Mike” as their attribute value. Thus if a
node is not an entity, we need to identify which entities
it belongs to.

Definition 3 (Self Entity Node). Let u, v be schema
elements, u an entity node. We say u is a self entity
node of v if v = u or v is an attribute node of u in the
schema graph, which is denoted as u ∈ selfE (v). For
a text value of an XML document, selfE (k) consists of
entities that have entity instances with attribute values
directly containing k.

According to Definition 3, D in Fig.1 and S in Fig.3,
we have selfE(auction)={auction}, selfE(name)={item,
person} and selfE(“Mike”)= {person, video}. Then we
formally define the related relationship and the combi-
nation of the related relationship and XPath grammar
as follows.

Definition 4 (Related Relationship). Let u and v
be two schema nodes. We say u and v have related
relationship if there exists a node u′ ∈ selfE (u) and
v′ ∈ selfE (v), such that there exists at least one MEW
between u′ and v′.

According to Definition 4, if u and w are sibling
nodes and they have a common entity ancestor v, then
u and w have the related relationship; even if u and
w have not a common entity ancestor, if they are en-
tity nodes and referenced by another entity node, they
are still related. Our method cares about only which
schema node is entity, not the structural discrepancy,
thus we do not need a single common schema and users
are freed from understanding the underlying schema,
especially when querying heterogeneous XML docu-
ments.

Definition 5 (RelatedStep). Let V be the set of en-
tities of the currently being processed context node, a
RelatedStep returns a sequence of nodes that are reach-
able from an entity instance of v ∈ V , via a related axis.

Definition 6 (Related Axis). The related axis con-
tains data elements that have related relationship with
the entity instances of the self entity nodes of the con-
text node.

The related axis has a very simple syntax that can be
seamlessly integrated into XPath. Fig.4(a) is the EBNF
grammar for the axis, where the newly introduced sym-
bols are underlined. There are totally 82 rules in the
current XPath grammar, among which only the 26th
and 28th rules have to be modified. RelatedStep is
further defined by the new rules [n1] and [n2] and

Jun-Feng Zhou et al.: Related Axis: The Extension to XPath Towards Effective XML Search 201

Fig.4. EBNF grammar for the extended XPath with related axis and two ATP queries Q3 and Q4. (a) EBNF grammar for the extended

XPath with related axis. (b) Q3. (c) Q4.

represented by the related axis. Besides the related
axis, we also introduce a separator, “∼>”, to indicate
the semantic constraint of the related relationship, thus
a path expression consisting of a series of step expres-
sions may be separated by “∼>”, e.g., “person∼>item”
is short for “child::person/related::item”.

Definition 7 (Abstract Tree Pattern, ATP). An ab-
stract tree pattern is a tree Q = (V,ED) where:
• associated with each node v ∈ V is Pv, which spec-

ifies the predicate for individual node match;
• associated with each edge e ∈ ED(e = (u, v)) is

SRe, which specifies the relationship between u and v
(SRe ∈ {/, //,∼>});
• associated with one and just one node u ∈ V is a

rectangle, which denotes that u is the return node.
Example 4. Consider the two ATP queries in Fig.4,

Q3 is used to find the name of items that are related
with the person whose name is “Mike”, which can be
written as “//person[name=“Mike”]∼>item/name”.
Similarly, Q4 can be written as “//item[name=
“gem”]∼>person/name”, which is used to find the
name of persons that have the related relationship with
the item which has name “gem”.

Although most existing studies[2-5] on twig pattern
query focus on returning the entire twig results, in prac-
tice, returning the entire twig results is seldom neces-
sary and may cause duplicate elimination or ordering
problems[6]. This problem also holds for an ATP query,
as a result, a formal definition of ATP matching is as
below.

Definition 8 (ATP Matching). Let Q be an ATP
query, D the given XML document, Q the set of QPs
of Q. A match of Q in D is identified by a mapping
from nodes in any Q′ ∈ Q to nodes in D, such that: 1)
query node predicates are satisfied by the corresponding
database nodes; 2) the structural relationships between
query nodes are satisfied by the corresponding database
nodes. The answer set R to Q consists of the distinct
database nodes from the matches of all queries in D,
where each answer d ∈ R is the text value of the return
node of Q.

4 Query Processing

The computation of a related relationship, e.g.,

A ∼> B, is finding from the given schema graph the
set of MEWs between each pair of entities of which
one comes from selfE(A) and the other selfE(B). Such
an operation equals to finding from the given schema
graph all QPs for keyword query Q = {A,B}. Then a
natural question is:

why not consider an ATP query Q as a keyword
query and directly apply existing keyword search meth-
ods to find matched results that satisfy the structural
constraints of Q?

Since an ATP query may contain ancestor-
descendant edges, existing keyword search method
cannot return all matched results when involving re-
cursive nodes. For example, for XML document
“A1/B1/A2/B2”, query “A//B” will return both B1
and B2 as matched results. However, for keyword
query Q = {A,B}, existing keyword search methods,
e.g., MLCA[15] or XSEarch[9], will only contain B2 in
the matched results. Therefore an ATP query cannot
be equivalently represented using a restricted keyword
query.

Therefore, to process a given ATP query Q, the ba-
sic idea of our method can be simply stated as: firstly
identify all QPs of the given ATP query by replacing
each related edge (∼>) of Q by one of its corresponding
MEW; then evaluate these QPs to find matched results,
which correspond to Algorithm 1 and Algorithm 2, re-
spectively. To find all QPs of the given ATP query, we
propose to use a simplified schema graph, i.e., entity
graph, as a schema summary to accelerate the compu-
tation in Subsection 4.1. For each QP of Q, we propose
two efficient indexes, i.e., partial path index and entity
path index in Subsection 4.2, based on which the costly
structural join operations of most queries can be equi-
valently transformed into just a few simple selection
and value join operations.

As shown in Section 6, identifying all QPs from the
given schema graph is not a trivial task, we introduce
a new schema summary in the following subsection to
solve this problem.

4.1 Computation of Query Patterns

Definition 9 (Entity Path). Path p: v1, v2, . . . , vk

(2 6 k) of schema graph S is called an entity path if it

202 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

is a directed path from v1 to vk, where only v1 and vk

are entity nodes, and for any vi (2 6 i 6 k−1), vi 6= vj

(1 6 j 6 k ∧ i 6= j).
Definition 10 (Partial Path). A partial path p is a

path starting with an entity that is the only entity node
of p.

Intuitively, an entity path describes the direct rela-
tionship of two entities, a partial path denotes contain-
ment relationship of an entity and one of its attributes.
To get the partial path information of any node, we
maintain an inverted index H that stores the set of
partial paths (not their instances) for each keyword k
appearing in the given XML document D, which can be
got after parsing D. Thus from H, we can get for each
keyword k, the set of partial paths and selfE(k) easily.
For example, H stores “video/provider, person/name”
for “Mike”. According to H, selfE(“Mike”)={video,
person}.

Definition 11 (Entity Graph). Let S be a schema
graph, P the set of entity paths of S. The entity graph
of S is represented as G = (V, E), which consists of
only entity nodes of S and for each entity path p ∈ P
that connects u and v in S, there is an edge in G that
joins u and v.

As shown in Fig.5, in an entity graph, two entity
nodes may be joined by two or more edges, e.g., person
and auction are joined by e4, e5, e6. Each edge of an en-
tity graph may be a containment edge (solid arrow) or
reference edge (dashed arrow). Each containment edge
of G denotes an entity path that consists of just con-
tainment edges in S and each reference edge denotes an
entity path that consists of at least one reference edge
in S. Compared with the original schema graph S, en-
tity graph G is much smaller and it captures the related
relationship among entities without any loss. The con-
struction of an entity graph is very simple according to
Definition 11, we omit it for limited space. According
to Definition 11, we have the following lemma, from
which we know that all MEWs can be computed from
an entity graph.

Lemma 1. There exists a one-to-one mapping be-
tween the edges of an entity graph and the entity paths
of the original schema graph.

As shown in [28], a joining sequence of two data ele-
ments in an XML document is data bound 4O, so is the

MEW. Considering this, users are usually required to
specify the maximum size C that equals the number of
edges in a joining sequence in existing methods[10,28].

However, such a method may result in two prob-
lems, 1) returning results of very weak semantics, 2)
losing meaningful results. For example, W3 and W4 in
Table 2 are two MEWs and L(W3) = L(W4) = 4, thus
the semantic strongness of the two MEWs should be
equal to each other, if all edges have the same weight.
Obviously, the semantic strongness of W3 and W4 is
not equal to each other if the semantic strongness is
measured based on the number of entity nodes. W3 de-
notes the direct relationship between person and auc-
tion, while W4 manifests that photo has related rela-
tionship with video through another entity (item). If
C = 4, W4 is returned, which conveys very weak se-
mantics; otherwise, if C = 3, W3 will not be returned
even if it conveys a direct relationship. To avoid these
problems, in our method, the C imposed on MEW is not
the maximum number of edges, but that of entity nodes.
This C is a user-specified variable with a default value
of 3.

Algorithm 1 is used to compute the set of QPs of
the given ATP query. There are three input parame-
ters, Q is the ATP query, G the entity graph and C
the constraint value which specifies the maximal num-
ber of entity nodes in an MEW. isEmpty(QX) is used to
check whether queue QX is empty. removeHead(QX) is
used to remove from QX the first element. getTail(W)
is used to get the last node of W . addTail(QX , X) is
used to put X at the end of QX . isMEW(W) is used
to check whether W is an MEW. selfE(u) denotes the
set of self entity nodes of u. In lines 1∼2, if Q does
not contain related edge, Q is returned. Otherwise, Q
is put into a queue QQ of queries in line 3. If QQ is not
empty, we get an ATP query Q in line 5. In line 6, we
get a related edge n1 ∼> n2 of Q. For each pair of en-
tity nodes (u, v) where u ∈ selfE (n1) and v ∈ selfE (n2),
we get the set of MEWs of u and v in lines 9∼23. For
each MEW W ∈ WMEW , we use it to replace the cor-
responding related edge n1 ∼> n2 in line 27 and merge
W with the other parts of Q to generate a set of ATP
queries QW . In lines 28∼32, for each newly produced
ATP query Q′ ∈ QW , if Q′ does not contain any related
edge, it is put into the QP set Q; otherwise, it is put

Fig.5. Entity graph G of S in Fig.3.

4OData bound means the size of a connection sequence may be as large as the number of nodes in an XML document.

Jun-Feng Zhou et al.: Related Axis: The Extension to XPath Towards Effective XML Search 203

into QQ for further processing. Finally, all QPs are
stored in Q and returned in line 34.

Example 5. Consider Q1 in Fig.1, which is expressed
as the ATP Q in Fig.6. Assume that the first pro-
cessed related edge is “I ∼> ∗ ∼‘M ’ ” and C = 3. Ac-
cording to D in Fig.1, we have selfE(“M”) = {V, P},
selfE(I) = {I}. According to lines 8∼24 of Algorithm
1, we need to compute the set of MEWs of (I, V) and
(I, P). For (I, V), we get one MEW W1 in Fig.6. For
(I, P), we get three MEWs shown as W2 to W4 in Fig.6.
In lines 26∼33, we get four new ATP queries shown as
Q1 to Q4. Note that all MEWs are shown with just en-
tity nodes and entity paths for simplicity. All the four
queries are put into QQ, then for each query in QQ, we
process the second related edge, i.e., “I ∼> ∗ ∼‘J ’ ”.
Similarly, selfE(“J”) = {V, P} and we get the same set
of MEWs for (I, V) and (I, P), i.e., W1 to W4. We illus-
trate the following operations using W4 as an example.
According to lines 26∼33, W4 needs to replace the re-
lated edge of Q1 to Q4 and then generate all possible
QPs. By applying W4 to Q1, we get Q41. The combi-
nation of W4 and Q2 generates Q42 and Q43. Similarly,
the combination of W4 and Q3 generates Q44 and Q45,
and the combination of W4 and Q4 generates Q46 to
Q48. Further, in line 27, when generating all possible
QPs, our method will consider other constraints to fil-
ter out meaningless QPs. For example, according to the
schema in Fig.3, each auction instance must correspond
to just one buyer, one seller and one item, then we can
safely discard Q42, Q44, Q46 and Q47. Note that we
omit the partial paths of each QP for simplicity.

Theorem 1 (Completeness). For a given ATP
query, Algorithm 1 produces all QPs that satisfy each
MEW used has at most C entity nodes.

The correctness of Theorem 1 is obvious according to

Algorithm 1 and Example 5. In lines 4∼25, we generate
all MEWs, then in lines 26∼33, we replace each related

Algorithm 1. queryRewriting(Q, G, C)
1: if (Q does not contain related edge) then
2: return {Q}
3: addTail(QQ, Q) /*queue of queries*/
4: while (¬ isEmpty(QQ)) do
5: Q ← removeHead(QQ)
6: pick a related edge n1 ∼> n2 of Q
7: WMEW ← ∅
8: foreach (u ∈ selfE(n1), v ∈ selfE(n2)) do
9: W ← u
10: addTail(QW , W) /*queue of walks*/
11: if (u = v) then WMEW ←WMEW ∪ {W}
12: while (¬ isEmpty(QW)) do
13: W ← removeHead(QW)
14: v′ ← getTailNode(W)
15: foreach (adjacent edge e of v′ in G) do
16: find a neighbor node w of v′ joined by e
17: W ′ ← W + ew
18: if (w = v∧ isMEW(W ′)) then
19: WMEW ←WMEW ∪ {W ′}
20: if (L(W ′) < C − 1) then
21: addTail(QW , W ′)
22: endfor
23: endwhile
24: endfor
25: endwhile
26: foreach (W ∈ WMEW) do
27: QW ← generate all ATP queries by merging

W with the other parts of Q
28: foreach (Q′ ∈ QW) do
29: if (Q′ does not contain related edge) then
30: Q ← Q∪ {Q′}
31: else addTail(QQ, Q′)
32: endfor
33: endfor
34: return Q

Fig.6. Illustration of the query rewriting, where Q is the original ATP query, W1 ∼ W4 are four MEWs, Q1 ∼ Q4 are ATP queries

after processing the first related edge “I∼> ∗ ∼‘M’ ”, Q41 ∼ Q48 are all QPs by applying W4 on Q1 ∼ Q4.

204 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

edge by one of its MEW to generate all possible QPs,
more detailed discussion is omitted for limited space.
Let F be the average fan-out of G, C the maximal
number of entity nodes of each MEW, N the maximal
number of elements in selfE(n). The worst case time
complexity of Algorithm 1 is O(|Q|N2FC).

Compared with the methods proposed in [10], our
method made improvements from two aspects: 1) Al-
gorithm 1 avoids the costly I/O operation of access-
ing inverted list; 2) Algorithm 1 is based on an entity
graph, which is much smaller than the original schema
graph. Compared with [12, 16], our method avoids los-
ing meaningful QPs.

4.2 Query Evaluation

Let Q be the set of QPs of Q, for a QP Q′ ∈ Q, a
naive method is first evaluating each TP query of Q′,
then combining the results of all TP queries together to
get the result set RQ′ of Q′. Then the result set R of
Q can be written as R =

⋃
Q′∈QRQ′ . Let L be the av-

erage number of data elements of each tag index[2], Na

the average number of query nodes in a QP, obviously,
the worst space and time complexity of such method is
O(|Q|NaL).

To accelerate the evaluation of QPs, we firstly in-
troduce partial path index (PPI). For each keyword
k, we store in PPI a list of tuples of the form
〈EN , IDEN ,TN , IDN , P 〉 where EN denotes the entity
name, i.e., EN ∈ selfE (k), IDEN is the id of database
instance of EN , TN is the tag name of the data element
that directly contains k and denoted by its id IDN , P is
the partial path from EN to TN in schema S. The PPI
of D in Fig.1 is shown in Table 3, where only partial
content is presented. Note that we can reduce the size
of PPI by storing an integer for each EN , TN and P
in PPI through constructing the mapping relationship
between each EN , TN , P and an integer.

Table 3. Partial Path Index of D in Fig.1

Keyword Tuple Sets

name 〈item, 2, name, 3, item/name〉
〈item, 10, name, 11, item/name〉
〈item, 17, name, 18, item/name〉
〈person, 20, name, 21, person/name〉
〈person, 23, name, 24, person/name〉

Mike 〈video, 8, provider, 9, video/provider〉
〈video, 15, provider, 16, video/provider〉
〈person, 23, name, 24, person/name〉

John 〈video, 5, provider, 7, video/provider〉
〈video, 13, provider, 14, video/provider〉
〈person, 20, name, 21, person/name〉

The second index is entity path index (EPI). For
each entity path p corresponding to an edge of the

entity graph, we maintain a set of tuples of the form
〈ID1, ID2〉, where each tuple denotes the ID pair of
a pair entity instances that are connected by p in the
given XML document. The entity path index of D in
Fig.1 is shown in Table 4.

Table 4. Entity Path Index of D in Fig.1

Path Instances Path Instances

e1 {〈26, 17〉} e4 {〈26, 23〉}
e2 {〈2, 5〉, 〈2, 8〉, 〈10, 13〉, 〈10, 15〉} e5 ∅
e3 ∅ e6 {〈26, 20〉}

Compared with [29], each path in “path value index”
of [29] starts from the root of an XML document, while
the path of PPI starts from an entity node, which is
more flexible. Moreover, EPI materializes the reference
relationship, for the “path index” of [29], each key must
be a path that contains only containment edges.

Theorem 2. Let Q be the given ATP query, S the
schema graph. Using PPI and EPI, structural join ope-
ration can be avoided from the evaluation of any “/”
and “∼>” edge of Q. For any “//” edge e = (u, v) of
Q (u and v are schema nodes), if no cycle of contain-
ment edge exists between u and v in S and neither of
u and v lies in a cycle of containment edge, e can be
evaluated without structural join operation.

Proof. [Sketch] There are three kinds of edges in Q,
i.e., “/”, “//” and “∼>”. Each “∼>” edge will be re-
placed by MEWs after executing Algorithm 1, where
each MEW consists of a set of entity paths. Since the
results of each entity path can be got from EPI, the
results of each MEW can be got by joining the results
of entity paths. Thus all “∼>” edges can be processed
without structural join operation.

All “P-C” edges form different maximal “P-C”
paths 5O. For each maximal “P-C” path p of Q, it may
appear to be one of following forms. 1) F1: p contains
no entity node. We can get the matched results of p
using the leaf node of p as a keyword to search PPI,
then return all instances of partial paths that contain
p. 2) F2: p consists of a set of partial paths (recall that
the first node of a partial path is an entity node). Ob-
viously, we can get the results of each partial path from
PPI, then get the results of F2 by joining the results of
all partial paths. 3) p equals F1/F2. We can get the
matched results by joining the results of F1 and F2.

For each “ancestor descendant” (“A-D”) edge
“A//B” of Q, assume A and B are entity nodes. If
there exists a “P-C” path p from A to B in S and p
contains some nodes that are in a circle of containment
edge, then we may produce infinite “P-C” paths from
A to B; otherwise, if there exists only one “P-C” path
p from A to B in S, according to Definition 2, p is an

5OPath p of Q is a “P-C” path if it consists of only “P-C” edges, p is a maximal “P-C” path if no other “P-C” path contains p.

Jun-Feng Zhou et al.: Related Axis: The Extension to XPath Towards Effective XML Search 205

MEW and can be processed using EPI, i.e., structural
join operation can be avoided. If A or B is not an entity
node, we firstly get selfE(A) or selfE(B), of which each
element is an entity node, the following operations are
the same as just stated. ¤

Therefore we can transform the evaluation of related
edges, “P-C” edges and some “A-D” edges into simple
selection and value join operations.

Definition 12 (Related Entity Node, REN). Let Q
be the given ATP query, Q′ is a QP of Q. Entity node
EK of Q′ is a related entity node if there exists a re-
lated edge e = (n1, n2) in Q, such that E is on one
of the set of MEWs of e, where E is the name of the
entity node, K is the keyword set covered by the sub-
tree rooted at E, after excluding all other subtrees that
are rooted at E’s descendant entity nodes. For two re-
lated entity nodes E1

K1
and E2

K2
, we say E1

K1
= E2

K2
if

E1 = E2 ∧K1 = K2.
Intuitively, an REN is a node on one MEW of the

processed QP, it may have associated keywords that
are the value predicates of the ATP query Q. For Q43

in Fig.6, there are four RENs, i.e., I∅, A∅, P{M} and
P{J}.

Algorithm 2 shows the detailed steps of query pro-
cessing. In line 1, we get a set of QPs Q. In lines 2∼13,
we check for each REN EK of a QP Q′, whether EK

has entity instances that contain all keywords in K. If

Algorithm 2. indexMerge(Q, G, C)
1: Q ← queryRewriting(Q, G, C)
2: foreach (REN EK ∈ Q′ ∧Q′ ∈ Q ∧ EK 6∈ E) do
3: if (K 6= ∅) then
4: REK ← merge results of selection operations

of each keyword of K against PPI
5: else continue
6: foreach (E′

K′ ∈ E ∧ label(E) = label(E′)) do
7: R = REK ∩RE′

K′
8: if (K ⊂ K′) then REK ← REK −R
9: else if (K ⊃ K′) then RE′

K′
← RE′

K′
−R

10: else {REK ← REK −R; RE′
K′
← RE′

K′
−R}

11: endfor
12: E ← E ∪ {EK}
13: endfor
14: foreach (Q′ ∈ Q) do
15: if (∃EK ∈ E ∧ EK ∈ Q′ ∧REK = ∅) then
16: {Q ← Q− {Q′}; continue}
17: SQ′ ← getSelOperation(Q′)

/*SQ′ = {σ1, σ2, . . . , σk}*/
18: if (∃σ ∈ SQ′ ∧Rσ = ∅) then Q ← Q− {Q′}
19: else
20: Rσ ← results of selection operations of Q′

21: RQ′ ← results of structural join operations
based on Rσ

22: R← R∪RQ′

23: endfor
24: return R

EK does not have such entity instances, REK
= ∅. For

each QP Q′ ∈ Q, if there is an REN EK and REK
= ∅,

Q′ is removed from Q in line 16. In line 17, we get
the set of selection operations of Q′, which is denoted
as SQ′ . If there exists a selection operation which has
empty result set, Q′ is removed from Q in line 18. In
line 20, we firstly do selection operations, then store the
results of value join operations of SQ′ in Rσ. In line 21,
if there are structural join operations that cannot be
equivalently transformed into selection operations, we
do structural join operations that take the result set Rσ

as input, then store the final matched answers of Q′ in
RQ′ . In line 22, all matched answers are merged into
R and returned in line 24.

Example 6. Consider the query Q in Fig.6 again.
Q41, Q43, Q45 and Q48 are four QPs of Q after query
rewriting (as stated in Example 5, Q42, Q44, Q46 and
Q47 are not considered as matched QPs). In lines 2∼11,
we compute the query result of each REN in these QPs.
According to PPI in Table 3, we have RV{M} = {8, 15},
RP{J} = {20}, RP{M} = {23} and RP{M,J} = ∅. In lines
15∼16, Q48 is removed from Q since RP{M,J} = ∅. For
the remainder QPs, the selection operations are shown
in Table 5. From Table 4 we know that Rσe3

= ∅
and Rσe5

= ∅, then in line 18, Q45 is removed from
Q. Therefore the QPs processed in lines 20∼22 are
Q41 and Q43. Assume that the set of selection con-
ditions for a QP Qi is SQi

= {σ1, σ2, . . . , σk}, then
the matched results of Qi is RQi

= πI(Rσ1 ./ Rσ2 ./
· · · ./ Rσk

). Take Q43 as an example, Rσ(P,M) = {(23)},
Rσ(P,J) = {(20)}, Rσe1

= {(26, 17)}, Rσe4
= {(26, 23)},

Rσe6
= {(26, 20)},RQ43 = πI (Rσ(P,M) ./ Rσ(P,J) ./

Rσe1
./ Rσe4

./ Rσe6
) = {17}. Similarly, RQ41 = ∅.

Finally, RQ = RQ41 ∪ RQ43 ∪ · · · = {2, 10, 17}. Note
that not all QPs are shown in Fig.6. For simplicity,
we omit in Algorithm 2 that we can make further op-
timization by sharing the results of some selection ope-
rations between different QPs, which is illustrated in
Fig.7, where the results of selection and value join are
shown in each “〈 〉”.

Table 5. Selection Operations for Different QPs

Query Set of selection conditions

Q41 (V, M), (P, J), e1, e2, e6

Q43 (P, M), (P, J), e1, e4, e6

Q45 (P, M), (P, J), e1, e5, e6

Note that Algorithm 1 may produce redundant QPs.
For instance, consider the schema graph in Fig.8(a),
where photo and item are entities, Fig.8(b) is the XML
document conforming to Fig.8(a). Assume C = 3, for
the ATP query Q : ∗[∼“Mike”][∼> ∗ ∼“John”] search-
ing for entity instances that contain “Mike” as their
attribute value and have the related relationship with

206 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

Fig.7. Executing of Q41 and Q43 using Algorithm 2.

Fig.8. Illustration of redundant QPs.

entity instances that contain “John”. Figs. 8(c)∼8(d)
are two QPs according to Algorithm 1. Obviously,
Figs. 8(e)∼8(f) are two matches of Figs. 8(c)∼8(d),
respectively. In fact, the QP in Fig.8(d) is re-
dundant since for the corresponding result shown in
Fig.8(e), each description node contains both “Mike”
and “John”, and both the two description nodes repre-
sent the same data element in the XML document in
Fig.8(b). Therefore before evaluating each QP Q′ in Q,
we need to check in lines 2∼16 of Algorithm 2 for each
REN EK in all QPs of Q, whether there exists entity
instances of label E such that each entity instance d
contains all keywords of K and no other REN E′

K′ exi-
sts such that k ∈ (K ′ −K) and d contains k. Thus we
have Theorem 3.

Theorem 3 (No Redundancy). For a QP Q′ eval-
uated in lines 20∼22 of Algorithm 2, no other QP can
produce the same matches as produced by Q′.

Theorem 3 guarantees that Algorithm 2 needs no
operations to evaluate redundant QPs of the given ATP

query Q. Let Q be the set of QPs of Q, Sσ the set of
distinct selection operations ofQ, L the average number
of elements in an input stream which may be either the
result set of a distinct selection operation or a distinct
tag index, n the number of query nodes that must be
processed using structural join operation, rather than
EPI and PPI. Since N2FC |Q| ¿ L (the cost of Algo-
rithm 1) in practice, the worst space and time complex-
ity of Algorithm 2 is O((|Sσ|+ n)L).

5 Experimental Evaluation

5.1 Experimental Setup

Our experiments were implemented on a PC with
Pentium4 2.8 GHz CPU, 2G memory, 160GB IDE hard
disk, and Windows XP professional as the operating
system.

The algorithms used for comparison include
TwigStack, IM (i.e., indexMerge), MLCA[15] and
XSEarch[9]. All algorithms were implemented using Mi-
crosoft VC++ 6.0. We select eXist 6O, X-Hive 7O and
MonetDB 8O to make comparison with our method, the
detailed information of these systems can be found from
their web sites, respectively.

5.2 Datasets, Indices and Queries

We use XMark 9O, DBLP 10O and SIDMOD 11O (short
for SIGMOD Record) datasets for our experiments.
The main characteristics of the three datasets can be
found in Table 6.

Table 6. Statistics of Datasets

Dataset Size (MB) Nodes (MB) Max L Avg. L Index/Doc.

DBLP 130 3.3 6 2.9 4.9
XMark 115 1.7 12 5.5 5.3
SIGMOD 0.5 0.01 6 5.1 4.8

Note: L denotes length.

The last column of Table 6 is the ratio of index size
to document size, where index consists of three parts,
1) PPI, 2) EPI and 3) assistant index used to get self
entity nodes, of which PPI has much larger size than
the other two.

The node category is specified using the two-step
method discussed in Section 2. In the second step, node
category is adjusted so as to make the results more ac-
curate.

We select three kinds of queries for comparison: 1)
nine ATP queries with related edge (Table 7), 2) six

6Ohttp://exist.sourceforge.net
7Ohttp://www.x-hive.com
8Ohttp://monetdb.cwi.nl/projects/monetdb/XQuery/index.html
9Ohttp://monetdb.cwi.nl/xml
10Ohttp://www.cs.washington.edu/research/xmldatasets/www/repository.html
11Ohttp://www.sigmod.org/record/xml/

Jun-Feng Zhou et al.: Related Axis: The Extension to XPath Towards Effective XML Search 207

TPs from XMark and DBLP datasets (Table 8), 3) 80
keyword queries, which are classified into four groups
containing two, three four and five keywords, respec-
tively. The keyword queries are omitted for limited
space.

Table 7. ATP Aueries Used in Our Experiment

Query Dataset Query Expression No. QPs

RX1 XMark //person[name=“Cong”]∼>
item/name

8

RX2 XMark //person[name=“Cong”]∼>
open auction

4

RX3 XMark //person[name=“Cong”]∼>
closed auction

3

RX4 XMark //open auction∼>item/name 1
RX5 XMark //item[name=“great”]∼>cate-

gory
1

RD1 DBLP //author[name=“Alberto”]∼>
book/title

1

RD2 DBLP //editor[name=“Ronny”]∼>
proceedings/ year

1

RS1 SIGMOD //author[name=“Richard”]∼>
book/title

1

RS2 SIGMOD //article[title=“Quest”]∼>
author/

1

Table 8. Tree Pattern Queries Used in Our Experiment

Query Dataset Query Expression

QX1 XMark /site/regions/africa/item[/name=“co-
ndemn”]/description/parlist/listitem/
text/keyword

QX2 XMark /site/closed auctions/closed auction
[/type = “Featured”] [annotation/de-
scription[parlist/listitem/text[keyword
[bold]]]]/price

QX3 XMark /site/closed auctions//emph
QX4 XMark /site/people/person[/city=“Birming-

ham”] /name
QD1 DBLP //inproceedings[/author][/year]
QD2 DBLP //www[/editor]/url

In our experiment, we assume that each MEW has

at most three entity nodes, i.e., C = 3 for Algorithm
2. Note that C = 3 means that the maximal length of
MEW for XMark is 12, which is large enough to find
most meaningful relationships. As the demo and opti-
mization techniques of [10] are not publicly available,
we do not make comparison with it.

The last column of Table 7 is the number of QPs of
the ATP query in the first column according to C and
the DTD schema of the three datasets. As DBLP and
SIGMOD datasets do not contain edges of ID, IDREF
or IDREFS type, we take them as the ones that do
not contain referential edges, thus each ATP query of
the two datasets corresponds to one QP. For XMark
dataset, however, although all ATP queries in Table
7 contain only one related edge, they may correspond
to multiple QPs. As shown in Fig.9, even if for ATP
queries with just one related edge, existing methods
cannot work well, let alone for ATP queries containing
more than one related edge. We show the running time
of ATP queries with more than one related edge us-
ing keyword queries, where keywords in each keyword
query are connected using related edges.

5.3 Evaluation Metrics

We consider the following performance metrics to
compare the performance of different methods: 1) run-
ning time, 2) precision, 3) recall and 4) scalability.

As an ATP query may correspond to multiple QPs,
for example, query RX2 has four QPs, the running time
of RX2 equals the time of executing RX2 using the fol-
lowing XQuery expression, instead of the sum of run-
ning time of all its QPs. In such a way, existing sys-
tem can make full use of their optimization methods to
achieve better performance.

Fig.9. Comparison of running time for executing ATP queries over different XML documents, where the numbers on x-axes denote the

size (MB) of XML documents. (a) RX1. (b) RX2. (c) RX3. (d) RX4. (e) RX5. (f) Other ATP queries.

208 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

for $p in doc()//person, $o in doc()//open auction
where $p/name=“Cong” and ($p/@id=$o/seller/@person

or $p/@id=$o/annotation/author/@person
or $p/@id=$o/bidder/personref/@person
or $o/@id=$p/watches/watch/@open auction)

return $o/@id

If all query nodes are connected together by related
edges in an ATP query Q, Q is in essence a keyword
query, therefore we compare the precision and recall of
our method with those of MLCA[15] and XSEarch[9].
We define the two metrics using the following steps: 1)
users submit their keyword queries; 2) by asking users’
search intention, we formulate the XQuery expressions
corresponding to their keyword queries, then let them
select the XQuery expressions that meet their search
intention. For a given keyword query Q, the result of
the selected XQuery expressions is denoted as R; 3)
evaluate all keyword queries using different methods,
the result of a specific method on Q is denoted as RQ.
Then the precision and recall of this method are defined
as: Precision = (RQ ∩R)/RQ, Recall= (RQ ∩R)/R.

5.4 Performance Comparison and Analysis

5.4.1 ATP Queries

For all ATP queries of XMark dataset, since the per-
formances of existing methods vary largely according to
the given query, in Fig.9, we show the running time
of these queries separately. Fig.9(a) shows the run-
ning time of RX1, from this figure we know existing
methods cannot work well for this query, since RX1
has eight QPs and each QP involves three value join
operations using XQuery expression. xHive, eXist and
MonetDB even cannot work well for XMark dataset of
size more than 300 k. Both RX4 and RX5 correspond
to one QP which involves only one value join opera-
tion, as shown in Figs. 9(d)∼9(e). MonetDB works very
well, even though, our method beats MonetDB for large
XML document, e.g., RX5. All other ATP queries cor-
respond to one QP for DBLP and SIGMOD datasets,
the result is shown in Fig.9(f), which shows that our
method can also work well for the remaining queries.

Note that in Fig.9(f), there is not running time for
eXist since in our experiment, DBLP dataset of size
130M cannot be imported into eXist system. More-
over, MonetDB and eXist will break down when exe-
cuting RX1 over XMark dataset with size of only 500 k
in our experiment. In all these figures, the running time
of 100 000ms means that it is more than 100 000 ms or
the method cannot process the query.

From Fig.9 we know our method outperforms ex-
isting methods in most cases, especially for queries
with complex conditions, e.g., RX1 to RX3. For the
other queries of Table 7, our method also works very
well, because our method transforms all structural join

operations into a set of simple selection operations.

5.4.2 Tree Pattern Queries

Fig.10 shows the comparison of running time for
tree pattern queries. We omit the running time of eX-
ist in Fig.10 since in our experiment, XMark dataset
(115MB) and DBLP dataset (130MB) cannot be im-
ported into eXist system.

Fig.10. Comparison of running time for executing tree pattern

queries on XMark (115MB).

From this figure we know for tree pattern queries,
our method only works a little better than MonetDB
for QD1. This is because both QX1 and QX2 contain
several entity nodes, thus need to fetch large amount of
elements and consume CPU cost to do value join opera-
tions, QX3 contains “//” edge and cannot be equiva-
lently transformed into selection operations, thus QX3
cannot avoid structural join operations. For QX4, even
our method can avoid structural join operations, it still
needs more time than MonetDB. Thus for tree pattern
queries, MonetDB has the best performance for most
queries.

Fig.11 shows the scalability of our method for RX1
and QX4. As XMark dataset of size more than 1GB
cannot be imported into MonetDB, xHive and eXist,
we do not show their running time in this figure. From
Fig.11 we know that our method achieves better scala-
bility.

Fig.11. Comparison of running time for executing RX1 and QX4

over XML documents of different sizes. (a) RX1. (b) QX4.

5.4.3 Keyword Queries

Fig.12 shows the precision and recall of different
methods for keyword query, from which we know for

Jun-Feng Zhou et al.: Related Axis: The Extension to XPath Towards Effective XML Search 209

Fig.12. Result quality: average precision and recall for keyword queries, where numbers on x-axes denote the number of keywords for

each group of queries. (a) Precision (XMark). (b) Recall (XMark). (c) Precision (SIGMOD record). (d) Recall (SIGMOD record).

for XMark dataset, the Recall of our method is 100%,
this is because all results that meet users’ search in-
tention are returned by our method. However, the
Precision is a little worse than MLCA and XSEarch,
this is because our method may return results involving
IDREF. If the users’ search intention involves IDREF,
obviously, our method will be more effective; otherwise,
MLCA has the highest Precision. The average figures in
Figs. 12(a)∼12(b) show that for XMark dataset, though
the Precision of our method is not better than those of
MLCA and XSEarch, it has the highest Recall. For
SIGMOD dataset, as shown in Fig.12(c), both Preci-
sion and Recall of our method are better than those
of MLCA and XSEarch, since in such a case IDREF is
not considered, thus the number of QP is very small,
usually equals 1, and our method always returns re-
sults that meet the users’ search intention. Moreover,
as shown in Fig.12(d), the Recall of our method is bet-
ter than MLCA and XSEarch. The Precision and Re-
call on DBLP dataset is similar to that of SIGMOD
dataset, we omit it for limited space.

We further employed F-measure as a metric, where
F = 2×Precision×Recall

Precision+Recall , to compare the effectiveness
of different algorithms. As shown in Fig.13, we can
see that our method beats the other algorithms and
achieves the best F-measure. For example, on SIGMOD
Record, F-measure of IM reaches 94.7% for queries of
three keywords, while those of the other ones are about
83%. On XMark, although recall of IM is much better
than those of XSEarch and MLCA, precision of IM is a
little worse than those of XSEarch and MLCA, which
results in that F-measure of IM is just a little better
than those of XSEarch and MLCA. Even though, it is
still the best one according to Fig.13.

As our method can use structural constraints in key-
word queries to prune irrelevant answers, obviously, the
Precision of our method can be improved if structural
constraints are considered. However, this cannot be
easily justified as we do not know in which case users
will use structural constraints in their query expres-
sions. Therefore, the precision and recall about the

Fig.13. Comparison of the average of F-measure, where num-

bers on x-axis denote the number of keywords for each group of

queries.

ATP queries in Table 7 are not presented.
Fig.14 shows the comparison of average running

time, from which we know that our method is not
efficient as MLCA, because MLCA is based on tree
model and simply returns results based on structural
information, which will cause lower Recall, as shown
in Fig.12. By affording additional time, though slower
than MLCA, our method can achieve both high Recall
and Precision.

Fig.14. Average running time on XMark (115MB), where num-

bers on x-axis denote the number of keywords for each group of

queries.

In summary, our method is effective when compared
with existing keyword search methods since it considers
IDREF and returns all meaningful results. Moreover,
our method is efficient when compared with existing
query engines, especially when the given queries con-
tain related edges.

210 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

6 Discussion and Related Work

Structured Query Methods. As the core opera-
tion of processing an XQuery expression is finding
the matched results of TPs embedded in it, thus
many algorithms[2-4,6] focused on efficiently process-
ing a given TP query. Among them, TwigStack[2] was
the first one that guarantees that the CPU time and
I/O complexity are independent of the size of partial
matches to any root-to-leaf query path when consider-
ing only A-D edges. [3-4, 6] made improvements against
TwigStack. All these methods require that users under-
stand the schema.

Keyword Search Methods. Among existing keyword
search methods, the basic semantics of [7-9, 11, 13-
15, 17-23] are based on tree model and cannot cap-
ture the meaningful relationships conveyed by IDREF.
On the contrary, the keyword search semantics of [10,
12, 16] are based on graph model (IDREF considered),
thus can find more answers, where each answer T is
an acyclic subgraph of the given XML document D, T
contains all keywords of the given keyword query Q,
while any proper subgraph of T does not.

According to the query processing mechanism, graph
model based methods[10,12,16] can be classified into two
groups. The first kind of method[34] directly computes
all answers from the given XML document D. How-
ever, finding even the minimal answer (acyclic sub-
graph of D) is reducible to the classical NP-complete
group Steiner tree problem[35]. Thus this method[34]

applies special constraints and finds only a subset of all
answers.

The second group of methods[10,12,16] use a two-step
strategy: 1) compute all QPs of the given keyword
query, 2) evaluate all QPs to get the final results. When
the schema becomes complex and when evaluating large
amount of QPs, both the two steps are no longer a tri-
vial task.

Step 1. The methods proposed in [12, 16] focus on
finding all QPs of schema elements rather than key-
words and each QP is a subgraph of the given schema
graph G. Thus they cannot identify QPs of a keyword
query where several keywords correspond to the same
schema element, e.g., {person:Mike, person:John}. [10]
proposes a method to compute from the schema graph
all QPs of keyword queries that allow both text values
and schema elements. The main idea is as follows.

For a given keyword query Q = {k1, k2, . . . , km},
[10] maintains for each keyword k an inverted list which
stores the data elements directly containing k and works
through the following steps. 1) For each keyword
ki ∈ Q, produce the element set Ski

which consists of
all data elements containing ki. 2) Based on the m sets
Sk1 , Sk2 , . . . , Skm

, produce data element set SK for all

subsets K of Q, where SK = {d|d ∈ ∪k∈KSk∧∀k ∈ K, d
contains k ∧ ∀k ∈ Q −K, d does not contain k}[28]. 3)
For all elements of SK , find the set of corresponding
schema elements Slabel(SK) = {l|∃d ∈ SK , l = label(d)}.
For each l ∈ Slabel(SK), add a node named l to the origi-
nal schema graph by attaching K to l to produce a new
schema graph G′. 4) Find from G′ all the QPs, where
each QP q is a subgraph of G′ and contains all key-
words at least once, while any proper subgraph of q
does not. Thus the performance of the first step is af-
fected by three factors: 1) I/O cost of accessing all data
instances to construct G′ in the first two steps, 2) the
maximum size of QP, 3) the size of the new expanded
graph G′.

Step 2. As discussed in the first paragraph of this
section, to evaluate all QPs of the given ATP query,
existing methods[2-4,6] suffer from costly structural join
operation, which greatly affects the whole performance.

There are still many other related work in this area,
interested readers can find them from [36-37].

Relaxed-Structure Methods. By combining keyword
search semantics and structured query together, the
methods proposed in [15-16, 24-26] provide users with a
relaxed-structure query mechanism and return approxi-
mate answers. However, keyword search semantics of
the these methods may result in losing meaningful re-
sults and, as discussed in Section 1, all these methods
cannot really free users from the great burden of un-
derstanding the schema.

Other Related Work. The relaxation method of [38]
requires that users generate an initial TP, which is then
converted into less restrictive TPs based on a set of re-
laxation rules. If the initial TP is wildly inaccurate,
many results will likely be inaccurate.

[39] extended XPath by a new notion, ClosestAxis,
thus users can get closest, rather than definitely re-
lated data nodes. [40] proposes to extend XQuery with
window functions over an input sequence to support
continuous query.

For keyword search methods or relaxation meth-
ods, ranking schemes can be used to rank answers.
XSEarch[9] ranks answers by considering distance, term
frequency, document frequency, etc. XRank[8] extends
the Page-rank hyperlink metric to XML. [10] ranks
query results according to the size of each answer. All
these ranking schemes are orthogonal to retrieval and
can be combined with our methods to provide a more
effective search mechanism.

7 Conclusions

Considering that existing query mechanisms cannot
work well when confronting complex and heterogeneous
XML documents, we proposed a new semantics, related

Jun-Feng Zhou et al.: Related Axis: The Extension to XPath Towards Effective XML Search 211

relationship, to capture the meaningful relationships
of data elements, then made an extension to XPath
by incorporating the related relationship into existing
XPath grammar, so as to provide users with a query
mechanism that can be used to query desired informa-
tion from complex and heterogeneous XML documents
in an effective and flexible way. We proposed a new
schema summary, i.e., entity graph, and two indices to
improve the performance of query processing. Further,
we proved that our algorithm is not only effective (com-
pleteness and no redundancy), but also efficient (the
costly structural join operations can be equivalently
transformed into just a few selection and value join op-
erations in most cases). The experimental results verify
the effectiveness and efficiency of our method in terms
of various evaluation metrics.

References

[1] Christophides V, Cluet S, Simèon S. On wrapping query lan-
guages and efficient XML integration. In Proc. the 2000 ACM
SIGMOD International Conference on Management of Data
(SIGMOD2000), Dallas, USA, May 14-19, 2000, pp.141-152.

[2] Bruno N, Koudas N, Srivastava D. Holistic twig joins: Op-
timal XML pattern matching. In Proc. the 2002 ACM
SIGMOD International Conference on Management of Data
(SIGMOD2002), Madison, USA, June 3-6, 2002, pp.310-321.

[3] Jiang H, Wang W, Lu H, Yu J X. Holistic twig joins on
indexed XML documents. In Proc. the 29th International
Conference on Very Large Data Bases (VLDB2003), Berlin,
Germany, Sept. 12-13, 2003, pp.273-284.

[4] Lu J, Ling T W, Chan C Y, Chen T. From region encoding to
extended dewey: On efficient processing of XML twig pattern
matching. In Proc. the 31st International Conference on
Very Large Data Bases (VLDB2005), Trondheim, Norway,
Aug. 30-Sept. 2, 2005, pp.193-204.

[5] Chen T, Lu J, Ling T W. On boosting holism in XML
twig pattern matching using structural indexing techniques.
In Proc. the ACM SIGMOD International Conference on
Management of Data (SIGMOD2005), Baltimore, USA, June
13-16, 2005, pp.455-466.

[6] Chen S, Li H, Tatemura J et al. Twig2Stack: Bottom-up
processing of generalized-tree-pattern queries over XML doc-
uments. In Proc. the 32nd International Conference on Very
Large Data Bases (VLDB2006), Seoul, Korea, Sept. 12-15,
2006, pp.283-294.

[7] Xu Y, Papakonstantinou Y. Efficient keyword search for
smallest LCAs in XML databases. In Proc. the ACM
SIGMOD International Conference on Management of Data
(SIGMOD2005), Baltimore, USA, June 13-16, 2005, pp.527-
538.

[8] Guo L, Shao F, Botev C, Shanmugasunda J. XRANK: Ranked
keyword search over XML documents. In Proc. the 2003
ACM SIGMOD International Conference on Management
of Data (SIGMOD2003), San Diego, USA, June 9-12, 2003,
pp.16-27.

[9] Cohen S, Mamou J, Kanza Y, Sagiv Y. XSEarch: A seman-
tic search engine for XML. In Proc. the 29th International
Conference on Very Large Data Bases (VLDB2003), Berlin,
Germany, Sept. 12-13, 2003, pp.45-56.

[10] Hristidis V, Papakonstantinou Y, Balmin A. Keyword proxi-
mity search on XML graphs. In Proc. the 19th International
Conference on Data Engineering (ICDE2003), Bangalor,

India, March 5-8, 2003, pp.367-378.

[11] Liu Z, Chen Y. Reasoning and identifying relevant matches
for XML keyword search. In Proc. the VLDB Endowment,
Aug. 2008, 1(1): 921-932.

[12] Cohen S, Kanza Y, Kimelfeld B, Sagir Y. Interconnection se-
mantics for keyword search in XML. In Proc. the 14th ACM
CIKM International Conference on Information and Know-
ledge Management (CIKM2005), Bremen, Germany, Oct. 31-
Nov. 5, 2005, pp.389-396.

[13] Liu Z, Chen Y. Identifying meaningful return information for
XML keyword search. In Proc. International Conference on
Management of Data (SIGMOD2007), Beijing, China, June
12-14, 2007, pp.329-340.

[14] Li G, Feng J, Wang J, Zhou L. Effective keyword search
for valuable LCAs over XML documents. In Proc. the
6th ACM Conf. Information and Knowledge Management
(CIKM2007), Lisbon, Portugal, Nov. 6-9, 2007, pp.31-40.

[15] Li Y, Yu C, Jagadish H V. Schema-free XQuery. In
Proc. the 30th International Conf. Very Large Data Bases
(VLDB2004), Toronto, Canada, Aug. 29-Sept. 3, 2004, pp.72-
83.

[16] Yu C, Jagadish H V. Querying complex structured databases.
In Proc. the 33rd International Conf. Very Large Data Bases
(VLDB2007), Vienna, Austria, Sept. 23-28, 2007, pp.1010-
1021.

[17] Chen L J, Papakonstantinou Y. Supporting top-K keyword
search in XML databases. In Proc. the 26th International
Conference on Data Engineering (ICDE2010), Long Beach,
USA, March 1-6, 2010, pp.689-700.

[18] Zhou R, Liu C, Li J. Fast ELCA computation for keyword
queries on XML data. In Proc. the 13th International
Conference on Extending Database Technology (EDBT2010),
Lausanne, Switzerland, March 22-26, 2010, pp.549-560.

[19] Kong L, Gilleron R, Lemay A. Retrieving meaningful relaxed
tightest fragments for XML keyword search. In Proc. the
12th International Conference on Extending Database Tech-
nology (EDBT2009), Saint-Petersburg, Russia, Mar. 23-26,
2009, pp.815-826.

[20] Bao Z, Ling T W, Chen B, Lu J. Effective XML keyword
search with relevance oriented ranking. In Proc. the 25th
International Conference on Data Engineering (ICDE2009),
Shanghai, China, March 29-April 2, 2009, pp.517-528.

[21] Li J, Liu C, Zhou R, Wang W. Suggestion of promising re-
sult types for XML keyword search. In Proc. the 13th
International Conference on Extending Database Techno-
logy (EDBT2010), Lausanne, Switzerland, Mar. 22-26, 2010,
pp.561-572.

[22] Li G, Li C, Feng J, Zhou L. SAIL: Structure-aware indexing
for effective and progressive top-k keyword search over XML
documents. Inf. Sci., 2009, 179(21): 3745-3762.

[23] Feng J, Li G, Wang J, Zhou L. Finding and ranking com-
pact connected trees for effective keyword proximity search in
XML documents. Inf. Syst., 2010, 35(2): 186-203.

[24] Trotman A, Sigurbjörnsson B. NEXI, now and next. In Proc.
the 3rd International Workshop of the Initiative for the Eval-
uation of XML Retrieval (INEX2004), Dagstuhl Castle, Ger-
many, Dec. 6-8, 2004, pp.41-53.

[25] Fuhr N, Groβjohann K. XIRQL: A query language for infor-
mation retrieval in XML documents. In Proc. the 24th An-
nual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR2001), New
Orleans, USA, Sept. 9-21, 2001, pp.172-180.

[26] Theobald M, Schenkel R, Weikum G. An efficient and versa-
tile query engine for Topx search. In Proc. the 31st Interna-
tional Conference on Very Large Data Bases (VLDB2005),
Trondheim, Norway, Aug. 30-Sept. 2, 2005, pp.625-636.

212 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

[27] Yu C, Jagadish H V. Schema summarization. In Proc. the
32nd International Conference on Very Large Data Bases
(VLDB2006), Seoul, Korea, Sept. 12-15, 2006, pp.319-330.

[28] Hristidis V, Papakonstantinou Y. DISCOVER: Keyword
search in relational databases. In Proc. the 28th Interna-
tional Conference on Very Large Data Bases (VLDB2002),
Hong Kong, China, Aug. 20-23, 2002, pp.670-681.

[29] Pal S, Cseri I, Seeliger O, Schaller G, Giakoumakis L, Zolotov
V. Indexing XML data stored in a relational database. In
Proc. the 30th International Conference on Very Large Data
Bases (VLDB2004), Toronto, Canada, Aug. 29-Sept. 3, 2004,
pp.1134-1145.

[30] Bex G J, Neven F, Vansummeren S. Inferring XML schema
definitions from XML data. In Proc. the 33rd International
Conference on Very Large Data Bases (VLDB2007), Vienna,
Austria, Sept. 23-28, 2007, pp.998-1009.

[31] Bex G J, Neven F, Schwentick T, Tuyls K. Inference of con-
cise DTDs from XML data. In Proc. the 32nd International
Conference on Very Large Data Bases (VLDB2006), Seoul,
Korea, Sept. 12-15, 2006, pp.115-126.

[32] Bernstein P A, Melnik S, Mork P. Interactive schema transla-
tion with instance-level mappings. In Proc. the 31st Interna-
tional Conference on Very Large Data Bases (VLDB2005),
Trondheim, Norway, Aug. 30-Sept. 2, 2005, pp.1283-1286.

[33] Vries A P, Vercoustre A M, Thom J A, Craswell N, Lalmas
M. Overview of the INEX 2007 entity ranking track. In Proc.
the 6th International Workshop of the Initiative for the Eval-
uation of XML Retrieval (INEX2007), Germany: Springer,
2007, pp.245-251.

[34] Golenberg K, Kimelfeld B, Sagir Y. Keyword proximity
search in complex data graphs. In Proc. the ACM SIG-
MOD International Conference on Management of Data
(SIGMOD2008), Vancouver, Canada, June 10-12, 2008,
pp.927-940.

[35] Reich G, Widmayer P. Beyond Steiner’s problem: A VLSI
oriented generalization. In Proc. the 15th International
Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG1989), Castle Rolduc, Netherlands, June 14-16,
1989, pp.196-210.

[36] Yu J X, Qin L, Chang L. Keyword search in relational
databases: A survey. IEEE Data Eng. Bull., 2010, 33(1):
67-78.

[37] Chen Y, Wang W, Liu Z, Lin X. Keyword search on struc-
tured and semi-structured data. In Proc. the International
Conference on Management of Data (SIGMOD2009), Provi-
dence, USA, June 29-July 2, 2009, pp.1005-1010.

[38] Amer-Yahiq S, Kondas N, Marian A, Srivastava D, Toman
D. Structure and content scoring for XML. In Proc. the
31st International Conference on Very Large Data Bases
(VLDB2005), Trondheim, Norway, Aug. 30-Sept. 2, 2005,
pp.361-372.

[39] Zhang S, Dyreson C. Symmetrically exploiting XML. In
Proc. the 15th International Conference on World Wide Web
(WWW2006), Edinburgh, UK, May 22-26, 2006, pp.103-111.

[40] Botan I, Fischer P M, Florescu D, Kossmann D, Kraska T,
Tamosevicius R. Extending XQuery with window functions.
In Proc. the 33rd International Conference on Very Large
Data Bases (VLDB2007), Vienna, Austria, Sept. 23-28, 2007,
pp.75-86.

Jun-Feng Zhou received the
Ph.D. degree in computer science
from Renmin University of China.
He is an associate professor of Yan-
shan University and a member of the
China Computer Federation. His re-
search interests include XML struc-
tured query processing and XML
keyword search.

Tok Wang Ling received his
Ph.D. degree in computer science
from the University of Waterloo,
Canada. He is a professor of the
Department of Computer Science,
School of Computing at the National
University of Singapore. His re-
search interests include data mod-
eling, ER approach, normalization
theory, semi-structured data model,

XML twig pattern query processing, and XML keyword
query processing. He has published more than 190 papers,
co-authored a book, co-edited a book, and co-edited nine
conference proceedings. He is an ACM Distinguished Sci-
entist, a senior member of IEEE and Singapore Computer
Society, and an ER Fellow.

Zhi-Feng Bao is a research fel-
low in School of Computing, National
University of Singapore. He received
his Ph.D. degree from the Depart-
ment of Computer Science, School
of Computing, National University of
Singapore. His research interests in-
clude XML structured query process-
ing, XML keyword search and prove-
nance data management.

Xiao-Feng Meng received the
B.S. degree from Hebei University,
M.S. degree from Renmin University
of China, and Ph.D. degree from the
Institute of Computing Technology,
Chinese Academy of Sciences, all in
computer science. He is currently
a professor of School of Information
in Renmin University of China. His
research interests include web data

integration, native XML databases, mobile data manage-
ment, flash based databases. He is the secretary general of
Database Society of the China Computer Federation (CCF
DBS). He has published more than 100 technical papers.

