
Ryu W, Hong B, Kwon J et al. A reprocessing model for complete execution of RFID access operations on tag memory.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(1): 213–224 Jan. 2012. DOI 10.1007/s11390-012-1218-z

A Reprocessing Model for Complete Execution of RFID Access

Operations on Tag Memory

Wooseok Ryu1, Bonghee Hong1,∗, Member, ACM, IEEE, Joonho Kwon2

and Ge Yu3 (于 戈), Senior Member, CCF, Member, ACM, IEEE

1Department of Computer Engineering, Pusan National University, Busan 609-735, Korea
2Institute of Logistics Information Technology, Pusan National University, Busan 609-735, Korea
3School of Information Science and Engineering, Northeastern University, Shenyang 110004, China

E-mail: {wsryu, bhhong, jhkwon}@pusan.ac.kr; yuge@ise.neu.edu.cn

Received April 21, 2010; revised July 18, 2011.

Abstract This paper investigates the problem of inconsistent states of radio frequency identification (RFID) tag data
caused by incomplete execution of read/write operations during access to RFID tag memory. Passive RFID tags require RF
communication to access memory data. This study is motivated by the volatility of RF communication, where instability is
caused by intermittent connections and uncertain communication. If a given tag disappears from the communication area
of the reader during the reading or writing of tag data, the operation is incomplete, resulting in an inconsistent state of tag
data. To avoid this inconsistency, it is necessary to ensure that any operations on tag memory are completed. In this paper,
we propose an asynchronous reprocessing model for finalizing any incomplete execution of read/write operations to remove
inconsistent states. The basic idea is to resume incomplete operations autonomously by detecting a tag’s re-observation
from any reader. To achieve this, we present a concurrency control mechanism based on continuous query processing that
enables the suspended tag operations to be re-executed. The performance study shows that our model improves the number
of successful operations considerably in addition to suppressing inconsistent data access completely.

Keywords asynchronous reprocessing, concurrency control, continuous query, RFID, tag access operation

1 Introduction

As radio frequency identification (RFID) technol-
ogy progresses, low-cost passive RFID tags can store
detailed production states in their memory as well as
identification information. By storing the ongoing pro-
duct state of the manufacturing process in the passive
RFID tag memory, we can efficiently access the status
of tagged items in the field without connecting to an
information system[1]. Utilization of tag memory has
been becoming widespread in a variety of industries, in-
cluding supply chain management, asset management,
and manufacturing process management[2].

Accessing tag memory requires wireless communica-
tion via RF signals from the RFID reader. Since a pas-
sive tag does not have internal power, its communica-
tion range is limited to less than 10 meters[3]. Moreover,
it cannot guarantee 100% accuracy in tag memory even
within range, due to interference from various sources
such as tag orientation, packing materials, and other

obstacles[4-5]. Such characteristics of RF communica-
tion have a bad influence on the correct execution of
read/write operations. Usually, tags are attached to
the product, and are frequently subject to movement
out of the range of readers during access to tag me-
mory data. Moreover, a reader can occasionally fail to
receive a reply message after sending access command
messages because of unreliable RF communication. As
a result, the tag data become inconsistent.

To preserve the consistency and correctness of tag
data, it is necessary to ensure that any tag operation
on tag memory is completely executed. For example,
when production information is not completely written
to a tag in the assembly line, the operation should be
completed the next time the tag appears to any reader.
This leads to the concept of an RF transaction that
provides atomicity and durability in RFID tag opera-
tions. We define an RF transaction as a set of RFID tag
operations that retrieve or store data on a tag memory.
The goal of RF transaction processing is to guarantee

Regular Paper
This work was supported by the Grant of the Regional Core Research Program/Institute of Logistics Information Technology of

Korean Ministry of Education, Science and Technology.
∗Corresponding Author
©2012 Springer Science +Business Media, LLC & Science Press, China



214 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

complete execution of tag operations as well as to pre-
serve the consistency of tag data.

Our approach to process RF transactions is to sus-
pend the execution of incomplete operations and to re-
sume them when the tags are re-observed. In this pa-
per, we propose an asynchronous reprocessing model
that defines the unprocessed parts of incomplete opera-
tions as reprocessing operations. The proposed model
guarantees the concurrent execution of the reprocessing
operations by using a continuous query scheme. This
enables an asynchronous resumption to reprocess the
suspended operations when the tag’s re-observation is
detected by any arbitrary reader.

The main contributions of our work are as follows.
• Asynchronous Reprocessing Model. We provide

atomicity and durability for tag data reads/writes by
internally reprocessing incomplete operations at the
middleware level.
• Proofs for Correctness. We prove the completeness

of the execution via formalization of the model. Our
model ensures the complete execution of access opera-
tions and always guarantees consistent data access to
passive RFID tags, without requiring any consideration
of the RF characteristics.
• Experimentation to Validate Our Proposed Ap-

proach. Through experiments using real data as well as
simulated data, we show that our asynchronous repro-
cessing model ensures completeness in the processing
of access operations and also gives high usability of tag
data accesses.

The remainder of this paper is organized as fol-
lows. Section 2 discusses the accessing mechanism of
tag memory data by using an example. We specify
our work by analyzing the characteristics of RFID tag
access in Section 3. In Section 4, we present an asyn-
chronous reprocessing model and propose a concurrency
control mechanism to guarantee correct and consistent
data accesses. In Section 5, the efficiency of the pro-
posed model is discussed using experimental studies.
Section 6 surveys related work of this paper. Finally, a
summary is presented in Section 7.

2 Backgrounds

2.1 RFID Applications

Let us consider an example of RFID applications to
clarify the problem of data access on RFID tag memory.
There are many industries, such as automotive com-
pany, pharmaceutical company, and other manufactur-
ing companies, that utilize tag memory for information
accesses[2]. In this paper, we assume a simplified pro-
cess management system which manages production of
automotive components.

A passive RFID tag is attached to each automotive
component to maintain production information of the
component. The information includes product specifi-
cations, production time, person in charge, and assem-
bly line ID to maintain production status of the compo-
nent. It is recorded or retrieved during the journey of
the component through the processes. If a certain com-
ponent is determined to be defective, the manufacturer
can trace the processes and take an immediate action
by accessing information in the tag memory.

Let us discuss the example shown in Fig.1. RFID
readers are installed at each line and gate to access
production information during the production. When
a tagged item moves through the lines, the readers R2
and R4 identify the tag and write manufacturing infor-
mation, such as line ID, at the end of the line. After
then, the components are stored in the warehouse tem-
porarily, and are transported to customers. When the
tag passes R5 and R6, the readers can write production
time and release time to the tag, respectively. Although
only two assembly lines are illustrated in Fig.1, we can
assume there are numerous lines and some items require
a series of lines for the production.

Fig.1. Process management system as an example of RFID ap-

plications.

2.2 Accessing Mechanism of Tag Memory Data

To discuss the access mechanism of tag memory
data, we need to consider several existing standard
specifications proposed by EPCglobal which provides
a full set of industry-driven standards for the use of
RFID. The standards include the air interface pro-
tocol for defining a communication interface between
reader and tag[6], and the low-level reader protocol
(LLRP) between reader and middleware[7] as well as



Wooseok Ryu et al.: A Reprocessing Model for Complete Execution of RFID 215

RFID middleware (ALE)[8].
Let us discuss the accessing mechanism using the

standards. We assume that an example application
wants to write a value “LINE1” on tags that pass
through Line 1. Once the middleware receives the re-
quest from the application, the middleware uses two
steps to write data on tag memory as shown in Fig.2.
Fig.2(a) shows the first step which is to identify nearby
tags in RF field of the reader R2. This is done by the
reader such that the reader broadcasts inventory opera-
tions and generates an inventoried tag list[6-7].

Fig.2. Two-step mechanism for accessing tag memory. (a) Inven-

tory step to obtain tag identifiers. (b) Access step to execute an

operation.

If a tag is in the inventory list, we can determine that
the tag is accessible via the reader R2. Then, the ac-
cess step follows by sending an access operation to the
reader which communicates with the tag using several
air commands (see Fig.2(b)). In the figure, “LINE1” is

written to t1. A reply to the command from the tag is
finally returned to the application via the middleware.

3 Problem Analysis

In this section, we first define a formal data access
model based on previous section. Then, we discuss the
problem data access by analyzing results of the opera-
tion execution. Several approaches are also discussed
later in this section.

3.1 Tag Data Access Model

From the database point of view, we can consider
each data stored in the tag memory as a data item
in database. As data item has a value that repre-
sents a specific production status, persistency of the
data should be preserved. In this paper, we define an
RFID database as a collection of tag data items that
are spread over dispersed tags.

Tag data items can only be accessible when the tag
is identified. To represent an identification of a tag to
a reader, we define a tag identification event ei as a
tuple of three attributes 〈rid , tid , t〉, where rid ∈ DR is
the identifier of a reader that observes a tag’s identifica-
tion, tid ∈ DT is the observed tag’s identifier, and t is a
timestamp. DR is the domain of reader identifiers and
DT is the domain of tag identifiers, respectively. As tag
events are continuously inventoried at each reader, we
can model a tag event stream ES = (e1, e2, e3, . . .) as
a continuous stream of tag identification events gene-
rated by the connected readers. Here, ES represents
the time-serialized tag events from all of the readers to
the middleware.

A tag operation is an access operation, such as read
or write, on a specified tag that is to be identified by a
specified reader. After a tag operation is requested by
the application, the operation is executed when the tag
is observed by the specified reader. Definition 1 gives
the formal definition of an RFID tag operation based
on ALE [8]. Definition 2 gives the formal representation
of an execution of a tag operation on a tag event in ES.

Definition 1 (Tag Operation). A tag operation oi is
defined as a tuple of five attributes 〈rid, tid, offset, size,
data〉, where rid ∈ DR is the identifier of the reader
that observes the identification of the tag, tid ∈ DT is
the identifier of the target tag to perform the operation,
offset is the location of the memory area, size is the
length of the data item being read/written, and data is
the target data to be written.

Definition 2 (Operation Execution). Let Ex (oi)
denote an execution of a tag operation oi. Ex (oi)
is defined as a mapping function M(oi, ej) where ej

is a tag identification event and oi.rid = ej.rid and
oi.tid = ej .tid.



216 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

Using the above definitions, the accessing mecha-
nism of tag memory data in Fig.2 can be re-illustrated
as shown in Fig.3. In the figure, tag identifications from
readers are represented using ES. Then, executions of
tag operations can be represented as a mapping be-
tween a tag event and a corresponding tag operation.

Fig.3. Tag data access model.

Let us discuss an execution result of the tag ope-
ration. Definition 3 describes an execution result of
the operation based on LLRP[7]. The code attribute
of Ex (oi), denoted by Ex (oi).code, specifies the error
condition of the execution of oi. Table 1 shows the de-
tailed description of the code parameter. The Failed
error is caused mainly by unreliable communications
and, therefore, the operation can be processed next
time. The No Response error is caused mainly by col-
lisions, surrounding obstacles, and so on. Here, we as-
sume that the code does not include any logical error
such as memory overrun or insufficient access privileges,
it means that the application always requests logically
correct operations.

Table 1. Classification of the Code Parameters
of the Execution Result

Error Code LLRP Result Description

Successful Success The operation has been pro-
cessed successfully

Failed Insufficient
Power

The operation has not been
processed successfully because
of environmental reasons

No
Response

No response
from tag

The reader has failed to receive
a reply to a command from a
tag

Definition 3 (Result of Execution). A result of
Ex (oi) is defined as a tuple of three parameters 〈nwp,
code, data〉, where nwp is the number of words that
are read or written, code ∈ {Successful, Failed, No

Response} is the result code of the execution, and data
is the written or retrieved data following the execution
of oi.

3.2 Problems in Processing Tag Operations

According to Definition 3, we classify the execution
result of a tag operation into four cases, namely Suc-
cess, Failed, Partially Processed, and Unsure, as shown
in Tables 2 and 3. The execution of an operation is
called incomplete if the result is either Partially Pro-
cessed or Unsure. Partially Processed means that the
tag operation is not fully executed. Unsure can also
cause incomplete tag operation execution because the
reader failed to get any response from the tag in reply
to the operation request. If the tag operation is a write
operation, it is possible that the tag memory has been
written or is still unchanged.

Table 2. Classification of the Results of an
n-Word Read Operation

Code nwp
0 < n n

Successful N/A N/A Success

Failed Failed Partially Processed N/A

No Response Failed Partially Processed N/A

Table 3. Classification of the Results of an
n-Word Write Operation

Code nwp
0 < n n

Successful N/A N/A Success

Failed Failed Partially Processed N/A

No Response Unsure Partially Processed N/A

For example, let us consider the operation o1 in
Fig.3. The data to be written to t1 is composed of three
words, “LINE1”. Assume that the result of Ex (o1)
(wants to write data in tag t1) is 〈1, “No Response”,
“LI”〉. This implies that only one word “LI” is actually
written, and we cannot judge whether the remaining
words “NE1” are written or not. If “NE1” are not
actually written, Ex (o4) (wants to read the data in
t1) will return semantically wrong information. This
causes inconsistency of tag data item, and therefore,
incompletely executed operation should be reprocessed.

3.3 Approaches for Handling Inconsistency

For handling inconsistency, there are two possible
ways: simple reprocessing model (SR model) and Lock-
ing model (LK model).

In the SR model, a user can let the middleware re-
peat the execution when the tag is identified again.
This approach just follows the policy of standard:
ALE[8] returns an error message to the application and



Wooseok Ryu et al.: A Reprocessing Model for Complete Execution of RFID 217

does not provide any reprocessing mechanism. How-
ever, this approach cannot solve the inconsistency prob-
lem that can be caused by the execution of another tag
operation by a different reader. When the tag appears
at another reader, other read operations might access
partially written data. In the previous example, the tag
might be identified at R5 or other readers, which would
access “LI” stored in t1.

In the LK model, we block inconsistent data accesses
from unspecified readers. By maintaining a lock table,
an access lock is requested before executing any opera-
tion. If a tag is locked by another operation, the opera-
tion cannot be processed. As a traditional concurrency
control mechanism, this approach completely prevents
inconsistent data access. However, this may delay exe-
cution of other operations while the tag is locked.

Our approach in this paper is to enable reprocess-
ing of the incomplete operation at any arbitrary reader.
We discuss a detailed description of our model in next
section.

4 Asynchronous Reprocessing Model

In this section, we present an asynchronous repro-
cessing model (AR model) for finalizing incomplete ope-
rations. The objective of this model is to ensure com-
plete execution of tag operations while preserving con-
sistency of tag data by reprocessing Unsure operations
and Partially Processed operations. We start the dis-
cussion of our model by defining an execution mecha-
nism of the model.

4.1 Execution Mechanism of the AR Model

To ensure complete execution of a tag operation, we
introduce a new type of tag operation called a repro-
cessing operation. The reprocessing operation repre-
sents unresolved parts of the incomplete operation to
guarantee complete execution of the operation. It is
created when the execution of a tag operation results
in incompletion. The following definitions give a formal
representation of the AR model.

Definition 4 (Reprocessing Operation). A repro-
cessing operation roi is defined as a sub-operation of
an incomplete operation oi. An roi is represented as a
tuple of four attributes (tid, offset, size, data), where
tid is the identifier of the target tag performing the ope-
ration, offset is location of the memory area, size is the
length of the data item to read/write, and data is the
target data to be written.

Definition 5 (Creation of RO). When an execution
of tag operation Ex (oi) results in incompletion, oi is
suspended and an roi is created, such that roi = (oi.tid,
oi.offset +Ex (oi).nwp, oi.size−Ex (oi).nwp, oi.data
+Ex (oi).nwp).

The AR model is called asynchronous because the
suspended operation oi can be resumed via roi when-
ever tag oi.tid is identified by any reader. For exam-
ple, assume that M(o1, e1) results in incompletion, in
the previous example in Fig.3. Our model enables the
execution of ro1 on e3 even if the o1.rid and e3.rid are
different. This makes sense semantically because roi ac-
cesses only the data item that should had been accessed
by oi. Definition 6 gives the formalized representation
of the execution of the reprocessing operation.

Definition 6 (Execution Rule of RO). The roi can
be executed on any incoming tag event ek such that
roi.tid = ek.tid. The oi finishes its execution when the
roi is executed completely.

A reprocessing operation can be nested because of
the recurrence of incomplete execution of the reprocess-
ing operation. If an execution of roi results in incom-
pletion again, it creates another sub-operation to re-
process it. Let roij be a j-th reprocessing operation of
oi. The execution result of roij is reported automati-
cally to the parent operation. Eventually, the results
reach oi. Then, oi finishes its execution by reporting
the aggregated result to the application.

To execute the reprocessing operation, we need to
evaluate every tag identification event in ES to check
whether the condition matches. Monitoring of ES
is similar to the continuous query processing[9]. By
defining attributes of the reprocessing operation as a
continuous query, each tag identification event can be
compared to the continuous queries whether a match-
ing reprocessing operation exists or not. A formal rep-
resentation of a continuous query for the reprocessing
operation is provided in Definition 7.

Definition 7 (Continuous Query for RO). A qi is
a continuous query with a single attribute tid for the
reprocessing operation roi where qi.tid = roi.tid.

The execution of the continuous query is done by
the following manner. Let Q denote a set of qi. For
each tag event ej in ES which is serially flowed to the
middleware, ej is compared with queries in Q whether
matched qi ∈ Q exists or not; if exists, a reprocessing
operation roi related to qi can be executed on ej .

Let us discuss a detailed execution mechanism for
the AR model. To do this, we need to define an
internal message protocol which detects a tag event
and executes a corresponding reprocessing operation.
Here, we assume a continuous query manager (CQM)
which maintains the queries and continuously evaluates
them with tag events in the stream. To enable effi-
cient searching for a matched continuous query for each
event, the CQM may construct a continuous query in-
dex as a one-dimensional index using qi.tid, such as
hashing. It enables fast processing of continuous queries



218 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

even if the volume of input tag stream is huge.
A message protocol between the reprocessing opera-

tion and the CQM is described in Table 4, and Fig.4
illustrates an example of the protocol. After M(o1, e1)
results in incompletion, ro1 is created and a REGIS-
TER message is sent to the CQM (steps 1∼3). Then,
the CQM creates q1 for ro1 and continuously exam-
ines every tag event e in ES. When the CQM evaluates
e3, which matches the condition e3.tid = t1, the CQM
sends an OBSERVE message to the handle of the ro1.
Then, ro1 is executed on e3 (steps 4∼6).

Table 4. Message Protocol Between the Reprocessing
Operation and the CQM

Message Direction Description

REGISTER RO → CQM Add a continuous query for the
reprocessing operation

OBSERVE CQM → RO Execute the reprocessing
operation

UNREGISTER RO → CQM Remove a continuous query for
the reprocessing operation

SUSPEND RO → CQM Continue processing of a con-
tinuous query for the repro-
cessing operation

NESTED RO → CQM Modify handle of the continu-
ous query to the nested repro-
cessing operation

Fig.4. Example of the protocol that executes o1 in Fig.3.

After the execution of ro1, the reply message will be
one of three messages: UNREGISTER, SUSPEND, and
NESTED. If the execution is successful, roi sends the
UNREGISTER message and qi can be removed (steps
7∼8). If the message is SUSPEND, the qi needs to
be continuously evaluated again. The purpose of the
NESTED message is to notify the nested creation of
the reprocessing operation.

An overall algorithm for the reprocessing of an
incomplete operation is shown in Algorithm 1. The
operation is resumed when it receives the OBSERVE

message from the CQM (lines 26∼28). After the execu-
tion of roi, the algorithm sends a proper message to the
CQM by analyzing the execution result of roi. If roi

is partially processed, it calls Reprocess() recursively,
resulting in creation of a nested reprocessing operation.

Algorithm 1. Reprocessing of an Incomplete Tag Ope-
ration

1 Algorithm Reprocess (o, result, isNested)
2 o is an incomplete operation
3 result is a result of the execution of o
4 isNested specifies whether o is a ro
5 Begin
6 ro = create RO (o, result);
7 if (isNested)
8 send message to CQM (NESTED, ro);
9 else
10 send message to CQM (REGISTER, ro);
11 end if
12
13 while (TRUE)
14 //suspend until the tag is re-observed
15 msg = receive message from CQM ();
16 if msg.message != OBSERVE then
17 if o.timeout > current time then
18 send message to CQM (UNREGISTER, ro);
19 result.res = Failed;
20 return result;
21 else
22 continue;
23 end if
24
25 //execute the access operation
26 reply = execute operation(msg.event.rid,
27 ro.tid, ro.offset,
28 ro.size, ro.data);
29
30 if reply.nwp = ro.size then
31 send message to CQM (UNREGISTER, ro);
32 return reply;
33 else if reply.nwp > 0 then
34 //create nested reprocessing operation
35 reply2 = Reprocess (ro, reply, TRUE);
36 return combine result(reply, reply2);
37 else
38 send message to CQM (SUSPEND, ro);
39 end if
40 end while
41 End

The algorithm also includes a timeout value for each
operation (refer to line 11). In the real environment, it
is possible that a certain tag would never be observed
again for the reasons such as malfunction of the tag,
physical corruption, or being moved to other sites. We
call this situation as starvation of the re-observation
of an incomplete tag. To avoid waiting indefinitely for
the tags that are not observed over a long period, the



Wooseok Ryu et al.: A Reprocessing Model for Complete Execution of RFID 219

middleware can terminate the execution of the oper-
ation if its timeout period expires. This imposes the
condition that the tag will be unobserved permanently
after expiration of the timeout period.

4.2 Autonomous Concurrency Control Using a
Continuous Query Scheme

A key matter of consideration in the model is how to
control the concurrent execution of the tag operations
for preserving consistency of tag data. When multiple
tag operations are registered in the middleware, it is
possible that two or more operations access the same
tag memory, either via the same reader or via different
readers. In the RF transaction, the concurrency control
problem can be restated as a selection problem of the
operations for a given tag event in ES.

As an example, assume that Ex (o1) has resulted in
incompletion and ro1 is created in Fig.3. When e3 ar-
rives, a conflict would occur between the two execu-
tions, M(ro1, e3) and M(o4, e3). In this case, we call o4

a conflict operation of ro1 on e3 because o4 should not
be executed prior to the execution of ro1. This brings
out an isolation rule for conflict operations as following
definitions. In the definition, we denote the set of user
operations by OU and the set of reprocessing operations
by OR.

Definition 8 (Conflict Operation). A reprocessing
operation roi conflicts with oj on ek if roi.tid = oj.tid
= ek.tid and oj.rid = ek.rid.

Definition 9 (Isolation Rule). For all user opera-
tions oi ∈ OU that conflict with roj ∈ OR on ek,
M(oi, ek) will always be preceded by M(roj , ek).

It is also possible that a tag is observed at multiple
readers simultaneously. Therefore, blocking of multiple
execution of a reprocessing operation is required. This
is achieved by maintaining locking information which
locks the roi while it is being executed. When a repro-
cessing operation is blocked, no operation can access
the incomplete tag until the operation finishes its exe-
cution. Definition 10 describes a locking rule for the
reprocessing operation.

Definition 10 (Locking Rule). For a tag identifica-
tion event ei in ES, if an roj ∈ OR for the ei such that
ei.tid = roj.tid exists, locking on roj precedes sending
an OBSERVE message to roj. While roj is blocked,
roj cannot be executed on ek where ei.t < ek.t even if
ek.tid = roj.tid.

Algorithm 2 gives the concurrency control algo-
rithms for the CQM. If a reprocessing operation is
not found, it searches the user operation table, which
stores records of operations registered by applications.
Consistency control of the conflict operations can be
achieved by maintaining continuous queries for the

reprocessing operations in a separated table. The sta-
tus variable (line 17) is used for locking the record to
prevent simultaneous executions of a reprocessing op-
eration.

Algorithm 2. Concurrency Control Algorithm Using
Continuous Query Processing

1 Algorithm CQ Processing (ES)
2 ES is a tag identification event stream
3 Begin
4 while (TRUE)
5 e = ES .GetEvent();
6
7 record = SearchReprocessingOperation (
8 e.tid);
9 if record = NULL then
10 record = SearchUserOperation(
11 e.tid, e.rid);
12 if record = NULL then
13 continue;
14 end if
15 end if
16
17 if record.status = ACTIVE then
18 continue;
19 else
20 record.status = ACTIVE;
21 Send message to RO (OBSERVE,
22 record.oid, e)
23 end if
24 end while
25 End

4.3 Correctness of the Reprocessing Operation

The main objective of the reprocessing model with
the protocol is to guarantee complete execution of in-
complete tag operations. The protocol is considered
correct only if inconsistent data access does not occur
during the reprocessing of the operation. To show how
complete execution is achieved, we prove our model and
the protocol via some theorems.

Theorem 1. For any two reprocessing operations,
roi and roj, roi.tid and roj.tid always differ if i 6= j.

Proof. Assume roi ∈ OR, oj ∈ OU and roi.tid
= oj .tid. Then, the execution order of the two opera-
tions will be roi → oj , by Definition 9. It follows that oj

cannot be processed before roi is processed completely.
Therefore, oj cannot become an incomplete operation
before roi is removed from OR. ¤

Theorem 2. The reprocessing protocol does not al-
low inconsistent data access during the reprocessing of
an incomplete operation.

Proof. More formally, this can be restated as fol-
lows. When M(oi, ej) results in incompletion, any tag



220 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

identification event ek such that ek.tid = oi.tid will
execute roi until roi is completely processed. This is
achieved by Definition 9. Even if the tag is observed by
multiple readers simultaneously, the execution of the
reprocessing operation is granted to only one tag iden-
tification event because the first event places a lock on
the tag by Definition 10. ¤

Theorem 3. The AR model guarantees complete
and correct execution of any tag operation oi when oi.tid
is identified.

Proof. Complete and correct execution of oi requires
two conditions. One is that oi should be executed when
oi.tid is identified, and the other is that oi should not
access inconsistent data. The first condition is achieved
as follows. When an execution of oi results in incom-
pletion, execution of oi is via roi, which executes the
unprocessed part when oi.tid is identified again. This
continues recursively until the operation is completely
processed. The second condition is explained above in
Theorem 2. ¤

4.4 Combined Execution of Reprocessing
Operations and Conflict Operations

As an execution of the reprocessing operation always
precedes the executions of conflict operations as defined
in Definition 9, conflict operations may lose its chance
to be executed properly. For example in Fig.3, o4 would
be executed on e3 if o1 is executed successfully. How-
ever, because of ro1, o4 may not be executed on e3.
It is possible that the tag disappears after M(ro1, e3),
resulting that o4 cannot be executed.

Let us consider the detailed relationships between
the reprocessing operation and the conflict operation
case by case. If a reprocessing operation is a read opera-
tion and a conflict operation is a write operation, the re-
processing operation should be executed before an exe-
cution of the conflict operation to preserve consistency.
However, in other cases, we can combine two operations
to reduce repeated execution of the operations. Follow-
ing definitions provide rules for the combined execution
of conflict operations.

Definition 11 (Forced Completion). Let roi and oj

be conflict on ek. If both operations are writes, then roi

immediately finishes its execution by returning “Suc-
cessful” and oj is executed on ek.

Definition 12 (False Execution). Let roi and oj be
conflict on ek. If roi is a write operation and oj is a
read operation, then oj finishes its execution by return-
ing 〈oi.size, “Successful”, oi.data〉 and roi is executed
on ek.

Definition 13 (Operation Merging). Let roi and oj

be conflict on ek. If both operations are reads, then oj

is suspended and roi is executed on ek. oj finishes its

execution when Ex (roi) is completed.
For example, in Fig.3, there is a conflict between o4

and ro1 on e3. As o4 is a read operation, its fate is to
read the tag data that are completely written by ro1.
As the AR model guarantees the complete execution
of ro1, o4 can return the o1.data immediately without
waiting for the execution of ro1 as described in Defini-
tion 12. This also preserves an execution order o1 → o4

and does not allow any inconsistency. Other two rules
can also be easily justified. This implies that the model
has a great potential to be easily extended to enhance
performance of data accesses as well as completeness
and consistency.

5 Experiments

In this section, we aim to evaluate the complete-
ness of the proposed model and compare it with other
processing models. We first build an experimental en-
vironment using real RFID devices, and analyze the
feasibility of our model by investigating the results of
experiments. We also discuss the simulation results to
verify usability of the model in the large-scaled envi-
ronment.

5.1 Experimental Setup

We first implemented the proposed model in an
RFID middleware using Java. It continuously receives
a tag event stream from RFID readers, and reports the
execution results of registered operations. To compare
the feasibility and performance of the proposed model,
we also built two other reprocessing models, the SR
model and the LK models, for a comparison purpose
(see Subsection 3.3).

To measure the performance of each model more
precisely, we use a belt conveyor with approximately
12 meters round as shown in Fig.5. While the tagged
items move on the conveyor, two Alien 9900 RFID read-
ers detect tag’s identification and execute a requested
access operation. Although the configuration is quite
simple, this provides fully-controlled movements of the
tags. Therefore, we can expect more accurate compari-
sons of the performances among three models.

A detailed scenario of the experiments is as follows.
We first register 20 access operations in the middleware:
10 write operations for R1 and 10 read operations for
R2, respectively. The operations read or write 32 words
data from/to the memory of the tag. When the scenario
starts, 10 passive tags are loaded on the conveyor one
by one. They pass readers R1 and R2, successively. If
all of the operations are processed successfully without
any failure, the middleware will return memory data
previously written by R1 when a tag passes R2.



Wooseok Ryu et al.: A Reprocessing Model for Complete Execution of RFID 221

Fig.5. Configuration of the experiments.

5.2 Experimental Results

Firstly, we examine the number of accesses of incon-
sistent data after the execution of 10 read operations. If
a write operation is partially processed at R1, a read op-
eration may access partially written data at R2. Fig.6
shows the result when the SR model is applied. If RF
power at reader’s antenna reduces, which emulates that
the environment becomes harsh, more inconsistent data
accesses occur. Note that two others did not show any
inconsistent data access.

Fig.6. Number of accesses of inconsistent data.

Fig.7 shows the average number of executions until
all operations are completely processed. The LK model
preserves consistency of tag data with the similar num-
ber of executions compared to the SR model. AR model
processes write operations at both readers. We can ex-
pect that AR model can process write operation more
quickly because incomplete write operations are pro-
cessed by both readers. The result also shows that write
operations require more executions compared with read

operations. The reason is that the write operation re-
quires more energy consumption than the read opera-
tion.

Next, we measure the processing time of access
operations. Fig.8 shows a comparison result of the aver-
age processing time of each model. In the case of the LK
model, the average processing time of each read opera-
tion is higher than that of other models. The reason is
that some read operations are blocked by incompletely

Fig.7. Average number of operation executions.

Fig.8. Average processing time of read/write operations.



222 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

executed write operations. As a result, the LK model
shows even worse performance than the SR model. The
AR model shows the best performance among the three
models. This suggests that the AR model surely re-
duces the processing time for incomplete operations.

Fig.9 shows the total elapsed time for executing all
access operations. Although the SR model and the LK
model require approximately 60 seconds for executing
all write operations, the AR model greatly reduces its
execution time by 40 seconds. The AR model has com-
pleted all operations even faster than the SR model.
Although the execution of read operations in the SR
model is very fast, the read operations may access in-
consistent data as discussed in Fig.6. This suggests that
the AR model can be an efficient model for accessing
RFID tag memory in real RFID environments.

Fig.9. Elapsed time for processing all read/write operations.

5.3 Simulation Results

To verify performance of the proposed model, it is
also required to measure the performance in a large-
scaled environment. However, it is a costly process
because deploying a lot of real RFID devices requires
huge resources. As an alternative, we developed a simu-
lated environment using 100 virtual readers and 10 k
virtual tags. We synthesized a write operation set us-
ing one million operations with a uniform distribution.
We also randomly generated 100 k tag events for the
experiment. To specify the incompletion of operations,
we configured a variable which denotes the probability
of incompletion (pi) after an execution of an operation
on a tag.

Table 5 shows the results of the comparison where
pi is 10%. For the comparison, we added the Non-
Reprocessing model (NR model) which does not repro-
cess any incomplete operation. Although above two
models suffer from inconsistency, later two models com-
pletely suppress inconsistent data accesses. However,
the number of successful executions is decreased in the
LK model because locking of the incomplete tags blocks

the execution of other operations. The AR model in-
creases the rate of complete execution of the incom-
plete operations to almost 90%. Remaining operations
would also be processed completely if the tag events
were streamed indefinitely.

Table 5. Simulation Results of the Access Operations

Result
Model Success Incompletion Reprocessed Inconsistent

Access

NR 81 681 9 054 0 6 814
SR 82 043 9 081 102 6 745
LK 54 093 6 010 302 –
AR 80 995 8 988 8 043 –

Fig.10 shows the reprocessing ratio of unsuccess-
ful operations as the number of readers varies. Al-
though the performances of the SR model and LK
model rapidly decrease, the AR model shows a constant
performance even if the number of reader increases.
This suggests that the AR model shows better perfor-
mance especially when the number of readers is large,
which is not captured by the previous experiments when
some real devices are used.

Finally, we measured the total amount of successful
executions as pi varies. When pi increases, the result for
the LK model becomes poor as shown in Fig.11. The
AR model outperforms other two models even though
the SR model possesses inconsistency. We can conclude
that the proposed model increases the availability of tag

Fig.10. Reprocessing ratio for varying number of readers.

Fig.11. Total amount of successful executions for varying pi.



Wooseok Ryu et al.: A Reprocessing Model for Complete Execution of RFID 223

data accesses by increasing the complete executions of
access operations.

6 Related Work

To the best of our knowledge, there has been no work
on processing RF transactions. We first look at previ-
ous studies of wireless transactions and discuss other
related studies in RF environment.

Let us consider wireless transaction processing
schemes for mobile devices. A mobile computing sys-
tem is a special type of distributed system in which
the network between nodes is changed dynamically.
Because of high communication costs, limited battery
power, long periods of disconnection, and other con-
straints, traditional commit protocol techniques such
as two-phase commit protocol[10] cannot be applied
directly to the mobile environment. The network is
easily disconnected because of communication latency,
hand-off, and power saving, in addition to cost re-
duction. Several techniques are proposed for recove-
ring the transaction after reconnection, cache-based
schemes[11-13] and replication-based schemes[14-15].

It is clear that applying mobile transaction mo-
dels to RF transactions is unrealistic. In the mobile
environment, disconnection of the network is mostly
predictable[16]. Even if the connection is lost unexpect-
edly, the mobile hosts, by themselves, can reconnect
and resume the transaction. Mobile hosts have suffi-
cient battery power to resume suspended transactions
even if the network is totally disconnected. By con-
trast, the RFID tag can be activated only when it is
in the interrogation area of an RFID reader and un-
expected disconnection of RF transactions frequently
occurs. Unlike mobile hosts, an RFID tag cannot re-
connect and reprocess the suspended operations with-
out help from the RF infrastructure such as the reader
and the middleware.

Transaction management in sensor networks was
first discussed in [17]. This paper also defined an up-
date transaction of sensor database which modifies at-
tributes of the sensors, such as the name, id, and sam-
pling rate of temperature sensors. However, this paper
did not touch on the problem of disconnection between
the sensors and the host because of basic assumptions
about the sensor network. At all times, each sensor
node is completely connected either to the base stations
or to other sensor nodes by ad-hoc networking[18].

The disconnection problems of RFID tags are dis-
cussed in [19]. To deal with uncertainty in the exe-
cution of access operations, this work has proposed a
virtual tag memory service, which is an additional ser-
vice system in the distributed network infrastructure to
provide transparency of tag memory accesses. However,

this requires huge cost for maintaining backup copy of
each tag memory and each operation’s result status.
The preliminary work for this paper is presented in [20],
where we defined the problem of processing RF tran-
sactions and introduced a reprocessing model. How-
ever, the analysis and verification of the solution were
insufficient. This study extends the reprocessing model
by including a concurrency control protocol. In addi-
tion to the extension, it presents a formalization and
validation of the model via experiments, adding to the
utility of the research.

7 Conclusions

This paper has introduced the problem of incomple-
tion in read/write operation execution caused by the
volatile and uncertain characteristics of RF communi-
cation. Because of the unpredictable disconnection of
the RF connection, an access operation might be un-
processed or partially processed. To eliminate tag data
inconsistency, we have proposed a reprocessing model
which re-executes incomplete operations by defining a
sub-operation of the incomplete operation. We also
present a concurrency control mechanism based on a
continuous query scheme that asynchronously detects
re-observation of incomplete tags by an arbitrary reader
and removes inconstant data accesses. The main con-
tribution of our work is the provision of a reprocessing
model with a protocol that guarantees atomicity and
durability for tag data accesses. Our work also pro-
vides proofs of the usability of the model via a set of
experiments using both real data and simulated data.

As the proposed model provides a reprocessing
mechanism for incomplete tags in an RFID middleware,
we need to further consider the outgoing tags from the
coverage of the middleware. As a future work, the re-
processing model needs to be extended to distributed
middleware environments to handle the flow of incom-
plete tag among multiple sites.

References

[1] Want R. An introduction to RFID technology. IEEE Perva-
sive Comput., 2006, 5(1): 25-33.

[2] Banks J, Hanny D, Pachano M, Thompson L. RFID Applied.
Wiley, Chichester, March 2007, pp.328-329.

[3] Weinstein R. RFID: A technical overview and its application
to the enterprise. IT Professional, 2005, 7(3): 27-33.

[4] Fishkin K P, Jiang B, Philipose M, Roy S. I sense a distur-
bance in the field: Unobtrusive detection of interactions with
RFID-tagged object. In Proc. the 6th Int. Conf. Ubiquitous
Computing, Sept. 2004, pp.268-282.

[5] Jung S, Cho J, Kim S. FQTR: Novel hybrid tag anti-collision
protocols in RFID system. Journal of KIISE: Software and
Applications, 2009, 36(7): 560-570.

[6] EPCglobal Inc. Class 1 generation 2 UHF air interface proto-
col standard “Gen 2”, http://www.gs1.org/gsmp/kc/epcglo-
bal/uhfc1g2.



224 J. Comput. Sci. & Technol., Jan. 2012, Vol.27, No.1

[7] EPCglobal Inc. Low level reader protocol, http://www.gs1.
org/gsmp/kc/epcglobal/llrp.

[8] EPCglobal Inc. Application level events (ALE) standard,
http://www.gs1.org/gsmp/kc/epcglobal/ale.

[9] Golab L, Özsu M T. Issues in data stream management. SIG-
MOD Record, 2003, 32(2): 5-14.

[10] Silberschatz A, Korth H F, Sudarshan S. Database System
Concepts, 4th edition, New York: McGraw-Hill, 2002, pp.709-
722.

[11] Kisler J, Satyanarayanan M. Disconnected operation in the
Coda File System. ACM Transactions on Computer Systems,
1992, 10(1): 3-25.

[12] Wu K, Yu P S, Chen M. Energy efficient caching for wireless
mobile computing. In Proc. the 12th Int. Conference on
Data Engineering, Feb. 26-Mar. 1, 1996, pp.336-343.

[13] Madria S K, Bhargava B. A transaction model for mobile com-
puting. In Proc. Int. Database Engineering and Application
Symposium, July 1998, pp.92-102.

[14] Rasheed A, Zaslavsky A. Ensuring database availability in
dynamically changing mobile computing environments. In
Proc. the 7th Australian Database Conference, Melbourne,
Australia, Jan. 1996, pp.100-108.

[15] Ding Z, Meng X, Wang S. A transactional asynchronous repli-
cation scheme for mobile database systems. Journal of Com-
puter Sci. and Tech., 2002, 17(4): 389-396.

[16] Madria S K, Mohania M, Bhowmick S S, Bhargava B. Mo-
bile data and transaction management. Information Sciences,
2002, 141(3-4): 279-309.

[17] Gürgen L, Roncancio C, Labbé C, Olive V. Transactional is-
sues in sensor data management. In Proc. the 3rd Interna-
tional Workshop on Data Management for Sensor Networks,
Sept. 2006, pp.27-32.

[18] Wang B, Yang X, Wang G, Yu G. Continuous approximate
window queries in wireless sensor networks. In Lecture Notes
in Computer Science 4505, Dong G et al. (eds.), Springer-
Verlag, 2007, pp.407-418.

[19] Floerkemeier C, Roduner C, Lampe M. RFID application de-
velopment with the Accada middleware platform. IEEE Sys-
tems Journal, 2007, 1(2): 82-94.

[20] Ryu W, Hong B. A reprocessing model based on continuous
queries for writing data to RFID tag memory. In Proc. the
14th International Conf. Database Systems for Advanced Ap-
plications, April 2009, pp.201-214.

Wooseok Ryu received the B.S.
and M.S. degrees in computer en-
gineering from Pusan National Uni-
versity (PNU), Busan, Korea, in
1997 and 1999, respectively. He is
currently pursuing his Ph.D. degree
in computer engineering at PNU.
He has developed RFID middleware
with Institute of Logistics Informa-
tion Technology. His research fo-

cuses on RFID middleware, tag data model, RF transac-
tion, stream databases, spatial databases and moving object
databases.

Bonghee Hong received the
M.S. and Ph.D. degrees in computer
engineering from Seoul National Uni-
versity, Seoul, Korea, in 1984 and
1988. In 1987, he joined the faculty
of Computer Engineering of the Pu-
san National University (PNU). He
is working as a professor of database
in the Department of Computer En-
gineering at the PNU. He is a direc-

tor of Institute of Logistics Information Technology. He
is also a steering committee member of DASFAA. His re-
search interests include theory of database systems, mov-
ing object databases, spatial databases, RFID system and
RFID/RTLS/Sensor middleware.

Joonho Kwon received his
Ph.D., M.S. and B.S. degrees in the
School of Electrical Engineering and
Computer Engineering from Seoul
National University, Seoul, Korea, in
2009, 2001 and 1999, respectively.
He is an assistant professor of Insti-
tute of Logistics Information Tech-
nology at Pusan National University,
Korea. His current research interests

include XML filtering, XML indexing and query processing,
Web services, RFID data management, serious game and
multimedia databases.

Ge Yu received his B.E. and
M.E. degrees in computer science
from Northeastern University of
China in 1982 and 1986, respectively,
Ph.D. degree in computer science
from Kyushu University of Japan
in 1996. He has been a professor
at Northeastern University of China
since 1996. He is a member of ACM,
IEEE, and a senior member of CCF.

His research interests include database theory and technol-
ogy, distributed and parallel systems, embedded software,
and network information security.


