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Abstract With the rapid development of next-generation sequencing technologies, bacterial identification becomes a very
important and essential step in processing genomic data, especially for metagenomic data. Many computational methods
have been developed and some of them are widely used to address the problems in bacterial identification. In this article
we review the algorithms of these methods, discuss their drawbacks, and propose future computational methods that use
genomic data to characterize bacteria. In addition, we tackle two specific computational problems in bacterial identification,
namely, the detection of host-specific bacteria and the detection of disease-associated bacteria, by offering potential solutions
as a starting point for those who are interested in the area.
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1 Introduction

As the largest domain of all living organisms on
earth, bacteria are estimated to have more than five
nonillion (1030) individuals worldwide[1], which are far
more than previous estimations of the total number of
bacteria[2]. These single-cell organisms can be found
everywhere, e.g., deep sea, hot springs, human gut, and
even in radioactive waste[3]. Due to close connections
between bacteria and human life, we cannot live with-
out them and actually benefit from the microorganisms
in many cases, e.g., food production, human health[4],
environmental sciences[5], and chemical industry[6-7].
On the other hand, pathogenic bacteria are one of the
most serious threats to human life. For example, tuber-
culosis, the most common fatal bacterial disease, kills
about 2 million people every year[8]. Since 1676, when
Antonie van Leeuwenhoek first observed bacteria, scie-
ntists have never stopped exploring the micro-world.
The task of identification and classification of bacteria

remains challenging because bacteria are invisible to
naked eyes and cannot be easily differentiated morpho-
logically. During the past two decades, DNA sequenc-
ing technologies have become a powerful tool for scien-
tists to take up the challenge.

In 1995, when John Craig Venter just started to
sequence the first bacterial genome — Haemophilus
influenza[9], DNA sequencing was extremely difficult
and time consuming. The common thought at the time
was that it would be sufficient to build a gene pool of the
whole microbial community from just a few dozen rep-
resentative genomes. Today, thanks to new sequencing
technologies, more than 1 600 microbial whole genome
sequences have been released and many more bacte-
rial genome-sequencing projects are ongoing[10]. With
the accumulation of bacterial genomic data, the focus
of microbial genomics (study of genomes of microor-
ganisms including archaea, bacteria and fungi) is shift-
ing from single genome to pan-genome (gene pool of
a particular species) and meta-genome (environmental
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gene/species pool). However, the explosion of data has
not answered all the questions of researchers in this
field. It becomes evident that these data just revealed a
tip of the iceberg for the bacterial world. In-depth ana-
lysis of these data is needed to help better understand
the genome diversity and dynamics of bacteria, intera-
ctions between bacteria and their hosts/environments,
and the pathogenicity of pathogens. Meanwhile, the
unprecedented amount of genome data also poses ma-
jor challenges for computational analysis, which is an
essential tool for microbial genomics. In fact, computa-
tional methods for massive genomic sequence analysis
have become a bottleneck of microbial genomics.

In this review, we will focus on computational
methods for bacterial characterization (i.e., identifi-
cation and classification), based on sequencing data
with consideration of bacteria’s hosts and environ-
ments. While this topic has been brought up in recent
publications[11-16], no in-depth review has been pre-
sented. Bacterial identification through detecting varia-
tions of genome sequences across different species/genus
is a very important and essential step of analyzing ge-
nomic data, especially for metagenomic data. First,
we will discuss existing computational tools and their
limitations for bacterial identification. As bacteria
evolve rapidly in response to the environments, bac-
terial adaptations to different environments/hosts will
reflect in their genome sequences. Many bacteria, even
belonging to the same species, still show extensive ge-
nomic plasticity and diverse pathogenicity. For exam-
ple, three different E. coli strains, laboratory strains
E. coli MG1655, enterohemorrhagic E. coli EDL933,
and an uropathogenic strain E. coli CFT073, share only
39.2% common genes[17]. Thus, in the second part of
this review, we will assess the practical computational
methods for detecting the sequence variations of bacte-
ria in different environments for a given species. Finally,
we will dissect the evolutionary dynamics of bacterial
virulence and review the methods for identification of
genetic markers in bacterial DNA sequences that are
associated with a disease or host.

2 Bacterial Identification

2.1 Background

In the past, analysis of microbial communities was a
complicated task due to their high diversity and inac-
cessibility via culturing. The emerging next-generation
sequencing technologies provide a potential way for do-
ing this analysis on a routine basis[12]. The Human Mi-
crobiome Project[18], which began in May 2007, aimed
to survey the microbial communities that colonize the
human body. Currently, over 100 similar metagenomic
projects are ongoing, covering microbial communities of

skin and several tracts, including gastrointestine, geni-
tourinary tract, oral cavity, nasopharynx, and respi-
ratory tract[12]. These studies will undoubtedly pro-
vide new insight into many aspects of complex micro-
bial communities, such as metabolic capabilities of mi-
croorganisms, co-evolution of bacteria and host, com-
munication of microbial cells and so on[16]. Although
metagenomics is still in its early stage, this emerging
field has already discovered many surprises in micro-
bial genomics and microbiology[16]. Among the exten-
sive genomic sequencing data of microbial communities
generated by various metagenomic projects, approxi-
mately 62% of the bacteria that can be identified from
the human intestine were previously unknown and 80%
of them are not cultivatable[19]. Due to the explosion of
metagenomic data, DNA sequence-based identification
and classification are becoming more and more impor-
tant in exploring microbial diversity.

In the 1970s, DNA-DNA hybridization was intro-
duced to differentiate bacterial species. Any two bac-
terial strains with more than 70% DNA-DNA hy-
bridization were considered to be the same species.
Later, with the development of new sequencing tech-
niques, Carl Woese pioneered other criteria for bac-
terial identification[20]. For example, the 16S riboso-
mal RNA (rRNA) gene is highly conserved in bacte-
ria and archaea, and was used for identification and
discovery of pathogens starting from 1990[21]. Nowa-
days, 16S rRNA gene is also widely used for phyloge-
netic studies[22]. However, due to the limitations of
16S rRNA gene, other genetic markers have been em-
ployed for bacterial identification, e.g., multilocus se-
quence typing (MLST)[23]. Recently, whole genome-
based methods have been developed for bacterial iden-
tification. Despite these advances, complete genome
sequence is not easily obtained[24-25].

The 16S rRNA gene, a molecular clock, has a rela-
tively slow evolutionary rate of 1% sequence divergence
per 50 million years. It is around 1 500 nucleotides in
length and contains 9 hypervariable regions[26] (Fig.1)
as well as conserved regions interspersed with the vari-
able ones. In terms of similarity of 16S rRNA gene
sequences, bacteria within the same genus and species
usually share about 95% and 97% pairwise sequence
identities, respectively[27]. Because of the consistency
of sequences in bacteria, 16S rRNA gene sequencing
has become the gold standard for characterization of
bacterial communities.

2.2 Common Factors Affecting Bacterial
Identification and Classification

Bacterial identification is based on a specific taxo-
nomic scheme. There are several taxonomic schemes
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Fig.1. Secondary structures of 16S rRNA gene of Escherichia coli generated by using XRNA[28] with 9 hypervariable regions circled.

proposed by independent curators, e.g., the Riboso-
mal Database Project (RDP) (Bergey’s)[29], Norman
Pace[30], Wolfgang Ludwig[31], Phil Hugenholtz[32], and
the National Center for Biotechnology Information
(NCBI). All major rRNA sequence databases, such
as RDP[33-34], Greengenes[35-36], and ARB-SILVA[37-38]

were designed based on different taxonomic schemes.
The variations among different taxonomic schemes have
a direct impact on the identification results. For exam-
ple, there are 31 phyla in the RDP database, 50 in
Ludwig’s taxonomy, 68 in NCBI and 88 in the system
proposed by Pace and Hugenholtz. Within each phy-
lum, the number of sub-groupings also varies. After
2005, the oldest and most traditional bacterial classifi-
cation system – Bergey’s taxonomy – started to build
taxonomy based on analyses of nucleotide sequences of
ribosomal small subunit RNA rather than on pheno-
typic data[29]. Nevertheless, most classification systems
are still based on structural and functional attributes
of bacteria. Thus, 16S rRNA gene-based identification

results may never match those taxonomies exactly.
Sequence alignment is a necessary step in 16S

rRNA gene-based identification. Besides the multi-
ple sequence alignment programs such as ClustalW[39],
MEGA[40], NAST[41] and MUSCLE[42], some databases
also include alignment programs, such as RDP II,
Greengenes, and ARB-SILVA. It is shown that align-
ment quality has a significant impact on sequence
classification[43]. Incorporating the well-determined sec-
ondary structures of 16S rRNA gene with the pairwise
or multiple sequence alignment will improve alignment
quality[33], but the extra information will also signifi-
cantly increase the computational complexity. Another
recent research reveals that the longest totally con-
served segment in 16S rRNA gene across all bacteria
is only 11 bp and in most regions the longest absolutely
conserved stretches are only 4 bp[12,44]. This stark real-
ity is a challenge for developing effective and accurate
alignment algorithms, especially for those 16S rRNA
gene fragments with less than half of their full lengths.
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Different hypervariable (V) regions show different
efficacies in identifying species, and no single hyper-
variable region can differentiate bacterial species among
all bacteria. At the genus level, using 2-region set for
identifications has become a standard approach, and
about 90% of bacterial strains successfully identified by
this approach cannot be identified through biochemi-
cal (phenotype) methods[45]. Chakravorty et al. pro-
posed that the V2 and V3 regions were most suitable for
universal genus identification of pathogenic bacteria[46].
The V5-V6 region set was reported to be the most
useful in study of human oral microbiome[47-48]. It
is suggested that analyzing three different 2-region
sets (V2-V3, V4-V5, and V6-V8) in parallel was ef-
fective in determining the bacterial consortia in maize
rhizospheres[49]. Some studies also revealed that the
V6-V9 set[50], especially the V6 region[51-52], repre-
sented an outlier and might not be suitable to use
directly for taxonomic assignment. Therefore, the
choice of hypervariable regions is critical for bacterial
identification[45]. There is room for further computa-
tional algorithm development in designing an optimal
hypervariable set for bacterial identification.

Due to their highly conserved nature, 16S rRNA
gene sequences might not be a good genetic marker to
distinguish the sub-populations within a species. Even
different species within the same genus, such as Bacillus
cereus, B. thuringiensis and B. anthracis[53], have only
a few bases different in their 16S rRNA gene sequences.
No matter what computational methods are used, there
will be a theoretical upper limit of the average accuracy
for species identification across all species.

2.3 Major Computational Methods and Their
Limitations

Generally speaking, computational methods for bac-
terial identification can be divided into two major cate-
gories: homology- and composition-based[54-55] as sum-
marized in Fig.2. Homology-based approaches use tra-
ditional sequence alignment algorithms to compare se-
quences similarity. According to the techniques of
alignment, it can be further divided into two subgroups,
i.e., sequence search (especially using Basic Local
Alignment Search Tool (BLAST)[56]) and phylogeny.
Composition-based methods build models based on the
different features extracted from sequences, e.g., GC
content[57], codon usage, and frequencies of motifs. The
typical classifiers used in composition-based methods
are näıve Bayes classifier, Markov model, and support
vector machine (SVM).

BLAST. BLAST is one of the most popular bioin-
formatics programs. It is most often used for compar-
ing biological sequences, such as searching a query

sequence against

Fig.2. Major algorithms used in bacterial identification.

a sequence library. Thus, it naturally became the first
choice of metagenomic studies in the early stage and has
been shown to be effective in many studies[58-60]. Due
to the limitation of its algorithm, the closest BLAST
hit may not be the nearest neighbor[61] and this ap-
proach can reach a high-accuracy level only when the
query reads have significant similarities to the matches
in the sequence library[13]. Since the lengths of reads
generated by next-generation sequencing technologies
are still not long enough, short-reads are generally
not unique and often cause ambiguous identification
results. Recently, some researchers started to evalu-
ate the performance of BLAST for analyzing metage-
nomic data[62-63]. For some metagenomics datasets,
the significant BLAST hits only accounted for 35% of
the reads in the sample[58]. With the improvement of
sequencing techniques, the length of reads are getting
longer, and the reference genome libraries are becom-
ing more comprehensive[18]. Extremely expensive com-
putational complexity is another common drawback
of alignment-based identification techniques. While
BLAST is an efficient software tool, its capacity in
handling of metagenomic data can barely satisfy the
needs of current analyses. With the explosive increase
of metagenomic data, further reducing the computa-
tional complexity becomes an important challenge of
alignment-based identification methods.

Phylogeny. Because a significant proportion of short
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query reads hit more than one species with significant
E-value in the BLAST, a simple algorithm, the Lowest
Common Ancestor (LCA), has been employed to as-
sign the ambiguous reads to the right taxa[51,64]. In-
stead of choosing the nearest neighbor, LCA assigns
each reads to the ancestor taxa by computing means
of the least common taxonomic ancestor of a suitable
set of hits, and it can also reflect the level of conser-
vation of the sequence. While this approach is more
sophisticated than BLAST, it has two drawbacks[54,65]:
first, LCA has a relatively low coverage, because for
some reads with very few numbers of hits on the ref-
erence taxonomy, the least common taxon cannot be
computed; second, many reads have been assigned to
non-informative high taxonomic ranks. The first issue
has been addressed by a modified method — multiple
taxonomic ranks (MTR)[54]. Traditionally, LCA only
uses local taxonomic information for matching reference
sequences and treats each read independently. MTR
proposes a two-step method to use global type of infor-
mation: 1) clustering reads with the same taxon; and
2) selecting the “best” subset of each cluster with a
combinatorial optimization algorithm for LCA. The re-
sults of MTR experiments show a significant increase
in coverage compared to the traditional LCA. The sec-
ond drawback of LCA has been tackled by Clemente
et al.[66]. By evaluating the number of mismatches be-
tween the read and the reference taxonomy to balance
the relevance of precision and recall in the assignment,
Clemente’s method assigns each read to the inner nodes
(a rank lower or equal) of the taxon selected by the stan-
dard LCA.

Näıve Bayes Classifier. In order to avoid the heavy
computational expense, some composition-based meth-
ods have been proposed as alternatives to classic align-
ment for sequence comparison[67]. A typical method is
näıve Bayes classifier (NBC)[55,68]. In 1997, Wang et
al.[68] developed an NBC (RDP Classifier) with 8-mers
(8 consecutive nucleotides) for using 16S rRNA gene se-
quences to classify bacteria into new taxonomy which
has become one of the most popular classifiers in mi-
crobiology. As an extremely conserved gene, 16S rRNA
gene has a much slower evolutional rate than other
genes, and partial 16S rRNA gene sequence has a dif-
ferent k-mer distribution to full-length 16S rRNA gene
sequence. With incomplete 16S rRNA gene sequence,
the accuracy of bacterial identification may drop dra-
matically. Due to the limitations of the method, RDP
classifier only can provide taxonomic assignments from
domain to the genus level, and it also needs users to pro-
vide full length of 16s rRNA gene sequence to obtain
high classification accuracy. It does not work at either
species level or sub-species level. One study[55] suggests
that NBC works better on whole genome sequences

than 16S rRNA gene sequence. The same study also
tried to increase the length k to 15 to achieve better
performance on short reads. When k equals 15, there
are about 1 billion possible words and the longest bacte-
rial genome is only around 26 million nucleotides; so an
increase of k to 15 might cause the counting statistics
insignificant. Furthermore, computational and storage
expenses can be a concern.

Other Models. Signal processing and machine-
learning approaches are widely used to solve problems
with the background noise, clutter, and jamming sig-
nals, and they also have been applied for bacterial iden-
tification. Phymm[69], a classifier based on interpo-
lated Markov model (IMM), has been trained on 539
curated genomes. It constructs probability distribu-
tions representing observed patterns of nucleotides on
chromosomes or plasmids. Phymm shows good perfor-
mance at ranks Class and Phylum levels on metage-
nomic datasets with relatively long reads (800 bp and
1 000 bp), but low accuracy for short reads (100 bp)[54].
Recently, an extensible Markov model (EMM)[70] was
proposed to use a time-varying Markov chain model
for bacterial identification. The sequence data can
be considered as states representing clusters of simi-
lar sequence segments and inter-state transition proba-
bilities representing the implicit order within the se-
quences. This model outperformed the RDP classifier,
but still did not show satisfactory accuracy at rank
Species. PhyloPythia[71], a multiclass SVM based ap-
proach, examines oligonucleotide composition to chara-
cterize taxonomic groups. This method is effective
for genomic fragments of 3 000 bp and longer, but for
1 000 bp sequences, its sensitivity drops drastically.

2.4 Challenges and Future Work

As an indispensable step, most bacterial identifica-
tion tools have been integrated into the metagenomic
analysis systems. The drawbacks of the current metage-
nomic analysis systems are also the drawbacks of bac-
terial identification tools. Near half of the current
metagenomic analysis software tools (Table 1) uses a
‘pipeline’ approach. Within a pipeline, a set of appli-
cations is connected in a sequential order and the out-
put of one application becomes the input of the next
application. As a double-edged sword, pipeline meth-
ods can significantly reduce the cost of time and labor
of development process by using existing, stable and
well-established applications. However, the pipeline ap-
proach usually does not have an efficient structure for
a system to handle large datasets, which is the case for
metagenomic data. Furthermore, at each step of the
pipeline, some analysis results and resources are subject
to re-computation and re-allocation. This redundancy
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definitely affects the efficacy of using computational re-
sources, hence decreasing the performance of the sys-
tem. Another common problem of the pipeline ap-
proach is that the input/output within the pipeline
could be time-consuming and error-prone. Thus, a co-
hesive public open-source development platform, such
as Cytoscape[72], is in dire need of construction. Such
a platform will not only significantly save the develop-
ment time of individual researchers, but also speed up
the potentially revolutionary improvement of this field.
A similar open-source framework is necessary for bac-
terial identification and it will help this research area
to rapidly improve.

A rapid growth in high-performance computing
power is timely for analyzing dramatic rise in data
volume. Different models of parallel computing, such
as distributed computing, general-purpose comput-
ing on graphics processing units (GPUs), and cloud
computing, can be applied as bioinformatics tools to
analyze these data. Open-source new bioinformatics
software tools are being developed by exploiting web-
based services to increase computing power provided
by academic and commercial “cloud computing net-
works”. Some resources are already available, e.g.,
Science Clouds[73], which allows researchers to have
full control over using a leasing model. MG-RAST-
CLOUD[74] is a metagenomics analysis server with ca-
pability of handling data from Gigabytes to Terabytes.
CloudBurst[75] is a highly sensitive genome sequence
mapping tool by using cloud computing. Soon, access
to the Internet plus a pad or smart phone will be the
only requirements for large-scale bioinformatics analy-
sis. High-performance computing also makes it possi-
ble to implement algorithms with high computational

complexities. Due to the size of large data, current
bacterial identification systems tend to use simple al-
gorithms with low computational complexity. Some of
the computationally expensive algorithms are explored
with high-performance computing. Supervised and un-
supervised learning methods, e.g., language models,
linear classifiers, and advanced Bayesian techniques
are promising for bacterial identification with high
accuracies. Another promising approach to improving
identification accuracy is using mixed models or a meta-
analysis technique to combine the identification results
from different methods. For example, PhymmBL[69], a
hybrid classifier, outperforms both BLAST and Phymm
on the same dataset.

Although it is still in the early stage, metage-
nomics analysis has already been used in many re-
search areas, e.g., clinical microbiology[76-78], bacteria-
environment symbioses[79-80], and host-microbial
interactions[59,81-82]. Most of those applications are
still using the two most traditional identification ap-
proaches — BLAST and the RDP classifier, since the
newly developed methods still have some limitations
and cannot significantly outperform them. Although
all new algorithms are trying to overcome the common
drawbacks, some issues remain unsolved. Generally,
homology-based approaches work well for long reads
(> 800 bp), while composition-based approaches can
handle relatively short reads and partial gene sequence
(down to 100 bp for some datasets). No single algo-
rithm can dominate the identification results across
both cases and the performance will significantly drop
with the decrease of the read length. Therefore, im-
proving performance on bacterial identification with
short reads (less than 400 bp) is still an open problem.

Table 1. Metagenomic Analysis Software

Name and Type Open Algorithm URL Last
Reference Source Update

OTUbase[113] R package Yes BLAST http://www.bioconductor.org/packages/release/bioc/ 2011
html/OTUbase.html

CAMERA[114] Webserver No BLAST http://camera.calit2.net 2011

MG-RAST[115] Pipeline/web Yes BLAST http://metagenomics.anl.gov/ 2011

WebCARMA[116] Pipeline/web Yes BLAST http://webcarma.cebitec.uni-bielefeld.de 2011

PANGEA[117] Pipeline Yes BLAST http://pangea-16s.sourceforge.net 2011

MARTA[118] Pipeline Yes BLAST http://bergelson.uchicago.edu/software/marta 2010

BIBI[119] Webserver No BLAST http://umr5558-sud-str1.univ-lyon1.fr/lebibi/lebibi.cgi 2010

QIIME[120] Pipeline Yes BLAST/NBC http://qiime.sourceforge.net/ 2010

STAP[121] Pipeline Yes BLAST http://bobcat.genomecenter.ucdavis.edu/STAP/ 2008

MEGAN[64] Pipeline No LCA http://ab.inf.uni-tuebingen.de/software/megan/ 2011

Galaxy[122] Pipeline No LCA http://galaxy.psu.edu/ 2011

MTR[54] Executables Yes LCA http://www.cs.ru.nl/∼gori/software/MTR.tar.gz 2010

TANGO[65] Perl script Yes LCA http://www.lsi.upc.edu/∼valiente/tango/ 2010

NBC[123] Webserver No NBC http://nbc.ece.drexel.edu/ 2011

RDP[33] Pipeline No NBC http://rdp.cme.msu.edu/ 2011

Phymm[69] Executables Yes Markov http://www.cbcb.umd.edu/software/phymm/ 2011

EMM[70] Executables Yes Markov http://lyle.smu.edu/IDA/EMM/ 2010

PhyloPythia[71] Webserver No SVM http://cbcsrv.watson.ibm.com/phylopythia.html 2007
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Because of its unique characteristics, 16S rRNA gene
remains as the most commonly used genetic marker[83].
However, using partial 16S rRNA gene sequence for
bacterial identification is more difficult than using
whole genome sequence or some other genetic mark-
ers, since the correlation of the sequence patterns be-
tween different hypervariable regions of 16S rRNA gene
is relatively low and the variations of different hyperva-
riableregions are species-specific. Thus, selection of hy-
pervariableregions with a specific underlying database
is tricky in bacterial identification and classification
as it can significantly affect the identification results.
To date, no matter what computational method is
used, highly confident bacterial identification can only
be achieved at rank of Genus, but many microbiol-
ogy issues require higher resolution approaches to diffe-
rentiate bacteria at the species level or even at sub-
species level. For such a differentiation, whole genome
sequence-based and MLST[23] methods are the two ap-
proaches currently available. MLST is based on the
partial sequences of 7 housekeeping genes with around
450 bp each, but its resolution power is still limited
by the little sequence variation among some bacterial
species. Another possible approach is the use of single-
nucleotide polymorphisms (SNPs) as genetic markers.
This approach was originally developed for diagnosis of
human genetic diseases, and now it has been used for
the analyses of bacterial genomes[84-85]. When multi-
ple potential markers are available, selecting sequence
markers for a classifier is even more challenging than de-
veloping a general classifier with a given marker. Un-
til now there is no universal protocol for solving this
problem. In Sections 3 and 4 we will briefly introduce
possible solutions using our new methodologies with ex-
amples.

3 Identification of Host-Specific Bacteria

Bacteria can mutate and adapt to the changing en-
vironments. Studies on bacteria-host/environment in-
teractions not only provide an opportunity to dissect
the genetic basis of adaptive evolution, but also can
be very useful on infectious disease prevention and
environment-quality monitoring. Host- or host group-
specific bacterial identification is an important step in
studying bacteria-host interactions[86]. Unlike the gene-
ral bacterial identification methods that we discussed
in Section 2, high identification accuracy at the species
or sub-species level is necessary for this type of iden-
tification. Here, we use identification of fecal source
in aquatic environments as an example to introduce a
practical application of computational methods in iden-
tification of host-specific bacteria.

Microbiological quality of water poses a risk to
human health. During 2005∼2006, 78 waterborne-
disease outbreaks were reported, which caused the sick-
ness of 4 412 people, 116 hospitalizations, and 5 deaths
in the United States[87]. Animal manures are the major
cause for the impaired water quality. Animal gastroin-
testinal (G.I.) tract maintains a rich microbial commu-
nity with specific mutualistic associations with diffe-
rent hosts[88]. Thus, the bacterial community in the
G.I. system not only is used to model the evolutionary
relationships between hosts and bacteria, but also pro-
vides a reliable indicator in identification of the fecal
pollution source in aquatic environments. Current mi-
crobiological water quality monitoring and regulations
are based on the amount of the fecal indicator bacteria
(FIB), Escherichia coli or enterococci[89]. The presence
of FIB is indicative of a fecal pollution in water, but
it does not identify the contamination source(s). So,
microbial source tracking (MST) methods have been
developed and used for the identification. It is es-
sential to identify the sources of fecal pollution before
best management practices can be applied to eliminate
or mitigate the pollution sources. A variety of alter-
native fecal indicator microorganisms have been pro-
posed and used in MST with varying degrees of suc-
cess. Bacteria such as Bacteroides-Prevotella spp.[90],
Bifidobacterium spp.[91], Clostridium perfringens[92],
Lactobacillus spp.[93], Methanogens spp.[94], and
Faecalibacterium[95] have been proposed and used for
MST.

We and other researchers found Faecalibacterium to
be among the dominant bacteria in the intestinal tract
of major animals that are often found to be the sources
of fecal pollution in water, which makes this bacterium
a candidate as an alternative fecal indicator. Fae-
calibacterium is the newly established genus[96], com-
posed of a single species Faecalibacterium prausnitzii[29]

with the type strain being F. prausnitzii ATCC27768.
F. prausnitzii, previously Fusobacterium prausnitzii, is
phylogenetically distinct from known Fusobacterium
species, based on the 16S rDNA sequence and G+C
content[96]. Faecalibacterium is the dominating fecal
bacterium in humans[95,97], cattle[98], swine[99], and
poultry[100].

A collection of 7 458 Faecalibacterium 16S rDNA se-
quences of intestinal and fecal samples from different
animal species were obtained from the RDP. These in-
clude human (6 407 sequences), cattle (811 sequences),
turkey (132 sequences), chicken (88 sequences), pig (16
sequences), dog (3 sequence) and sheep (1 sequence).
A multiple sequence alignment was performed with all
the sequences by using MUSCLE version 3.8[42], and
the aligned sequences were then divided according to
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their hosts. For the sequences of any two host species,
both combinatorial entropy (1)[101] and background en-
tropy (2) were calculated for each site of the sequences
and described as follows:

Si =
∑

k

ln
Nk!∏

α=1...4 Nα,i,k!
, (1)

where Nk represents the number of sequences in group
k; Nα,i,k denotes the number of nucleotides of type α
in the column i of group k; Nα,i is the number of nu-
cleotides of type α in the column i; N represents the
total number of sequences in alignment.

S̃i =
∑

k

ln
Nk!∏

α=1...4 Ñα,i,k!
, (2)

where Ñα,i,k = NkNα,i/N .
Then the entropy difference of any two host-group

sequences was measured as previously reported[102].
Three extreme cases are defined as in Fig.3. In case
P1, the nucleotides are “randomly and uniformly dis-
tributed” over all groups and there is no significantly
conserved pattern for this position. Case P2 represents
a “globally conserved” pattern and all the nucleotides
are the same across both groups. In case P3, some spe-
cific nucleotides are only conserved in particular groups,
and different groups have different nucleotides. We call
this case “locally conserved”. According to the calcula-
tion results of the entropy difference for the three cases,
the entropy difference is 0, 0 and the minimum value for
the “randomly and uniformly distributed” case, “glo-
bally conserved” case, and “locally conserved” case, re-
spectively. Hence, the entropy difference is a proper
measurement for detecting a “locally conserved” se-
quence pattern. According to the above illustration,

we chose entropy difference as a feature to differentiate
the two groups. The entropy differences of selected po-
sitions are used as the feature entropy in the identifi-
cation step for distinguishing the host groups with the
same species of bacteria.

We have analyzed the polymorphism of Faecalibac-
terium 16S rDNA sequences by using the entropy cal-
culation and have identified that the V1 region of these
sequences has the highest variations, suggesting that
V1 is the region where signature sequences of a particu-
lar host may be found. In fact, there is a significant
difference in the nucleotide distributions in V1 between
species with poultry (including chicken and turkey) and
others as hosts (Fig.4). No significant difference has

Fig.3. Example to present the different cases for the entropy

calculation.

Fig.4. Sequence logos of the 16S rRNA gene V1 regions of Faecalibacterium from chicken, turkey and other host species. The overall

height of the stack indicates the sequence conservation at that position, while the height of symbols within the stack indicates the

relative frequency of each nucleic acid at that position.
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been found for all other variable regions between
chicken and turkey hosts, and in any variable region
among all the other hosts, including human, cattle, pig,
dog, and sheep. We trimmed the V1 region in all 7 458
sequences by splitting them into three groups according
to the different hosts, “chicken”, “turkey” and “oth-
ers”. First, the average sequence similarity within each
group was calculated and the pairwise sequence simi-
larity defined as follows: identity= [(number of iden-
tical nucleotides)/(length of the alignment)]%. Within
the same host group of “chicken”, “turkey” or “oth-
ers”, the V1 regions share 65.2%, 60.7% and 76.7% ave-
rage pairwise sequence identities, respectively. Then we
compared the average sequence identities between all
groups. The “chicken” group and the “others” group
only share 30.8% average identity, which is very close
to the 30.2% identity between “turkey” and “others”,
while the “chicken” group and “turkey” group are very
similar with 62.4% average identity. Based on the MUS-
CLE multiple alignments, a phylogenetic tree was de-
rived from a maximum likelihood analysis by using
PhyML[103], as shown in Fig.5. The topology of the
poultry host branch is highly conserved, and the se-
quences from poultry host have higher similarity than
those sequences from any other animal species, which
is in agreement with the result of polymorphism analy-
sis based on our entropy calculation. The polymor-
phism of poultry vs non-poultry Faecalibacterium 16S
rDNA sequences, including the significant difference in
V1 nucleotide distribution, has provided a foundation
for design and development of a poultry feces-specific
polymerase chain reaction (PCR) assay for the rapid de-
termination of poultry fecal pollution in water (Zheng
and Xu, unpublished data).

4 Identification of Disease-Associated Bacteria

Immediately after birth, humans undergo a life-long
process of colonization by foreign microorganisms. Al-
though we benefit from some host-bacterial associa-
tions, bacterial pathogens have long been known to
play important roles in the development of different

diseases[104] including cancer[105]. The host-bacteria
interactions include many complicated mechanisms,
such as co-evolution, the response of the host immune
system[106], the adaption of bacteria to the host and
so on. There are challenges in discovering associations
between bacteria and diseases. For example, given the
same host and same bacterial species, why will diffe-
rent subspecies or strains cause different diseases and
how can one differentiate the virulence by bacterial se-
quences? Although many publications have discussed
the roles of bacterial pathogens in the development of
diseases, a standard computational method for detect-
ing disease-related sequence markers and identifying
virulent strains is still lacking. Genus Helicobacter is
a well-studied model for its relationship between bac-
terial infection and cancer[107]. Here, we are using He-
licobacter pylori (H. pylori) as an example to introduce
a method for identification of disease-specific bacteria.

H. pylori is a Gram-negative helix-shaped bacte-
rium inhabiting the human stomach and is asso-
ciated with gastroduodenal diseases, including duode-
nal ulcers[108], gastric ulcers[109], chronic gastritis and
gastric cancer[110]. Cytotoxin-associated gene A (cagA)
of H. pylori has been revealed to be the major viru-
lence factor causing gastroduodenal diseases. The rela-
tionships between the polymorphism of CagA and clin-
ical diseases become a very interesting research prob-
lem. However, the molecular mechanisms that under-
lie different gastroduodenal diseases caused by cagA-
positive H. pylori infection remain unclear. Until now,
most studies are still limited to the discovery or evalu-
ation of the correlation between diseases and the num-
ber of Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in the CagA
strain[111]. To further understand the relationship be-
tween CagA sequence and its virulence to gastric can-
cer, we developed a systematic approach to identify the
cancer-related residues of CagA and employed a su-
pervised machine learning method for diseases-related
strain identification.

Based on the significant sequence patterns, the East
Asian subtype and the Western subtype were treated
as two independent groups and analyzed within each

Fig.5. Phylogenetic tree for Faecalibacterium 16S rRNA gene sequences. The number n before the name of each node presents the

number of sequences under this node. Strain ATCC 27768 is used as the standard sequence and the number after the name of node is

the distance between this node and strain ATCC 27768.
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group individually. CagA sequences of each subtype
were put into the corresponding disease groups, and
then the multiple sequence alignments were applied
for each group individually by using Clustal X version
2.0.3[39]. Based on the aligned sequences, for each col-
umn of multiple alignments, we computed the back-
ground entropy and the combinatorial entropy based
on the disease groups. The entropy difference between
the combinatorial entropy and the background entropy
was calculated as feature values.

The feature values were then fed into an SVM-based
classifier with the Radial Basis Function (RBF) kernel,
and two parameters were tuned to obtain the optimal
F value by using grid search. Two other popular se-
quence classification methods, BLAST and HMMER
(based on hidden Markov models), were also applied to
the same data for comparison. A leave-one-out cross-
validation procedure was performed for all methods to
avoid over fitting, and several measures were used to
evaluate the classification results: accuracy (Acc), sen-
sitivity (Sn), specificity (Sp), Matthews correlation co-
efficient (MCC) and F value.

The training/identification procedure has been im-
plemented based on the workflow shown in Fig.6, before
generating training/test data, all identical strains have
been removed.
• Select one strain as the test strain.
• Apply a bootstrap procedure to the rest of the

strains to get the training strains.
• Calculate the feature entropy for the test strain

based on training strains and save it as the test data.
• Calculate the feature entropy for each strain in the

training strain set based on training strains and save
them as the training data.
• Generate classification model by using the training

data.
• Classify the test data according to the classifica-

tion model.
• Repeat this procedure five times, and then calcu-

late the average as the final result.
In total, 287 East Asian subtype strains and 248

Western subtype strains were collected and verified
from different data sources. Among them, 47 strains
are related to gastric cancer in the East Asian sub-
type group and 37 strains in the Western subtype
group. Two popular identification methods, BLAST
and HMMER[112], were selected as the representative
methods for comparison. For the identification proce-
dure of both BLAST and HMMER, we used the de-
fault parameters of the tools, applied the LOO cross-
validation as our method, and used the same evaluation
formulas. Our entropy-based method achieved 76% and
71% classification accuracy for Western and East Asian
subtypes, respectively, which performed significantly

better than BLAST and HMMER (Table 2).
Although research indicates that there are sequence

markers to differentiate between a cancer group and
a non-cancer group, the major profiles of those two
groups are too similar to distinguish by using tradi-
tional methods. Therefore, we focused on identify-
ing the informative residues, quantifying information
of these selected residues, and then using it to design a
classifier that can predict whether a new sequence be-
longs to the cancer group or the non-cancer group[102].
This method not only sheds light on the relations be-
tween CagA sequences and gastric cancer, but also may
provide a useful tool for gastric cancer diagnosis or
prognosis.

Fig.6. Workflow of training/identification procedure for a specific

CagA sequence.
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Table 2. Comparison of Classification Performance

Subtype No. Cancer Cases No. Non-Cancer Cases Method Sn Sp Accuracy F Value MCC

Western 37 211 Entropy-SVM 0.86 0.740 0.76 0.800 0.45
BLAST 0.22 0.770 0.69 0.340 −0.01
HMMER 0.94 0.005 0.14 0.009 −0.16

East Asian 47 240 Entropy-SVM 0.74 0.710 0.71 0.730 0.35
BLAST 0.17 0.750 0.65 0.280 −0.07
HMMER 1.00 0.003 0.19 0.050 0.06

5 Conclusions

In this review, we have discussed the most widely
used bacterial identification algorithms, e.g., sequence
search, phylogeny, frequencies of length-N motifs, näıve
Bayes classifier, Markov model and SVM. With the im-
provement of new tools, the accuracy is increasing. The
significant drop of identification performance with the
decrease of the read length and the lacking of accu-
racy on species-level identification are the two common
drawbacks for all current algorithms. Therefore, it is
crucial to improve the performance in using short reads
for bacterial identification on the species or sub-species
level. Furthermore, we have addressed two specific bac-
terial identification problems, detections of host-specific
and disease-associated bacteria. While current algo-
rithms cannot solve these two problems, we provided
promising examples of our effort for tackling these is-
sues, which may point a helpful direction to pursue for
future studies. In both cases, we used entropy differ-
ence to detect feature sites on biological sequence and
then applied these sites in for SVM-based classifica-
tions. Identification of host-specific bacteria, described
in Section 3, is not only a special issue of bacterial
identification, but also a way to discover bacteria-host
interaction. Detection of disease-associated sequence
markers in pathogenic bacteria, discussed in Section
4, requires an even higher differentiation power than
in identification of host-specific bacteria. The clinical
importance of differentiating disease-associated strains
from the nonpathogenic ones calls for more computer
scientists to develop new computational methods, in-
ference algorithms, and standard tools to solve these
challenging problems.
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