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Abstract Failures are normal rather than exceptional in the cloud computing environments. To improve system avai-
lability, replicating the popular data to multiple suitable locations is an advisable choice, as users can access the data from
a nearby site. This is, however, not the case for replicas which must have a fixed number of copies on several locations.
How to decide a reasonable number and right locations for replicas has become a challenge in the cloud computing. In this
paper, a dynamic data replication strategy is put forward with a brief survey of replication strategy suitable for distributed
computing environments. It includes: 1) analyzing and modeling the relationship between system availability and the number
of replicas; 2) evaluating and identifying the popular data and triggering a replication operation when the popularity data
passes a dynamic threshold; 3) calculating a suitable number of copies to meet a reasonable system byte effective rate
requirement and placing replicas among data nodes in a balanced way; 4) designing the dynamic data replication algorithm
in a cloud. Experimental results demonstrate the efficiency and effectiveness of the improved system brought by the proposed
strategy in a cloud.
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1 Introduction

1.1 Background and Motivation

Cloud computing (CC), the long-held dream of
“computing as a utility”, has opened up the new era of
future computing, transformed a large part of IT indus-
try, and reshaped the purchase and use of IT software
and hardware[1-4]. Cloud computing is a large-scale
distributed computing paradigm driven by economies
of scale, in which a pool of abstracted, virtualized,
dynamically-scalable, highly available, and configurable
and reconfigurable computing resources (e.g., networks,
servers, storage, applications, data) can be rapidly pro-
visioned and released with minimal management effort
in the data centers. Services are delivered on demand
to external customers over high-speed Internet with
the “X as a service (XaaS)” computing architecture,

which is broken down into three segments: “applica-
tions”, “platforms”, and “infrastructure”. Its aims[3-4]

are to provide users with more flexible services in a
transparent manner and with ever cheaper and more
powerful processors. Similarly, IT companies with in-
novative ideas for new application services are no longer
required to make large capital outlays in the hardware
and software infrastructures. By using cloud comput-
ing platforms, they can register necessary services from
the Internet and are free from the trivial task of setting
up basic hardware and software infrastructures, which
allows them to focus on the core aspects of their busi-
ness. In computational view, cloud computing is a net-
work of data centers and is described as a powerful,
low-cost, and energy-efficient approach to future com-
puting. The data centers form what we call clouds.
From a sociological standpoint on the other hand, in
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the cloud, applications are accessible anywhere, any-
time, and storage becomes infinite for all intents and
purposes. And the users can access the powerful appli-
cations, platforms, and services delivered over Internet.

The difference between cloud and other large-scale
distributed computing platforms can be summarized as
follows[3-4].

1) On-Demand Self-Service. A user can unilaterally
provision computing capabilities, such as network sto-
rage, as needed automatically without requiring human
interaction with each service’s provider.

2) Broad Network Access. Capabilities are available
over the network and accessed through standard mecha-
nisms that promote the use by heterogeneous thin or
thick client platforms.

3) Resource Pooling. The computing resources are
pooled to serve multiple users by using a multi-tenant
model, with different physical and virtual resources dy-
namically assigned and reassigned according to con-
sumer demand.

4) Rapid Elasticity. Capabilities can be rapidly and
elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale
in. To the users, the capabilities available for provision-
ing often appear to be unlimited and can be purchased
in any quantity at any time.

5) Measured Services. Cloud systems automatically
control and optimize resource usage by leveraging a me-
tering capability at some level of abstraction approp-
riate to the type of the service. Resource usage can be
monitored, controlled, and reported to provide trans-
parency for both the provider and consumers of the
utilized service.

In a word, clouds can be a highly available, much
cheaper, and much more elastic, reliable, and scalable
computing environment compared to supercomputers,
grids and other large-scale distributed computing envi-
ronments. Clouds promise “scale by credit card”. More-
over, clouds also promise “bags of tasks”[5]. More de-
tailed discussion can be found in [3-9].

High availability, high fault tolerance and high effi-
ciency access to cloud data centers where failures are
normal rather than exceptional are significant issues,
due to the large-scale data support. Data replica-
tion allows reducing user waiting time, speeding up
data access and increasing data availability by pro-
viding the user with different replicas of the same
service, all of them with a coherent state. Replica-
tion is a frequently used technique in the cloud, such
as GFS (Google file system)[10], HDFS (Hadoop Dis-
tributed File System)[11]. However, cloud data centers
have grown rapidly in both size and number, and the
dynamically-scalable and totally virtualized resources
are provided as a service over the Internet[12]. In most

of the real cloud, data replication is achieved through
data resource pool, the number of data replicas is stati-
cally set based on history experience and is usually less
than 3. This strategy works well at most time, but it
will fail at inclement times. And it is not necessary
to create replica for all data files, especially for those
non-popular data files. In order to meet the high avail-
ability, high fault tolerance and high efficiency require-
ment, it is necessary to dynamically adjust the popular
data files, the number of data replicas and the sites to
place the new replicas according to the current cloud
environments.

In order to achieve the dynamic data replication,
there are three important problems that must be solved.
1) Which data should be replicated and when to repli-
cate in the cloud systems to meet the users’ require-
ments on waiting time reduction and data access speed-
ing up are important issues for further research, as the
wrongly selected and too early replicated data will not
reduce the waiting time or speed up data access. 2) How
many suitable new replicas should be created in the
cloud to meet a reasonable system availability require-
ment is another important issue to be thoroughly inves-
tigated. With the number of new replicas increasing,
the system maintenance cost will significantly increase,
and too many replicas may not increase availability,
but bring unnecessary spending instead. 3) Where the
new replicas should be placed to meet the system task
successful execution rate and bandwidth consumption
requirements is also an important issue to be explored
in detail. By keeping all replicas active, the replicas
may improve system task successful execution rate and
bandwidth consumption if the replicas and requests are
reasonably distributed. However, appropriate replica
placement in ultra-large-scale, dynamically scalable and
totally virtualized data centers is much more compli-
cated.

Our work is originally motivated by the fact that a
more recently accessed data will be accessed again in
the near future according to the current data access
pattern, which is called temporal locality[13-14]. With
the fact of temporal locality, a popular data is deter-
mined by analyzing the users’ access to the data. When
the popularity of the data passes a dynamic threshold,
the replication operation will be triggered. The num-
ber of replicas will be determined based on the system
availability and failure probability. New replica will be
created on near-by locations for users who generate the
most requests for the data.

1.2 Contributions

In this paper, a mathematical model is formulated
to describe the relationship between the system avail-
ability and number of replicas, while the size, access
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time and failure probability of each data file are taken
into consideration. A popular data file is identified
by analyzing the access histories and setting different
weights for different accessed data. Basically, the more
recently accessed data is more pertinent to the analysis,
and is thus set a big weight. When the popularity of
a data file passes a dynamic threshold, the replication
operation will be triggered. Replicas are placed among
data nodes in a balanced way, taking into account the
number of access of all users.

Based on the above facts and considerations, a novel
dynamic data replication strategy named D2RS (Dy-
namic Data Replication Strategy) is proposed. It al-
lows for increasing the data availability and minimizing
cloud system bandwidth consumption. For evaluation
purposes, the D2RS is implemented using the CloudSim
toolkit and the experimental results demonstrate that
the proposed strategy increases system availability, im-
proves system task successful execution rate, and re-
duces bandwidth consumption in the cloud.

Our contributions can be summarized as follows. 1)
A mathematical model is formulated to describe the
relationship between the system availability and the
number of replicas, which is missing in most existing
research. 2) The popular data file is identified, when
the popularity of a data file passes a dynamic threshold,
the replication operation will be triggered. 3) Repli-
cas are placed among data nodes in a balanced way.
4) A dynamic data replication algorithm named D2RS
is proposed, implemented on a simulation toolkit and
evaluated. It is proved that this algorithm is able to
increase the system availability and reduce the band-
width consumption in the cloud.

1.3 Paper Organization

The remainder of this paper is organized as follows.
In Section 2,the related work on data storage and data
replicas of cloud computing systems is analyzed. Sec-
tion 3 presents a system model, a series of availability
definitions, and a mathematical analysis to describe the
relationship between the system availability and the
number of replicas. Section 4 describes the dynamic
data replication strategy, including the replication deci-
sion, the number of replicas, the replica placement and
the detailed design of the D2RS algorithm. Section 5
addresses the simulation environment, parameter setup
and performance evaluation of the proposed dynamic
data replication strategy. Finally, conclusions and fu-
ture work are given in Section 6.

2 Related Work

In this section, two broad categories of related work

are presented: cloud data storage and cloud data
replication.

2.1 Cloud Data Storage

Many large institutions have set up data centers and
cloud computing platforms, such as Google, Amazon,
IBM. Compared with traditional large scale storage sys-
tems, the clouds which are sensitive to workloads and
user behaviors focus on providing and publishing sto-
rage service on Internet[15-17]. The key components of
the cloud are distributed file systems, such as GFS,
HDFS.

In a GFS cluster, there are three components, mul-
tiple clients, a single master server, and multiple chunk
servers, as shown in Fig.1. Files are stripped into one
or many fixed size chunks, and these chunks are stored
in the data centers, which are managed by the chunk
servers. The master server maintains all the meta-
data of the file system, including the namespace, the
access control information, the mapping from files to
chunks, and the current locations of chunks. Clients in-
teract with the master for metadata operations, but all
data bearing communication goes directly to the chunk
servers[10].

Fig.1. GFS architecture.

In a multi-cluster system, each cluster is a complete
GFS cluster and with its own master, and each master
maintains the metadata of its own file system. Diffe-
rent masters can share the metadata by the namespace,
which describes how the log data is partitioned across
multiple clusters[18]. Compared with a single cluster,
in a multi-cluster system, the performance of the cloud
system and the size of the cloud data storage can be
improved significantly.

The mechanism of HDFS is similar to that of GFS,
but it is light-weighted and open-source. More detailed
discussion can be found in [11].
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2.2 Cloud Data Replication

Data replication, a well-known technique from dis-
tributed systems, is the main mechanism used in the
cloud for reducing user waiting time, increasing data
availability and minimizing cloud system bandwidth
consumption by offering the user different replicas
with a coherent state of the same service[19]. With
the advancement and development of various technolo-
gies, data replication and replica management in dis-
tributed systems have been studied in many works,
which are referenced and adopted in cloud data repli-
cation. Data replication algorithms can be classified
into two groups: static replication[10-11,20] and dynamic
replication algorithms[13,15,21-22]. In a static replica-
tion model, the replication strategy is predetermined
and well defined. On the other hand, dynamic repli-
cation automatically creates and deletes replicas ac-
cording to changing access patterns. Static and dy-
namic replication algorithms can be further classified
into groups as distributed[10-11,15,21] and centralized
algorithms[13,20,22].

In [10], a static distributed cloud data replication
algorithm is proposed. In the GFS, a single master
considers three factors when making decisions on data
chunk replications: 1) to place the new replicas on
chunk servers with below-average disk space utilization;
2) to limit the number of “recent” creations on each
chunk server; 3) to spread replicas of a chunk across
racks. A data chuck is replicated when the number of
replicas falls below a limit specified by the users. Simi-
larly, in [11], an application can specify the number of
replicas for each file, and the block size and replication
factor are configurable per file.

In [20], a p-median static centralized data replica-
tion algorithm is proposed. The p-median model finds
p replica placements sites that minimize the request-
weighted total distance between the requesting sites
and the replication sites holding the copies assigned.

In [15], a dynamic distributed cloud data replica-
tion algorithm CDRM is proposed. The CDRM is de-
signed on the HDFS platform, the data replica place-
ment is based on the capacity and location according
to workload changing and node capacity, and the lower
bound of the number of replicas is dynamically deter-
mined according to the availability requirement. In [21],
six different data replication algorithms, Caching-PP,
Cascading-PP, Fast Spread-PP, Cascading-Enhanced,
and Fast Spread-Enhanced are proposed. All the six
algorithms are dynamic replication algorithms and im-
plemented in a distributed fashion.

In [22], a dynamic centralized data replication algo-
rithm MinDmr is proposed. MinDmr treats hot and
cold data differently and uses a weighting factor for the

replication. And then MinDmr is developed into four
prediction-based replica schemes. Similarly, in [13], an
algorithm LALW is proposed. LALW selects a popular
file for replication and calculates a suitable number of
copies and grid sites for replication.

In the cloud, to reduce the access time, the data
storage unit is a block. If a data file is too large, it
will be stripped into many blocks. However, the data
access unit usually is data file. The differences between
the mentioned replication algorithms and our proposed
strategy lie in the following aspects. 1) A mathemati-
cal model is formulated to describe the relationship be-
tween the system availability and the number of repli-
cas. 2) The popular data is identified according to the
temporal locality. When the popularity of a data file
passes a dynamic threshold, the replication operation
will be triggered. 3) Replicas are placed among data
nodes in a balanced way.

3 System Model and Problem Statement

In this section, a system model, a series of avail-
ability definitions and a mathematical analysis to de-
scribe the relationship between system availability and
the number of replicas are presented in detail.

3.1 System Model

The multi-tier hierarchical cloud system archi-
tecture[16-17,22-25] supports an efficient method for shar-
ing data and computational and other resources, as
shown in Fig.2. It typically consists of different tiers
of data centers with different regions and sizes. The
super data centers in tier 0 will handle the data analy-
sis in the intra domain and exchange data information

Fig.2. Multi-tier hierarchical cloud system topology.
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among the inter domains. The main data centers are in
tier 1, ordinary data centers are in tier 2, and users are
in tier 3. The architecture minimizes the data access
time and network load by creating and spreading repli-
cas from the super data centers to main data centers,
or to ordinary data centers. The super data centers pe-
riodically collect and broadcast the global information.

A cloud data service system typically consists of the
scheduling broker, the replica broker and data centers,
as shown in Fig.3. The scheduling broker is the cen-
tral managing broker. The replica managers hold the
general information about the replica locations in data
centers. The specific features of cloud data servers can
be described as follows.

Fig.3. Cloud data server architecture.

Let U = {u1, u2, . . . , um} be a user set composed of
m users, TS = {TS1,TS2, . . . ,TSm} be a set of tasks
of the user set U , and TS j = {tsj1 , tsj2 , . . . , tsjmj

} be
a sub-set of tasks of the j-th user uj , where mj is the
number of sub-tasks, and tsk is the k-th task submit-
ted to the scheduling broker through a user interface
and independent of the other users. The replica broker
schedules them to the appropriate cloud data server
sites. If u0 has two tasks, then TS0 = {ts01 , ts02},
and m0 = 2. A task tsk is characterized by a 4-tuple
tsk = (tidk, trk, tdk, tfnk), where tidk, trk, tdk and tfnk

are the task identification, task generation rate, task
deadline time and the number of required files of task
tsk, respectively. For simplicity, we assume that the
tasks are non-preemptable and non-interruptible[16,23],

which mean that a task cannot be broken into smaller
sub-tasks and it has to be executed as a whole on a sin-
gle processor with given resources. In addition, as soon
as a task starts its execution on a processor, it cannot
be interrupted and it occupies the processor until its
execution completes successfully or a failure occurs.

Let DC = {dnd1, dnd2, . . . , dndn} be a data cen-
ter composed of n data nodes, which are running
virtual machines on physical machines. A data
node dndk is characterized by a 5-tuple dndk =
(dndk, drk, dstk, df k, dbwk), where didk, drk, dstk, df k

and dbwk are the data node identification, request ar-
rival rate, average service time, failure probability and
network bandwidth of data node dndk, respectively.

In order to guarantee the service performance of the
data center DC , the task generation rate trk of user set
U , the request arrival rate drk and failure probability
df k of DC should meet (1).

jk∑

j=0

tr j 6
n∑

i=0

dr i × (1− df i), jk =
m∑

j=0

jmk
, (1)

where tr j is the task generation rate of task j, dr i is
the request arrival rate of task j, df k is the failure pro-
bability of task j, jmk

is the number of tasks of user j.
Let F = {f1, f2, . . . , fl} be a data file set of a data

center DC. B = {B1, B2, . . . , Bl} be a set of blocks
in the data center DC, and Bi = {bi1 , bi2 , . . . , bini

} be
the i-th sub-set of blocks belonging to the i-th data
file fi, which is stripped into ni fixed blocks accord-
ing to its length. As shown in Fig.3, if data file A
is stripped into 3 blocks, then A = {a1, a2, a3}, and
ni = 3. An block bk is characterized by a 5-tuple
bk = (bidk, bpk, bsk, bnk, btk), where bidk, bpk, bsk,
bnk and btk are the block identification, number of re-
quests, block size, the number of replicas and the last
access time of block bk, respectively.

When user uj requests a block bk from a data node
dnd i with bandwidth performance guarantee, band-
width bsk/dst i should be assigned to this session. The
total bandwidth used to support different requests from
use set U should be no more than dbw i, as shown by (2).

si∑

i=0

bsk

dst i
6 dbw i, (2)

where si is the maximum number of network sessions of
data node dnd i that can serve concurrently, bsk is the
block size of block bk, dst i is the average service time
of data node dnd i, dbw i is the network bandwidth of
data node dnd i.

3.2 System Byte Effective Rate

One of the most important objectives of cloud is to
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provide the highest availability by placing all replicas of
blocks of data files in a load balanced way on different
data nodes of data centers, which is similar to that for
grid environments[25-27].

Definition 1 (Availability). It is the ability of a
system to limit, control, and provide proper service un-
der given constraints, defined as the “readiness for cor-
rect service” of a system[28-29]. The lifetime of a cloud
system can be divided into a set of “up states” and a
set of “down states”. And the availability can be cate-
gorized as instantaneous availability, steady-state avai-
lability and inherent availability.

The instantaneous availability ai(t) of a system is
defined as the probability that a system is in an “up
state” at time t under the constraint that it is correct
at time t = 0 (i.e., ai(0) = 1), shown by (3).

ai(t) =
{

r(t), if no repair operations,

p{st = pi(up)|s0 = pi(init)}, otherwise,
(3)

where r(t) is the reliability at time t of the system.
If no repair operations, the instantaneous availability
ai(t) equals to the system reliability r(t). st refers to
the state at time t, pi(up) is a predicate that specifies
the states where the system is operational, doing some-
thing useful. pi(init) specifies the initial states, and
pi(init) = true.

The steady-state availability as(t) of a system is de-
fined as the probability that a system is in an “up state”
for “sufficiently long time” after the system starts and
is examined at an arbitrary point of time. It is the limit
value of ai(t) as t approaches infinity, as given by (4).

as(t) = lim
t→∞

ai(t) = lim
t→∞

∫ t

0
ai(k)dk

t
. (4)

The inherent availability a(t) of a system is the ex-
pected value of the percentage of the time interval dur-
ing which the system performs its required function, as
defined by (5).

a(t) =
MTBF

MTBF + MTTR
, (5)

where MTBF is the mean time between faults, and
MTTR is the mean time to repair.

Definition 2 (Block Availability). Block availability
is the ability of a data block to limit, control, and pro-
vide proper service under given constraints. The block
availability of a block bk is denoted as BAk. P (BAk) is
the probability of block bk in an available state. P (BAk)
is the probability of block bk in an unavailable state, and
P (BAk) = 1− P (BAk).

The number of replicas of block bk is bnk. It is obvi-
ous that block bk is considered unavailable only if all the

replicas of block bk are not available. So the availability
and unavailability of block bk is given in Theorem 1.

Theorem 1. If the number of replicas of block bk

is bnk, the available and unavailable probability of each
replica of block bk are p(bak) and p(bak) = 1− p(bak),
respectively, then,

P (BAk) = 1− (1− p(bak))bnk , (6)

and
P (BAk) = (1− p(bak))bnk . (7)

Proof. The available and unavailable probability of
each replica of block bk are p(bak) and p(bak), and the
available and unavailable probability of block bk are
P (BAk) and P (BAk). As there are bnk replicas of block
bk, block bk is unavailable if and only if all the bnk repli-
cas of block bk are unavailable. Therefore,

P (BAk) = p(bak1 , bak2 , · · · , bakbnk
).

All the bnk replicas are distributed in different data
nodes, and all the bnk replicas are independent of each
other, thus,

P (BAk) = p(bak1)× p(bak2)× · · · × p(bakbnk
)

=
bnk∏

i=1

p(baki
).

Then,

P (BAk) =
bnk∏

i=1

p(baki) =
bnk∏

i=1

(1− p(baki))

=
bnk∏

i=1

(1− p(bak)) = (1− p(bak))bnk .

As P (BAk) = 1− P (BAk) , we obtain

P (BAk) = 1− P (BAk) = 1− (1− p(bak))bnk . ¤

As shown in Fig.3, if the number of replicas of block
a1 is 3, that is bnk = 3, and the available probabi-
lity of each replica is 0.98, i.e., p(baa1) = 0.98, then
the available probability of block a1 is P (BAa1) =
1 − (1 − p(baa1))

bnk = 1 − (1 − 0.98)3 = 0.999 92,
the unavailable probability of block a1 is P (BAa1) =
(1− p(baa1))

bnk = (1− 0.98)3 = 0.000 008.
Definition 3 (File Availability). File availability is

the ability of a data file to limit, control, and provide
proper service under given constraints. The file avai-
lability of a data file fi is denoted as FAi. P (FAi) is the
probability of data file fi in an available state. P (FAi)
is the probability of data file fi in an unavailable state,
and P (FAi) = 1− P (FAi).

If the data file fi is stripped into ni fixed blocks de-
noted by Bi = {bi1 , bi2 , . . . , bini

}, which are distributed
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on different data nodes. Ni = {bni1 , bni2 , . . . , bnini
}

is the set of the numbers of replicas of the blocks of
Bi. The availability and unavailability of data file fi is
given in Theorem 2.

Theorem 2. If the data file fi is stripped into ni

blocks, there are bni replicas of each block in data file fi,
and all blocks at the same site will have the same avai-
lable probability as all blocks are stored in data nodes
with the same configuration in cloud data centers, the
available probability of each replica is p(bai) in data file
fi, then,

P (FAi) =
(
1− (1− p(bai))bni

)ni
, (8)

and
P (FAi) =

(
1− (1− p(bai))bni

)ni
. (9)

Proof. As the data file fi is stripped into ni blocks,
the data file fi is available if and only if each block in
Bi = {bi1 , bi2 , . . . , bini

} are available, and all blocks are
independent of each other. Therefore,

P (FAi) = P (BAi1 ,BAi2 , . . . ,BAini
)

=P (BAi1)× P (BAi2)× · · · × P (BAini
)

=
ni∏

j=1

P (BAij
)

=
ni∏

j=1

(
1−

nij∏

k=1

(
1− p(baij )

))
.

All blocks are stored in data nodes with the same
configuration in cloud data centers, without loss of
generality. So we set the probability of all blocks of
data file fi to the same, that is,

p(bai1) = p(bai2) = · · · = p(baini
) = p(bai).

As the set of numbers Ni = {bni1 , bni2 , . . . , bnini
}

of replicas of all blocks of data file fi are the same, that
is,

bni1 = bni2 = · · · = bnini
= bni.

We obtain

P (FAi) =
ni∏

j=1

(
1−

bnij∏

k=1

(1− p(baij
))

)

=
ni∏

j=1

(
1− (1− p(bai))

bnij
)

=
(
1− (1− p(bai))bni

)ni
.

As P (FAi) = 1− P (FAi), we obtain

P (FAi) = 1−P (FAi) = 1− (
1− (1− p(bai))bni

)ni
.

¤

As shown in Fig.3, if the data file a is stripped into
3 blocks, that is ni = 3, the number of replicas of
data file a is also 3, that is bnk = 3, and the available
probability of each replica is 0.98, i.e., p(baa) = 0.98,
then the availability and unavailability of data file fi

are P (FAi) =
(
1 − (1 − 0.98)3

)3 = 0.999 976 and
P (FAi) = 1− (

1− (0.98)3
)3 = 0.000 024, respectively.

Because the system level data availability is more
important than the single file availability in the cloud,
higher system data availability will result in more bene-
fits than higher file availability, especially when some
data files are popular while other data files are not.

Definition 4 (System Byte Effective Rate). Sys-
tem byte effective rate is the rate of the number of bytes
potentially available and the total number of bytes re-
quested by all tasks in a system. The system byte effec-
tive rate of a system is denoted as R(SBER).

Given the fact that a particular data file access ope-
ration will only request one file, any two file request
will access different replicas and be independent of each
other. Each user from the user set U will request one
or more data files at one data file request. The system
byte effective rate and system byte non-effective rate of
a system is given in Theorem 3.

Theorem 3. If F = {f1, f2, . . . , ffn
} is the data

file set of a data center DC and is composed of fn data
files, B = {B1, B2, . . . , Bfn} is a set of blocks of data
center DC, Bi = {bi1 , bi2 , . . . , bini

} is the i-th sub-set of
blocks belonging to the i-th data file fi, which consists
of ni blocks, the number of accesses of all users to the
i-th data file fi is ani, the number of replicas of each
block in data file is bni, and the size of block bk is bsk,
then,

R(SBER) =
fn∑

i=1

(
ani ×

( ni∑

h=1

bsh

)
× (

1− (1− p(bai))bni
)ni

)

fn∑

i=1

(
ani ×

ni∑

h=1

bsh

) .
(10)

Proof. The data file set F = {f1, f2, . . . , ffn} of a
data center DC is composed of fn data files, and system
byte effective rate R(SBER) of a system is the rate of
the number of bytes potentially available and the total
number of bytes requested by all tasks. Therefore,

R(SBER) =

fn∑

i=1

(P (FAi)× FS i)

fn∑

i=1

FS i

,

where FS i is the total number of bytes requested by all
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tasks of the i-th data file fi.
If the number of accesses of the total users of the

i-th data file fi is ani, and the size of data file fi is fsi,
then, FS i is

FS i =
ani∑

k=1

fsk.

If the i-th data file fi is stripped into ni blocks, and
the size of block bk is bsk, then,

fsi =
ni∑

h=1

bsh.

We have

FS i =
ani∑

k=1

fsk =
ani∑

k=1

ni∑

h=1

bsh,

then,

R(SBER) =

fn∑

i=1

(P (FAi)× FS i)

fn∑

i=1

FS i

=

fn∑

i=1

ani∑

k=1

(
P (FAk)×

ni∑

h=1

bsh

)

fn∑

i=1

ani∑

k=1

ni∑

h=1

bsh

=

fn∑

i=1

ani∑

k=1

(( ni∑

h=1

bsh

)
× (

1− (1− p(bai))bni
)ni

)

fn∑

i=1

ani∑

k=1

ni∑

h=1

bsh

.

Without loss of generality, assume the available
probabilities p(bak) of all replicas of block bk are the
same in all ani access cycles. Then the following is
obtained,

R(SBER)

=

fn∑

i=1

ani∑

k=1

(( ni∑

h=1

bsh

)
× (

1− (1− p(bai))bni
)ni

)

fn∑

i=1

ani∑

k=1

ni∑

h=1

bsh

=

fn∑

i=1

(
ani ×

( ni∑

h=1

bsh

)
× (

1− (1− p(bai))bni
)ni

)

fn∑

i=1

(
ani ×

ni∑

h=1

bsh

) . ¤

For a scenario given in Fig.4, assume there are 3 data
files a, b, and c in data center DC, and l = 3. Table 1
shows the detailed parameter setup for the example in
Fig.4.

Fig.4. Cloud data server instance.

Table 1．．．Parameter Setup of R(SBER)

Data File
Parameter a b c

a1 a2 a3 b1 b2 c1
ni 3.00 3.00 3.00 2.00 2.00 1.00
ani 4.00 4.00 4.00 1.00 1.00 1.00
bni 3.00 3.00 3.00 3.00 3.00 3.00
bsi 64.00 64.00 53.00 64.00 58.00 39.00
p(bai) 0.89 0.89 0.89 0.55 0.55 0.62

R(SBER) = ((4 × (64 + 64 + 53) × 0.999976 + 1 ×
(64 + 58) × 0.709867 + 1 × 39 × 0.945128)/(4 × (64 +
64 + 53) + 1× (64 + 58) + 1× 39) = 0.957567.

4 Dynamic Data Replication Strategy

The dynamic data replication strategy D2RS (Dy-
namic Data Replication Strategy) has three important
phases: 1) which data file should be replicated and
when to replicate in the cloud system to meet users’
requirements such as waiting time reduction and data
access speeding up; 2) how many suitable new repli-
cas should be created in the cloud system to meet a
given availability requirement; 3) where the new repli-
cas should be placed to meet the system task success-
ful execution rate and bandwidth consumption require-
ments.

4.1 Decide Which and When to Replicate

Given the fact that a more recently accessed data file
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might be accessed again in the near future according to
the current status of data access pattern, which is called
temporal locality, a popular data file is determined by
analyzing the access to the data from users. When the
popularity of a data file passes a dynamic threshold,
the replication operation will be triggered[13,22,25,30-31].

Definition 5 (Time-Based Forgetting Function). A
time-based forgetting function ω is defined over the do-
main Time, with values within the interval [0, 1]. It is
used to calculate the popularity degree PDbk

of a block
bk at the present time tp according to the access fre-
quency at the start time ts, as shown by (11),

ω(tp, ts) = a−(∆t)k

= a−(tp−ts)k

,

a > 1, k ∈ {1, 2, . . .}, (11)

where ∆t = tp − ts, as usual, parameter a is assigned
as e, as shown by

ω(tp, ts) = e−(∆t)k

= e−(tp−ts)k

, k ∈ {1, 2, . . .}.
(12)

The value of k determines the rate of decay of the
popularity degree with time ∆t, and is assigned by
the block bk based on its perception about the change.
Fig.5 shows the nature of the change of ω(tp, ts) with
different values of k. If ∆t = 0, then ω(tp, ts) = e−0 =
1. If ∆t → +∞, then ω(tp, ts) = lim∆t→+∞ e−(∆t)k

=
0. This corroborates the fact that the time-based for-
getting weight is asymptotic to zero at infinite time.

Fig.5. Time-based forgetting function.

Definition 6 (Popularity Degree). The popularity
degree of a block bk is defined as the access frequency
based on time factor. During the period from the start
time ts to the present time tp, the popularity degree pdk

of a block bk can be calculated by (13).

pdk =
tp∑

ti=ts

(ank(ti, ti+1)× ω(ti, tp)), (13)

where ank(ti, ti+1) is the number of accesses during the
time interval ti to ti+1.

Definition 7 (Replica Factor). The replica factor
is defined as the ratio of the popularity degree and the
total number of bytes of data file fi requested by all
tasks under given constraints. It is used to determine
whether the data file fi should be replicated, denoted as
RF i in (14).

RF i =
PD i

RN i × FS i
, (14)

where PD i, RN i, FS i are the popularity degree, number
of replicas and file size of data file fi in million bytes,
respectively.

Theorem 4. If the data file fi is stripped into ni

blocks, bni, bsi, and ank(ti, ti+1) are the number of
replicas, block size and number of accesses in the time
interval ti to ti+1 of each block in the data file fi, re-
spectively, then,

RF i =

tp∑
ti=ts

(ank(ti, ti+1)× ω(ti, tp))

bni ×
ni∑

j=1

bsj

. (15)

Proof. As the data file fi is stripped into ni blocks,
and Bi = {bi1 , bi2 , . . . , bini

}, if the block bk ∈ fi, once
one user accesses block bk, he will access all the blocks
of the file fi, then the popularity degree pdk of a block
bk is equal to the popularity degree PD i of the file
fi. At the same time, assume the set of numbers
Ni = {bni1 , bni2 , . . . , bnini

} of replicas of all blocks in
the data file fi be the same, denoted as bni. Therefore,

RF i =
PD i

RN i × FS i
=

pdk

ni∑

l=1

bni∑

h=1

bs lh

=

tp∑
ti=ts

(ank(ti, ti+1)× ω(ti, tp))

bni ×
ni∑

j=1

bsj

. ¤

According to Definition 7, we can prove that the sys-
tem replica factor RF sys can be calculated by (16).

RF sys =

l∑

h=1

( tp∑
ti=ts

(anh(ti, ti+1)× ω(ti, tp))
)

l∑

i=1

(
bni ×

ni∑

j=1

bsj

) .
(16)

In each time interval T, the replication operation of
the data file fi will be triggered if the condition shown
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in (17) is met.

RF i >min
(
(1 + α)× RF sys ,max

(
∀

k∈[1,2,...,l]
RF k

))
,

α ∈ [0, 1], (17)

where α is the adjustable parameter according to dif-
ferent system performance. The better the requested
system performance, the greater α can be selected.

If α = 0, then all files whose replica factors are
greater than (1 + α)× RF sys will be replicated.

If (1 + α)×RF sys = max
(

∀
k∈[1,2,...,l]

RF k

)
, then the

only one file with the maximum replica factor will be
replicated.

If (1 + α)× RF sys > max
(

∀
k∈[1,2,...,l]

RF k

)
, then no

file will be replicated.
For the scenario given in Fig.4, assume that data file

a is stripped into 3 blocks a1, a2 and a3, the number of
replicas of each block is 3, the block sizes of the blocks
are 64MB, 64MB and 53MB. Table 2 shows the de-
tailed parameter setup used within the time interval t0
to t5.

RF a =(1.388794e−011× 96 + 1.125352e−007× 89+

1.234098e−004× 902 + 1.831564e−002× 883+

3.678794e−001× 1087+

1.000000e−000× 1279)/(3× (64 + 64 + 53))

= 3.121 858.

Table 2. Parameter for PD about File a

k ts tp ∆t ω(tp, ts) ank(ti, ti+1)

2 0.0 5.0 5.0 1.388794e−011 96
2 1.0 5.0 4.0 1.125352e−007 89
2 2.0 5.0 3.0 1.234098e−004 902
2 3.0 5.0 2.0 1.831564e−002 883
2 4.0 5.0 1.0 3.678794e−001 1 087
2 5.0 5.0 0.0 1.000000e−000 1 279

The data file b is stripped into 2 blocks b1 and b2, as
shown in Fig.4, the number of replicas of each block is
3, the block sizes of the blocks are 64 MB and 58 MB.
Table 3 shows the detailed parameter setup used within
time interval t1 to t5.

RF b =(1.125352e−007× 523+

1.234098e−004× 678+

1.831564e−002× 2365+

3.678794e−001× 1987+

1.000000e−000× 3645)/(3× (64 + 58))

= 9.342 559.

Table 3. Parameter for PD about File b

k ts tp ∆t ω(tp, ts) ank(ti, ti+1)

2 1.0 5.0 4.0 1.125352e−007 523
2 2.0 5.0 3.0 1.234098e−004 678
2 3.0 5.0 2.0 1.831564e−002 2 365
2 4.0 5.0 1.0 3.678794e−001 1 987
2 5.0 5.0 0.0 1.000000e−000 2 645

Assume that data file c be stripped into block c1, as
shown in Fig.4, the number of replicas of block c1 is 3,
the block size of block c1 is 39 MB. Table 4 shows the
detailed parameter setup used within time interval t3
to t5.

RF c =(1.831564e−002× 1035+

3.678794e−001× 1256+

1.000000e−000× 898)/(3× 39) = 11.786 438.

RF sys =(1.388794e− 011× 96+

1.125352e−007× 89+

1.234098e−004× 902+

1.831564e−002× 883+

3.678794e−001× 1087+

1.000000e−000× 1279+

1.125352e−007× 523+

1.234098e−004× 678+

1.831564e−002× 2365+

3.678794e−001× 1987+

1.000000e−000× 3645+

1.831564e−002× 1035+

3.678794e−001× 1256+

1.000000e−000× 898)/(3× (64 + 64 + 53) +

3× (64 + 58) + 3× 39) = 6.329 005.

Table 4. Parameter for PD about File c

k ts tp ∆t ω(tp, ts) ank(ti, ti+1)

2 3.0 5.0 2.0 1.831564e−002 1 035
2 4.0 5.0 1.0 3.678794e−001 1 256
2 5.0 5.0 0.0 1.000000e−000 898

If α = 0.2, (1+α)×RF sys = (1+0.2)×6.329 005 =
7.594 806, the files b and c will be replicated.

If α = 0.5, (1+α)×RF sys = (1+0.5)×6.329 005 =
9.493 507, the file c will be replicated.

If α = 0.9, (1+α)×RF sys = (1+0.9)×6.329 005 =
12.025 109, no file will be replicated.

4.2 Determine the Number of New Replicas

To meet the system byte effective rate requirement,
new replicas should be created[31-33]. With a reasonable
increase of file availability, the number of new replicas
that need to be created can be calculated according to
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(18), which determines the new replicas on the basis
of old file availability Pold(FAi) of data file fi and the
replica factor based adjustable parameter β.

Pnew (FAi) = Pold(FAi) + β × (1− Pold(FAi)),

β ∈ [0, 1], (18)

where Pnew (FAi) and Pold(FAi) are the new file avai-
lability and the old file availability of data file fi, re-
spectively. β is the replica factor based adjustable pa-
rameter. It can be calculated according to (19).

β =
RF i

nums∑

k=1

RF k

, (19)

where nums is the number of files selected to be repli-
cated.

Theorem 5. If the data file fi is stripped into ni

blocks, Pold(FAi) is the old file availability of data file
fi, RF i is the replica factor of data file fi, bni(old) is
the old replica number of data file fi, nums is the num-
ber of files selected to be replicated, the number of new
replicas bni(inc) to be created is,

bni(inc) =

ln




1−




Pold(FAi)+
RF i

nums∑

k=1

RF k

× (1−Pold(FAi))




1
ni




ln(1− p(bai))

−bni(old)



.

(20)

Proof. As Pnew (FAi) and Pold(FAi) are the
new file availability and old file availability of data
file fi, respectively, and Pnew (FAi) =

(
1 − (

1−
p(bai)

)bni(new)
)ni

, according to (18) and (19), we ob-
tain,

(
1− (1− p(bai))bni(new)

)ni

=Pold(FAi) +
RF i

nums∑

k=1

RF k

× (1− Pold(FAi)),

and,

bni(new) =



ln




1−




Pold(FAi)+
RF i

nums∑

k=1

RF k

× (1−Pold(FAi))




1
ni




ln(1− p(bai))



.

If the old number of replicas is bni(old), the number
of new replicas bni(inc) to be created is,

bni(inc) = bbni(new)− bni(old)c =

ln




1−




Pold(FAi)+
RF i

nums∑

k=1

RF k

× (1−Pold(FAi))




1
ni




ln(1− p(bai))

−bni(old)



.

¤

For the scenario given in Subsection 4.1, assume
α = 0.2 and the files b and c will be replicated, Ta-
ble 5 shows the detailed parameters used.

Table 5. Parameter for bni

Data FileParameter
b c

Pold (FAi) 0.826 054 0.978 048
p(bai) 0.46 0.62
RF i 9.342 559 11.786 438
ni 2 1

bnb(inc) = ln(1 − (0.709 867 + (1 − 0.709 867) ×
(9.342 559/(9.342 559 + 11.786 438)))1/2)/(ln(1− 0.46))
−3 = 1.010 306, so the number of new replicas of data
file b to be created is 1;

bnc(inc) = ln(1 − (0.945 128 + (1 − 0.945 128) ×
(11.786 438/(9.342 559+11.786 438)))1/1)/(ln(1−0.62))
−3 = 0.843 406, so the number of new replicas of data
file c to be created is 0.

4.3 Placement of New Replicas

To meet the system task successful execution rate
and bandwidth consumption requirement, different
tiers of data centers which have the selected replica data
file fi will decide the replica placement and the place-
ment of new replicas to be created according to the
access information of directly connected data centers.
The number of new replicas created at the directly con-
nected data center dck is calculated according to (21),
based on the total number of new replicas bni(inc) and
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the replica factor RF i(dck).

bni(dck) =





bni(inc)−
∑

¬max(RF i(dck))

⌊RF i(dck)
RF i

× bni(inc)
⌋
,

if RF i(dck) is max(RF i(dck)),
⌊RF i(dck)

RF i
× bni(inc)

⌋
, otherwise,

(21)

where bni(dck) is the number of new replicas to be
created at the directly connected data center dck,
RF i(dck) is the replica factor of data file fi of the data
center dck directly connected, and RF i is the replica
factor of the data file fi.

For the scenario given in Fig.6, assume the data file
d has 2 replicas at a main data center and an ordi-
nary data center, respectively, and 3 replicas need to be
created. The detailed replica factor parameter setup is
shown in Fig.6.

bnd(dc1) = (3.256 398/(3.256 398 + 0.125 999 8 +

5.960 163))× 3 = 1;

bnd(dc2) = 0;

bnd(dc3) = 0;

bnd(dc4) = (0.125 999 8/(3.256 398 + 0.125 999 8+

5.960 163))× 3 = 0;

bnd(dc5) = 0;

bnd(dc6) = (5.960 163/(3.256 398 + 0.125 999 8 +

5.960 163))× 3 = 2.

Fig.6. Replica placement instance.

The main data center will create 1 replica at the link
dc1 directly connected to the data center, and the or-
dinary data center will create 2 replicas to the link dc6
directly connected to the data center.

4.4 D2RS Algorithm

According to the above analysis, the replication de-
cision is based on the theory of temporal locality. A

popular data file is determined by the analysis of the
access information to the data from users. When the
popularity of a data file passes a dynamic threshold,
the replication operation will be triggered. The num-
ber of replicas depends on the reasonable increase of
file availability; the replica placement is determined by
the access information of directly connected data cen-
ters and is accomplished in a balanced way. The core
part of the D2RS algorithm is described as follows.

1 Algorithm. D2RS Algorithm

2 Input: the available probability p(bak) and unavai-
lable probability p(bak) of all replicas of block bk

of the data file fi, the number of replicas bni, the
block size bsi and the number of accesses ank(ti, ti+1)
within time interval ti to ti+1 for each block of data
file fi.

3 Output: system byte effective rate R(SBER).

4 Initialize available and unavailable probability of each
replica of block bk p(bak) and p(bak).

5 for each data file fi at all data centers DC do

6 Calculate the popularity degree pdk of a block bk

of data file fi by (13).

7 Calculate replica factor RF i of data file fi by (15).

8 end for

9 Calculate replica factor RF sys of the cloud system by
(16).

10 for each data file fi at all data centers DC do

11 if RF i > min
(
(1 + α)× RF sys ,

max
(

∀
k∈[1,2,...,l]

RFk

))
then

12 The replication operation of the data file fi will
be triggered.

13 end if

14 end for

15 for each data file fi at all data centers DC do

16 Calculate the old file availability P (FAi) of data
file fi by (8).

17 end for

18 for each triggered data file do

19 Calculate the new file availability Pnew (FAi) of
data file fi by (18).

20 Calculate the number of new replicas needed
bni(inc) by (20).

21 end for

22 for each triggered data file and bni(inc) > 0 do

23 for each directly connected data center dck do

24 Calculate the number of new replicas bni(dck)
to be created at the directly connected data cen-
ter dck by (21).

25 end for

26 Determine the replica placement according to
bni(dck).

27 if the storage space of the target data center
DC obj is not enough then
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28 Quick sort all data file in descending order by
replica factor of data file at data center DC obj .

29 Delete the data file with the smallest replica
factor.

30 end if

31 end for

32 Calculate the new system byte effective rate
R(SBER) by (10).

33 Return R(SBER).

The input of D2RM algorithm are the available
probability p(bak) and unavailable probability p(bak)
of all replicas of block bk of the data file fi, the num-
ber of replicas bni, block size bsi and number of ac-
cesses ank(ti, ti+1) within time interval ti to ti+1 for
each block in the data file fi, and the output is the sys-
tem byte effective rate R(SBER). Steps 5∼14 calculate
the replica factor and determine which data file should
be replicated and when to replicate in a cloud system
to meet the users’ requirements, such as waiting time
reduction and data access speeding up. Steps 15∼21
calculate the number of new replicas bni(new) and de-
termine how many suitable new replicas bni(inc) should
be created in the cloud system to meet a given avai-
lability requirement. Steps 22∼31 calculate the num-
ber of new replicas bni(dck) to be created at the di-
rectly connected data center dck and decide where the
new replicas should be placed to meet the system task
successful execution rate and bandwidth consumption
requirement. Step 32 calculates the new system byte
effective rate R(SBER). The time complexity of the
D2RS algorithm is O(L×N), in which L is the number
of data files, and N is the maximum number of directly
connected data centers.

5 Simulation and Performance Evaluation

In order to evaluate the performance of the pro-
posed D2RS algorithm, simulation environment and
parameter setup are discussed in this section, followed
by the precise performance evaluation results.

5.1 Simulation Environment and Parameter
Setup

CloudSim toolkit[9,34-36] is used as the simulation
environment. As a Java based simulation platform, it
supports modeling and simulation of large scale cloud
computing data centers. Special users and resources

can be generated by rewriting the corresponding codes,
which aligns well with various users and resources of
the cloud system. It is feasible to simulate the pro-
posed D2RS algorithm with CloudSim.

32 data centers are created in the simulation envi-
ronment. The corresponding topology is shown in Fig.2
and detailed configuration is shown in Table 6. 570 vir-
tual machines are set as the service providers, and the
processing elements (PEs) number of each virtual ma-
chine is within the range of 2 to 4. Forty different data
files are placed in the cloud storage environment, with
each size in the range of [0.1, 10]GB. Each file is stored
in fixed size (bs = 0.2GB) storage unit called block.
Blocks of the same data file are scattered across diffe-
rent virtual machines. At the very beginning, the num-
ber of replicas of each data file is 1 and placed randomly.
For simplicity, it is assumed that the basis element of
data storage is block and the element of replication is
one total data file.

One thousand tasks are submitted to the 570 virtual
machines, each task is submitted according to Poisson
distribution after the previous task and asks for 1 or 2
data files.

5.2 Performance Evaluation

The experiments set up four evaluation parameters:
system byte effective rate, number of replicas, response
time and successful execution rate.

1) System Byte Effective Rate. System byte effective
rate reflects the byte availability of cloud systems under
given constraints. It can be obtained by (10).

As shown in Fig.7, as the number of replicas increas-
ing, the D2RS algorithm ensures the system byte effec-
tive rate at a high level. When the average block avai-
lability is more than 0.8, and the number of replicas is
4, the system byte effective rate is close to 1, even when
the average block availability is less than 0.2. To keep
the system byte effective rate close to 1, the number of
replicas should be no more than 30. It can be seen that
the D2RS algorithm is able to significantly improve the
system byte effective rate.

In Fig.8, while the block availability is fixed at 0.8
and 0.9 and the number of replicas increases from 1 to 5,
for the system byte effective rate, the gap between the
experimental results of D2RS algorithm and the theo-
retical analysis results are dramatically narrowed. We
assume all tasks can be completed within the deadline

Table 6. Configuration of Data Centers

Data Center ID Machine Number PE per Machine Processing Ability (MIPS) Bandwidth

Super Data Center 0∼2 20 8∼16 400∼800 10.0Gbps
Main Data Center 3∼11 10 4∼8 200∼400 1.0Gbps
Ordinary Data Center 12∼38 5 1∼4 100∼200 0.1Gbps
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Fig.7. System byte effective rate with different number of repli-

cas.

Fig.8. System byte effective rate comparison.

at the first time submission according to theoretical
analysis.

2) Number of Replicas. To maintain system byte
effective rate at a high level, a reasonable number of
replicas of data files is needed, which can be obtained by
(20). To evaluate the convergence of D2RS algorithm,
the block availability is fixed at 0.8, and different values
of adjustable parameter α are chosen to compute the
needed number of replicas.

As shown in Fig.9, with time elapses, the number
of replicas is increasing within a very short period of
time. Then this number of replicas is maintained at a
relatively stable level, which is determined by the ad-
justable parameter α. We conclude that the greater the
adjustable parameter α, the more replicas are needed
to maintain the requested system byte effective rate.
This proves the D2RS algorithm has a good conver-
gence rate.

3) Response Time. The response time for a data file
is the interval between the submission time of the task
and return time of the result. The average response

Fig.9. Number of replicas with different parameter α.

time of a system is the mean value of the response time
for all data request tasks of the users, which can be
obtained by (22).

rtavg =

m∑

j=1

mj∑

k=1

(tsjk
(rt)− tsjk

(st))

m∑

j=1

mj

, (22)

where tsjk
(st) and tsjk

(rt) are the submission time and
the return time of the result of task k of the user j, re-
spectively, and mj is the number of the tasks of user j.

When D2RS algorithm is not used, we set the num-
ber of replicas of large-scale data file fixed as 2 and the
total number of copies of a data file is 3. As shown
in Fig.10, with the number of tasks increasing, the re-
sponse time increases dramatically, especially when the
number of tasks is more than 70%. The less the block
availability is, the longer the response time will be. A
conclusion can be made that the D2RS algorithm im-
proves the response time and maintains the response
time at a stable level within a short period of time.

Fig.10. Response time comparison.
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4) Successful Execution Rate. The successfully exe-
cuted task is a task which is completely accomplished
before its deadline dl at the first submission, where the
deadline dl of a task can be obtained by (23).

dl jk
= tsjk

(st) + µjk
× rtavg +

lenjk

pbavg

, (23)

where tsjk
(st) is the submission time of task k of user

j, rtavg is the average response time of a system, µjk
is

the network status based adjustable parameter and is
usually set to 0.4, lenjk

is the length of task k of user
j, and pbavg is the average processing ability.

The successful execution rate can be obtained by
(24).

seravg =

m∑

j=1

mj∑

k=1

ξjk

m∑

j=1

mj

,

ξjk
=

{
1, if tj is success to rk,

0, otherwise.
(24)

When D2RS algorithm is not used, we set the num-
ber of replicas of large-scale data file fixed as 2 and the
total number of copies of a data file is 3. As shown
in Fig.11, with the number of tasks increasing, the suc-
cessful execution rate decreases dramatically, especially
when the number of tasks is more than 50%. The less
the block availability is, the less the successful execution
rate will be. When the D2RS algorithm is used in the
cloud, the successful execution rate can be maintained
at a high level (more than 92%). A conclusion can be
made that the D2RS algorithm improves the successful
execution rate and maintains the successful execution
rate at a high and stable level.

Fig.11. Successful execution rate comparison.

From the above experimental results, the following
conclusions can be drawn that 1) the proposed dynamic
data replication strategy effectively increases data avai-
lability and reduces user waiting time by very small
number of replicas; 2) the proposed dynamic data repli-
cation strategy improves the system task successful ex-
ecution rate, minimizes cloud system bandwidth con-
sumption and reduces bandwidth consumption by plac-
ing the popular data files closer to the users; 3) the
proposed dynamic data replication strategy effectively
achieves system load balance by placing the popular
data files according to the access history and the the-
ory of temporal locality.

6 Conclusions and Future Work

High availability, high fault tolerance and high ef-
ficiency accesses to Internet based cloud data centers
where failures are normal rather than exceptional are
significant issues, and are often considered more valu-
able than high performance. Data replication allows
reducing user waiting time and speeding up data ac-
cess. It increases data availability by providing users
with different replicas of the same service, and all of
them in a coherent state. This paper presents a novel
dynamic data replication strategy. It strives to increase
data availability, improve cloud system task successful
execution rate and minimize cloud system bandwidth
consumption. Our contributions can be summarized as
follows. 1) A mathematical model is formulated to de-
scribe the relationship between system availability and
the number of replicas, which is missing in most existing
research. 2) The popular data is identified, and corre-
sponding replication operation will be triggered when
the popularity of a data file passes a dynamic thresh-
old. 3) Replicas are placed among data nodes in a bal-
anced way. 4) A dynamic data replication strategy is
proposed and evaluated. Experimental results demon-
strate the efficiency of the improved system brought by
the proposed strategy in a cloud.

There are still some studies to be done in the fu-
ture. For instance, further reducing the user waiting
time, speeding up data access, and further increasing
data availability. In addition, the replication strategy
will be deployed and tested on a real cloud computing
platform. It is also planned to make data replication
strategy as a part of cloud computing services to satisfy
the special demands of cloud computing, and finally, to
develop a complete dynamic data replication framework
based on the proposed model.
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