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Abstract Network traffic anomalies are unusual changes in a network, so diagnosing anomalies is important for network
management. Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing packet header
features. PCA-subspace method (Principal Component Analysis) has been verified as an efficient feature-based way in
network-wide anomaly detection. Despite the powerful ability of PCA-subspace method for network-wide traffic detection,
it cannot be effectively used for detection on a single link. In this paper, different from most works focusing on detection
on flow-level traffic, based on observations of six traffic features for packet-level traffic, we propose a new approach B6-
SVM to detect anomalies for packet-level traffic on a single link. The basic idea of B6-SVM is to diagnose anomalies in a
multi-dimensional view of traffic features using Support Vector Machine (SVM). Through two-phase classification, B6-SVM
can detect anomalies with high detection rate and low false alarm rate. The test results demonstrate the effectiveness
and potential of our technique in diagnosing anomalies. Further, compared to previous feature-based anomaly detection
approaches, B6-SVM provides a framework to automatically identify possible anomalous types. The framework of B6-SVM
is generic and therefore, we expect the derived insights will be helpful for similar future research efforts.
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1 Introduction

Anomalies such as network scans, worms, DDoS at-
tacks, can cause performance degradation of network
devices and end hosts, consume network resources, and
lead to security issues concerning all Internet users.
Thus, detecting anomalies has become an important is-
sue for the network. Traditional approaches to anomaly
detection use attack signatures also called misuse de-
tection that can identify attacks with known patterns.
Although signature-based detection finds most known
attacks, it fails to identify new attacks and anomalies
that have not appeared before and do not have known
signatures.

With new signature increasing, signature-based de-
tection is lagging behind the creation of malicious
threats[1], which makes newer antivirus technologies
and techniques, such as behavior-based detection, in-
creasingly important. Behavior-based anomaly detec-
tion techniques model the normal behavior of network

traffic and identify anomalies as deviations from the
normal behavior. A lot of volume-based detection
techniques were proposed that monitor the aggregate
or per-link traffic load of a network, to detect anomalies
that trigger significant traffic volume changes. How-
ever, not all network incidents result in big traffic
volume shifts. Low traffic rate attacks produce limited
change in traffic load and, therefore, go undetected
with volume-based detection systems.

Feature-based anomaly detection methods seek to
address the limitations of volume-based systems by exa-
mining a range of network traffic features, instead of
relying only on traffic volume. Lakhina et al.[2] showed
that despite their diversity, most traffic anomalies share
common characteristics: they lead to a change in dis-
tributional aspects of packet header fields (i.e., source
and destination addresses and ports, so called traffic
features). Lakhina et al. proposed an entropy-based
PCA-subspace method using traffic features. This tech-
nique has received great attention and inspired a lot of
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related researches[3-7].
PCA (Principal Component Analysis) is a

dimensionality-reduction technique operating on a traf-
fic matrix that returns a compact representation of
a multi-dimensional dataset by reducing traffic data
to a lower dimensional subspace. The traffic matrix
is usually formed by OD (Origin-Destination) flow
traffic volume/feature from network-wide traffic. Al-
though PCA-subspace method can be effectively used
for network-wide anomaly detection, Daniela et al.[4]

showed the poor detection ability when using PCA-
subspace method for a single link traffic detection.

The reason that PCA can be well suited for network-
wide traffic is based on such an observation: an anomaly
of an OD flow will propagate on all links of the OD
flow traversed, i.e., specific traffic feature for all links
will change in the same way caused by an anomaly.
Hence, applying PCA on all these links will make the
anomaly stand out. However, applying PCA for all
traffic features of a single link is not appropriate since
some anomalies will cause some traffic feature values
to increase and other feature values to decrease at the
same time. The results of PCA may make them cancel
out each other.

Most work nowadays focuses on flow-level data. At
least five minutes delay is needed even for the on-
line detection methods, so anomaly detection methods
based on flow-level data are mostly used for the warn-
ing/alerting to the network manager and hard to be
used for the next generation intrusion detection sys-
tem design. An ideal IDS (Intrusion Detection Sys-
tem), besides warning, will identify the anomaly packet
in real time. Hence, exploring detection methods based
on packet-level data is still needed. Our work in this
paper mainly focuses on anomaly detection and identi-
fication for the packet-level traffic data.

At the same time most work just triggers an alarm
for an anomaly. However, once an alarm is raised, a root
cause analysis needs to be performed in order to tackle
anomalies. Root cause analysis is normally left to net-
work operators, who use their intuition and knowledge
to analyze traffic trace where the anomaly was flagged
in search of events that can explain the anomaly. This
manual process is time-consuming and error-prone. In
a large network with hundreds of links, the number of
events that trigger alarms may easily overwhelm the
network operations center. Under such a condition, the
operator is very likely to ignore alarms or even not to
deploy the detection system in the first place. In our
work, by a two-phase process, B6-SVM shows poten-
tial in identifying possible types for known anomalies
automatically.

In this paper, different from most work focusing on
flow-level traffic, we focus on the packet-level traffic

on a single link. We view traffic features from six di-
mensions (source and destination addresses and ports,
packet size, flow) and pinpoint anomalies in a multi-
dimensional view using SVM (support vector machine),
whose core idea is to transform the traffic anomaly
detection issue to an SVM-based classification deci-
sion issue. Our work differs from previous SVM-based
anomaly detection techniques by modeling the values
of 6-dimensional traffic features entropy, and further by
two-phase classification, we can identify anomaly types
automatically during detection. We call our detec-
tion method B6-SVM. Our contributions are three fold:
1) we propose an entropy-based SVM method used for
a single link packet-level traffic realtime anomaly de-
tection; 2) we propose two new traffic features (packet
size, flow) to assist detection which can detect some
anomalies undetected only by four traffic features;
3) we propose a framework for identifying known
anomalies automatically by a two-phase SVM classi-
fication.

Our work begins with the observation of the diurnal
pattern of traffic volume and feature entropy, which
shows the volume and entropy change with time and
there is no fixed base model for normal traffic. However,
packet-level traffic feature entropy values for a short in-
terval are relatively constant and we can detect anoma-
lies based on the model in that interval. We analyze
traffic measurements from two famous academic and re-
search networks: China Educational & Research NET-
work (CERNET) and the Tsinghua University campus
NETwork (TUNET). We find B6-SVM is an effective
way to detect and identify a wide range of important
anomalies. The power of B6-SVM is shown by 1) the
successful detection and identification of anomalies in-
jected into the traffic; 2) the discovery of new anoma-
lies that we had not anticipated, and low false alarm
rate in detecting anomalies. We believe our methods
are practical. Our objective is to initially test the pro-
posed B6-SVM framework using offline analysis of large
datasets, and to subsequently deploy a real-time classi-
fication system in the future.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce our experimental data. In Section
3, we show the diurnal pattern of traffic volume and
feature entropy and introduce entropy based on pack-
ets unit series. In Section 4, we elaborate on the utility
of traffic feature distributions for diagnosing anoma-
lies. In Section 5, we describe our anomaly diagnosis
methodology using SVM. In Section 6, we manually in-
ject previously identified anomalies into our traffic to
demonstrate the sensitivity of our method. We also
show the ability to find new anomalies with B6-SVM.
Finally, we survey related work in Section 7 and con-
clude this paper in Section 8.
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2 Data

2.1 Network Environment

The network environment where the traffic measure-
ment used for the analysis is composed of TUNET and
core nodes of CERNET. CERNET is the largest and
first nation-wide education and research computer net-
work in China, and also one of China’s major backbone
networks. CERNET is the sole fixed network access for
students in Chinese university and college campuses.
More than 1 500 research and education institutions,
and 20 million users among 31 provinces have connected
to CERNET, constructing a four-level hierarchy: cam-
pus network, province network, regional network and
national backbone. Five external links connect the
CERNET from Beijing to Hong Kong and other coun-
tries, and the international links aggregate bandwidth
is over 11Gbps.

TUNET is the biggest campus network in China
and also one of the biggest campus networks in the
world, which has more than 400 sub-nets and connects
more than 50 000 computers. TUNET owns more than
two class B global IPv4 addresses since April 4, 2005.
TUNET is designed as 3-layer topology: core layer (C),
distribution layer (D) and access layer (A), where the
core layer is composed of six high-end routers that are
configured with 10 Gbps interfaces, two of which are
connected to CERNET with 1Gbps link. The traffic
collection environment is shown in Fig.1.

Fig.1. Traffic measurement environment.

2.2 Datasets

In our paper, we use packet (header) traces collected
by two monitoring devices. One of the monitors is set
on one link from TUNET to CERNET (1 Gbps). The
other one is set on one CERNET international link
(from China to USA — 2 Gbps). All traces are fully
captured without sampling for accurate analysis. Each
trace file is a collection of raw packet data which is of

40B length. Each raw packet data’s format is as below:
unsigned int timestamp high;
unsigned int timestamp low;
unsigned short mac port;
unsigned short pkt length;
unsigned short eth proto;
unsigned char pkt data[40];
The 40 B pkt data consists of IP and TCP header.

We collected one week of traffic by the two monitors for
the period from July 4, 2007 to July 10, 2007.

3 Packets Unit Entropy

3.1 Why Choose Packets Unit Entropy?

Shannon introduced information entropy to capture
the degree of concentration or dispersal of a distribu-
tion of a sample. We start with an empirical process
X = {ni; i = 1, . . . , N}, meaning that the feature i oc-
curs ni times in this sample. Then the sample’s entropy
is defined as:

H(X) = −
N∑

i=1

(ni

S

)
log

(ni

S

)
, (1)

where S =
∑N

i=1 ni is the total number of observations
of X. The value of entropy lies in the range (0, log N).
The entropy value takes on the value 0 when the distri-
bution is maximally concentrated, i.e., there is just one
observable feature (N = 1). Sample entropy value takes
on the value log N when the distribution is maximally
dispersed, i.e., n1 = n2 = · · · = nN .

Hence, entropy can be computed on a sample of
consecutive packets. Since our traces are fine-grained
packet-level data instead of coarse-grained flow-level
data, instead of computing entropy by an aggregated
time-bin traffic as [2-7] (for example, every 5 minutes),
we compute each entropy of traffic features using the
same methodology as [8] which sets a sliding window
of a fixed packet number W . The window size W is
a tunable parameter that controls how smoothing of
short-term fluctuations the detector will do. Increas-
ing W will reduce the variation in entropy and may
reduce false positives rate resulting from brief and pre-
sumably insignificant anomalies. However, W should
be kept small enough in order that attacks can be de-
tected timely. Based on the recommendation of [8] and
our experiments, we use a window size of 10 000 pack-
ets. That is, W = S = 10 000. We compute the first
S packets feature entropy for a traffic trace and then
move to the next S packets. We define the consecutive
S packets as a packet unit.

The trick is that S is fixed using packets unit en-
tropy, while S is variant using fixed interval entropy.
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When S is fixed, the entropy values with the same S
value can indicate the real degree of dispersal or con-
centration accurately, but if S is variant, entropy values
with different S values may have some deviations for in-
dicating the real degree of dispersal or concentration —
for example, if there are 104 packets for an interval and
105 packets for the next interval, the maximum entropy
values are log 104 and log 105 respectively — we cannot
say the larger one is more dispersed than another due
to different S values. Sometimes smaller entropy value
may be comparatively more dispersed than the bigger
one due to much smaller S value. Hence the pack-
ets unit entropy is much more accurate and proper to
capture the degree of dispersal or concentration of a
distribution of a sample. For the flow-level traffic it is
difficult to compute entropy using the same methodo-
logy as packet-level data, hence [9] uses H(X)/ log(N)
to compute the normalized entropy (between zero and
one).

3.2 There Is No Fixed Base Model

From observations of one week datasets from CER-
NET and TUNET, we find the diurnal pattern of traffic
viewing from both volume and feature entropy (we use
source IP entropy to illustrate). Fig.2 illustrates the
traffic pattern of CERNET traffic datasets on July 7,
2007. Fig.2(a) shows packets number per minute in a
day, Fig.2(b) shows fixed time interval entropy values
per millisecond in a day, and Fig.2(c) shows packets
unit series entropy values per 10 000 packets in a day.

From Fig.2 we find that the volume and entropy
have similar patterns in a day, i.e., entropy tends to in-
crease when volume for a fixed interval increases, which
means that anomalies showing unusual traffic volumes
will also sometimes show unusual entropy values. Thus
some anomalies detected on the basis of traffic volume
are also detected on the basis of entropy changes. An-
other important observation is that entropy changes
with time, and there is no fixed model relying on short
period entropy values for normal traffic. A normal en-

tropy value for one interval maybe indicates as being
abnormal for another interval. Baseline model relying
on short period must be periodically retrained to cap-
ture evolving trends in the underlying data for detecting
anomalies.

But for a short consecutive interval the normal traf-
fic entropy value is comparatively steady especially for
packets unit entropy (from Fig.2 we can see packets
unit entropy is the most steady one). Hence, we can
train a model for a fixed interval (in minute scale) to
identify anomalies as deviations from it at that interval,
and re-train the base model for the next interval.

4 Feature Distributions

Lakhina et al.[2] analyzed traffic feature distributions
for various anomalies in their work. We here do not in-
tend to repeat their work. While Lakhina et al.[2] focus
on four traffic features, we extend traffic features to six
dimensions, i.e., source IP addresses (srcIp), destina-
tion IP addresses (dstIp), source port (srcPort), desti-
nation port (dstPort), packet size (psize) and the flow
(here a flow is defined as a symbol of the 5 tuples in-
stead of flow size). The reason is that anomalies will
also cause the change of packet size and flow distribu-
tions of normal traffic and we can identify them using
these changes. They can help us identify some mixed
attacks which may not be detected only by using other
four dimensions[2]. We will illustrate further in Sec-
tion 6. Notice here flow distributions is not the same
as flow length distributions for an interval. For exam-
ple, if all 1-packet flows in an interval, flow distribution
is maximally dispersed and flow length distribution is
maximally concentrated.

Fig.3 illustrates an example of how feature distribu-
tions change as the result of a traffic anomaly — in this
case, a DDoS attack occurs in traffic. Two extended
traffic features are illustrated: packet size in the upper
half of the figure, and flow in the lower half of the figure.
Each plot shows a distribution of features found in a

Fig.2. Volume and entropy diurnal pattern. (a) Time series volume. (b) Time series entropy. (c) Packets unit series entropy.
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Fig.3. Distribution changes induced by DDoS. (a) Concentrated packet size. (b) Dispersed flow.

Fig.4. Features entropy changes induced by DDoS attack.

packets unit (10 000 consecutive packets). Distributions
are plotted as histograms over the set of features in de-
creasing rank order. On the left in each case is the dis-
tribution during a normal period, and on the right is the
distribution during a period with DDoS attack. From
Fig.3(a), we can see the distribution is much more con-
centrated during the anomaly than during normal con-
ditions for packet size. The reverse effect occurs with
respect to flow. From Fig.3(b), we can see the flow dis-
tribution becomes more dispersed during DDoS attack.
The reason is that DDoS attack leads to many 1-packet

flows and also many fixed length (40B) packets, which
leads to flow distribution dispersion and packet size dis-
tribution concentration.

At the same time DDoS attack will make srcIp dis-
perse and dstIp concentrate. Fig.4 shows the 4-dimen-
sional entropy change of 200 consecutive packet units
during DDoS attack (packets unit #100∼#120). We
can see clearly that entropy values deviate from normal
level during anomalous time. Many other anomalies,
such as worms, alpha flows, flash crowd, scan, will also
partially effect the six features’ entropy values, which
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is shown in Table 1. Thus, we can identify anomalies as
deviations from the normal feature entropy values for
an interval viewed from the six dimensions.

Table 1. Qualitative Effects on Feature Distributions
by Various Anomalies

Anomaly HsrcIp HdstIp HscrPort HdstPort Hflow Hpsize

Alpha Flows − − o o − o
DDoS + − o o + −
DoS − − o o − −
Flash Crowd o − + − + o
Port Scan o − o + + −
Network Scan o + o − + −
Point to Multipoint − + − + + o
Worms o + o − + o

Note: ‘+’ indicates entropy value increase, ‘−’ indicates entropy
value decrease, ‘o’ indicates entropy value relatively con-
stant (maybe a little increase or a little decrease).

5 Diagnosis Methodology

Our anomaly diagnosis methodology leverages these
observations about six features entropy to detect and
classify anomalies. We introduce SVM classification
method and show how it can be used to detect anoma-
lies across multiple traffic features. Classification is
used to learn a model/classifier from a set of labeled
data instances (training) and then, classify a test in-
stance into one of the classes using the learned model
(testing). Classification-based anomaly detection tech-
niques operate in a two-phase fashion: 1) the training
phase trains a classifier using the available labeled train-
ing data; 2) the testing phase classifies a test instance
as normal or anomalous, using the classifier.

5.1 SVM

SVM is one of the most actively developed classifi-
cation method in data mining and machine learning.
SVM provides salient properties such as the margin
maximization and nonlinear classification via “kernel
tricks”, and is proven to be effective in many real-world
applications[10-11]. SVM classifier is a machine learning
approach based on the structural risk theory introduced
by Vapnik in [10]. The use of SVM has showed encou-
raging results, achieving a higher classification accuracy
compared with other machine learning techniques on
very high volumes of backbone traffic traces[12]. [12]
concluded that SVM is the best choice for the trade-
off between classification accuracy and computational
performance.

We summarize the construction of an SVM classifier
as follows. We consider a set of labeled samples repre-
sented by (x1, y1), . . . , (xn, yn), where xi ∈ <d denotes
a n-dimensional vector and yi ∈ {−1,+1} is the label
associated to it. SVM training process produces a lin-
ear decision boundary (optimal hyperplane) which can

separate two classes (+1 and −1). It is formulated by
minimizing the training error while maximizing the sep-
arating margin as illustrated in Fig.5. The optimization
is usually solved through the Lagrange dual, which can
be reformulated as:

max
(1

2

n∑

i

ai − 1
2

n∑

i,j

aiajyiyjxixj

)

subject to 0 6 ai 6 C,
n∑

i

aiyi = 0,

where (ai)i∈n are lagrangian multipliers computed dur-
ing the optimization for every training sample and C is
a tradeoff parameter between margin and error. This
process chooses a fraction of training samples xi that
have ai > 0, and these samples are called support
vectors, which are used to define the decision boun-
dary. This formulation works only for linearly separable
classes.

Fig.5. Optimal separating hyperplane.

However, since not all classification problems can be
solved by a linear classifier for real data, an extension
is needed to non-linear decision surfaces. To solve the
problem, the dot product (xi · xj) in the linear algo-
rithm is replaced for a non-linear kernel function K(·),
where K(xi,xj) = φ(xi) ·φ(xj) and φ is a feature map-
ping function to a high-dimensional space φ: <d 7→ H.
Such a replacement is called “kernel trick”, which en-
ables the linear algorithm to map the data from the
original space <d to some different space H called fea-
ture space. Non-linear SVMs can be generated in the
feature space, since linear operations in the feature
space are equivalent to non-linear operation in input
space. Finally, the decision function derived by SVM
classifier for training samples xi, a test sample x, and a
bias term b can be computed as follows for a two-class
problem:

sign (f(x)), f(x) =
n∑

i

aiyiK(xi,x) + b.
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Fig.6. Roadmap of anomaly detection framework using B6-SVM. The dashed lines illustrate the training processes. The solid lines

illustrate the detection processes.

One-class SVM is an unsupervised classification pro-
posed by Scholkopf et al.[13] for estimating the sup-
port of a high-dimensional distribution. One-class SVM
algorithm first maps input data into a high dimen-
sional feature space via a kernel function and treats
the “origin” as the only example from other classes. It
then iteratively finds the maximal margin hyperplane
that best separates the training data from the “origin”.
Solving one-class SVM problem is equivalent to solving
the dual quadratic programming (QP) problem:

min
(1

2

n∑

i,j

aiajK(xi,xj)
)

subject to 0 6 ai 6 1
υn

,
n∑

i

ai = 1,

where ai is a Lagrange multiplier, and υ is a parameter
that controls the tradeoff between the distance of the
hyperplane from the origin and maximizing the num-
ber of data points contained by the hyperplane. We find
υ = 0.2 is a good tradeoff during many experiments for
different υ values. After solving for ai, we can use a de-
cision function to classify data. The decision function
is: f(x) = sign(

∑
i aiK(xi,x)−ρ), and the offset ρ can

be recovered by ρ =
∑

j ajK(xj ,xi).
Multi-class SVM is an extension from two-class

SVM. Multi-class SVM can be used in either one-
against-all or one-against-one fashion. Each class is
trained separately against the union of all other classes
for the one-against-all technique. Applying the trained
SVMs on a test data point (xij ,yij) yields a vector of
prediction scores (g1, g2, . . . , gc)ij , where c is the num-
ber of classes. For one-against-one technique, each class
is trained separately against each other class. Apply-
ing the trained SVMs to test data yields a vector of
prediction scores (g1, g2, . . . , gb)ij where b = c(c− 1)/2.

5.2 B6-SVM Construction via SVM

For accurate detection, we use SVM in a multi-
dimensional way. The main idea of B6-SVM is
to identify anomalies as deviations from the normal
traffic behavior viewed from six dimensions as illus-

trated in Fig.6. In training process, we first need
to construct entropy vector series from raw traffic
data. An entropy vector xi = (xi1, . . . , xi6) is con-
structed by calculating the 6-dimensional traffic fea-
tures’ entropy value of 10 000 consecutive packets, i.e.,
(HsrcIp ,HdstIp ,HscrPort ,HdstPort ,Hflow ,Hpsize). We
get base models from training n samples of the 6-
dimensional entropy vectors. As we illustrated in Sub-
section 5.1, the training entropy vector series must
have a label to indicate which class it belongs to. Let
X be a set of input sequences (entropy vectors) and
let Y be the corresponding set of sequences of labels.
The data (Y, X) consist of n samples of entropy vec-
tor (yi,xi) = (yi, xi1, xi2, xi3, xi4, xi5, xi6), i = 1, . . . , n.
The training samples number n is a tunable parameter
that controls training time and predicts precision. In
practice, we found n = 200 is a good tradeoff.

We construct seven base models from training data.
We call these models Bnormal , B1, . . . , B6 which are
shown in Table 2. Bnormal trained from anomaly-free
traffic is used for one-class classification and is labeled

Table 2. Qualitative Effects on Feature Distributions
by Various Anomalies

Model Entropy Vector Series

Bnormal 〈(0, xi1, xi2, xi3, xi4, xi5, xi6), . . .〉
B1 〈(0, xi1, xi2, xi3, xi4, xi5, xi6), . . . ,

(−1, xi1 − α, xi2, xi3, xi4, xi5, xi6), . . . ,
(1, xi1 + α, xi2, xi3, xi4, xi5, xi6), . . .〉

B2 〈(0, xi1, xi2, xi3, xi4, xi5, xi6), . . . ,
(−1, xi1, xi2 − α, xi3, xi4, xi5, xi6), . . . ,
(1, xi1, xi2 + α, xi3, xi4, xi5, xi6), . . .〉

B3 〈(0, xi1, xi2, xi3, xi4, xi5, xi6), . . . ,
(−1, xi1, xi2, xi3 − α, xi4, xi5, xi6), . . . ,
(1, xi1, xi2, xi3 + α, xi4, xi5, xi6), . . .〉

B4 〈(0, xi1, xi2, xi3, xi4, xi5, xi6), . . . ,
(−1, xi1, xi2, xi3, xi4 − α, xi5, xi6), . . . ,
(1, xi1, xi2, xi3, xi4 + α, xi5, xi6), . . .〉

B5 〈(0, xi1, xi2, xi3, xi4, xi5, xi6), . . . ,
(−1, xi1, xi2, xi3, xi4, xi5 − α, xi6), . . . ,
(1, xi1, xi2, xi3, xi4, xi5 + α, xi6), . . .〉

B6 〈(0, xi1, xi2, xi3, xi4, xi5, xi6), . . . ,
(−1, xi1, xi2, xi3, xi4, xi5, xi6 − α), . . . ,
(1, xi1, xi2, xi3, xi4, xi5, xi6 + α), . . .〉

Note: ‘+’ indicates entropy value increase, ‘−’ indicates
entropy value decrease, ‘0’ indicates value relatively
constant (maybe a little increase or a little decrease).
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with one label 0. B1, . . . , B6 are trained by the com-
bination of anomaly-free traffic (label 0), low entropy
(label −1) and high entropy (label 1) traffic in one
dimension respectively. We do not simply use one-
dimensional feature (for example, 〈(0, xi3), (−1, xi3 −
α), (1, xi3 +α)〉 for B3) to train B1, . . . , B6 because the
6-dimensional features are not independent from each
other, which we can see from Fig.4. Hence, we can-
not simply diagnose anomalies by absolute high or low
entropy values in one dimension.

The parameter α in Table 2 controls the tradeoff
between detection rate and false alarm rate. Too low
value will generate much more false alarms although
the detection rate is high; on the contrary, too high
value will miss many anomalies though the false alarm
rate is low. In practice, we found α = 0.6 for B1 ∼ B4

and α = 0.4 for B5 and B6 is a good trade-off between
detection rate and false alarms.

Bnormal is used for one-class classification. One-class
classification based anomaly detection techniques as-
sume that all training instances have only one-class la-
bel. Such techniques learn a discriminative boundary
around the normal instances using a one-class classifi-
cation algorithm. Any test instance that does not fall
within the learned boundary is declared as anomalous.

B1, . . . , B6 are used for three-class classification.
Previous work[14] has indicated that the one-against-
one approach yields slightly more accurate results and
faster SVM training. Further, training time of any
of B1, . . . , B6 is only 2 instead of 3. For example,
〈(−1, xi1, xi2, xi3 − 0.6, xi4, xi5, xi6), (1, xi1, xi2, xi3 +
0.6, xi4, xi5, xi6)〉 need not be trained for B3. Although
one-against-one training is conducted twice, each time
only the data points in two classes are involved. Besides,
the one-against-one training can be done in parallel.

5.3 Kernel Function Choices

The feature vectors need not be computed explicitly
when using kernel functions, which can greatly improve
computational efficiency since we can directly compute
the kernel values and operate on their images. Some
common kernels are polynomial, linear and Gaussian
radial basis function (RBF) kernels.

Generally speaking, RBF kernel (K(xi,xj) =
exp(−γ‖xi − xj‖2), with the hyper parameter γ > 0)
is a first choice because it is effective and robust for a
wide range of applications[15]. RBF kernel non-linearly
maps samples into a higher dimensional space. Hence,
unlike the linear kernel, RBF can handle the case when
the relation between attributes and class labels is non-
linear. Further, the number of hyper parameters can
influence the complexity of model selection, RBF ker-
nel has less hyper parameters and has fewer numerical

difficulties[10].
The marginal Gaussian distributions of traffic data

is also an important reason to choose Gaussian RBF
kernel. The Gaussian RBF kernel will map data from
the original input space to some different feature space.
The outliers whose marginal distributions violate Gaus-
sian will be easily classified in the new feature space.
Actually we tried all kinds of kernel functions in our
experiment and found Gaussian RBF kernel to be the
best choice in classification.

5.4 Parameter Optimization

An efficient model selection is needed for generating
highly performance SVM classifiers capable of dealing
with continuous updates of training data. The model
selection consists of two main phases: the searching
phase and test phase. The searching phase needs to
solve an optimization whose goal is to find optimal val-
ues for the SVM hyper-parameters (C and γ) with re-
spect to selection criterion. γ affects the width of the
Gaussian functions of the RBF kernel and C is a penalty
parameter for classification errors. The criterion is an
objective function F evaluated over a training dataset
D in terms of the cross-validation error ε. Our model
parameter selection problem takes on the following form
min(ε((C, γ),D)). The test phase is used to the pro-
duction and evaluation on a test set of the final SVM-
model created, based on the optimal hyper-parameters
set found in the searching phase.

A common way of searching phase is to divide the
dataset into two parts. One part is considered un-
known. Prediction accuracy obtained from the un-
known set can reflect the performance classifying an
independent dataset more precisely. The procedure is
known as cross-validation. In “v-fold” cross-validation,
we can separate the training set into v subsets with
equal size. One subset can be tested using the classifier
trained on the remaining v − 1 subsets. We choose “5-
fold” cross-validation in practice. Each instance of the
whole training set is predicted once, hence the cross-
validation accuracy is the percentage of data that are
correctly classified. Further, the cross-validation can
prevent the overfitting problem[15].

We use “grid-search” on γ and C for cross-validation.
Various pairs of (C, γ) values are tested and the pair
with the best cross-validation accuracy is chosen. Since
a complete grid-search construction may still be time-
consuming, we use a “coarse grid” first. A “finer grid”
search on the region can be conducted after identify-
ing a better region on the grid. We try exponentially
growing sequences of γ and C to find optimal parame-
ters. For every new training dataset D, we need a
cross-validation process to get an optimal (C, γ) values
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meeting min(ε((C, γ),D)).

5.5 Detection and Identification Using
B6-SVM

In testing process we first construct a packets unit
entropy vector from the online data (Fig.6), then we
predict the vector by Bnormal . Any deviations from
Bnormal will be further tested by B1 ∼ B6 in parallel.
We can check the output value of B1 ∼ B6 to identify
the probable attacks. Hence our model can not only
detect anomalies but also identify the anomalous types
roughly by the classification results. Notice that we
need to retrain base models using the coming 200 nor-
mal data points tested by current base models for the
next time interval. Once the retraining process is over,
we need to update the base models.

01: For i = 1:6
02: ci = classification result of Bi;
03: C = 〈c1, c2, c3, c4, c5, c6〉
04: If C = 〈0, 0, 0, 0, 0, 0〉 Then
05: {output normal; exit; }
06: Match C with all row vertors in Table 1;
07: If matches exist Then
08: {output matched anomaly types;
09: raise yellow alarm;}
10: Else
11: {raise red alarm to indicate new anomaly;}

Fig.7. Anomaly type identification algorithm.

Fig.7 describes how to identify anomaly types based
on classification results of B1 ∼ B6. Let C =
〈c1, c2, c3, c4, c5, c6〉 indicate the classification results.
ci ∈ {−1, 1, 0}, ci = −1 matches “−” in Table 1,
ci = 1 matches “+” in Table 1 and ci = 0 matches
any of {−,+, o} in Table 1. We reduce false alarms
by classifying the deviations detected by Bnormal as
normal for the output results C = 〈0, 0, 0, 0, 0, 0〉. For
C 6= 〈0, 0, 0, 0, 0, 0〉, we match C using Table 1 follow-
ing the below rules: 1) if only one row in Table 1 is
matched, we identify corresponding anomaly, for exa-
mple, if C = 〈0,−1, 0, 1, 0, 0〉, it will be a port scan;
2) if more than one row in Table 1 are matched, we
identify corresponding mixed anomalies, for example,
if C = 〈0,−1, 0, 0, 1, 0〉, it may be a port scan and flash
crowd mixed attack; 3) if none row is matched, it may
be new anomalies, for example, C = 〈1,−1,−1, 0, 0, 0〉.

5.6 Computational Complexity

The quadratic problem must be solved and the sup-
port vectors must be chosen when training with SVM.
There are two lower bounds on the computational cost
of solving the SVM QP problem for arbitrary matrices
K(xi,xj) = φ(xi) · φ(xj). One is proportional to R3

which R is the number of support vectors, the other is

proportional to nV where n is number of samples and
V is the number of support vectors[10].

Hence the training complexity of SVMs is highly de-
pendent on the size of a dataset. SVM training time
is typically super-linear in the number of training sam-
ples, so learning a smaller training set for the same
data is a net win. If we train features for every packet
it will need n = 200 × 10 000 samples. Since one sam-
ple was constructed by 10 000 packets for our models,
there are only 200 samples needed for training on en-
tropy values. Hence, training on entropy values instead
of directly on packet features will decrease the train-
ing time dramatically. The computational complexity
of the testing process is proportional to the number of
support vectors and the features which is usually small.

On a dual 2.80 GHz CPUs and 2GB memory 32-bit
Intel x86 architecture, training and creating the ma-
chine using 200 data points requires time less than 30
seconds. Hence, the online data will be tested by the
base model trained from the traffic a few seconds before.
From our observations we note that all features entropy
values keep relatively steady in minute scale. We train
next base models online using the coming 200 normal
data points tested by current base models. We update
models for new time series detection once new models
are generated. Once trained, the prediction of latency
to an arbitrary data point takes time about two mi-
croseconds, i.e., B6-SVM can detect about 0.5 million
packets per second. The statics on our datasets shows
that average packet size is usually large than 500 B.
Thus, B6-SVM can test about 5×105×500×8 = 2×109

bits per second, i.e., B6-SVM can be implemented on
2Gbps link for realtime detection theoretically.

6 Evaluation

In this section, we evaluate the B6-SVM using the
datasets introduced in Section 2. As an implementa-
tion of SVMs, we use the LIBSVM package[16]. LIB-
SVM is an integrated software for SVM classification,
regression and distribution estimation. LIBSVM sup-
ports multi-class and one-class classification. The whole
classification process includes two processes: the train-
ing process and the predicting process. During SVM
training, the goal is to learn each class based on each
element (data item or data point) and its corresponding
label in the training set, by maximizing the separation
between data points with same labels (the same class)
and other data points. Many studies[10-12] have shown
that SVMs tend to obtain superior results, compared
with other classifiers, for predicting individual labels.
The advantage of SVMs stems from its ability to use
high-dimensional feature spaces via kernels and from
theoretical guarantees on generalization ability.
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6.1 Methodology

To evaluate detection rate and identification rate, we
consider generating synthetic anomalies — normal traf-
fic mixed with known anomalies. We select a random
200 consecutive packet units traffic from our data as
our background traffic, which is assumed anomaly-free.
We manually generate three anomalies with the method
similar to [9] and superimpose the anomalies into our
traffic respectively (we can get rid of anomalous traf-
fic through manual analysis). The first is a port scan.
The second is a classical DDoS attack and the third is
a worm.

The port scan is generated by a number of attack
sources scanning a fixed host’s all ports sequentially,
and each attack source scans using a short packet with
56-packet size. The DDoS attack is generated by a
single destination address receiving traffic from a large
amount of sources. Each attack source generates packet
using a fixed packet size of 40 B and a single flow per
packet. The worm is generated by some attack sources
scanning all hosts’ 80 and 8080 ports in a network for
vulnerable hosts.

For evaluating our methods on varying anomaly in-
tensities, we thin the background traffic trace by se-
lecting one out of every N packets, then extract the
anomaly and inject it into the background traffic trace.
We inject the anomaly in turn into the background
trace. After each injection, we apply the B6-SVM
method to determine whether the injected anomaly can
be detected. This allows us to compute a detection rate
based on packets unit entropy.

The experimental results of [4] has hinted that PCA-
subspace method is poor for a single link traffic detec-
tion, we will compare the detection rate of B6-SVM
and PCA-subspace method under injecting external
anomalies. To compare the detection rate of the PCA-

subspace method with B6-SVM for a single link data
under the same condition, we use the same training
data of B6-SVM for the PCA training, and the similar
way that used in [4] for single link anomaly detection.
That is, we constitute a 200× 6 matrix for PCA train-
ing, which denotes the packet unit series of all features.
Thus, each column i denotes the packet unit series of
the i-th feature and each row j represents an instance
of all the features at the packet unit j. We use the
PCA subspace Mark Coates[3] shared for us to evalu-
ate. We set the confidence limit 1− α = 99.5% for the
PCA method. The residual is obtained by the diffe-
rence between the original data and the data mapped
onto the first four principal axes, which capture 96% of
whole energy. We also choose the same test dataset for
B6-SVM and PCA subspace method.

6.2 Results

The resulting detection and identification rates from
injecting anomalies of different intensity are shown in
Fig.8. From the plots we note that, compared with B6-
SVM, PCA-subspace method is relatively poor for a
single link traffic anomaly detection. The detection rate
is very low for DDoS and port scan because these two
attacks both cause two features entropy to increase and
two to decrease. They will cancel out each other in
the dimension reduction process of PCA. The detec-
tion result of worms is a little better because worms
will cause two features entropy to increase and one to
decrease. However, increasing or decreasing entropy val-
ues of different features from the normal level will cause
anomaly to stand out for B6-SVM since SVM trans-
fers the input space to a higher dimensional space to
make samples linearly separable in new space by a ker-
nel trick. Entropy changes in the opposite direction will
not cancel out each other for B6-SVM. We do not test
the detection rate for DoS and Alpha flow for B6-SVM

Fig.8. Detection and identification results from injecting different anomalies. (a) Port scan. (b) DDoS attack. (c) Worms.
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and PCA-subspace method, however, we think they
both will have a good performance for the two attacks.
The reason is that DoS and Alpha flow both make the
features entropy change in the same direction.

This figure also sheds light on a number of aspects of
detection and identification rate of B6-SVM. First, all
anomalies are easily detected when they occur at a high
volume. All attacks can be detected when they com-
prise at least 5% of the traffic on average. Second, all
known anomalies are also easily identified by B6-SVM
when they occur at high volume. All port scans are
identified when they comprise at least 10% of the traf-
fic on average. All DDoS attacks are identified when
they comprise at least 15% of the traffic on average.
And all worm scans are identified when they comprise
at least 5% of the traffic on average. Third, the identi-
fication rate is a little lower than the detection rate for
same anomaly intensity. Not all anomalies detected by
Bnormal will be identified by B1 ∼ B6 successfully when
these anomalies are in a low intensity. The results are
encouraging the use of B6-SVM for anomaly detection.

Table 3 shows all anomalies found in our datasets
by B6-SVM. Totally 763 alarms are triggered for CER-
NET data and 611 alarms are raised for TUNET data.
We manually generate mixed attacks which are com-
posed of half port scans and half worms attacks, and
we inject them into part of our traffic data with 8% in-
tensity. They are all successfully identified by the out-
put results of B1 ∼ B6: x = 〈0, 0, 0, 0, 1,−1〉. None of
them can be detected by only using four traffic features
(srcIp, dstIp, srcPort, dstPort)[2]. For the DoS attack
and Alpha flow, we can only detect them if just us-
ing four traffic features (srcIp, dstIp, srcPort, dstPort),
but the specific types cannot be identified because they
both cause similar entropy changes for the four features.
However, we can identify them by different changes of
packet size entropy. Hence, adding flow and packet size
features not only can help detect more anomalies but
also assist us to identify more anomaly types compared
with only using four traffic features.

Table 3. Anomalies Found in Datasets

Anomaly CERNET TUNET

DDoS 153 67
DoS 45 82
Alpha Flow 137 32
Port Scan 122 131
Worms 189 218
Mixed Attack 35 19
Unknown 37 28
False Alarm 45 34
Total 763 611

Altogether 37 unknown anomalies in CERNET
and 28 unknown anomalies in TUNET are detected
by B6-SVM. Among them 26 unknown anomalies in

CERNET and 18 unknown anomalies in TUNET are
detected by the output results of B1 ∼ B6: x =
〈−1,−1,−1,−1,−1, 0〉. Through manual analysis, we
find IP addresses which belong to the same subnet dis-
appear suddenly for that anomalous period, which may
indicate a switch failure at that moment. The rest
11 unknown anomalies in CERNET and 10 unknown
anomalies in TUNET that cannot be identified from
their patterns may be some new anomalies that we
do not know yet or may be false positives. Besides,
there are 45 and 34 alarms in CERNET and TUNET
data triggered by the concentration of IP addresses.
Through manual analysis, we find a fixed IP address
emerges too many times in these packet series, and we
further identify the IP address as a proxy server or NAT
box. We consider these alarms arousing from middle-
boxes as false alarms.

Table 3 sheds light on false alarm rate. The ta-
ble shows that in one week of data, only 45 anoma-
lies in CERNET and 34 anomalies in TUNET were
false alarms. This is the minimum value, because some
anomalies in the unknown category might be considered
false alarms if their nature were completely understood.
If we take them as false alarms, there are 45 + 11 = 56
false alarms in CERNET and 34+10 = 44 false alarms
in TUNET data. The false alarm rate is in the order of
7.3% for CERNET data and 7.2% for TUNET data of
all detections.

The detection rate and false alarm rate are encourag-
ing using B6-SVM. Besides, B6-SVM can automatically
identify the possible known anomaly types in the de-
tecting process, which is fallible and annoying for man-
ual analysis.

7 Related Work

Anomaly detection is becoming a hot research
topic in recent years. Some studies have been re-
stricted to point-solutions for specific types of anoma-
lies, e.g., port scans[17], worms[18-19], spam[20], DoS
attacks[21-22], and flash crowds[23]. Some studies an-
alyze overall traffic volume behavior, e.g., by proposing
edge detection[24-25], wavelet-based signal analysis[26],
or forecasting techniques[27]. They flag peaks and shifts
in volumes as suspicious events on the assumption that
anomalies are reflected as significant changes in traffic
volumes. Traffic volumes, however, comprise natural
bursts and dips that are due to legitimate applications
(e.g., distributed computing, update rollouts, backups),
and therefore these methods are likely to generate many
false alarms.

Zhang et al.[28] introduced a general framework that
aims to identify anomalies from network-wide link load
traffic data. These studies are successful in identifying
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anomalies that result in (network-wide) traffic volume
deviations. However, they are not so effective in de-
tecting stealthy attacks, such as low-rate port scanning,
that do not result in notable traffic volume changes.

Feature-based anomaly detection methods seek to
address the limitations of volume-based methods by
examining a range of traffic features, instead of rely-
ing solely on the traffic volume. Commonly used traffic
features are IP header fields. Feature-based anomaly
detection methods base the observation that traffic fea-
tures exhibit regular patterns under normal conditions,
which may be violated by anomalies.

Gu et al.[29] used a single composite feature distri-
bution to characterize network traffic and computed a
parametric model of the distribution using training traf-
fic data. The network traffic is compared to the con-
structed base model to identify anomalies. The authors
assume that their training dataset does not contain any
anomalies. Wagner et al.[30] studied the compressibility
of different IP header fields in traffic traces. They found
that the compressibility of traffic features changes dras-
tically during well-known worm outbreaks. Ringberg
et al.[31] introduced Web-Class, an online repository of
anomaly-labeled traffic traces that researchers may use
for evaluating anomaly detection techniques. Soule et
al.[32] studied the network traffic anomalies observed
in two adjacent backbone networks. They found that
large-scale anomalies can leave substantially different
footprints due to differences in the traffic collection in-
frastructure of two networks. Brauckhoff et al.[33] de-
scribed how traffic sampling can influence the accuracy
of anomaly detection systems. They showed that al-
though sampling can influence volume-based anomaly
detection metrics, it does not affect the distribution of
traffic features significantly.

Scherrer et al.[34] introduced a long-range depen-
dent non-Gaussian model of network traffic, and pro-
posed an anomaly detection method that identifies sig-
nificant changes in the estimated parameters of the
model. Andreas et al.[35] proposed a histogram-based
traffic anomaly detection by directly modeling the de-
tailed characteristics of histograms, which can identify
coarse-grained changes between distributions. More
recently, Fernando et al.[36] found that “when many
flows are multiplexed on a non-saturated link, their
volume changes over short timescales tend to can-
cel each other out, making the average change across
flows close to zero. This equilibrium property can
be violated by many traffic anomalies.” Based on
this observation, they proposed a novel anomaly de-
tection method called ASTUTE (A Short-Timescale
Uncorrelated-Traffic Equilibrium).

Closer to our approach, the pioneer work by Lakhina

et al.[2,37] introduced PCA-subspace method to iden-
tify network wide anomalies using feature distributions.
The proposed anomaly detection scheme uses PCA to
identify an orthogonal basis along which the measure-
ment data exhibit the highest variance. The princi-
pal components with high variance model the normal
behavior of a network traffic, whereas the remaining
components of small variance can be used to identify
anomalies. This technique has received a large amount
of attention, and inspired related research[3-7].

Ringberg et al.[38] performed a study on the sensi-
tivities of the PCA method. They illustrated how the
PCA method can be sensitive to the number of princi-
pal components used to describe the normal subspace,
which can limit PCA’s effectiveness if not properly con-
figured. They also showed that outages can pollute the
normal subspace, a kind of perturbation to the subspace
that is not adversarial. [4] shows that the sensitivities
observed in [38] come from PCA’s inability to capture
temporal correlations. They proposes to replace PCA
by a Karhunen-Loeve expansion. [7] proposes a robust
defense against a malicious adversary and demonstrate
its effectiveness. [5] extends the PCA-subspace method
to identify the IP flow(s) that are responsible for the
anomaly. [3, 6] focus on PCA-subspace method scala-
bility and improve the spatial and temporal complexity
of PCA.

Different from these studies, we focus on packet-level
traffic of a single link. We find that PCA-subspace
method is not fit for this case. We extend four traf-
fic features into six to assist anomaly detection. We
propose B6-SVM to detect anomaly under this condi-
tion. SVM has been widely used for classification in
many areas and has been showed an efficient classifi-
cation method[10-11]. [12] compares all kinds of classi-
fication methods for network traffic classification and
showed SVM consistently achieved the highest accu-
racy, achieving a 98% of classification accuracy on very
high volumes of the backbone traffic traces. At the
same time, researchers have successfully applied SVM
to distinguish normal from abnormal traffic[14,39-40].
Different from these studies, we propose an entropy-
based SVM detection method, which dramatically de-
crease the training samples number for the same train-
ing dataset. Besides, our method can both detect and
identify anomalies by a two-phase process.

Few studies have tried to address the problem of
automating root cause analysis of traffic anomaly de-
tectors. Lakhina et al.[2] proposed a clustering method
of entropy residuals to classify the anomalies found by
PCA anomaly detector. Li et al.[5] combined PCA with
traffic sketches to develop “Defeat”, a detector that
can also identify the flows involved in the anomalies.
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[41] introduces an anomaly extraction technique using
“frequent itemset mining” based on histogram detec-
tion method[35]. [42] also proposes frequent itemset
mining to extract anomalies based on NetRflex (PCA-
subspace). [43] proposes a general root cause analysis
method for all detectors called URCA (Unsupervised
Root Cause Analysis) by classifying anomalies using
metrics of the traffic they impact. A little different
from these studies, our work is an attempt to identify
anomalies during detection process instead of analyzing
the results of detectors.

8 Conclusions

General network anomaly detection is an ambitious
goal. In this paper, we show that although PCA is
powerful for world wide traffic analysis, it is difficult
to be applied for single link traffic. We propose a new
feature-based anomaly detection approach — B6-SVM,
which is based on modeling the characteristics of six dif-
ferent traffic features for diagnosing anomalies. Com-
pared with previous feature-based anomaly detection
techniques, we focus on packet-level traffic anomaly de-
tection for a single link and propose an entropy-based
SVM detection method. Our work not only extends
four traffic features to six features to improve the detec-
tion capability but also proposes a framework to iden-
tify anomalies during detection by a two-phase SVM
classification.

Our work provides a framework to use feature en-
tropy to identify different anomalies. The presented
methodology is generic. Table 1 can be extended with
new features’ entropy that might become informative
for revealing new anomalies, and can be extended with
new anomalies identified by B6-SVM if we can con-
firm their entropy changing characteristics for the des-
ignated dimensions. Our test results demonstrate B6-
SVM’s effectiveness in diagnosing anomalies. B6-SVM
can be deployed on 2 Gbps links for packet-level real-
time anomaly detection.

Our method also has some limitations. For example,
in the initial training process, B6-SVM needs to learn
the behavior of normal traffic. We assume that the
training datasets are anomaly-free, which is harsh for
the real traffic. All our following up testing and retrain-
ing processes are based on the initial models. Hence,
B6-SVM is very sensitive to the initial traffic we used
for training. Although we can get anomaly-free traf-
fic through visual observations from traffic, it is harsh
for randomly chosen traffic in real conditions. Our fu-
ture work will focus on diminishing possible anoma-
lies in the initial training of the base models since we
have taken steps for the retraining process (we only
train anomaly-free samples identified by previous base

models). Possible methods may include getting rid of
some heavy-hitters by setting some thresholds for dif-
ferent features or using some clustering methods.
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