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Abstract In this paper, we investigate the trade-offs between delay and capacity in mobile wireless networks with
infrastructure support. We consider three different mobility models, independent and identically distributed (i.i.d) mobility
model, random walk mobility model with constant speed and Lévy flight mobility model. For i.i.d mobility model and
random walk mobility model with the speed Θ( 1√

n
), we get the theoretical results of the average packet delay when capacity

is Θ(1), Θ( 1√
n
) individually, where n is the number of nodes. We find that the optimal average packet delay is achieved when

capacity λ(n) < 1

2·n·log2( 1

1−e
−K

n

+1)
, where K is the number of gateways. It is proved that average packet delay D(n) divided

by capacity λ(n) is bounded below by n
K·W . When ω(

√
n) 6 K < n, the critical average delay for capacity compared with

static hybrid wireless networks is Θ(K2

n
). Lévy flight mobility model is based on human mobility and is more sophisticated.

For the model with parameter α, it is found that D(n)
λ(n)

> O(n
(1−η)·(α+1)

2 ln n) when K = O(nη) (0 6 η < 1). We also prove

that when ω(
√

n) 6 K < n, the critical average delay is Θ(n
α−1

2 ·K).

Keywords mobile wireless networks, capacity, delay

1 Introduction

With the development of wireless technologies, dif-
ferent wireless access methods have been integrated
on a single device. Users can connect to the Internet
through one-hop wireless LANs (WLANs), or multi-hop
wireless networks. Recently, as an effective complement
to the static infrastructure wireless networks, mobile
wireless networks based on opportunistic transmission
have been investigated[1-3].

The mobile users can connect to the Internet
through gateways, which are usually formed as infras-
tructure networks. When a user moves into the trans-
mission range of a gateway, useful data is downloaded.
Users can share data in “store-carry-and-forward”
manner. When two nodes move close enough, interested
data can be exchanged. Because such an opportunistic

transmission is usually done through WiFi or Blue-
tooth, it is free of charge and generates no traffic
load on the infrastructure network. Through analysis
on real trace data and simulation results, it is found
that such mobile wireless networks with infrastruc-
ture support improve performance and energy efficiency
significantly[4-5].

To evaluate this kind of mobile wireless networks
with infrastructure support theoretically, we consider
two performance metrics, capacity of the network
and average packet delay. The former represents the
expected number of packets that can be delivered
successfully in unit time, and the latter represents
the average time it takes for the transmission of a
packet. Huang et al. investigated capacity of mobile
wireless networks with infrastructure support[6]. They
adopted a mobility model where nodes move around
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their home-points. Different with the one-hop wireless
communication they considered, we focus on multi-hop
opportunistic transmission. Besides capacity, we inves-
tigate another important metric delay.

Relationship between these two metrics will pro-
vide useful insights on the characteristics of network
performance. Existing work has shown that there is
a trade-off between them in mobile wireless networks
without infrastructure support[7]. The introduction of
infrastructure makes the problem more difficult because
there are two different transmission modes for all pairs
of source and destination. One is without the help of
gateways, which is similar to the opportunistic trans-
mission. The other is through gateways, which is like
the traditional infrastructure based transmission.

In this paper, we investigate delay-capacity trade-
offs in such mobile hybrid wireless networks under
independent and identically distributed (i.i.d) mobil-
ity model, random walk mobility model with constant
speed and Lévy flight mobility models individually. The
first two are the most used synthetic mobility models,
and the last one is proposed more recently based on the
human mobility characteristics[8].

Our main contributions are as follows.
• We give the results of the average packet delay

under i.i.d mobility model when capacity is Θ(1)①,
Θ( 1√

n
) individually. It is proved that average packet

delay D(n) can be optimized when the capacity λ(n) <
1

2·n·log2(
1

1−e
−K

n

+1)
, where n is the number of nodes and

K is the number of gateways.
• It is found that in this kind of network under

i.i.d mobility model, D(n)
λ(n) > n

K·W . Compared with
the static hybrid wireless networks, it is found that the
critical average delay is Θ(K2

n ) when ω(
√

n) 6 K < n.
• It is proved that, under random walk mobility

model with speed Θ( 1√
n
), delay and capacity can

achieve the same trade-offs in scale sense with those
under i.i.d mobility model.
• Under Lévy flight mobility model with param-

eter α, we prove that D(n)
λ(n) > O(n

(1−η)·(α+1)
2 lnn) if

K = O(nη) (0 6 η < 1). When ω(
√

n) 6 K < n,
the critical average delay is Θ(n

α−1
2 ·K).

The rest of the paper is organized as follows. Section
2 reviews the related work. Section 3 presents the mod-
els we use and the problem we investigate. We give our
main results in Section 4. Finally, concluding remarks
are given in Section 5.

2 Related Work

In the landmark paper, Gupta and Kumar showed

that throughput per-node scales as Θ( 1√
n log n

) in ran-

dom static wireless networks[9]. It can be increased to
Θ(1) when mobility is introduced[10]. However, [10]
does not address the delay issue.

Since then, there has been substantial work inves-
tigating the trade-offs between delay and capacity in
mobile wireless networks under different mobility mod-
els. In [11], mobility characteristics is exploited and
a routing algorithm is designed which approaches the
optimal capacity while keeping the delay small. In [12-
15], the problem is studied under i.i.d mobility model.
Neely et al. proposed a packet scheduling scheme to
achieve the trade-off λ(n) 6 O(D(n)

n ), where λ(n) is the
throughput per-node, D(n) is the average end-to-end
delay and n is the number of nodes in the network[12].
Incorporating the multiuser reception and power con-
trol, a better capacity-delay trade-off λ2(n) 6 Θ(D(n)

n )
is achieved[13]. In [14], the upper bound of the maxi-
mum throughput per-node under a given delay con-
straint is established, and the scheduling schemes which
can approach the bound up to some logarithmic factor
are proposed. Liu et al. gave the closed-form theore-
tical results for two-hop relaying based mobile wireless
networks[15]. In [16-17], the problem is investigated un-
der Brownian motion model. A scheme to achieve the
optimal order of delay for any given throughput is de-
scribed in [16]. [18-20] discuss the problem under ran-
dom walk mobility model and restricted mobility model
individually. From a global perspective, Sharma et al.
established the relationship between critical delay and
first exit/hitting time[7]. Critical delay means the min-
imum delay that has to be tolerated in mobile networks
to achieve the same throughput in scale sense in static
wireless networks.

Different new mobility models have appeared and
the corresponding delay-capacity trade-offs have been
investigated. Ying et al. proposed four new mobility
models, and investigated the maximum throughput per-
node with a delay constraint[21]. Garetto et al. ana-
lyzed the results under the mobility models where each
node moves around its home-points[22-23]. In [24], it
is found that spatial heterogeneity improves the delay-
capacity scaling laws. Assuming home-points can be
wired-connected, Huang et al. gave the scaling laws of
capacity[6]. In [26], the trade-off under the reference
point group mobility model[25] is investigated, and it is
shown that the movement relevance of different nodes
improves the performance. More recently, Wang et al.
gave the asymptotic capacity and delay bounds for
two different mobility models under Gaussian Channel
Model[27]. The two mobility models are hybrid random
walk mobility model and discrete random direction

①We use standard order notations.
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mobility model. Based on the work of [7], Lee et al. de-
rived the critical delay under Lévy mobility model[28].

Above work mainly focuses on unicast, Li derived
the asymptotic bounds of multicast capacity in wire-
less networks under protocol interference model[29].
The results generalize the ones of unicast[9] and
broadcast[30-31]. Li and Liu et al. also gave the bounds
under Gaussian Channel Model[32]. Wang et al.[33]

found that the ratio between delay and capacity in mul-
ticast is smaller than that directly extending the result
in [12]. Targeting at the mobility models similar to
[21], they gave a global perspective of the delay-capacity
trade-off of multicast in mobile wireless networks[34].

Different with the existing work, we take both
mobility and infrastructure support into consideration,
which are the two important aspects that will impact
network performance. Besides the two traditional mo-
bility models which are used most in simulations and
analysis, we also discuss the Lévy flight mobility model
which is important for the investigation of human mobi-
lity.

3 Models and Assumptions

The network we investigate consists of n nodes and
K (1 6 K < n) gateways in a square of unit area.
Initially, they are all uniformly distributed. Time is di-
vided into slots and all nodes move following the same
mobility model in each slot.

3.1 Mobility Models

We investigate three different models in this paper.
• i.i.d Mobility Model. In the beginning of each slot,

nodes uniformly select a random position in the square
and stay there for the rest of the slot.
• Random Walk Mobility Model with Constant Speed.

In the beginning of each slot, nodes uniformly select a
random direction in [0, 2π] and keeps moving with the
same speed S for the rest of the slot.
• Lévy Flight Mobility Model. Different with the

above models, in the beginning of each odd slot, ev-
ery node uniformly selects a random direction in [0, 2π]
and moves with a chosen speed. In even slots, nodes
stay at the position where it arrived by the end of the
previous slot. Speed Si of node i follows Lévy dis-
tribution. Its probability density function (PDF) is
p(s) = 1

2π

∫ 1
1√
n

e−its−|Ct|αdt, where C is a scale factor

and α ∈ (0, 2].
The first two models are traditional[35]. The third

one is used to model human mobility. Studies on real
mobility data show that flight length of human mobi-
lity has a power-law tail[8,36], where flight means the

longest straight line trip from one position to the other
in each slot. Because the network we consider is in
a unit square, we assume the flight length is bounded
below by 1√

n
and above by 1.

We assume the above three models belong to fast
mobility[34], and in each time slot, only one-hop trans-
mission is allowed.

3.2 Transmission Model

Each node i in the network can perform as a source,
and the corresponding destination node is denoted as
d(i). Sources generate traffic with constant rate con-
tinuously. They can deliver data to the destinations
directly or with the help of relays. We make the same
assumption as [10] that all nodes can perform as relays
and they have infinite buffer space.

We assume all nodes use the same channel or code.
When two nodes are in the transmission range r(n) of
each other and there is no interfering traffic, they can
communicate successfully with W bits per second (bps)
on a common channel. We adopt the protocol inter-
ference model[9]. Transmission from nodes i to j is in-
terfered by that from node k iff dk,j 6 (1 + ∆) · di,j ,
where dk,j is the distance between the two nodes k, j,
di,j is that between i, j, and ∆ is a parameter prede-
fined. Interfering transmission on different links can be
scheduled by an MAC protocol following time division
multiple access (TDMA).

There are usually two ways for a destination to get
data: neighbor-capture and multi-hop capture [7,28]. In
the former, it gets data when the source or a relay node
carrying the data is in its neighborhood. In the lat-
ter, when there is a multi-hop path between it and the
source, data is successfully delivered and transmission
delay is negligent compared with the time interval be-
tween two consecutive appearance of a path. Because
we assume the mobility models belong to fast mobility,
neighbor-capture is adopted in this paper.

3.3 Performance Metrics

We investigate two performance metrics capacity of
the network and average packet delay, which are defined
as follows.

Definition 1 (Capacity of the Network). Capacity
λ(n) is

λ(n) = lim
t→∞

inf
1
n

n∑

i=1

λi(t)
t

, (1)

where λi(t) is the number of packets delivered success-
fully from node i to d(i) in the time period of length
t.
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Definition 2 (Average Packet Delay). Delay D(n)
is

D(n) = lim
m→∞

1
n

n∑

i=1

1
m

m∑

j=1

Di,j , (2)

where Di,j is the time it takes for the j-th packet from
node i to be delivered successfully to d(i).

In this paper, we investigate the fundamental rela-
tionship between delay and capacity under different mo-
bility models in the mobile hybrid wireless networks.

4 Main Results

4.1 i.i.d Mobility

First we investigate how the average packet delay
scales when the capacity is Θ(1) under i.i.d mobility
model. Fig.1 shows the movement of four nodes.

Fig.1. Four nodes (a, b, c, and d) following i.i.d mobility model

move in two time slots. The gateways (denoted as the triangles)

are uniformly distributed in the square.

Because the transmission range of nodes can be ad-
justed according to different requirements (when power
control is adopted), for the convenience of analysis,
firstly we assume that r(n) = 1√

πn
. For every source-

destination (S-D) pair, if the source only transmits
packets directly to destination, due to the long delay
for them to meet, capacity will not be optimized. We
consider a simple two-hop routing strategy in which
only one copy of each packet is kept, and denote it as
Strategy 2H-I (two hop one copy). In this strategy,
each time slot is divided into two sub-slots evenly. We
divide the square into πn

(1+∆)2 cells (for simplicity, it is
assumed that πn

(1+∆)2 is an integer). In odd sub-slots
a node in each cell is randomly selected to perform as
source, and the other nodes and gateways in the same
cell perform as relays. In even sub-slots, considering a
relay node, if in the same cell there are destinations for
the packets it is carrying in its transmission range, it
randomly selects one and delivers the data in first come
first served (FCFS) order. If there is a gateway in its
transmission range, the node will treat all the packets
it is carrying as in the same queue, and try to deliver
them to the gateway in FCFS order.

Lemma 1. In Strategy 2H-I, λ(n) = Θ(1).
Proof. For a pair of nodes in communication, it is

assumed that the nodes in the disk with radius 1+∆√
πn

centered at the receiver (sender) do not send (receive)
data at the same time in order to avoid interference.
The expected number of cells where there are success-
ful transmissions simultaneously is bounded below by

πn
9(1+∆)2 . In each cell, the expected number of nodes is
Θ(1). Thus, the expected number of nodes that can
transmit data simultaneously is Θ(n). In every odd
time slot, all sources can deliver Θ(1) packets.

For a special S-D pair, the probability that a relay
node meets the destination in a slot is 1

n . There are
Θ(n) nodes which can perform as relays. When time
is long enough, all destinations can receive Θ( 1

n · n) =
Θ(1) packets for a particular S-D pair in every even
slot. So, capacity Θ(1) is achievable. ¤

Given a strategy by which Θ(1) capacity is achieved,
we discuss the resulted average packet delay.

We denote packets transmitted with the help of gate-
ways as Pg and their delay as Dg. The others are Ps

and the corresponding delay is Ds. Dg and Ds both
include two parts: time needed to establish a path be-
tween the source and destination, and the waiting time
in queues. We have Lemma 2.

Lemma 2. In Strategy 2H-I, the expected delay
E(Dg) = O( 1

1−e−
K
n

), E(Ds) = O(n).

Proof. We use Ts to represent the time it takes to
establish a path between the source and destination for
packets in Ps. Tg represents that for packets in Pg.
For the convenience of analysis, we assume that every
packet is firstly sent to a mobile relay node from the
source, neither the destination nor the gateways. In
this case, Ts constitutes of two part: the time from the
source to relay and that from the relay to the desti-
nation. Tg constitutes of three parts: the time from
the source to a relay, that from the relay to a gateway,
and that from gateways to the destination. It takes
only half a slot for the packet to be delivered from the
source to a relay, and in the following sub-slot the relay
will try to deliver it to the destination. Tg can be re-
garded as following the negative binomial distribution
with parameters (2, 1 − e−

K
n ), and Ts follows geomet-

ric distribution with the success probability 1
n . Their

expected value and variance are

E(Ts) = n, D(Ts) =
1− 1

n
1
n2

= n2 − n,

E(Tg) =
2(1− e−

K
n )

e−
K
n

, D(Tg) =
2(1− e−

K
n )

e−
2K
n

.

Every node maintains a separate queue for each S-D
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pair, and packet transmissions with and without gate-
ways can be treated as two different kinds of service.
The queues are GI/GI/1-FCFS. The average waiting
time E(W q) for a GI/GI/1-FCFS queue satisfies

E(W q) 6 ∆1 + ∆2

µ1 − µ2
, (3)

where µ1 and µ2 are the stationary independent inter-
arrival and inter-departure time, ∆1 and ∆2 are the
variances.

For packets belonging to Ps, µ1
s equals the expected

meeting time between the source node and relay node.
In the i.i.d mobility, the meeting time between two
nodes is geometrically distributed with success pro-
bability 1

n . The source can control the transmission rate
to guarantee µ1

s = ε · n(ε > 1) and ∆1
s = ε2 · n2 − ε3 · n.

A mobile node can relay packets for every S-D pair.
When it meets the gateways, it treats all the packets
to relay as in a single queue and serves them in the
FCFS order. Because the bandwidth between the node
and a gateway is W , the proportion of packets be-
longing to Pg for each S-D pair is bounded above by
K·W

n·λ(n) = Θ(K
n ), and is denoted as pg. When a source

delivers a packet to a relay node, we assume the proba-
bility that will be transmitted through gateways is pg.
The first meeting time between a relay node and any
other node is geometrically distributed with success
probability 1− (1− 1

n )n−1. For the inter-arrival time of
packets belonging to Pg, when n approaches to infinity
we have

µ1
g =

1

1−
(
1− pg

n

)n−1 =
1

1− e
−pg·(n−1)

n

=
1

1− e−pg
,

(4)

∆1
g =

(
1− pg

n

)n−1

(
1−

(
1− pg

n

)n−1)2 =
e−pg

(1− e−pg )2
. (5)

The expected inter-departure time and the corre-
sponding variances are

µ2
s = E(Ts), ∆2

s = D(Ts),

µ2
g = E(Tg), ∆2

g = D(Tg).

Thus, there are two different average waiting time
for the packets,

E(W s
q ) 6 O(n),

E(W g
q ) 6 O

( 1

1− e−
K
n

)
.

The two different average delays for the packets are

E(Ds) = E(W s
q ) + µs

2 = O(n),

E(Dg) = E(W g
q ) + µg

2 = O
( 1

1− e−
K
n

)
. ¤

Based on Lemmas 1 and 2, we have
Theorem 1. In i.i.d mobility model, if K = o(n),

λ(n) = Θ(1) is achieved when D(n) = O(n); if K =
Θ(n), λ(n) = Θ(1) is achieved when D(n) = O(1).

Proof. The proportion of packets belonging to Pg for
each S-D pair is bounded above by pg = Θ(K

n ). When
K = o(n), the average delay for the packets in Strategy
2H-I is

D(n) = pg · E(Dg) + (1− pg) · E(Ds) = O(n).

According to Lemma 1, we have that in this situation
λ(n) = Θ(1) is achieved when D(n) = O(n).

When K = Θ(n), we use a new strategy which is
different with Strategy 2H-I in that none of the mo-
bile nodes relay packets. Only the gateways perform
as relays. It can be easily proved that the source and
destination in an S-D pair will meet a gateway in Θ(1)
slots. The capacity λ(n) = Θ(1) can be achieved. Ac-
cording to Lemma 2, D(n) = O( 1

1−e−
K
n

) = O(1) in this

strategy. ¤
Average packet delay may be improved at the cost of

decrease of capacity. For every packet, if they are repli-
cated more, the probability that the destination gets
a copy successfully will be higher. We consider a new
transmission strategy which is different with Strategy
2H-I. The source keeps transmitting copies of a packet,
until it meets the destination node or the number of
copies reaches to

√
n. The

√
n mobile relay nodes de-

liver the copies to gateways or destination they meet.
They do not deliver copies to other mobile nodes. Re-
lays keep a queue for each S-D pair. A timestamp is
attached on every packet denoting the time when it is
generated at the source. When a relay meets a destina-
tion, it first schedules the packets it is carrying which is
generated earliest. When it meets a gateway, all packets
in the queues for different S-D pairs will be treated as
in the same queue, and the one with the earliest times-
tamp will be delivered first. We denote this strategy as
Strategy 2H-M (two hops multiple copies).

Lemma 3. In Strategy 2H-M, considering the
packet with the earliest timestamp of an S-D pair, its
expected transmission time E(Ds) only through mobile
relay nodes satisfies E(Ds) 6 O(

√
n). When ω(

√
n) 6

K < n, its expected transmission time E(Dg) with the
help of gateways satisfies E(Dg) 6 O( 1

1−e−
K
n

).

Proof.

E(Ds) 6E (time needed for relays to get copies)+

E (delay from
√

n relays to destination)
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6
√

n +
1

1−
(
1− 1

n

)√n
6
√

n +
1

1− e
− 1√

n

=O(
√

n).

Considering the upper bound for E(Dg), we denote
the expected transmission time from source to gate-
ways as E(Ts→g), that from gateways to destination as
E(Tg→u), and Tg = Ts→g + Tg→u. For convenience of
calculation, we assume that the gateways only receive
copies from mobile relays, and not from the source di-
rectly. Under this assumption, the delay we get is an
upper bound, which we are concerned about.

Pr (Ts→g 6 t)

=





1−
(
1− 1

n

)K·t+K·(t−1)+···+K

, if t 6 √
n,

1−
(
1− 1

n

)K·t+K·(t−1)+···+K·(t−√n)

, otherwise

=





1−
(
1− 1

n

)K· t·(t+1)
2

, if t 6 √
n,

1−
(
1− 1

n

)K· (2t−√n)·(√n+1)
2

, otherwise

>





1−
(
1− 1

n

)K· t2
2

, if t 6 √
n,

1−
(
1− 1

n

)K· 2t·√n−n
2

, otherwise

>





1− e−
K·t2
2n , if t 6 √

n,

1− e−
K· 2t·√n−n

2
n , otherwise.

If K = ω(1), when t = K
β−1

2 · √2n, β > 0,

lim
n→∞

Pr (Ts→g 6 t) = 1,

E(Ts→g) 6 K
β−1

2 ·
√

2n.

E(Tg→u) 6 1
1− (1− 1

n )K
6 1

1− e−
K
n

,

E(Tg) 6 K
β−1

2 ·
√

2n +
1

1− e−
K
n

.

It is found that the upper bound of E(Tg) is dominated
by that of E(Tg→u) when K = ω(1). We have

E(Tg) 6 O
( 1

1− e−
K
n

)
, (6)

D(Tg) 6 O
( e−

K
n

(1− e−
K
n )2

)
. (7)

A relay node may carry packet copies of different S-D
pairs. When it meets a gateway, it delivers them in the
order according to their generation time. For a mobile
relay node, we can regard it and the K gateways as a

server. The server serves for all the n− 1 nodes. Pack-
ets whose transmission through them will experience a
period of waiting time in the queue. (6) and (9) can
be used as the upper bound of the expected value and
variance of inter-departure time. Similar to (4) and
(5), when n approaches infinity the expected value and
variance of inter-arrival time are

µ1
g =

1

1−
(
1− pg√

n · n
)n−1 =

1

1− e
− pg√

n

, (8)

∆1
g =

(
1− pg√

n · n
)n−1

(
1−

(
1− pg√

n · n
)n−1)2 =

e
− pg√

n

(1− e
− pg√

n )2
,
(9)

where pg is bounded above by min( K·W
n·λ(n) , 1). Because

in this strategy, sources send
√

n copies for each packet,
pg = min(K·W√

n
, 1). When ω(1) 6 K 6 O(

√
n), the up-

per bound of E(Tg) is bounded below by O(
√

n). The
introduction of gateways does not improve the upper
bound in scale sense. Thus, we consider ω(

√
n) 6 K <

n. In this case, pg = 1 and

lim
n→∞

µ1
g

E(Tg)
= ∞,

E(Dg) = E(Tg) 6 O
( 1

1− e−
K
n

)
. (10)

¤
Getting the average packet delay in Strategy 2H-M,

we investigate the resulted capacity. We have
Theorem 2. In i.i.d mobility model, capacity

λ(n) = O( 1√
n
) can be achieved when the average packet

delay D(n) = O(
√

n) if K = O(
√

n). If ω(
√

n) 6
K < n, capacity λ(n) = O(K

n ) can be achieved when
D(n) = O( 1

1−e−
K
n

).

Proof. In Strategy 2H-M, the expected transmission
time T for a single packet satisfies

E(T ) 6 min
(
O(
√

n), O
( 1

1− e−
K
n

))

=





O(
√

n), K = O(
√

n),

O
( 1

1− e−
K
n

)
, ω(

√
n) 6 K < n.

When K = O(
√

n), we just consider the packet trans-
mission without the help of gateways. Because relays
just hold copies and do not send them to other mo-
bile nodes (except the destination), the transmission
of an S-D pair has no influence on that of the other
pairs. Transmission of different pairs can be regarded
as receiving service from different servers. According to
Lemma 2 in [12], D(n) = E(T ) when 1

O(
√

n)
6 λ(n) <
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1
E(T ) . When ω(

√
n) 6 K < n, pg = Θ(1) and we

just consider the packet transmission through gateways.
According to (10), the waiting time to access the gate-
ways for packets of different S-D pairs on a relay node
can be omitted. The service of different S-D pairs can
also be regarded irrelevant, and we have that λ(n) can
be bounded below by 1 − e−

K
n . However, because the

source keeps sending
√

n copies for each packet, λ(n) is
bounded above by O( 1√

n
).

It can be easily found that when ω(
√

n) 6 K < n,
there is a gap between 1−e−

K
n and 1√

n
. We change the

number of copies the source keeps sending for a packet
in Strategy 2H-M, from

√
n to n

K . Following similar
proof of Lemma 3, we get the new expected transmis-
sion time for a packet is still 1

1−e−
K
n

. The capacity

λ(n) = O(max(1− e−
K
n , K

n )) = O(K
n ). ¤

The more copies of a packet there are in the mo-
bile network, the shorter its transmission delay is. For
a single packet, optimal transmission delay is achieved
when epidemic routing is used, in which every node
will send copies of the packet to others nodes in every
transmission opportunity if possible.

We propose an epidemic routing based strategy and
denote it as Strategy MH-M (multiple hops multiple
copies). The difference with Strategy 2H-I is that the
source keeps sending copies of a packet until the des-
tination receives successfully. A timestamp is attached
to each packet. All nodes and gateways in the network
can perform as relays. When there is a transmission
opportunity between two relays, if one has copies in
buffer which the other does not have, the copy with
the earliest timestamp is delivered. If neither of them
carries copies of new packets, one of them is selected
as a source randomly and a new generated packet is
delivered.

For the optimal average transmission delay in such
mobile hybrid wireless networks, we have

Lemma 4. The upper bound of the optimal ave-
rage transmission delay E(T ) for a single packet in
i.i.d mobility is 2 log2(

1

1−e−
K
n

+ 1). When K = Θ(n),

E(T ) = Θ(1).
Proof. Considering in Strategy MH-M, if there is

only one packet being transmitted in the network, the
number of mobile nodes carrying it or its copies is 2t−1
in the beginning of the t-th slot. We denote the time
it takes for the gateways to get copies of the packet
is Ts→g. For convenience of calculation, we make the
same assumption as in Lemma 3 that the gateways only
receive copies from mobile relays directly. We have

Pr (Ts→g < t)

= 1−
(
1− 1

n

)1·K·(t−1)

· . . . ·
(
1− 1

n

)2t−2·K·1

=1−
(
1− 1

n

)∑t−2
v=0 2v·K·(t−v−1)

. (11)

Because

t−2∑
v=0

2v · (t− v − 1) = (t− 1) · (2t−1 − 1)−
t−2∑
v=0

v · 2v,

t∑
v=0

v · xv = x ·
t∑

v=0

v · xv−1 = x ·
t∑

v=0

(xv)′

= x ·
( t∑

v=0

xv
)′

= x ·
(1− xt+1

1− x

)′

= x · 1− xt+1 − (t + 1) · xt · (1− x)
(1− x)2

,

t−2∑
v=0

2v · (t− v − 1)

= (t− 1) · (2t−1 − 1)− 2((t− 3) · 2t−2 + 1)

= 2t − t− 1,

Pr (Ts→g 6 t) = 1−
(
1− 1

n

)(2t+1−t−2)·K

> 1−
(
1− 1

n

)(2t−1)·K
.

We consider two random variables T ′ and Y , and
Y = 2T ′ − 1. When n approaches infinity, if

Pr (T ′ 6 t) = 1−
(
1− 1

n

)(2t−1)·K
,

Pr (Y 6 t) = 1−
(
1− 1

n

)t·K
,

E(Y ) =
1

1−
(
1− 1

n

)K
=

1

1− e−
K
n

,

E(T ′) = E(log2(Y + 1)) =
∞∑

j=1

log2(Yj + 1) · pj

6 log2

∞∑

j=1

(Yj + 1) · pj = log2(E(Y ) + 1).

Because Pr (Ts→g 6 t) > Pr(T ′ 6 t),

E(Ts→g) < E(T ′) 6 log2

( 1

1− e−
K
n

+ 1
)
.

If we regard the time when gateways get a copy of the
packet as the starting point, it can be easily proved that
the expected remaining time it takes for the destination
to get a copy is less than E(Ts→g). So, the upper bound
of the expected delay is 2E(Ts→g). ¤

Different with Strategy 2H-M, when a relay node
gets a copy from one source, it may send replications
to other mobile nodes. If it is carrying copies for dif-
ferent S-D pairs, it has to choose one pair to serve
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when there is a communication opportunity. Trans-
missions of one pair will influence the other pairs. We
have to regard the whole network as a single server,
and the arrival of new packets can be regarded as
Poisson distributed with rate n · λ(n). According to
Lemma 4, the expected service time is bounded above
by 2 log2(

1

1−e−
K
n

+ 1). According to Lemma 2 in [12],

we get that when n · λ(n) < 1
2 log2(

1

1−e
−K

n

+1)
< 1

E(T ) ,

D(n) = E(T ). Thus, we have
Theorem 3. In i.i.d mobility model, the optimal

average packet delay D(n) 6 2 log2(
1

1−e−
K
n

+ 1) can be

achieved when λ(n) < 1
2·n·log2(

1

1−e
−K

n

+1)
.

Theorems 1 and 2 show how average packet delay
scales under representative network capacity. Theorem
3 demonstrates how capacity scales when the delay is
optimal. In the following parts, we give two quanti-
tative results describing the relationship between these
two metrics in mobile hybrid wireless networks.

Theorem 4. In i.i.d mobility model, D(n)
λ(n) > n

K·W .
Proof. For every packet from source s to destination

u, we assume the average number of mobile nodes hav-
ing its copies is Cu

s . Cu
s is larger than 1 when multihop

routing is used. Because it is assumed that in every slot
at most W packets can be transmitted between every
pair of nodes, we have

λ(n) ·
∑

Cu
s 6 n ·W.

Considering a packet sent from s to u, we use
E(T s,u

g ) to represent its expected transmission delay
when gateways are used as relays, E(T s,u

u ) to represent
the delay when gateways are not used, and E(T s,u) to
represent its expected delay. When n approaches infi-
nity,

E(T s,u
g ) >

1

1−
(
1− 1

n

)K·Cu
s
≈ 1

1− e−
K·Cu

s
n

>
n

K · Cu
s

,

E(T s,u
u ) >

1

1−
(
1− 1

n

)Cu
s
≈ 1

1− e−
Cu

s
s

>
n

Cu
s

,

E(T s,u) = pg · E(T s,u
g ) + (1− pg) · E(T s,u

u )

>
n

K · Cu
s

,

where pg is the probability that a packet is sent through
gateways. According to the argument in the proof of

Lemma 2, pg = Θ( K
n·λ ). Thus we have

D(n) =
1
n
·
∑

T s,u >
1
n
·
∑ n

K · Cu
s

=
n

K
· 1
n
·
∑ 1

Cu
s

.

According to Jensen’s inequality,

D(n) >
n

K
· 1

1
n
·∑Cu

s

>
n

K
· λ(n)

W
,

D(n)
λ(n)

>
n

K ·W . ¤

We denote the traditional wireless networks with-
out gateways as flat wireless networks. Capacity can
achieve O( 1√

n
) in such flat wireless networks[9]. Ac-

cording to [37], capacity of static hybrid wireless net-
works

λ(n) =





O
(W ·K

n

)
, if K = Ω(

√
n

log n
),

O
( W√

n · log n

)
, if K = O(

√
n

log n
).

(12)

K = O(
√

n) can be regarded as the critical number
of gateways. It is the threshold above which capacity
of hybrid wireless network is better than that of flat
wireless networks. In mobile hybrid wireless networks,
because mobility can increase capacity[10], there are two
interesting questions. The first is when K = O(

√
n),

what is the delay above which the capacity is better
than that of static wireless networks? From Theorem
2, we get that when K = O(

√
n), Ω(

√
n) is a lower

bound of the delay that has to be tolerated in order to
guarantee the capacity is ω( 1√

n
). The other question is,

what is the critical average delay above which capacity
of mobile hybrid wireless networks is better than that of
static hybrid wireless networks with the same number
of gateways? We have the following theorem.

Theorem 5. In i.i.d mobility model, compared with
static hybrid wireless networks, when K = O(

√
n), the

critical average delay of mobile hybrid wireless networks
is Θ(

√
n). When ω(

√
n) 6 K < n, the critical average

delay is Θ(K2

n ) .
Proof. The first part of the theorem is easy to prove.

We focus on the proof of the second part.
Capacity of the mobile hybrid wireless networks con-

stitutes of two parts. One is that achieved by transmis-
sions through gateways, and the other is that without
gateways. The former part is bounded above by W ·K

n .
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Compared with (12), capacity of mobile hybrid wire-
less networks outperforms that of static hybrid wireless
networks iff the latter is ω(W ·K

n ). Thus, the critical ave-
rage delay is that above which the capacity of mobile
wireless networks is ω(W ·K

n ).
According to [17], capacity of wireless networks is

bounded above by 4W
δ·d·√π·n , where d is the lower bound

of the average distance packets are relayed by wire-
less transmission. In order to guarantee the capacity
is ω(W ·K

n ), d should be o(
√

n
K ).

In i.i.d mobility model, for a pair of nodes, the
probability that one falls into the disk with radius

r∗ = n
1
2−β

K (β > 0) centered at the other node in t slots
is 1− (1− π(r∗)2)t ≈ 1− e−π(r∗)2·t.

The probability approaches to 1 only when t >
K2·n2β

πn = ω(K2

n ).
Considering the probability (1 − π(r∗)2)t =

e−π(r∗)2·t, it approaches to 1 when t = o(K2

n ).
For the probability to establish a path between an S-

D pair (direct or multi-hop) whose total length is o(r∗)
in o(K2

n ) time, we get that it approaches to 0 as n →∞.
Thus, the capacity of mobile hybrid wireless networks
is not better than that of the static hybrid wireless net-
works when D(n) = Θ(K2

n ). ¤
It should be noticed that in the proof of Theorems

1∼4, we make the assumption that r(n) = 1√
πn

for the
convenience of analysis. In the proof of Theorem 5,
this assumption is not used. In fact it is assumed that
r(n) > Θ(

√
n

K )(ω(
√

n) 6 K < n). This is because that
the critical average delay is the lower bound of the delay
needed for the network capacity to cross a threshold.
It equals to the least waiting time for two randomly
distributed nodes to communicate successfully in the
distance of Θ(

√
n

K ).

4.2 Random Walk Mobility

Lemma 5. For two nodes following Random Walk
Mobility model with constant speed, the expected value
of their first meeting time is 1

8S
π ·r(n)

, the variance is
1− 8S

π ·r(n)

( 8S
π ·r(n))2

.
Proof. As shown in Fig.2, we take two nodes a and b

into consideration, and assume that they start moving
at the same time. Their positions in the end of the t-th
time slot are Ca(t) and Cb(t). ‖Ca(0)−Cb(0)‖ = r and
‖Ca(0−)− Cb(0−)‖ < r, where ‖ · ‖ represents the Eu-
clidean distance in a 2D space. In the beginning of the
t-th time slot, each node chooses a random direction
uniformly from [0, 2π], and keeps moving with speed S
for a unit slot. Because the square is assumed to be a
torus, the nodes will not bounce off when they reach
the boundary.

Fig.2. Two nodes a and b follow random walk mobility model,

with velocity va(t) and vb(t) at the t-th time slot individually.

The expected first-meeting time between them equals that when

one node is static and the other moves with velocity va(t)−vb(t).

If velocity of the two nodes is va(t) and vb(t) in the
t-th time slot, their movement is equivalent to the one
in which a moves with velocity va(t) − vb(t) while b
is static, as shown in Fig.3. If va(t) = S · ei·θa(t) and
vb(t) = S · ei·θb(t), then the angle θ(t) of the relative
velocity is decided by θa(t) and θb(t). Because they
are two uniformly distributed variables, it can be easily
proved that θ(t) is uniformly distributed in [0, 2π], too.

‖va(t)− vb(t)‖ = 2S · sin
( | θa(t)− θb(t) |

2

)
.

Pr (‖va(t)− vb(t)‖ 6 Y ) =
2
π
· arc sin

Y

2S
,

where 0 6 Y 6 2S, and

E(yt) =
∫ 2S−

0

yt · p(yt)dyt =
4S

π
.

Fig.3. Two nodes a and b follow Lévy flight mobility model, and

they can communicate at the position o. When their distance is

d, a has to travel up to a relative distance d± r(n) to meet b.

Because initially the nodes can be regarded as uni-
formly distributed, the probability that they meet for
the first time in slot t can be calculated as

Pr (T s
f = t) =

(
1− 8S

π
· r(n)

)t−1

· 8S

π
· r(n),
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E(T s
f ) =

1
8S
π · r(n)

, D(T s
f ) =

1− 8S

π
· r(n)

(8S

π
· r(n)

)2 .
¤

Because there are K gateways uniformly distributed
in the square, the probability that a node has met a
gateway in t slots is

Pr (T g
f = t) = 1− (1− 2S · r(n))K·t.

Lemma 6. The expected value of first-meeting
time between a mobile node and the gateways is

1
1−(1−2S·r(n))K , and the variance is (1−2S·r(n))K

(1−(1−2S·r(n))K)2
.

When r(n) = 1√
πn

, the expected time duration for
a mobile node to stay within the transmission range
of another node (contact time) is bounded above by
Θ( 1√

n·S ). Because transmission rate of the nodes is
Θ(1), S should be Θ( 1√

n
) in order to guarantee that at

least a packet can be delivered when two nodes contact.
In this case, the first-meeting time between two mobile
nodes is the same as that under i.i.d mobility model in
scale sense, so is that between a mobile node and gate-
ways. Thus, under the random walk mobility model
with speed Θ( 1√

n
), delay and capacity can achieve the

same trade-offs in scale sense with those under the i.i.d
mobility model.

4.3 Lévy Flight Mobility Model

Besides the previous two synthetic mobility mod-
els which are most used in simulations and theoretical
analysis, we consider Lévy flight mobility which can
model human mobility. Fig.3 shows the movement of
two nodes following Lévy flight mobility model. Be-
cause the probability that a node moves with speed
larger than Θ( 1√

n
) is not 0 in this model, the contact

time between two nodes may approaches to 0 when they
move. Thus we assume that all nodes and gateways
only communicate when they are static. In other words,
nodes move in odd slots and communicate in even slots.

In order to derive the first-meeting time between two
nodes, we need to get the time needed for a node to
travel up to Θ(1) distance. For Lévy flight in unit net-
work model, [28] gives its lower bound. We present its
upper bound through the lemma below.

Lemma 7. Time needed for a node to travel up to
Θ(1) distance under approximated Lévy flight mobility
with parameter α scales as O(n

α
2 +ε)(ε > 0) for unit

network model.
Proof. Using the similar notations with [28], we de-

note the positions of a node after its t-th movement as
Y α(t) = (Y x

α (t), Y y
α (t)), and Y α(0) = (0, 0). Let

Eα(d) , inf{t > 0 : d(Y α(t),Y α(0)) > d},

Pr (d(Y α(t),Y α(t)) > d) = pd
e(t).

Pr (Eα(d) 6 T ) = 1− (1− pd
e(1)) · · · (1− pd

e(T ))

> 1−
(1− pd

e(1) + · · ·+ 1− pd
e(T )

T

)T

= 1−
(
1−

∑T
t=1 pd

e(t)
T

)T

> 1− e−
∑T

t=1 pd
e(t)

> 1− e−T ·pd
e(1).

Because Pr (d(Y α(t),Y α(0)) > d) > Pr(| Y x
α (t) |>

d√
2
), thus

Pr(Eα(d) 6 T ) > 1− e
−T ·Pr (|Y x

α (1)|> d√
2
)
.

We use the same assumption as [28] that Y x
α (t) =∑t

i=1 Zα(i), and Zα(t) are i.i.d distributed taking val-
ues in [−1, 1] with the PDF fZ,α(x) = α

2(n
α
2 −1)

x−1−α.

We get that Pr (| Y x
α (1) |> d√

2
) = Θ(n−

α
2 ) when

d = Θ(1). When T = n
α
2 +ε and ε > 0, we have

lim
n→∞

Pr (Eα(d) 6 T ) > 1. ¤

Based on the above lemma, we get the following re-
sult for the first-meeting time between two nodes under
Lévy flight mobility.

Lemma 8. For two nodes uniformly distributed in
the square, if they follow Lévy flight mobility model with
parameter α and their transmission range is r(n), the
expected time it takes for them to meet is bounded below
by Ω( n

α
2

r(n) ), and bounded above by O(n
α
2 +ε

r(n) )(ε > 0).
Proof. We denote the two nodes as a and b. Because

they are uniformly distributed, the average distance be-
tween them is Θ(1). If a and b move with speed va(t)
and vb(t) individually in slot t, it equals that a moves
with speed va(t) in slot t and −vb(t) in slot t+1, while
b is static. In Lévy flight mobility model, according
to [28], the critical delay for the unit network model
is Ω(n

α
2 ). This means that, it will take Ω(n

α
2 ) time

for a node to move up to the total distance d = Θ(1).
When a finishes the d-distance movement, the possi-
ble transmission range of a forms a ring with width
r(n) (or parts of a ring because of the effect of boun-
dary). The probability that b can communicate with a

is Θ( r(n)2

d·r(n) ) = Θ(r(n)). The number of such a Θ(1)-
movement needed for a to meet b can be regarded as
geometric distributed. Thus, the expected time needed
for them to meet is Ω( n

α
2

r(n) ).
According to Lemma 7 and following a similar proof,

we get that the expected time is O(n
α
2 +ε

r(n) )(ε > 0). ¤
Recalling the proof of Theorem 5, when ω(

√
n) 6

K < n, the critical average delay equals that needed
for a node to move into the disk with radius O(

√
n

K )
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centered at another randomly selected node. Accord-
ing to Lemma 8, we have

Theorem 6. In Lévy flight mobility model,
compared with static hybrid wireless networks, when
ω(
√

n) 6 K < n, the critical average delay is Θ(n
α−1

2 ·
K).

Next we investigate the bound of average packet de-
lay divided by the capacity. It is necessary to calculate
the time for a node to meet the gateways firstly. With
larger α, it is more likely for a node to visit the places
nearby. For K gateways uniformly distributed in the
square, the probabilities that the node meets different
gateways are different. We cannot simply divide the
expected first-meeting time between two nodes by K
to get the expected first-meeting time between a node
and the gateways.

Lemma 9. If K = O(nη) (0 6 η < 1) gateways are
uniformly distributed in the square, a node with trans-
mission range r(n) = Θ( 1√

n
) moves under Lévy flight

mobility model will meet a gateway in the expected time
[Ω(n

α+1−3η
2 ), O(n

(1−η)·(α+1)
2 lnn)].

Proof. Considering a disk centered at the node with
radius r∗, the probability that there is a gateway in it
is

1− (1− π · r∗2)K > 1− e−π·r∗2·K = 1,

if r∗ = ω
( 1√

K

)
.

Thus, the distance between the node and the nearest
gateway is bounded above by Θ( 1√

K
).

Following a proof similar to that of Lemma 7 in [28],
we get that the time needed for a node to travel up
to a distance of Θ( 1√

K
) is Ω(n

α
2

K ). Following a proof
similar to that of Lemma 7, we get that the time is
bounded above by n

(1−η)·α
2 lnn. Thus, the expected

time for the node to meet a gateway is bounded below
by Ω(n

α
2

K · 1
r(n)·√K

) = Ω(n
α+1−3η

2 ), and bounded above

by O(n
(1−η)·(α+1)

2 lnn). ¤
We assume that under a particular scheme there are

Cu
s relaying nodes for the transmission of a packet from

node s to u. It takes O(n
(1−η)·(α+1)

2 ln n
Cu

s
) time for at least

one of the relays to contact with a gateway. Following
the similar proof of Theorem 4, we have

Theorem 7. In Lévy flight mobility model, if the
number of gateways is K = O(nη)(0 6 η < 1), then
D(n)
λ(n) > O(n

(1−η)·(α+1)
2 lnn).

5 Conclusions

In this paper, we investigate the trade-offs between
delay and capacity in mobile wireless networks with

infrastructure support. We consider two synthetic mod-
els i.i.d mobility model, random walk mobility model
with constant speed and Lévy flight mobility model
which is based on human mobility. For i.i.d mo-
bility model and random walk mobility model with
speed Θ( 1√

n
), we give theoretical results of average

packet delay when capacity is Θ(1), Θ( 1√
n
) individ-

ually. It is found that capacity is bounded above by
1

2·n·log2(
1

1−e
−K

n

+1)
when the average packet delay is op-

timized. The bounds of the average delay divided by
capacity under the three models are established, as well
as the critical average delay for the capacity compar-
ing with that in static hybrid wireless networks. Our
work provides useful theoretical insights on the perfor-
mance of mobile wireless networks with infrastructure
support, and will help scheduling and routing protocols
design in such networks.
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