
Ni WW, Zheng JW, Chong ZH. HilAnchor: Location privacy protection in the presence of users’ preferences. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 27(2): 413–427 Mar. 2012. DOI 10.1007/s11390-012-1231-2

HilAnchor: Location Privacy Protection in the Presence of Users’

Preferences

Wei-Wei Ni (倪巍伟), Member, CCF, Jin-Wang Zheng (郑锦旺), and Zhi-Hong Chong∗ (崇志宏)

School of Computer Science and Engineering, Southeast University, Nanjing 210096, China

Key Laboratory of Computer Network and Information Integration in Southeast University, Ministry of Education
Nanjing 210096, China

E-mail: {wni, jwzheng, chongzhihong}@seu.edu.cn

Received June 29, 2011; revised January 16, 2012.

Abstract Location privacy receives considerable attentions in emerging location based services. Most current practices
however either ignore users’ preferences or incompletely fulfill privacy preferences. In this paper, we propose a privacy
protection solution to allow users’ preferences in the fundamental query of k nearest neighbors (kNN). Particularly, users are
permitted to choose privacy preferences by specifying minimum inferred region. Via Hilbert curve based transformation, the
additional workload from users’ preferences is alleviated. Furthermore, this transformation reduces time-expensive region
queries in 2-D space to range the ones in 1-D space. Therefore, the time efficiency, as well as communication efficiency, is
greatly improved due to clustering properties of Hilbert curve. Further, details of choosing anchor points are theoretically
elaborated. The empirical studies demonstrate that our implementation delivers both flexibility for users’ preferences and
scalability for time and communication costs.

Keywords location privacy, kNN query, minimum inferred region, users’ privacy preferences

1 Introduction

Location-based services (LBS) in parallel with var-
ious applications of location-aware devices (e.g., GPS
devices) have gained tremendous popularity, spanning
a wide spectrum from sensor networks over online map-
ping services to geospatial information systems[1-2], to
name a few. Queries in LBS usually include enquiring
locations and other information pertaining to so called
points-of-interest (POI). Most of these queries necessi-
tate the query of the k nearest neighbors (kNN) such as
the k nearest restaurants for a traveller[3]. While LBS
enables a wide spectrum of location-based applications,
they indeed threaten users’ privacy as they force users
to disclose their locations[4-5]. For example, the query
of the nearest gas station by a traveller on his trip de-
mands the disclosure of his current location. Such lo-
cation leakage may hinder applications susceptible to
users’ privacy. In this sense, queries over public data
introduce additional challenges when users’ privacy pro-
tection is concerned.

Existing solutions to avoiding location expo-
sure fall into three categories, namely, spatial
cloaking[6-10], space transformation[11-12] or location

obstruction[13-14]. These schemes all trade off among
query performance, protection strength and query accu-
racy. The following practical cases highlight the needs
of incorporating users’ preferences into the design of
privacy preserving scheme.

1) The protection the existing solutions provide can-
not be absolutely guaranteed especially in the case
where invasion clues such as attackers’ background
knowledge or their attack schemes cannot be prior de-
termined. Hence, guarantees are only provided with
prior assumptions. Therefore, it is naturally required
that users can incorporate their preferences into these
assumptions. For example, when the safety of encod-
ing key is assumed safe, space transformation via cryp-
tographic techniques is preferred, while users tend to
choose spatial cloaking or location obstruction in the
case where attackers have the chance of touching en-
coding key.

2) It is not surprising that both over-protection and
under-protection do users harm since the former results
in unnecessary cost overhead for high protection and
the latter gives the chance of privacy leakage even with
reduced cost overhead.

These requirements motivate us to emphasize the

Regular Paper
Supported by the National Natural Science Foundation of China under Grant Nos. 61003057 and 60973023.
∗Corresponding Author
©2012 Springer Science +Business Media, LLC & Science Press, China



414 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

importance of users’ preferences such that an efficient
trade-off scheme between protection strength and pro-
tection cost can be controlled by users in a convenient
way, as well as different protection modes it affords.
Such preferences are called privacy preference, i.e., in
different cases, users prefer different strengths of loca-
tion privacy protections. For example, Bob feels very
uncomfortable suddenly on his trip. At this emergent
time, Bob would like to shift his concerns to query ef-
ficiency rather than high location protection in his pri-
vacy aware nearest hospital querying.

However, most existing solutions either ignore pre-
ferences or incompletely fulfill privacy preferences, say
at the cost of high overhead.

Given the requirement that users’ locations are not
exposed to the server, the server delimits a region, de-
noted as RCA (region of candidate answer), that con-
tains targeted POIs for users and that guarantees users’
privacy[6]. To state briefly, except the users’ locations,
all other information, including the RCA and its crea-
tion procedure, is public to attackers. This exposure
leaves attackers the clues of bounding the range of the
users’ possible locations[6,13]. The minimum bound of
the range derived by attackers is called the minimum
inferred region, referred to as MIR in most work[9]. In
this paper, we continue to use MIR to measure pri-
vacy strength. Meanwhile, we allow users to specify
MIR as their privacy preferences in queries. As a re-
sult, it is necessary to explore a new way of creating
RCA. On the one hand, the creation of RCA should
be pushed to client sides where MIR, strongly coupled
with RCA, is specified. On the other hand, the cre-
ation of RCA heavily depends on POIs’ distribution at
server side. This dilemma makes the creation of RCA
complicated, invalidating existing solutions. In this pa-
per, we propose a strategy, called HilAnchor (Hilbert
transformation and Anchor obstruction based method),
in a users’ preferences-driven fashion, while alleviating
server’s burden. In particular, the RCA is created at
client side by initiating a false query, promising user
specified MIR; the overhead workload from RCA de-
termined at client side can be alleviated efficiently by
specialized data compression.

HilAnchor, while sharing the implementation of false
query in location obstruction based solutions, makes
itself distinguishable in taking users’ preferences into
account by permitting the user to choose the MIR.
A query in HilAnchor consists of two rounds; at the
first round, it generates a square from the returned an-
swers to cover both the targeted POIs and the users’
preferred inferred region; at the second round, users
resend the square and receive all POIs in it. The tar-
geted POIs are immediately pinpointed at client side.

Paralleling with spatial transformation, the overhead
workload from transmitting and processing square is
alleviated by leveraging Hilbert curve to transform 2-D
space to 1-D space. The clustering properties of Hilbert
curve enable to encode the square into discrete ranges
at client sides so that the communication between two
ends is compressed. Meanwhile, the time-expensive re-
gion query is converted into range query at the server
and B+-tree index structure further improves the time-
efficiency. It is noted that Hilbert encoding can also
secure the users’ locations. Our contributions are sum-
marized as follows.

1) We study the problem of incorporating preference
into privacy protection by permitting users to specify
their preferred minimum inferred regions. Therefore,
we extend the trade-off space by adding preference into
the previous one between performance and protection
strength.

2) Two strategies are presented to overcome the
problem of scalability originated from preference. The
first is to devise a thin server model by pushing most
workload down to client sides. The second is to re-
duce time cost further by Hilbert encoding. As a result,
we provide two-level protections, one from the protec-
tion of the minimum inferred region and the other from
Hilbert encoding.

3) Detailed analysis of anchor point selection is pre-
sented via a geometrical way and a new form of upper
bound attack originated from the exposure of anchor
point is identified. An improved solution is presented
to deal with this rigorous case.

4) Empirical studies suggest that the proposed tech-
niques are highly performant.

The rest of the paper is organized as follows. Section
2 presents overview of the related work. Section 3 dis-
cusses the user’s option-driven framework HilAnchor.
The thin-server enhanced version HilAnchor+ based
on Hilbert transformation is presented in Section 4.
Section 5 discusses the guidelines of anchor parameter
setting and proposes an improved version HilAnchor∗

in face of upper bound attack. Section 6 covers the
experimental results of HilAnchor, HilAnchor∗ and
HilAnchor+. Finally, Section 7 concludes the paper and
identifies research directions.

2 Related Work

Originated by the privacy threats of location-
detection devices, recent attempts for providing loca-
tion privacy in location-based service focus on location
privacy-preserving queries, i.e. avoiding the exposure of
users’ locations while processing location based queries.

There has been a plethora of techniques to deal with



Wei-Wei Ni et al.: Location Privacy Protection&Privacy Preference 415

these kinds of queries. Current practices to this prob-
lem are to hide users’ locations through the following
ways. 1) Location Obstruction[13-14]. The idea is that
a user first sends a query along with a false location to
the server, and the server keeps sending back the list
of nearest POIs to the reported false location until the
received POIs satisfy user’s privacy and quality require-
ments. 2) Space Transformation[12,15]. This approach
converts the original location of data and queries into
another space. The transformation maintains the spa-
tial relationship among the data and queries to provide
accuracy. 3) Spatial Cloaking[6,9,16-18]. In this frame-
work, a privacy-aware query processor is embedded in
the database server side to deal with the cloaked spa-
tial area received either from a querying user[16] or from
a trusted third party[6,9]. Although these approaches
would be valuable for protecting users’ location privacy
in LBS applications, the practicality in incorporating
preference into location privacy protection is ignored
or doubtful.

Cloaking-based solutions can provide user preference
to location privacy by transmitting a user defined pro-
file including user location and expected minimum in-
ferred area to the anonymizer. Anonymizer then ex-
pands user location into a cloaked region with expected
area to act as finial MIR, and sends the region to the
server for retrieving candidate answers. In this way,
complex server-side query processing is needed to de-
termine RCA in terms of the given minimum inferred
region, which affects system’s performance seriously. It
provides user preference in a brute-force way at the cost
of complex server-side query processing and poor scal-
ability. Besides, cloaking-based solutions usually suf-
fer from the following forced requirements: 1) all users
must trust the third party anonymizer, which becomes
a single point of attack; 2) a large number of coope-
rating, trustworthy users are needed.

Instead, transformation-based solutions generally
have at least one of the following shortcomings. 1) Fall
short in offering practical query accuracy guarantees.
Query result may contain false hints. 2) User’s location
privacy relies wholly on the security of transformation
key but does not afford user’s preference at all. For
example, in [12], Hilbert curve is used to map all POIs
into 1-D space. A user initiates a query about Hilbert
value of his position and receives the closest Hilbert
value of POIs from the server-side. Finally, a decode
operation is carried out at client side to get the tar-
geted nearest POI. This solution achieves good query
efficiency. While, query accuracy cannot be guaranteed
since the fact that Hilbert curve does not completely
preserve spatial proximity. [15, 19] propose a kind of
novel solution based on private information retrieval

theory. It can afford approximate or accurate query
results via Hilbert encoding or Voronoi tessellation.

Alternatively, location obstruction based solutions
commonly necessitate unpredictably rounds of commu-
nication between client and server sides to guarantee
accuracy. The time of iterations is unpredictable, which
deteriorates scalability and makes it difficult to support
users’ preferences. For example, SpaceTwist[13] can get
the accurate result without any online or off-line trusted
third party, while these advantages are achieved at the
cost of multi-rounds communication which is inclined to
occupy considerable communication resource and work-
load at the server. Meanwhile, as indicated in [13], in
this framework, the MIR cannot be guaranteed because
it depends on the location of the anchor and the data
distribution at server side. This heavy dependence can
be used to attack users’ locations and therefore invali-
date users’ control of the MIR.

The key distinctions between these works and our
proposed privacy-aware query solution are as follows.

1) Our query processor does not require any online
trusted third party, while owing the ability to incorpo-
rate users’ preferences instead of the brute-force way in
cloaking-based solutions.

2) In order to achieve system scalability, we leve-
rage Hilbert curve based transformation to trade off
between scalability and privacy preferences. We focus
on data compression effect of Hilbert curve transforma-
tion rather than its security protection effect as most
space transformation based solutions rely on.

3) To alleviate overhead workload of location ob-
struction solutions, we determine a square covering tar-
geted POIs at client sides: initiate a false query and
finish handshakes within two rounds.

Table 1．．．Summary of Notations

Symbol Description

p Location of the user
s Expected area of MIR
p′ 2-D coordinates of the anchor point

kNN(p′) k nearest POIs to p′ at server-side

3 HilAnchor

We next start with the framework of HilAnchor to il-
lustrate how HilAnchor works and then show the details
of creating RCA as the key step of HilAnchor frame-
work.

3.1 Framework of HilAnchor

HilAnchor processes a kNN query in two rounds, de-
tailed in Fig.1. In the first round, a user sends a false
point p′ of point p, called an anchor of point p, to server



416 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

and receives k nearest neighbor answers, denoted as
kNN(p′), in terms of p′. In the second round, the client
sends back RCA created from the returned answers.
The server returns all POIs located inside the RCA. Fi-
nally, the actual result is pinpointed at the client side.
During these two rounds, RCA needs to meet two-fold
requirements. First, the region of RCA must cover the
targeted POIs. Second, it promises users’ preferences to
MIR. The difficulty of RCA creation stems from the lat-
ter requirement; it is possible for adversaries to shrink
the inferred region within a big RCA, invalidating its
privacy protection. This observation contradicts usual
institutions of enlarging RCA in a brute-force way, and
lets alone the increasing cost with large RCA. There-
fore, the realization of HilAnchor framework becomes
difficult when it aims to allow for user-specified MIR.

Fig.1. Framework of HilAnchor.

3.2 RCA Creation

For clarity, the 2-D space we discuss is defined with
Euclidean distance d(·) and the dataset T contains all
POIs at server. Recall the client side creates the RCA
from the returned POIs for the anchor point. The crea-
tion is detailed into two phases as shown in Fig.2. At
the first phase, an initial region of a circle is created
to cover the targeted POIs. At the second phase, the
initial region is blurred to meet the MIR requirement.

Fig.2. Inferring region of RCA.

For given point p, p′ is its anchor. Point o ∈ kNN(p′)
is the farthest POI returned by the server to p. The
client builds the initial region by creating a circle
CC(p, p′) shown in Fig.2, centered at point p with ra-
dius d(p, o).

Theorem 1. Given p, the area of the initial region
is the minimum area that covers the k nearest POIs to
p for any dataset T.

Proof. After the first round handshake, there are at
least k POIs (kNN(p′)) grasped by the user. Since o
in kNN(p′) is the farthest POI to p in kNN(p′), there
must exist at least k− 1 other POIs whose distances to
p are smaller than d(p, o). Therefore, from the process
of CC(p, p′) creation, it can be deduced that the initial
region CC(p, p′) must cover kNN(p) and the maximum
distance between p and any POI in kNN(p) is d(p, o).
Assume o′ ∈ T is an element in kNN(p) located outside
the initial region CC(p, p′). For o locates just on the
boundary of the circle denoted in Fig.2, it must have
d(p, o′) > d(p, o), which contradicts with the assump-
tion that o′ belongs to the POI set kNN(p). ¤

Theorem 1 indicates that any RCA must contain
the initial region CC(p, p′) such that the targeted POIs
are returned to users in the second round. It is nat-
urally assumed that point o and the creation of RCA
are public to adversaries. This assumption facilitates
the inference of user’s location p, i.e., user’s location p
is determined at the center of CC(p, p′). Hence, initial
region CC(p, p′) fails to guarantee the specified MIR if
it directly serves as RCA. Our strategy is to expand
CC(p, p′) to a square, denoted as BSC(p, p′) in Fig.2.
To be precisely, o is set as the center of the square that
covers the initial circle CC(p, p′). For BSC(p, p′), the
following lemma is immediately obtained without proof.

Lemma 1. Given the exposure of BSC (p, p′) and
its creation algorithm, there are infinite number of
CC (p, p′) that correspond to the BSC (p, p′), i.e., the
probability of inferring CC (p, p′) for a query in a ran-
dom way is zero.

Further, the following theorem shows how BSC(p, p′)
leads to MIR guarantee.

Theorem 2. For a specified area s, if the
side length of BSC (p, p′) is no less than lmin =
max{2.391

√
s, (
√

2 + 2)d(p, o)}, the area of MIR is no
less than s.

Proof. As shown in Lemma 1 that given point o
on the boundary of circle CC(p, p′), there are infinite
number of circles centered at point p and containing
o. It can be inferred that the centers for these possi-
ble circles must have equidistance from p to o and from
p to the side of the concentric square inscribed to the
circle within BSC(p, p′). For a given side, these cen-
ters form a parabola with point o as its focus and the



Wei-Wei Ni et al.: Location Privacy Protection&Privacy Preference 417

side as an alignment, e.g., in Fig.2, point pc is a cen-
ter on some parabola. MIR must be embodied by four
parabolas w.r.t., four sides of BSC(p, p′), respectively,
as the shaded shown in the figure. The parabolic equa-
tions can be normalized as y2 = lx 2, where l is the side
length of BSC(p, p′). The inferred region of the shaded

can be calculated, ψ = 8
∫ 3−2

√
2

4 l

0

√
lxdx + (

√
2 − 1)2

l2 ≈ 0.175l2. It requires that ψ > s for location pri-
vacy guarantee. Thus, we have l > 2.391

√
s. Mean-

while, to guarantee that BSC(p, p′) covers the initial
region CC(p, p′), it requires l > (

√
2 + 2)d(p, o), there-

fore lmin = max{2.391
√

s, (
√

2 + 2)d(p, o)}. ¤

Algorithm 1. HilAnchor-Client(p, s)
//p is the user location and s the area of MIR
1: create the initial region CC;
2: determine lmin by Theorem 2;
3: expand CC to BSC;
//the side length of BSC satisfies Theorem 2
4: send BSC back to the server;
5: pinpoint answers from the returned;
6: return the pinpointed answers;
//the k nearest neighbour POIs of p

Algorithm 1 running at client sides presents process
details of our model at client. The inputs are query
user’s location and his preferred area of MIR. In line 1,
the initial region is generated by initiating a k nearest
neighbor query about an anchor point. Subsequently,
the initial region is expanded to square BSC by Theo-
rem 2 in lines 2∼3. The square BSC(p, p′) serves as
RCA and is sent back to the server in line 4. The server
returns all POIs inside BSC(p, p′) as candidate answers.
Finally, the answers are pinpointed at client side and
returned to the user.

The correctness of Algorithm 1 is guaranteed by
Theorem 2. The users’ preferences for protection
strength are realized by parameter s. The problem
arises that it is possible that the area of BSC created
by HilAnchor-Client(p, s) is not just closely larger than
that of the initial region. The number of candidate
POIs within the expanded BSC may be large, introduc-
ing heavy time cost overhead especially in 2-D space at
server side, as well as communication cost when they
are sent back to client sides. To tackle this problem,
we leverage the clustering property of Hilbert curve to
devise the enhanced version HilAnchor+ of HilAnchor
in the following section.

4 HilAnchor+

Before delving into the details of how Hilbert
curve enhances the power of HilAnchor, we sketch the
paradigm of HilAnchor+. The main differences between
the two versions are: 1) the POIs at the server are

encoded into Hilbert indexes (a.k.a. Hilbert cells) and
2) all queries to the server are correspondingly encoded
into Hilbert indexes and all returns from the server are
decoded at client sides. Further, methods of processing
encoded queries on encoded data are presented.

4.1 Hilbert Encoding Under Privacy
Constraint

To alleviate the overhead workload due to users’
preferences, we explore Hilbert curve. In particular,
a square, say BSC(p, p′) for example, in 2-D space is
transformed to Hilbert indexes. Through this transfor-
mation, the time-expensive region query in 2-D space
can be converted into range query in 1-D space. The
Hilbert curve is used under privacy constraint. Both
the service provider and the client users do not know
parameters of the curve for privacy protection reason.
The encoding and decoding functions at the users’ ends
are embedded in tamper-resistant devices without the
third party’s intervene.

Similar to work in [12], our enhancement requires an
offline space encoding phase carried by a trusted third
party. The curve parameters of SDK (space decryption
key) include the curves starting point (x0, y0), curve
orientation θ, curve order N and curve scale Γ . The
whole space < is encoded into 22N Hilbert cells by the
specified Hilbert curve HN

2 . As a result, all POIs are
encoded into corresponding Hilbert values and stored
in a look-up table LUT.

Correspondingly, the client submits the Hilbert en-
code h(p′) of the anchor p′ to the server rather than p′

itself. The server returns the k nearest Hilbert values
for POIs to h(p′). Subsequently, the client decodes the
returned values of corresponding POIs and generates
BSC(p, p′). Now, the problem boils down to encoding
BSC of a square via Hilbert curve. For square S un-
der Hilbert curve HN

2 , its Hilbert closure HC(S) is the
minimum set of Hilbert cells that cover S.

For example, in Fig.3, the Hilbert closure HC(S) of
square S is composed of 16 cells, i.e., HC(S) = {8, 9,
54, 55, 11, 10, 53, 52, 30, 31, 32, 33, 29, 28, 34, 35},
covered by the red line. It is time and communication
prohibitive to directly represent BSC of square with
its Hilbert closure. Therefore, we resort to compress-
ing the Hilbert closure of a square. The intuition is to
partition the cells in a Hilbert closure into consecutive
ranges. Back to the above example, the HC(S) can be
organized as three ranges, namely (8, 11), (28, 35) and
(52, 55), which include all 16 Hilbert cells in HC(S).

For the square S, let BC(S) ⊂ HC(S), containing all
cells located at the boundary of square S.

Definition 1. For square S, cell u ∈ BC (S) is
called in-cell of S if the Hilbert curve enters S via u.



418 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Fig.3. Hilbert curve transformation (N = 3).

Conversely, u is called out-cell of S if the Hilbert curve
leaves S via u.

Hence, the cells in BC(S) can be partitioned into
three types, namely called in-cells, out-cells and inner-
cells. For example, in Fig.3, BC(S) = {8, 9, 54, 55, 11,
52, 30, 33, 29, 28, 34, 35}, 8, 28 and 52 are in-cells, 11,
35, 55 are out-cells and the others are inner cells.

Definition 2 (Hilbert Closure Range). For given
square S, sort its in-cells and out-cells in ascending or-
der, resulting in a sequence of interleaved in-cells and
out-cells. Each pair of two adjacent in-cell and out-
cell forms a Hilbert range. The set of such ranges is
called the Hilbert closure range of square S, denoted as
HCR(S).

For square S in Fig.3, the ascending sort of its in-
cells and out-cells is {8, 11, 28, 35, 52, 55}. The set {(8,
11), (28, 35), (52, 55)} of intervals serves as HCR(S).

Theorem 3. Given point q ∈ <, q belongs to square
S, there must exist a Hilbert range (Ii, Oi) in HCR(S)
such that Ii 6 h(q) 6 Oi.

Proof. The curve HN
2 traverses each cell once

and only once and encodes the cell on the way
consecutively[20]. For S ⊂ <, the curve inside S must
be partitioned into a series of continuous curve segment,
which starts from an in-cell of S and ends at an out-
cell of S. These curve segments correspond to HCR(S).
Thus, Hilbert index of any cell in HC(S) must be in-
cluded by one of ranges in HCR(S). For q belongs to
square S, it must be indexed by some cell in HC(S).
Therefore, h(q) must be included by a range in HCR(S).

¤
Theorem 3 verifies that Hilbert closure range

of BSC(p, p′) must include all Hilbert indexes of
targeted POIs w.r.t p. Therefore, the client can

retrieve Hilbert indexes of target POIs by transmitting
HCR(BSC(p, p′)) instead of all cells in HC(BSC(p, p′)).
This would greatly reduce the query workload at server
side and the communication cost.

While with unknown Hilbert curve due to the pro-
tection of privacy, it is non-trivial to decide the type of
a cell in BC(S), even when its Hilbert index is obtained.
This application constraint makes the computation of
HCR(S) considerably difficult. A brute-force way is to
calculate all Hilbert indexes of cells in HC(S) to de-
termine the ranges at client. Although the client can
encode 2-D coordinates into its Hilbert index within
several steps (N steps), to deal with so many cells is
time-consuming. Fortunately, the following Theorem
enables to decide the types of cells efficiently.

Theorem 4. For given square S, cell u ∈ BC (S)
and its outward adjacent cell u′, if the indexes of u and
u′ are consecutive, u must be in-cell or out-cell of S.
Specifically, if the index of u is larger than that of u′, u
is an in-cell, otherwise it is an out-cell.

Proof. For the curve HN
2 traverses the whole space

< and encodes each cell on the way in an incrementally
consecutive way. u is the boundary cell of S, if the
curve leaves S from u and the next cell the curve visits
must be just the outward adjacent cell of u. Similar
conclusion can be drawn for in-cells. ¤

Back to Fig.3, for cell 28 in BC(S), cell 27 is its
outward adjacent cell w.r.t S, so cell 28 is an in-cell of
S. Similar verification can be made for other cells in
BC(S). Therefore, only those indexes of cells in BC(S)
and their outward adjacencies need computing.

Algorithm 2. HeC(S)
1: collect the Hilbert indexes of boundary cells in squ-

are S into BC;
2: identify in-cells and out-cells in BC; //By Theorem 4
3: return all values of in-cells and out-cells in ascending

order as HCR(S);

By now, based on Theorem 4, we can present the
algorithm to compress the Hilbert encode of a square.
The input of the algorithm is a square to be compressed.
The details are presented in Algorithm HeC(S). In line
1, the boundary cells of square S are generated. Subse-
quently, in-cells and out-cells are identified from these
boundary cells to determine HCR(S). Finally, HCR(S)
is returned to the user.

Optimization of HeC(S). The memory usage of Al-
gorithm 2 can be further reduced since some boundary
cells are not necessary to deal with after line 1. Some
strategies can be adopted to prune those cells. For in-
stance, cell u locates at the upper boundary of S, cells
u1, u2 ∈ BC(S), are left and right adjacent cells of u, if
indexes of u1, u and u2 are consecutive, cell u is impossi-
ble to be in-cell or out-cell and can be pruned from BC.



Wei-Wei Ni et al.: Location Privacy Protection&Privacy Preference 419

Suppose the number of cells in HC(S) is ϕ(S). Total
number of boundary cells in BC(S) and their outward
adjacent cells is approximately 8

√
ϕ(S). The compu-

tation cost of HeC(S) at client-side is 4N
√

ϕ(S) on
average.

4.2 Algorithm HilAnchor+

This subsection presents both client-side and server-
side processing of HilAnchor+.

Client-Side Processing. An adjustable RCA is built
to contain MIR such that users’ preferred MIR can be
satisfied. Further, over-workload from RCA is allevia-
ted by compressing RCA into HCR. Finally, query
result can be pinpointed via decoding the returned
Hilbert values inside HCR. Algorithm 3 summarizes the
client-side process of HilAnchor+ for a user to initiate
a kNN query.

In lines 1∼4, the initial region is created by one
handshake with the server including encoding and de-
coding operations at client sides. In line 5, lmin is
computed based on Theorem 2. The initial region is
expanded to BSC in line 6. BSC is compressed into
HCR(BSC) and sent back as the encoded RCA to the
server, in lines 7∼8, respectively. The server returns
all values inside ranges of HCR. Finally, the client can
pinpoint answers from returned Hilbert indexes by de-
coding these indexes and comparing them with p.

Algorithm 3. HilAnchor+-Client(p, s)
//p is the user location and s the area of MIR
1: generate the anchor point p′ and encode it;
2: initiate false query about Hilbert value of p′;
3: decode and get POIs in kNN(p′);
4: create the initial region CC via kNN(p′);
5: determine lmin by Theorem 2;
6: expand CC to BSC; //satisfying Theorem 2
7: HCR = HeC(BSC); //recalling Algorithm 2
8: send HCR back to the server;
9: decode and pinpoint answers from the returned

from the server;
10: return pinpointed answers;
//the k nearest neighbour POIs of p

Remark 1. The approximation error introduced in
Hilbert decoding can be reduced by specifying suitable
curve order. In our solution, function h−1() returns
the 2-D coordinates of the input Hilbert cell’s center.
The approximation error will not exceed

√
2/2 times of

the Hilbert cell extent. In reality, it is sufficient to set
N above 8[12].

Remark 2. The Hilbert encoding scheme used
in HilAnchor+ will not introduce false hints. In
HilAnchor+, a crucial step to query accuracy is to ini-
tialize region CC (p, p′), which must contain the tar-
geted result kNN(p). As shown in Algorithm 3, for a

kNN query, HilAnchor+ first initiates a kNN query with
Hilbert index h(p′) rather than with p′ itself. Although,
this may lead to false hints. That is, the returned k
Hilbert values nearest to h(p′) may not be those Hilbert
values of the actual k nearest POIs to p′. However, such
inconsistency will not introduce error, which is proved
in Theorem 5.

Theorem 5. Given anchor point p′, the initial re-
gion CC (p, p′) based on the returned k nearest Hilbert
values to h(p′) covers kNN(p).

Proof. The returned k nearest Hilbert values must
correspond to the existing k POIs stored at server side.
As discussed in Subsection 3.2, CC(p, p′) based on the k
points decoded from the returned k nearest Hilbert val-
ues must cover these k POIs. Thus, CC(p, p′) contains
no less than k + 1 points, definitely involving kNN(p),
as well as p itself. ¤

Server-Side Processing. In our framework Hil-
Anchor+, two handshakes exist between client and
server. First, client sends Hilbert value of the anchor
point to the server for retrieving k nearest Hilbert val-
ues of POIs to that of the anchor. Second, the client
sends the generated Hilbert closure ranges to the server
and retrieves all POIs whose Hilbert values locate in-
side the ranges. Both of these queries are carried on
the 1-D table LUT, and belong to 1-D range query. To
improve time-efficiency at server side, a B+-tree index
is constructed on the table to accelerate range queries.
Fig.4 illustrates the structure of the B+-tree adopted,
where leaf nodes are designed as a doubly linked list.
Therefore, the time efficiency of such range query is
O(log2 n), the symbol n denotes the total number of
POIs at the server.

Fig.4. B+-tree structure.

In conclusion, HilAnchor+ can achieve trade-off be-
tween scalability and privacy preferences, allow users
to specify their desired MIR as privacy preference and
Hilbert encoding schemes are used to achieve scalabi-
lity. In particular: 1) Instead of the brute-force way
adopted in cloaking-based solutions, region RCA can
be well regulated at client side and easily incorporate
users’ MIR preferences, which simplifies the server-side
process. 2) The Hilbert encoding scheme converts range



420 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

query in 2-D space into interval matching in 1-D one,
which can further accelerate server-side process. 3)
Rather than transferring 2-D coordinates of POIs in-
side RCA, only Hilbert values are required to return in
HilAnchor+.

5 Privacy Issue in Parameter Selection

A problem of choosing anchor point p′ is naturally
raised in HilAnchor+. On the one hand, it seems that
p′ may expose the clue of user’s location p when p′ is
too close to p. On the other hand, the size of candidate
answer region increases sharply due to the enlargement
of initial region CC(p, p′) if p′ deviates too far away
from p. Hence, it is necessary that a pair of lower and
upper bounds r and R should be carefully imposed on
p′ such that p′ is distanced from p between r and R.

For the lower bound r, the operator max{2.391
√

s,
(
√

2 + 2)d(p, o)} in Theorem 2 excludes the possibility
of too small candidate answer region RCA even when
p′ approaches p. Therefore, the specified MIR can be
guaranteed. However, for the upper bound R, except
for the fact the large R results in work overhead, the
assumption of public R as system parameter can be
exploited by adversaries. The user’s position must be
located inside the circle centered at p′ with radius R,
denoted by CR(p′). Therefore, in the following, we only
concern the attack via R and anchor point p′, which is
called upper bound attack in this paper.

5.1 Upper Bound Attack

The exposure of R leaves the clue of p and therefore
is utilized to initiate upper bound attack. First, p can
be inferred in CR(p′). Hence, the area of CR(p′) = πR2

must be forced no less than user’s specified minimum
inferred area s. That is, R >

√
s/π. Otherwise, the re-

gion of CR(p′) would directly invalidate s. Second, even
if R >

√
s/π, the MIR depicted in Fig.2 might also be

squeezed further because p must be located within the
overlapped region of CR(p′) and MIR as shown in Fig.5.

Fig.5. Upper bound attack.

For the simplicity of analysis, the MIR in Fig.5 can
be approximated by its maximum inscribed circle cen-
tered at o with radius 0.25l, as shown in Fig.6. The
interactions between CR(p′) and MIR can be classified
into two cases.

Fig.6. Details of the overlapped region.

1) Containment Case : R > d(p′, o)+0.25l or 0.25l >
d(p′, o) + R. It must be the case that CR(p′) contains
MIR or vice versa. For the reason that both CR(p′)
and MIR satisfy specified area of s, leakage of p′ and R
does not invalidate the MIR.

2) Overlap Case : R < d(p′, o) + 0.25l or 0.25l <
d(p′, o) + R. As shown in Fig.5, CR(p′) and MIR must
overlap. In this case, the MIR is squeezed to the over-
lapped region (the shadowed in Fig.5). If the over-
lapped region is less than specified area s, user’s privacy
preference of MIR is unsatisfied.

The above analysis demonstrates that upper bound
attack at least demands the knowledge of both R and
p′. In the following, a rigorous version HilAnchor∗ of
HilAnchor+ is devised. In HilAnchor∗, the area of the
overlapped region is forcefully left up above user’s speci-
fied area s even when both R and p′ are grasped by
adversaries (in the case that the key of Hilbert curve
leaks).

5.2 HilAnchor∗

Generally, HilAnchor∗ and HilAnchor+ are the same
at server side but a little different at client sides.
HilAnchor∗ takes the overlap case into consideration.
In particular, in containment case, HilAnchor∗ behaves
in the same way as HilAnchor+. On the other hand, in
overlap case, as shown in Fig.5, the overlapped region is
contained in the MIR, whose area is possibly below the
specified threshold s. Given p′, CR(p′) is fixed in Fig.5.
Hence, it is the only way to enlarge MIR such that the
overlapped region is left above the specified threshold s.
Specifically, enlarge side length l of BSC(p, p′) in order
to extend the overlapped region. We use γ(l) to denote
the area of the overlapped region.

In Fig.6, the half of γ(l) is the sum of areas of sector
oA1A2 and sector p′A1A3 minus the area of triangle
p′oA1. In more details, the areas of sectors oA1A2,



Wei-Wei Ni et al.: Location Privacy Protection&Privacy Preference 421

p′A1A3 and triangle p′oA1 are denoted as SoA1A2
,

Sp′A1A3
, Sp′oA1 , respectively. They are calculated as

follows.

SoA1A2
= d(p′, o)2arc cos

d(p′, o)2 + 0.252l2 −R2

2× 0.25l × d(p′, o)
,

Sp′A1A3
= d(p′, o)2arc cos

d(p′, o)2 + R2 − 0.252l2

2×R× d(p′, o)
,

Sp′oA1 = 2
√

2c(c−R)(c− 0.25l)(c− d(p′, o)),

where c = 1
2 (R + 0.25l + d(p′, o)). Consequently, γ(l)

can be approximated as follows.

γ(l) = 2(SoA1A2
+ Sp′A1A3

− Sp′oA1).

Given R, p, p′ and o, setting γ(l) > s, the lower
bound l′min of the side length of BSC(p, p′) can be im-
mediately obtained. Setting, l > l′min, HilAnchor∗, a
rigorous version of HilAnchor+ is devised.

Algorithm 4. HilAnchor∗-Client(p, s)
//p is the user location and s the area of MIR
1: create the initial region CC via initiating a query about

encoded anchor point;
2: if containment case then
3: proceed in the same way as Hilanchor+;
//lines 5∼6 in Algorithm 3
4: else
5: calculate l′min; //By Theorem 6
6: expand CC to BSC with side length not less than l′min;
7: end if
8: compress BSC to HCR;
9: send HCR back to the server;
10: decode and pinpoint answers from the returned from

the server;
11: return pinpointed answers;
//the k nearest neighbour POIs of p

At the beginning steps, HilAnchor∗ works in the
same way as HilAnchor+ at client sides, creating ini-
tial region CC(p, p′). After that, HilAnchor∗ calculates
its lower bound l′min by considering two cases of con-
tainment and overlap, respectively, rather than lmin in
HilAnchor+. In containment case, HilAnchor∗ directly
sets l′min = lmin; in overlap case, HilAnchor∗ determines
the minimum l′min such that γ(l) > s. In the following
steps, the two versions proceed in the same way. The
details are elaborated in Algorithm 4.

The following theorem guarantees the correctness of
HilAnchor∗ against upper bound attack.

Theorem 6. For a specified area s, if the side length
of BSC(p, p′) is no less than max{lmin , l′min}, where
lmin satisfies Theorem 2 and γ(l) > s for any l > l′min ,
the BSC(p, p′) can afford user specified s of minimum
inferred region no matter whether upper bound attack
happens.

Proof. As discussed above, if MIR contains CR(p′)
or vice versa, upper bound attack cannot squeeze MIR.
l′min can be directly set with lmin by Theorem 2. Oth-
erwise, if MIR and CR(p′) overlap, HilAnchor∗ deter-
mines l′min such that γ(l) > s. ¤

Although, HilAnchor∗ provides a strong protection
against upper bound attack, HilAnchor+ meets pro-
tection requirements in general cases; the underlying
assumption is that the possibility of disclosing p′ is
small because the encoding and decoding functions in
HilAnchor+ are embedded in tamper-resistant devices
at client sides. Hence, we mainly evaluate HilAnchor+

after sufficient comparisons between the two versions.

6 Empirical Evaluation

We provide a sufficient experiment by comparing
our solution with all representatives from three pop-
ular types of privacy preserving ones. Firstly, since
in terms of preference, our work is most related with
cloaking-based solutions, we focus on the comparison
between them. In particular, Casper is chosen as
the representation in cloaking-based solutions due to
the following considerations. Cloaking-based solutions
commonly consist of two main components, the loca-
tion anonymizer and the privacy-aware query processor.
The main differences among existing cloaking-based so-
lutions lie in strategies adopted in location anonymiz-
ers, which are deeply influenced by real-time density of
mobile users. Our privacy model does not require the
knowledge of all users’ real-time location distribution,
which is hard to grasp for mobile users and snapshot
query scenarios. Hence, cloaking-based solutions and
our solution work in different settings and offer different
kinds of privacy guarantees. Further, for comparison
purpose, workload of location anonymizer in cloaking-
based solutions is ignored.

Secondly, due to the similar mechanism with loca-
tion obstruction, we further compare our solution with
SpaceTwist[13], a representative location obstruction
solution.

Finally, as mentioned in Section 2, transformation-
based solutions commonly trade-off between query ac-
curacy and query performance and do not afford users’
preferences. Although, these solutions and our solution
aim at different targets, we compare our solution with
solution in [15] (denoted as ApproxNN) and solution in
[12] (denoted as HilkNN), which both afford approxi-
mate answers via Hilbert encoding.

Before comparisons with others, we first verify the
enhanced version HilAnchor+ with respect to its initial
version HilAnchor and strict version HilAnchor∗.

We implemented all algorithms using C++ on Intel
Xeon 2.4 GHz machine. The synthetic datasets UI were



422 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

uniformly generated with 2 000 to 30 000 points and real
datasets NE (http://www.rtreeportal.org) with 3 000
points (sampled from complete NE dataset randomly
and serving as POI addresses). The coordinates of each
points are normalized to the square 2-D space with ex-
tent 100 000 meters. The auxiliary structure is either
R-tree or B+-tree with 1 KB page size. As for the loca-
tion parameter p′, we choose it in two steps. The first
step is to decide an anchor distance d(p, p′) ∈ [0, R] in-
corporating user’s preference. In our experiments, R
is set 5% of side length of the data space. In the sec-
ond step, the anchor p′ is randomly set to a location at
distance d(p, p′) from p.

Scalability performance of each method is evaluated
by submitting queries from a series of clients simul-
taneously to the server. In each experiment, we use
a workload with M query points generated randomly
from different clients and measure the value of the fol-
lowing performance metrics: 1) average communication
cost of M queries, in numbers of TCP/IP packets as
adopted in [13]; 2) total time cost at server side and 3)
average time cost at client side.

Table 2 lists the default system setting of Hilbert
curve key and TCP/IP packets.

Table 2．．．Default System Settings

Parameter Setting

(x0, y0) (0, 0)
θ 0

Curve Scale Γ 1
Curve Order N 10
TCP/IP Packet 576B

6.1 Comparison Between HilAnchor,
HilAnchor+ and HilAnchor∗

The workload of HilAnchor+ is distributed over both
client and server sides while that of HilAnchor mainly
over server side. Because the bottleneck of location-
based services lies in server side with a large number of
requests, it is reasonable to mainly evaluate time cost

on server side. For the comparison between HilAnchor+

and HilAnchor∗, each pair of user’s position and its an-
chor point is stored to stimulate the exposure of SDK.

As depicted in Figs. 7(a) and 7(b), HilAnchor+

achieves a sharp advantage than HilAnchor∗ in terms of
time cost at server side with increasing M . Since l′min >
lmin, the area of RCA created in HilAnchor∗ is larger
than that in HilAnchor+, HilAnchor∗ consumes more
time at server side than HilAnchor+. Both HilAnchor+

and HilAnchor∗ are clear winners compared with Hi-
lAnchor in terms of varying M and data size, the advan-
tage of HilAnchor+ and HilAnchor∗ stems from com-
pression via Hilbert encoding. For upper bound attack,
recall that an upper bound attack is possible only in the
overlap case where the overlapped region is contained
in MIR. The times of overlap cases are counted in an
off-line way. Fig.7(c) depicts the ratio of times of pos-
sible upper bound attack to the number of queries. It
shows the possibility of upper bound attack is obviously
more than 20%.

With increasing k, HilAnchor+ works well as shown
in Fig.8(a). Although the time costs for both ver-
sions increase when the distance between p and p′ is
raised, the time cost for HilAnchor+ rises slowly, as
shown in Fig.8(b). HilAnchor+ processes queries in 1-
D space via B+-tree. Matching in 1-D space is efficient
even when BSC is enlarged by increasing anchor dis-
tance. However, HilAnchor consumes more time since
it works in 2-D space with R-tree. In terms of commu-
nication cost, HilAnchor+ behaves similarly with Hi-
lAnchor for increasing distance between p and p′, as
shown in Fig.8(c). The communication cost is query
and answer transmission between client and server
sides. As for query transmission, HilAnchor outper-
forms HilAnchor+ by sending two diagonal coordinates
of the BSC while HilAnchor+ a series of Hilbert val-
ues. Conversely, at the anchor distance of 600 meters,
HilAnchor begins to lose its advantage. With increas-
ing anchor distance, BSC covers more POIs. In this
case, Hilbert encoding starts working because the cost

Fig.7. Scalability vs M and dataset size, k = 1, MIR is 1% of the data space. (a) Server cost on NE. (b) Communication on UI.

(c) Ratio of upper bound attack.



Wei-Wei Ni et al.: Location Privacy Protection&Privacy Preference 423

Fig.8. Performance vs anchor distance, k = 1, MIR is 1% of the data space. (a) Server cost vs k on NE. (b) Server cost on NE.

(c) Communication on NE.

of transmitting Hilbert values is much less than trans-
mitting 2-D coordinates of POIs. The gain obtained
in HilAnchor+ via Hilbert encoding scheme is not so
large because of additional cost from transmitting HCR
rather than original two diagonal coordinates of the
BSC in HilAnchor.

It can be concluded that HilAnchor+ is a good trade-
off between performance and security. In the following
experiments, we choose the version of HilAnchor+ to
compare with existing methods.

6.2 Comparison Between HilAnchor+ and
Casper

For comparison purpose, we implement solution
Casper that generates the cloaked region, making its
area the same to the area of MIR setting in HilAnchor+.

Fig.9 depicts the scalability of Casper vs Hil-
Anchor+. Their performances w.r.t the number M of
querying users are detailed in Fig.9(a). With increas-
ing M , Casper consumes much more time. At server
side, Casper needs to return all POIs which are k near-
est neighbors to the region MIR. With the increasing
number of concurrent queries, the server-side process-
ing cost increases rapidly. In contrast, HilAnchor+ just
returns Hilbert values within submitted HCR via a B+-

tree.
Furthermore, HilAnchor+ is a clear winner in terms

of time cost shown in Fig.9(b) at server side and com-
munication overhead shown in Fig.9(c). Although data
size influences the density of POIs at server side, with
fixed anchor distance, the both sizes of RCA and HCR
are stable. Hilbert encoding can hide the increasing
number of POIs. Therefore HilAnchor+ is insensitive
to POIs’ density. As for Casper, it needs to search k
nearest neighbors to a given region and return POIs.
Hence, with varying data size, Casper behaves more
sensitively than HilAnchor+.

When parameter k varies, HilAnchor+ shows its ad-
vantages in the time cost shown in Fig.10(a) and com-
munication cost shown in Fig.10(b) on real dataset
NE. Due to the fact that the compression 1-D struc-
ture HCR leads to the scalability to the extent of
RCA, the cost of HilAnchor+ is nearly independent
of k. Figs. 11(a) and 11(b) show the comparisons
of the server-side processing and communication cost
in terms of MIR. The costs of both Casper and
HilAnchor+ increase with enlarging extent of MIR.
However, even for large MIR, the server-side processing
time of HilAnchor+ increases quite more slowly than
that of Casper. The underlying reason is that Casper

Fig.9. Scalability vs M and dataset size, k = 1, MIR is 1% of the data space. (a) Server cost on NE. (b) Server cost on UI.

(c) Communication on UI.



424 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Fig.10. Performance vs k, MIR is 1% of the data space on NE

dataset. (a) Server cost. (b) Communication.

Fig.11. Performance vs area of MIR on NE dataset, k = 1.

(a) Server cost. (b) Communication.

falls short of allowing for constraints between RCA
and MIR, and its region of RCA determined at server
side expands sharply with increasing MIR. From the
above experiments, we conclude that HilAnchor+ ex-
hibits high scalability with data size and the number of
users with constraints of specified MIR.

6.3 Comparison Between HilAnchor+ and
SpaceTwist

In this subsection, we proceed to investigate the scal-
ability of HilAnchor+ against SpaceTwist. SpaceTwist
explores granular search strategy to retrieve data points
from the server with a user-specified cell extent ε/

√
2.

It improves its efficiency at the cost of query accuracy
with error bound ε. We set ε to

√
2/2 times of Hilbert

cell extent in HilAnchor+ so that they are compared
with the same accuracy.

In Figs. 12(a) and 12(b), HilAnchor+ shows obvious
advantage in terms of processing time for varying M ,
which is similar to the case of the comparison with
Casper. Because of expensive queries in 2-D space other
than 1-D query in HilAnchor+, SpaceTwist takes more
time. Although the client-side process of HilAnchor+ is
heavy, HilAnchor+ exploits only two-round handshakes
rather than multi-rounds handshakes in SpaceTwist,
which can effectively reduce the time at client waiting
for response. Therefore, HilAnchor+ achieves both low
server-side cost and low average client-side cost for a
broad range of M , especially for larger M . Figs. 13(a)
and 13(b) depict the performance with respect to pa-
rameter k. Due to its insensitivity for parameter k,
HilAnchor+ behaves approximately unchanged with in-
creasing k.

Our solution shares strategies of the implementation
of false query in location obstruction with SpaceTwist.
Observe that these two solutions behave similarly in
terms of client-side cost and communication overhead

Fig.12. Performance vs M , k = 1, MIR is 1% of the data space,

with same anchors. (a) Server cost. (b) Average client cost.



Wei-Wei Ni et al.: Location Privacy Protection&Privacy Preference 425

Fig.13. Performance vs k, MIR is 1% of the data space, with

same anchors. (a) Server cost. (b) Communication.

as shown in Fig.14. Although, a larger anchor distance
in common promises a large RCA in HilAnchor+ or a
larger supply space in SpaceTwist, encoding structure

HCR of HilAnchor+ can compress RCA sharply. Thus,
the performance gap between them is enlarged gra-
dually with increasing anchor distance. As for server-
side overhead, SpaceTwist remains increasing much
faster than HilAnchor+.

Further, we compare the two solutions with respect
to data size using synthetic datasets UI. As shown in
Fig.15, HilAnchor+ scales well.

6.4 Comparison Between HilAnchor+,
HilkNN, and ApproxNN

Finally, we investigate the performance of
HilAnchor+ against HilkNN and ApproxNN. The pa-
rameter of modulus bits in ApproxNN is set with 32
to simplify the computation. Since ApproxNN is re-
stricted to the nearest neighbor query, we evaluate
these solutions in terms of varying data size, assuming
k with 1 as default.

In Fig.16(a), HilkNN shows prevailing advantage in
client-side cost, since the client-side work in HilkNN is
just making a couple of encoding and decoding ope-
rations, rather than a series of decoding and encoding
operations in HilAnchor+ to generate HCR. Instead, a
complicated client-side matrix decoding is required in
ApproxNN, which burdens its workload at client side.

Fig.14. Performance vs anchor distance, k = 1, MIR is 1% of the data space. (a) Client cost. (b) Communication. (c) Server cost.

Fig.15. Performance vs data size, k = 1, MIR is 1% of the data space, anchor distances are the same. (a) Client cost. (b) Communi-

cation. (c) Server cost.



426 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Fig.16. Performance vs data size, k = 1, MIR is 1% of the data space. (a) Client cost. (b) Communication. (c) Server cost.

As for communication cost, since the HCR structure
in HilAnchor+ is insensitive to data size, its communi-
cation cost increases slightly with enlarging data size.
Instead, HilkNN only needs to transfer a single Hilbert
value, its communication cost is far less than others, as
shown in Fig.16(b).

Fig.16(c) depicts the server-side cost with respect
to varying data size. The cost of ApproxNN increases
proportionally with data size, since the number of mul-
tiplication is proportional to the number of “1” bits
in the data. Due to the insensitivity, HilAnchor+ and
HilkNN behave similarly. The cost of HilAnchor+ keeps
twice of HilkNN approximately, since twice of matching
on B+-tree are needed in HilAnchor+ rather than only
once in HilkNN.

From above comparisons, we conclude that perfor-
mance of our solution is comparable with existing space
transformation based ones. Although, a Voronoi tessel-
lation based method ExactNN is proposed in [15] to
improve ApproxNN and guarantee query accuracy, the
benefit is gained at the cost of much more overhead
workload. A dual Hilbert curve based solution is pro-
posed in [12] to reduce the possibility of false-hints.
It can improve query accuracy effectively, but cannot
avoid false-hint thoroughly. Most space translation
based solutions seek trade-off among privacy protec-
tion strength, query accuracy and query performance.
Instead, our solution pursues for more purposes among
users’ privacy preferences, query performance and loca-
tion privacy protection.

7 Conclusions

This paper concerns the privacy preference sup-
port for location-based service while guaranteeing user-
defined minimum inferred region. Existing location pri-
vacy solutions either ignore the privacy preference or
consider it in a brute-force way with high workload and
poor scalability at server side. We propose a trade-
off among preference, accuracy and scalability by lever-
aging Hilbert curve based compression. Furthermore,
the details of choosing anchor points are theoretically

analyzed. Sufficient empirical studies with real-world
and synthetic datasets verify our proposals. We intend
to extend our proposals to cover real data distributions,
involving influence of some non-reachable regions. Be-
sides, it is expected to support continuous queries.

References

[1] Gruteser M, Schelle G, Jain A, Han R, Grunwald D. Privacy-
aware location sensor networks. In Proc. the 9th Workshop
on Hot Topics in Operating Systems (HotOS 2003), Hawaii,
USA, May 18-21, 2003, pp.163-167.

[2] Beresford A R, Stajano F. Location privacy in pervasive com-
puting. IEEE Pervasive Computing, 2003, 2(1): 46-55.

[3] Ronssopoulos Nick R, Kelley S, Vincent F. Nearest neighbor
queries. In Proc. the ACM SIGMOD International Confe-
rence on Management of Data (SIGMOD 1995), San Jose,
California, USA, May 22-25, 1995, pp.71-79.

[4] Xiao Z, Meng X F, Xu J L. Quality aware privacy protec-
tion for location-based services. In Proc. the 12th Inter-
national Conference on Database Systems for Advanced Ap-
plications (DASFAA 2007), Bangkok, Thailand, April 9-12,
2007, pp.434-446.

[5] Bettini C, Wang X S, Jajodia S. Protecting privacy against
location-based personal identification. In Proc. the 2nd
VLDB Workshop on Secure Data Management (SDM 2005),
Trondheim, Norway, September 2-3, 2005, pp.185-199.

[6] Mokbel M F, Chow C Y, Aref W G. The new Casper: Query
processing for location services without compromising pri-
vacy. In Proc. the 32nd International Conference on Very
Large Data Bases (VLDB 2006), Seoul, Korea, September
12-15, 2006, pp.763-774.

[7] Li P Y, Peng W C, Wang T W, Ku W S, Xu J, Hamilton J A.
A cloaking algorithm based on spatial networks for location
privacy. In Proc. IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC
2008), Taichung, Taiwan, China, June 11-13, 2008, pp.90-97.

[8] Duckham M, Kulik L. A formal model of obfuscation and ne-
gotiation for location privacy. In Proc. the 3th International
Conference on Pervasive Computing (Pervasive 2005), Mu-
nich, Germany, May 8-13, 2005, pp.152-170.

[9] Kalnis P, Ghinita G, Mouratidis K, Papadias D. Prevent-
ing location-based identity inference in anonymous spatial
queries. IEEE Trans. Knowl. Data Eng., 2007, 19(12): 1719-
1733.

[10] Ghinita G, Kalnis P, Skiadopoulos S. PRIVE: Anonymous
location-based queries in distributed mobile systems. In
Proc. the 16th International Conference on World Wide
Web (WWW 2007), Banff, Alberta, Canada, May 8-12, 2007,
pp.371-380.



Wei-Wei Ni et al.: Location Privacy Protection&Privacy Preference 427

[11] Indyk P, Woodruff D P. Polylogarithmic private approxima-
tions and efficient matching. In Proc. the 3rd Theory of
Cryptography Conference (TCC 2006), New York, NY, USA,
March 4-7, 2006, pp.245-264.

[12] Khoshgozaran A, Shahabi C. Blind evaluation of nearest
neighbor queries using space transformation to preserve lo-
cation privacy. In Proc. the 10th International Conference
on Advances in Spatio and Temporal Databases (SSTD 2007),
Boston, MA, USA, July 16-18, 2007, pp.239-257.

[13] Yiu M L, Jensen C S, Huang X G, Lu H. SpaceTwist: Manag-
ing the trade-offs among location privacy, query performance,
and query accuracy in mobile services. In Proc. the 24th In-
ternational Conference on Data Engineering (ICDE 2008),
Cancún, México, April 7-12, 2008, pp.366-375.

[14] Gong Z Q, Sun G Z, Xie X. Protecting privacy in location-
based services using k-anonymity without cloaked region. In
Proc. the 11th International Conference on Mobile Data
Management (MDM 2010), Kanas City, Missouri, USA, May
23-26, 2010, pp.366-371.

[15] Ghinita G, Kalnis P, Khoshgozaran A, Shahabi C, Tan K L.
Private queries in location based services: Anonymizers are
not necessary. In Proc. the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2008), Van-
couver, BC, Canada, June 9-12, 2008, pp.121-132.

[16] Cheng R, Zhang Y, Bertino E, Prabhakar S. Preserving user
location privacy in mobile data management infrastructures.
In Proc. the 6th Workshop on Privacy Enhancing Technolo-
gies (PET 2006), Cambridge, UK, June 28-30, 2006, pp.393-
412.

[17] Pan X, Xu J L, Meng X F. Protecting location privacy
against location-dependent attacks in mobile services. IEEE
Transactions on Knowledge and Data Engineering, 2011,
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.105.

[18] Xu J L, Tang X Y, Hu H B, Du J. Privacy-conscious location-
based queries in mobile environments. IEEE Trans. Parallel
Distrib. Syst., 2010, 21(3): 313-326.

[19] Papadopoulos S, Bakiras S, Papadias D. Nearest neighbor
search with strong location privacy. PVLDB, 2010, 3(1): 619-
629.

[20] Moon B, Jagadish H V, Faloutsos C, Saltz J H. Analysis of the
clustering properties of the Hilbert space-filling curve. IEEE
Trans. Knowl. Data Eng., 2001, 13(1): 124-141.

Wei-Wei Ni received the Ph.D.
degree in computer application from
Southeast University in 2005. He is
now an associate professor of South-
east University and a member of the
China Computer Federation. His re-
search interests include data privacy
protection and data mining.

Jin-Wang Zheng is now a Mas-
ter candidate of Southeast Univer-
sity. His research interests include
data mining and privacy protection
in location-based service.

Zhi-Hong Chong received the
Ph.D. degree in computer software
from Fudan University in 2006. He is
now an associate professor of South-
east University. His research inter-
ests include data management and
analysis.


