
Zhang ZH, Wang XY, Tong D et al. Active store window: Enabling far store-load forwarding with scalability and complexity-

efficiency. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(4): 769–780 July 2012. DOI 10.1007/s11390-

012-1263-7

Active Store Window: Enabling Far Store-Load Forwarding with

Scalability and Complexity-Efficiency

Zhen-Hao Zhang (���), Xiao-Yin Wang∗ (���), Dong Tong (� �), Member, CCF, ACM,
Jiang-Fang Yi (��Ǳ), Jun-Lin Lu (���), and Ke-Yi Wang (���)

Microprocessor Research and Development Center, Peking University, Beijing 100871, China

Engineering Research Center of Microprocessor and System, Ministry of Education, Beijing 100871, China

School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

E-mail: {zhangzhenhao, wangxiaoyin, tongdong, yijiangfang, lujunlin, wangkeyi}@mprc.pku.edu.cn

Received June 3, 2011; revised April 23, 2012.

Abstract Conventional dynamically scheduled processors often use fully associative structures named load/store queue
(LSQ) to implement the value communication between loads and the older in-flight stores and to detect the store-load
order violation. But this in-flight forwarding only occupies about 15% of all store-load communications, which makes the
CAM-based micro-architecture the major bottleneck to scale store-load communication further. This paper presents a new

micro-architecture named ASW (short for active store window). It provides a new structure named speculative active store
window to implement more aggressively speculative store-load forwarding than conventional LSQ. This structure could
forward the data of committed stores to the executing loads without accessing to L1 data cache, which is referred to as far
forwarding in this paper. At the back-end of the pipeline, it uses in-order load re-execution filtered by the tagged SSBF
(short for store sequence bloom filter) to verify the correctness of the store-load forwarding. The speculative active store
window and tagged store sequence bloom filter are all set-associate structures that are more efficient and scalable than fully

associative structures. Experiments show that this simpler and faster design outperforms a conventional load/store queue
based design and the NoSQ design on most benchmarks by 10.22% and 8.71% respectively.

Keywords store-load forwarding, load/store queue, value-based load re-execution

1 Introduction

Since the memory wall problem[1] gets worsen as
increasing clock frequency, the memory latency, espe-
cially the load-to-use latency, becomes the major per-
formance bottleneck of modern processors. Our experi-
ments show that only about 15% of all store-load com-
munications in conventional LSQ (load/store queue)-
based processors are accomplished by in-flight commu-
nication, which could be implemented within one clock
cycle. The others have to be accomplished by the mem-
ory hierarchy within several or hundreds of clock cycles.

To implement in-flight store-load communication,
conventional approach uses age-based LSQ, which is
typically implemented as two separated queues —
the load queue (LQ) and the store queue (SQ). The
LSQ buffers all memory instructions, commits their ef-
fects in program order and forwards values between

communicating pairs of loads and stores. Sometimes, it
also needs to detect incorrect speculation or potential
violation of coherence and consistency.

In order to implement these functions, associative
searches are used to find the correct producers or to
detect dependence violations. Along with the increas-
ing capacity of instruction window, the traditional LSQ
with CAM-like structures is the most challenging micro-
architectural structure to scale up, which in turn con-
straints the range of in-flight store-load communication.

The most intuitive approach to solve this problem is
scaling up the capacity of LSQ by splitting the LSQ into
two levels[2-4]. The first level LSQ with small capacity
is used to satisfy the majority of in-flight communica-
tion quickly while the second level LSQ with large ca-
pacity and slower access latency is used to buffer more
memory instructions. This kind of optimization only fo-
cuses on how to catch up with the increasing capacity of

Regular Paper
This work was supported by the National High Technology Research and Development 863 Program of China under Grant No.

2009ZX01029-001-002 and the Postdoctoral Science Foundation of China under Grant No. 20110490208.
∗Corresponding Author
�2012 Springer Science +Business Media, LLC & Science Press, China

770 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

instruction window, and even may damage the in-flight
store-load communication performance.

As a result, a number of implementations have been
explored recently to avoid associative searches of the
traditional design[2-3,5-9]. The fact these designs base
on is that memory-based dependencies are very infre-
quent and predictable in the course of execution. So
it is possible to reduce the number of associative ac-
cesses through clever filtering or prediction. Most of
the optimized designs only focus on how to replace the
CAM structures of LSQ and neglect to optimize the
performance of in-flight store-load communication. So
the most of communication between loads and stores is
accomplished by the cache hierarchy, which would be
within several cycles in modern processors and occupy
the majority of load-to-use latency.

In this paper, we propose a more scalable and much
simpler design called ASW (short for active store win-
dow), as an effective alternative to traditional CAM-
based LSQ. This design includes a structure called spec-
ulative active store window to implement aggressive
store-load forwarding. This structure could be viewed
as the collection of latest stores to recently used mem-
ory addresses, including the store data, store address
and the age of store instructions. The speculative store
window is totally independent of the in-flight instruc-
tion window, which means that the load could get its
forward data no matter whether the forwarding store
instruction has been committed. So the ASW micro-
architecture could provide a wider forwarding range
than traditional LSQ, that make more load instructions
fetch data from speculative active store window within
one clock cycle. As a result, ASW micro-architecture
improves the load performance. Despite of conventional
proactive monitoring to detect violation, the correct-
ness guarantee of ASW micro-architecture comes from
the in-order commit of memory accesses. When a load
instruction is committed, tagged SSBF (short for store
sequence bloom filter)[10] based on the load/store com-
mit order is accessed. Discrepancy between the results
of two stages triggers re-execution of load and depen-
dent instructions.

The primary contribution of this paper is the pro-
posal of ASW micro-architecture. The goal of ASW
micro-architecture is to achieve a wider range of store-
load forwarding than the traditional load/store queue
while removing timing-critical and non-scalable struc-
tures from the processor’s out-of-order engine. Be-
cause of the wider forwarding range, ASW could for-
ward more load instructions within one clock cy-
cle than the traditional LSQ. Experiments show that
the expanded range of the store-load forwarding
by the ASW micro-architecture provides significant

performance improvement, overcoming the negative ef-
fect by the mis-speculation of store-load forwarding and
the re-execution of the load instructions. As a re-
sult, ASW micro-architecture outperforms a conven-
tional out-of-order superscalar design and the NoSQ
design[10] by 10.22% and 8.71% on average respectively.
Meanwhile, as the absence of the CAM structure and
the fully associative search, ASW could be implemented
with faster and more power-efficient circuit than the
traditional LSQ.

The rest of the paper is organized as follows: Section
2 recaps the basics of the memory dependence logic and
highlights recent optimization proposals; Section 3 de-
scribes the micro-architecture of ASW design; Section
4 describes the experimental methodology and provides
some quantitative analysis; Section 5 compares the dif-
ference between ASW design and other recent propos-
als; and Section 6 concludes the paper.

2 Background

Recent proposals[7-8,10-14] for the optimization of
traditional LSQ use predictive or speculative approach
to reduce the design complexity of memory disambigua-
tion logic and to gain performance improvement at the
same time. Most of these proposed micro-architectures
base on the value-based load re-execution mechanism,
which is proposed by [15]. The driving principle behind
value-based re-execution is to shift complexity from the
timing critical components of the pipeline to the back-
end of the pipeline. In the value-based re-execution
mechanism[15], loads are re-executed at the back-end of
the pipeline and their results are checked against the
premature load results. To support this load replay
mechanism, two pipeline stages have been added at the
back-end of the pipeline preceding the commit stage,
labeled replay and compare. For simplicity, all instruc-
tions flow through the replay and compare stages, with
action only being taken for load instructions. This opti-
mization relieves the design burden to maintain correct-
ness for the front-end execution, effectively relegating
it to a value predictor.

Under conventional load speculation, only loads that
actually issued in the presence of older un-executed
stores — typically 10∼20% of all loads[15] — are specu-
lative, and only these loads must be re-executed. Re-
dundant re-execution of load instructions will incur per-
formance loss or inefficient power cost due to contend-
ing a same data cache port with the committing stores.

Store Vulnerability Window (SVW)[16] is an address-
based filter mechanism that dramatically reduces the
re-execution rate for any form of speculation on loads
with respect to older stores. SVW design bases on the
observation that a load should not have to re-execute

Zhen-Hao Zhang et al.: ASW: Enabling Far Store-Load Forwarding 771

if no store is written to a matching address in a suffi-
ciently long time. SVW implements this basic idea us-
ing a small address-indexed table called store sequence
bloom filter (SSBF) to track the store sequence number
(SSN) of the latest committed stores that write to each
hashed address. When a load executes, it accesses the
tagged SSBF to get its SSNnvul, which is the SSN of
latest committed store at the time of execution. Prior
to commit, the load then accesses the SSBF again to
get its SSNcmt, which is the SSN of latest committed
store before the load is committed. When the SSNcmt
equals SSNnvul, it means that there has not been any
store with the same address committed during the ex-
ecution of the load instruction. So it is impossible that
the load incurs any store-load violation and needs any
re-execution.

From another perspective, the only execution in
value-based re-execution optimization that is absolutely
required is the back-end execution. In theory, any front-
end execution scheme would work, even if it only re-
turns garbage values. Thus the front-end execution
can afford to simplify the memory dependence enforce-
ment logic because the back-end execution provides a
safety net for incorrect speculation. There are two cate-
gories of front-end optimization based on the value-
based load re-execution — memory dependence predic-
tion and speculative cache.

Proposals in [7-8, 10-11] use memory dependence
prediction[17-18], which base on the value-based re-
execution micro-architecture, to implement speculative
store-load forwarding by predicting the position of the
forwarding data. So it avoids the fully associative
search of traditional LSQ. The forwarding data could
be placed in an age-ordered structure with speculative
indexed access[7-8,11], or in the register file with specu-
lative memory bypassing[10].

Besides the memory dependence prediction, [12] pro-
posed another mechanism for eliminating associative
LSQ, which pushes the forwarding simplification to the
extreme by completely eliminating any memory de-
pendence enforcement logic. In the first phase, loads
speculatively obtain their value from a speculative L0
cache. In the second phase, the load instructions are
re-executed in program order, without any speculation,
and access the regular L1 cache. Any difference in the
load values between the two phases results in correc-
tive action. This speculative L0 cache could offer data
of committed store to the executing load, which is ac-
cessed within one cycle.

3 Active Store Window

Active store window indicates the set of effica-
cious stores, which are committed recently and not

overlapped by other stores. The memory hierarchy of
modern processors could be viewed as a determined
implementation of the active store window, which
only includes the data of stores. The ASW micro-
architecture uses more natural way to implement a
speculative cache of active store window, which is used
to forward store data to load speculatively. This spec-
ulative cache uses a smaller and simpler structure to
implement wider store-load forwarding range than tra-
ditional LSQ, which does not damage the forwarding
accuracy significantly.

3.1 Conception

Any load data comes from some store committed
before the load instruction, and any store data will be
overlapped by the data of some store committed after.
If the data of the store has been covered by other stores,
it is called dead store. The name active store refers to
the store which has not be dead. For any load instruc-
tion, the set of all active stores committed before it
is called the active store window of this load instruc-
tion. Thus, any load instruction must get its data from
some store in its active store window. Maybe the load
data comes from several stores in active store window
— called partial forwarding — which will be simplified
in this discussion because of its unusuality. Besides the
data of stores, active store window also includes the age
information between store instructions, which could be
used to determine the store order.

Active store window in traditional processors is only
maintained in the memory hierarchy, which is updated
when store instructions are committed. But it is orga-
nized according to the address space which omits the
age information of different stores. This kind of absence
of age information is not suitable for the speculative
execution of loads, in which the execution might be in-
correct.

Take the speculative L0 cache in [12] as an example.
The L0 cache is organized as a traditional set-associate
structure which is accessed only according to the ad-
dresses of load/store instructions. So when a load in-
struction accesses the L0 cache, it is impossible to reco-
gnize the related store that forwards the data to the
load instruction, and also impossible to implement any
re-execution filtering mechanism. And when a wrong
store instruction is executed, its data would be writ-
ten in the L0 cache without distinction to other correct
data in the same cache line. This polluted cache line
might continue to forward incorrect data to following
load instructions until it is cleaned up or replaced.

3.2 Speculative Active Store Window

This paper proposes a more natural way to

772 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

implement the active store window, which is called
speculative active store window. This structure could
be viewed as a speculative cache of active store window
with a typical set-associate structure, but it contains
the information about the forwarding store’s age rela-
tionship with other stores.

Any entry of speculative active store window in-
cludes following fields: 1) valid flag (V), 2) address tag
(TAG), 3) byte valid flag (BE), 4) store sequence num-
ber (SSN), and 5) store data (DATA).

Throughout this paper, all executed store instruc-
tions are identified using store sequence numbers (SSN),
which form the basis of the active store window scheme
and are more convenient than store queue indices be-
cause they also represent committed stores. Thus the
age relationships between store instructions could be
converted to the order relations between SSNs. When
the SSN of store instruction A is less than B, it in-
dicates that the store instruction A is older than B.
And vice verse. In ASW micro-architecture, any dy-
namic store instruction is assigned monotonically in-
creasing SSN when it is renamed. A global counter
— SSNren — tracks the SSN of the most recently re-
named/dispatched store. In the rare situations in which
SSNren wraps around, the processor drains its pipeline
and clears all hardware structures that hold SSN, in-
cluding speculative active store window and tagged
store sequence bloom filter.

Fig.1 shows the comparison between speculative ac-
tive store window and traditional store queue. As
shown in Fig.1, the store instruction S1 and store in-
struction S2 with the same address in traditional store
queue would be placed in the same set of speculative
active store window, which is assumed a 2-way set-
associate structure.

Fig.1. Comparison between speculative active store window and

traditional store queue.

When the load (L1) with same address executes, it
would associatively search the store queue to find the
youngest store instructions (❶ in Fig.1). Instead of the
traditional store queue, when the load with same ad-
dress accesses the speculative active store window, it
will get two variables: 1) HIT flag and 2) ENTRYhit.
The HIT flag indicates whether there is any hit entry
in this read access to the speculative active store win-
dow (➋ in Fig.1). If the HIT flag is true, ENTRYhit
will present the youngest entry among the hit entries.
And the order relationship between these stores could
be determined according to the SSNs (➌ in Fig.1).

When another store instruction with the same ad-
dress executes (S3 in the figure), the replacement policy
of the speculative active store window follows the prin-
ciple of active store window. When there is any invalid
entry in the indexed set of the speculative active store
window, it is occupied as a priority. When all entries
in the same set are valid, the entry that has the oldest
SSN is replaced firstly (➍ in Fig.1, store instruction S3
would replace the store instruction S1). But when the
SSN of the writing store is older than the oldest store in
the set, none of the entry in this structure is replaced.
As a result of the replacement policy, the too old store
is avoided into the speculative active store window.

When the speculative active store window is ac-
cessed, the least significant bits of addresses are hashed
to index it. The most significant bits of addresses is
compared with the tag field to assert a hit. Since the
hash function is serialized with the set-associate RAM
structure, the hash function has to be fast to compute
with zero or one level of logic. The adopted hash func-
tion incurs a delay of only one gate level of logic (a 2-
input XOR gate) by XORing the least significant bits
of the addresses to generate the index of the speculative
active store window. While the hash function increases
the computation cost, it reduces the probability of the
collision in the speculative active store window.

In speculative active store window, each line con-
tains a store instruction and its data. Any store in-
struction is marked as its store sequence number. This
organization guarantees that any load could find the
store that provides the correct data. And this informa-
tion would be used in the re-execution filtering. As our
experiments show, the simplicity of speculative active
store window does not decrease the forward accuracy
of load execution significantly. Another advantage is
that the replacement policy of speculative active store
window, which bases on the SSNs of store instructions,
will avoid the necessary to clean up whole structure
within interval period. Because the incorrect data will
not pollute the data of other stores, and will be replaced
eventually as the execution proceeds.

Zhen-Hao Zhang et al.: ASW: Enabling Far Store-Load Forwarding 773

3.3 ASW Micro-Architecture

Fig.2 is the block diagram of the ASW micro-
architecture, which shows the schematic of the proces-
sor pipeline. Fig.2(a) shows the store instruction exe-
cution datapath, and Fig.2(b) is load.

Fig.2. ASW Micro-architecture. (a) Store datapath. (b) Load

datapath.

For all memory instructions, an out-of-order front-
end execution is performed as in a normal processor
at the execution stage. However, in the ASW design,
memory instructions are issued entirely according to
their register dependencies. No other interference is
imposed. As a result, it is possible to violate memory
dependencies and this makes the front-end execution
fundamentally speculative. Thus the speculative active
store window accessed in the front-end execution does
not propagate any result to L1 data cache.

To detect violations, memory accesses are performed
a second time, totally in-order at the commit stage of
the pipeline. Any load that obtains different data from
the two executions will take the result of the back-end
execution and trigger a squash and replay of subsequent
instructions. In the ASW design, a tagged SSBF is

used to filter the re-execution of load instruction. The
difference between the original SSBF in [16] and the
tagged SSBF in ASW design is that tagged SSBF is
a set-associate structure instead of a direct-map struc-
ture. When the load instruction misses in the tagged
SSBF, the oldest SSN in the set would be returned as
the SSNcmt.

FIFO in Fig.2 is used to maintain the calculated ad-
dress and load/store data according to the program or-
der, which could be viewed as a complement to the re-
order buffer (ROB). FIFO is only accessed by memory
instructions when they are issued, executed and com-
mitted without any fully associative search, which leads
to a simpler implementation of FIFO.

3.3.1 Front-End Execution

As explained earlier, central to our design support is
an unconventional speculative active store window. At
the issue time of a store instruction, it simply writes
its address, store data and SSN into the speculative ac-
tive store window and FIFO (➊ in Fig.2). Since the
speculative active store window is used to handle com-
mon cases, its control is kept extremely simple. No
attempt is made to clean up the incorrect data left by
wrong-path instructions. When an entry is replaced, it
is simply discarded, no matter whether it is dirty.

What should be explained clearly is that when load
instructions execute at front-end execution it would ac-
cess speculative active store window, L1 data cache and
tagged SSBF simultaneously. This would make sure
that when the load instruction misses in the specula-
tive active store window, it could get the data from L1
data cache and the SSN from the tagged SSBF just like
what [16] does (➋ and ➌ in Fig.2). If it hits in the
speculative active store window, the load instruction
would return data immediately and discard the result
from the L1 data cache and tagged SSBF.

The most significant feature of the speculative active
store window is the transient replacement. According
to the replacement policy, too old stores are avoided
into the speculative active store window. Meanwhile,
the oldest entry in the speculative active store window
will be replaced eventually. And the replaced entry will
be discarded directly. There might be false entries in
the speculative active store window because of the mis-
prediction of the branch instructions or the false specu-
lative execution of other instructions (e.g., the load in-
structions). The transient feature of the speculative ac-
tive store window guarantees that the false store data
will be eventually replaced by the younger stores, so
there is no need to implement extra flush mechanism
when the false speculative execution occurs.

Since the store data does not need to clear when the

774 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

store instruction is committed, there may be a situa-
tion in which the forwarding data is from a committed
store instruction. This forwarding from a committed
store is named far forwarding in this paper. Since the
latency of access to speculative active store window is
less than the L1 data cache, far forwarding could be
used to reduce the execution latency of the hit load in-
struction, which will improve the performance of the
ASW micro-architecture.

3.3.2 In-Order Back-End Execution

In-order re-execution to validate a speculative exe-
cution is not a new technique. However, the extra band-
width requirement for re-execution makes it undesirable
or even impractical.

As the store sequence number of forwarding store
could be got at the front-end execution of the load in-
struction, it is very convenient to use the tagged SSBF
proposed by [10] to implement the filtering of load re-
execution.

When stores are committed, their SSNs and store
data would be written into the tagged SSBF and L1
data cache respectively (➍ in Fig.2).

When a load instruction is ready to commit, the load
will access the tagged SSBF to make sure whether it
needs to re-execute. Just like the SVW scheme apply-
ing an SSNnvul to any renamed load instruction, the
ASW design applies an SSNfwd to any executed load
instruction (➌ in Fig.2). The SSNfwd has two sources:
1) when there is a forwarding hit, the SSNfwd is the
SSN of the forwarding store instruction; 2) when there
is a forwarding miss, the SSNfwd is the SSN of the old-
est store in the SSBF.

The SSNfwd would be compared with the SSNcmt
that is got when the load is committed (➎ in Fig.2).
When they are not equal, it means that the load in-
struction might be executed incorrectly. Then the load
would access the L1 data cache again (➐ in Fig.2), and
the returned data would be compared with the forward-
ing data got at the time of execution (➏ in Fig.2), in
order to determine whether the forwarding data is cor-
rect.

3.3.3 Partial Problem

Partial-word communication is the situation in
which the load data comes from more than one store
data. Because of the unusual ratio — about 3% of the
total loads[10] — of this kind of communication, the
ASW design simply ignores it at the front-end execu-
tion. When the load instruction finds a partial hit in
the speculative active store window, it would be treated
as a miss and get its data from the L1 data cache. But
when this instruction commits, this kind of partial hit

would usually be treated as a hit in the tagged SSBF
and triggers a re-execution, which would provide gua-
rantee for the correctness of the load instruction.

3.4 Execution Examples

In order to describe the detail of the ASW micro-
architecture further, an example of the instruction se-
quence is proposed, which is listed in Fig.3. According
to the instruction sequence, I1, I2 and I4 are three
store instructions to the memory address A, but with
different store data. And I3 is a conditional branch in-
struction, the target of which is I5 that is a load to the
same memory address as the stores.

I1: Store D1, [A]
I2: Store D2, [A]
I3: BEQ Target
I4: Store D3, [A]
...
Target:
I5: Load [A]

Fig.3. Example of instruction sequence.

Three typical scenes of the execution of these in-
structions are picked: correct speculative forwarding,
false speculative forwarding and false speculative exe-
cution. In order to make description concise, the specu-
lative active store window and tagged SSBF are all as-
sumed as a 2-way set associative structure.

Correct Speculative Forwarding. In this scenario, the
I3 instruction is assumed to be correctly predicted as a
taken branch. And Fig.4 describes the execution trace
of these instructions. The I1, I2 and I5 instructions
are executed according to the program order. Then,
the speculative active store window and tagged SSBF
are filled with the SSN of I1 (S1) and I2 (S2) succes-
sively. So I5 gets the forwarding data from I2 in the
speculative active store window, and its SSNfwd is S2
which equals the SSNcmt from the tagged SSBF when
it is committed. And that means the I5 load is cor-
rectly forwarded by speculative active store window.

Fig.4. Correct speculative forwarding.

Zhen-Hao Zhang et al.: ASW: Enabling Far Store-Load Forwarding 775

False Speculative Forwarding. Fig.5 shows the sce-
nario of false speculative forwarding. This scenario is
similar to the previous one. The only difference is that
the I5 instruction is speculatively executed before the
I2 instruction, which leads to that the I5 instruction
gets a false forwarding data from the I1 instruction
(S1). So when I5 is committed, its SSNfwd (S1) is less
than the SSNcmt from the SSBF (S2), which means I5
gets wrong store data. And a re-execution is triggered.

Fig.5. False speculative forwarding.

False Speculative Execution. Fig.6 shows the sce-
nario of false speculative execution. This scenario
is used to describe how the ASW micro-architecture
avoids the effect by the mis-speculation of other in-
structions. It is assumed that I3 is mis-predicted as
a not-taken branch, which causes the I4 instruction to
be executed before it is squashed. I5 is mis-forwarded
by the speculative active store window, and its SSNfwd
is S3. But I4 is not committed, so the tagged SSBF
is not updated and will check out this mis-forwarding,
because the SSNcmt would be S2.

Fig.6. False speculative execution.

4 Experimental Evaluation

4.1 Methodology

We use cycle-level simulation to evaluate the perfor-
mance of the ASW micro-architecture. The simulator
is from SimpleScalar 3.0 for the Alpha instruction set

architecture. We modified the simulator to include per-
commit load re-execution and implemented our ASW
micro-architecture. We also modeled the unlimited con-
ventional LSQ design and the NoSQ design in [10]. The
parameters of simulation is listed in Table 1.

Table 1. Parameters of Simulation

Processor Core

Issue/Decode/Commit Width: 4/4/4
Instruction Window: 128-entry
Functional Units: INT 4+1 mul/div,

FP 4+1 mul/div
Branch Predictor: Hybrid Bimodal
– Predictor Entries: 4K
– Branch Target Buffer Entries: 2K (4-Way)
– Return Address Stack Entries: 32

Memory Hierarchy

L1 ICache: 32KB, 8-Way, latency=3 cycles
L1 DCache: 32 KB, 8-Way, latency=3 cycles, 2 ports
L2 Unified Cache: 1MB, 8-Way, latency=10 cycles
TLB: 128-entry, 4-Way
Memory Latency: 150 cycles

The front-end and execution pipelines have total
eight stages: one stage to predict, three stages to fetch,
one stage to decode/rename, one stage to dispatch, one
stage to execute, and one stage to commit. stage to
Data cache latency is three cycles, so the load pipeline
is 11 stages. The baseline is a conventional micro-
architecture based on the fully associative load/store
queues. It has a 32-entry store queue and a 32-entry
load queue respectively.

ASW micro-architecture has an additional 4-stage
back-end pipeline: one stage for load re-execution fil-
tering and three stages for load re-execution. The spec-
ulative active store window and tagged SSBF are all
256-entry 4-way set-associative. Entry size of specula-
tive active store window and tagged SSBF is 13B and
8 B respectively.

The modeled NoSQ design has the same configura-
tion as proposed by [10]. First of all, it has an additional
5-stage back-end pipeline: one load address calculation,
one load re-execution filtering and three data caches for
load re-execution. Secondly, the memory dependency
predictor uses two 1K-entry, 4-way set-associative ta-
bles. Finally, the NoSQ design also uses tagged SSBF
for load re-execution filtering, which is 128-entry 4-way
set-associative.

Our quantitative analysis uses highly-optimized Al-
pha binaries of the SPEC2000 benchmark suite�. We
simulate half a billion instructions after fast-forwarding
one billion instructions.

4.2 Performance

There are two factors affecting the performance of

�http://www.spec.org/cpu2000/.

776 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

Fig.7. Forward ratio comparison between baseline (Base), unlimited LSQ (Unlimited), NoSQ and ASW.

Fig.8. Forward ratio subdivision of ASW micro-architecture.

ASW micro-architecture: store-load forwarding effi-
ciency and load re-execution filtering efficiency. More
load is forwarded correctly and more redundant load re-
execution is filtered, better is the performance of ASW
design.

The store-load forwarding performance is deter-
mined by how many loads are forwarded and how ac-
curate the forwarding is.

Firstly, because of the wider forwarding range by
far forwarding, the ASW micro-architecture could for-
ward more in-flight load instructions and obtain more
instruction level parallelism without any extra cost on
cycle timing path and power. Fig.7 compares the for-
warding ratio between baseline pipeline, unlimited LSQ
design, NoSQ and ASW design. The forwarding range
of conventional pipeline and memory dependency pre-
diction is only restricted in the in-flight instruction win-
dow, which could only reach 16.87% on average at most
— the forwarding ratio of NoSQ design. But as de-
scribed above, ASW design could implement far for-
warding and obtain higher forwarding ratio, which is
up to 48.1%.

Fig.8 shows the forwarding ratio subdivision of total

Fig.9. Forward accuracy of ASW micro-architecture.

load instructions in ASW micro-architecture. Accord-
ing to Fig.8, average 15.24% of loads is forwarded by
in-flight stores, which is slightly less than the NoSQ
design. Meanwhile, another 32.86% is forwarded by far
forwarding on average, which is more than twice the
in-flight forwarding.

Secondly, the accuracy of forwarding by speculative
active store window is also an important metric about
the forwarding effect of ASW micro-architecture, which
reaches up to 93.19% on average as shown by Fig.9.

The second factor on the performance of ASW
micro-architecture is the accuracy of load re-execution
filtering, which will increase the penalty of load instruc-
tion’s mis-speculation. The more load instructions are
re-executed, the worse performance the ASW micro-
architecture obtains. ASW micro-architecture uses a
kind of modified tagged SSBF[10] to implement the fil-
tering mechanism, which is also used in the NoSQ de-
sign. In spite of the modification, the modified tagged
SSBF still could filter the majority of the load instruc-
tions, by 91.78% on average.

As explained above, the ASW micro-architecture
gains performance improvement by forwarding more
load instructions than traditional LSQ design. Fig.10
shows the relative instruction per cycle (IPC) of the
ASW micro-architecture to the baseline. On average,
the ASW design outperforms the baseline on the

Zhen-Hao Zhang et al.: ASW: Enabling Far Store-Load Forwarding 777

Fig.10. ASW micro-architecture performance.

SPECINT2000 and SPECFP2000 by 13.23% and 5.85%
respectively.

NoSQ design is a more scalable forwarding scheme,
which predicts the store-load violation and advances
the forwarding to the rename stage. But it is also re-
stricted in in-flight store-load forwarding. As Fig.10
shows, ASW design outperforms the NoSQ design by
8.71% on average.

4.3 Sensitivity Analysis

Fig.11 shows the ASW’s performance sensitivity (in
terms of average relative IPC to the baseline, as solid
lines show) and scalability (in terms of GHz, means the
max clock frequency supported by this configuration,
as dotted line shows) to different configurations. Fig.11
gives 12 configurations of different combinations of the
capacity (128-entry, 256-entry and 512-entry) and set
associativity (direct mapped (DM), 2-way, 4-way and
8-way). Because the entry number of ASW has very
little effect on the access latency compared to the set
associativity, only one dotted line is draw in Fig.11,
which presents the 512-entry ASW design. Even up to
512-entry with 8-way, the access latency to the ASW

Fig.11. ASW micro-architecture performance sensitivity and

scalability.

is only 1.04ns, and the IPC is improved by 11.15% on
average at the same time.

We could get several observations from Fig.11. First
of all, from superimposition of the three solid lines,
we could find that increasing capacity will provide sig-
nificant IPC improvement of ASW micro-architecture.
This is because the larger capacity will support more
store-load forwarding, especially far forwarding. The
second observation is that: when the capacity remains
unchanged, as the set associativity increases, the IPC
does not always increase. When the set associativity is
increased to 2-way, the IPC increases simultaneously,
because the collision probability of the same set in 2-
way ASW design is smaller than direct-mapped ASW
design. Once the set associativity outnumbers 2, the
IPC decreases, which means that the declined number
of sets in ASW structures would have very significant
negative effect on performance and offset the improve-
ment gained by increasing set associativity. Therefore,
according to the figure, 2-way ASW design is always
the better choice than others in the same capacity.

4.4 Design Complexity

Besides the IPC improvement, ASW micro-
architecture provides more scalable structures than tra-
ditional CAM-based LSQ. The dotted line in Fig.11
shows the maximal supported clock frequency by the
ASW structures, which is elaborated by CACTI 4.1.
There is only one dotted line in Fig.11, because capa-
city has negligible effect on the access latency. But
the set associativity is the reverse. More ways con-
tained in ASW design imply more complex comparison
and selection logic, and significant decrease of access
latency. This rule also applies to the fully associative
load/store queue. According to Fig.11, ASW design
could obtain the best performance speedup by using
only 2-way association.

778 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

Different from set-associative structures, fully asso-
ciative structures are used to construct the load/store
queue by conventional out-of-order processors. Fully
associative structures are more sensitive to the size,
because every entry in the fully associative structures
should be compared and searched. Table 2 lists the
access latency (in terms of nanosecond) of three dif-
ferent organizations, including fully associative, 4-way
set-associative and 8-way set-associative. Apparently,
according to the table, the fully associative structures
are much more non-scalable than set associative struc-
tures. This non-scalability is hard to satisfy the timing
and capacity requirements at the same time.

Table 2. Access Latency of Full-Associative and
Set-Associative

Fully Associative 4-Way 8-Way

32-entry 1.44 0.94 0.95
64-entry 1.45 0.94 0.96
128-entry 1.65 0.95 1.06
256-entry 2.14 0.95 1.06
512-entry 3.34 1.05 1.07
1024-entry 7.30 1.42 1.43

NoSQ design has been proved an efficient mechanism
to make scalable and simple store-load forwarding, us-
ing memory dependency prediction. NoSQ also uses the
set-associative structures to replace the original LSQ
design. Table 3 compares the design complexity be-
tween NoSQ and ASW. It shows that, using speculative
forwarding techniques, ASW design does not introduce
more pipeline stages and capacity of transistors than
NoSQ design.

Table 3. Design Complexity of NoSQ and ASW

NoSQ ASW

Forward Structure 10KB 3.25KB
Number of Filter Stages 5 4
Filter Structure 1KB 2KB

5 Related Work

There have been several recent proposals that opti-
mize store-load forwarding without CAM-based store
queue, which also base on the value-based load re-
execution for memory disambiguation.

In [7], if a producer can be pin-pointed, the load
forwards directly from the store’s SQ entry. However,
if there are several potential producers, another pre-
dictor provides a delay index and instructs the load to
wait until the instruction indicated by the delay index
commits.

Fire and Forget (FnF)[11] is another concurrently-
proposed alternative scheme for eliminating the store
queue. FnF accomplishes this by turning store-load for-
warding from a load-centric activity to a store-centric

activity and using load queue index prediction to per-
form forwarding through the load queue instead.

In [8], loads predicted to be dependents of stores are
delayed. When allowed to execute, it accesses a store
forwarding cache (SFC) and a memory dependence ta-
ble. This design avoids the need to exactly predict the
identity of the producer as memory addresses help to
further clarify the producer.

NoSQ[10] puts the memory dependence prediction
optimization to the extreme. It implements store-load
communication by dynamic short-circuiting of DEF-
store-load-USE chains to DEF-USE chains, where the
USE instruction could get needed data from register file
directly.

[19] and [20] discuss the situation where prior
techniques[7,10] are applied to a more aggressive pipeline
design[21-22] than conventional superscalar pipelines.

As explained above, ASW design uses the similar
mechanism as these works above: speculative store-load
forwarding and filtered load re-execution to detect the
mis-speculation. The difference between ASW design
and these prior works is the forwarding methods, which
all base on the memory dependency prediction in prior
works. Although research has shown that dependence
relationship between static load and store instructions
is predictable[17], it has two limitations. Firstly, it al-
ways has extra overhead to train the predictor and keep
a large history table for prediction. Secondly, the pre-
dictor only predicts the dependence between in-flight
load-store pairs.

The driving principle of ASW micro-architecture is
that, even if the memory instructions are issued simply
on the register dependencies and their memory depen-
dencies are completely disregarded, about 98% of loads
could obtain a correct value from the out-of-order exe-
cuted stores[12]. So the ASW design replaces the mem-
ory dependency predictor with the speculative active
store window, which maintains the store data and for-
wards it to the loads. The most important advantage of
speculative active store window is using SSN to deter-
mine the order relationship between stores, which leads
the speculative active store window to be independent
of the in-flight instruction window and to implement
far forwarding correctly.

6 Conclusions

At the beginning of this paper, we have introduced
the concept of active store window for any load. The
active store window includes all of the active stores be-
fore the specified load and all the data needed by the
load comes from its active store window.

Conventional fully associative load/store queue
could be viewed as a kind of in-flight active store

Zhen-Hao Zhang et al.: ASW: Enabling Far Store-Load Forwarding 779

window, which includes the store data sources and their
age relationship. But it is so hard to increase the ca-
pacity of the load/store queue in order to accommodate
large instruction windows, because of the latency and
dynamic power consumption of store-load forwarding
and memory disambiguation.

In this paper, we propose a new micro-architecture
called ASW, which uses speculative store-load forward-
ing and filtered load re-execution mechanism. In this
design, speculative active store window is used to im-
plement the speculative store-load forwarding. It in-
cludes all information needed by speculative store-load
forwarding and is comprised of set-associate structures.
This kind of implementation has two important advan-
tages.

Firstly, different from traditional load/store queue,
speculative active store window uses SSNs to determine
the age relationship between stores, which is indepen-
dent of the in-flight instruction window and could be
used to determine the age relationship between com-
mitted stores. This new feature makes the ASW design
can implement far forwarding correctly, in which the
forwarding store has been committed. Far forwarding
enlarges the forwarding range of speculative active store
window and optimizes loads’ execution latency.

Secondly, ASW micro-architecture does not intro-
duce any CAM-like structure that would be non-
scalable. Compared to another scalable design —
NoSQ, ASW design also does not introduce any extra
cost on pipeline stage and hardware cost. Considering
the speculative active store window and tagged SSBF
have similar basic structure and same replacement pol-
icy, ASW design also has less design complexity than
NoSQ design.

References

[1] Wulf W A, McKee S A. Hitting the memory wall: Impli-
cations of the obvious. Computer Architecture News, 1995,
23(1): 20-24.

[2] Park I, Ooi C L, Vijaykumar T N. Reducing design complex-
ity of the load/store queue. In Proc. the 36th MICRO, San
Diego, USA, Dec. 3-5, 2003, pp.411-422.

[3] Gandhi A, Akkary H, Rajwar R, Srinivasan S T, Lai K. Scal-
able load and store processing in latency tolerant processors.
In Proc. the 32nd ISCA, Madison, USA, June 4-8, 2005,
pp.446-457.

[4] Pericàs M, Cristal A, Cazorla F J, Gonzàlez R, Veidenbaum
A, Jimènez D A, Valero M. A two-level load/store queue based
on execution locality. In Proc. the 35th ISCA, Beijing, China,
June 21-25, 2008, pp.25-36.

[5] Sethumadhavan S, Desikan R, Burger D, Moore C R, Keck-
ler S W. Scalable hardware memory disambiguation for high
ILP processors. In Proc. the 36th MICRO, San Diego, USA,
Dec. 3-5, 2003, pp.399-410.

[6] Baugh L, Zilles C. Decomposing the load-store queue by func-
tion for power reduction and scalability. IBM Journal of Re-
search and Development, 2006, 50(2/3): 287-297.

[7] Sha T T, Martin M M K, Roth A. Scalable store-load for-
warding via store queue index prediction. In Proc. the 38th
MICRO, Barcelona, Spain, Nov. 12-16, 2005, pp.159-170.

[8] Stone S S, Woley K M, Frank M I. Address-indexed memory
disambiguation and store-to-load forwarding. In Proc. the
38th MICRO, Barcelona, Spain, Nov. 12-16, 2005, pp.171-
182.

[9] Roesner F, Burger D, Keckler S W. Counting dependence pre-
dictors. In Proc. the 35th ISCA, Beijing, China, June 21-25,
2008, pp.215-226.

[10] Sha T T, Martin M M K, Roth A. NoSQ: Store-load commu-
nication without a store queue. In Proc. the 39th MICRO,
Orlando, USA, Dec. 9-13, 2006, pp.285-296.

[11] Subramaniam S, Loh G H. Fire-and-forget: Load/store
scheduling with no store queue at all. In Proc. the 39th
MICRO, Orlando, USA, Dec. 9-13, 2006, pp.273-284.

[12] Garg A, Rashid M W, Huang M. Slackened memory depen-
dence enforcement: Combining opportunistic forwarding with
decoupled verification. In Proc. the 33rd ISCA, Boston, USA,
June 17-21, 2006, pp.142-154.

[13] Sethumadhavan S, Roesner F, Emer J S, Burger D, Keck-
ler S W. Late-binding: Enabling unordered load-store queue.
In Proc. the 34th ISCA, San Diego, USA, June 9-13, 2007,
pp.347-357.

[14] Huang R, Garg A, Huang M. Software hardware cooperative
memory disambiguation. In Proc. the 12th HPCA, Austin,
USA, Feb. 11-15, 2006, pp.244-253.

[15] Cain H W, Lipasti M H. Memory ordering: A value-based
approach. In Proc. the 31st ISCA, München, Germany, June
19-23, 2004, pp.90-101.

[16] Roth A. Store vulnerability window: Re-execution filtering
for enhanced load optimization. In Proc. the 32nd ISCA,
Madison, USA, June 4-8, 2005, pp.458-468.

[17] Chrysos G Z, Emer J S. Memory dependence prediction using
store sets. In Proc. the 25th ISCA, Barcelona, Spain, June
27-July 1, 1998, pp.142-153.

[18] Moshovos A, Breach S E, Vijaykumar T N, Sohi G S. Dy-
namic speculation and synchronization of data dependences.
In Proc. the 24th ISCA, Denver, USA, June 2-4, 1997, pp.181-
193.

[19] Hilton A, Roth A. Decoupled store completion/silent de-
terministic replay: Enabling scalable data memory for
CPR/CFP processors. In Proc. the 36th ISCA, Austin, USA,
June 20-24, 2009, pp.245-254.

[20] Hilton A, Roth A. BOLT: Energy-efficient out-of-order
latency-tolerant execution. In Proc. the 16th HPCA, Ban-
galore, India, Jan. 9-14, 2010, pp.1-12.

[21] Mutlu O, Stark J, Wilkerson C, Patt Y N. Runahead exe-
cution: An alternative to very large instruction windows for
out-of-order processors. In Proc. the 9th HPCA, Anaheim,
USA, Feb. 8-12, 2003, pp.129-140.

[22] Akkary H, Rajwar R, Srinivasan S T. Checkpoint processing
and recovery: Towards scalable large instruction window pro-
cessors. In Proc. the 36th MICRO, San Diego, USA, Dec. 3-5,
2003, pp.423-434.

Zhen-Hao Zhang is currently
a computer science Ph.D. candidate

in computer science of Peking Uni-
versity. His current research inter-
ests include high performance micro-
processor architecture, energy effi-
cient load/store execution and mem-
ory system optimization.

780 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

Xiao-Yin Wang received her

Ph.D. degree in computer science
from Peking University in 2010. She
is now a postdoctoral researcher in
Peking University. Her research in-
terests include microprocessor archi-
tecture, low-power cache design and

memory system optimization.

Dong Tong received his Ph.D.
degree in computer science from
Harbin Institute of Technology in
1999. He is now a professor in
the School of Electronics Engineer-
ing and Computer Science, Peking

University. His research interests in-
clude processor architecture, recon-
figurable computing, interconnection
network and System-on-Chip design.

He is a member of CCF and ACM.

Jiang-Fang Yi received her
Ph.D. degree in computer science
from Peking University in 2007. She
is now an associate professor in
the School of Electronics Engineer-

ing and Computer Science, Peking
University. Her research interests in-
clude HW/SW co-design, System-on-
Chip verification and test vector au-
tomatic generation.

Jun-Lin Lu received his Ph.D.
degree in computer science from
Peking University in 2009. He is now
an associate professor in the School

of Electronics Engineering and Com-
puter Science, Peking University. His
research interests include HW/SW
co-design and the communication ar-
chitecture of System-on-Chip.

Ke-Yi Wang is the professor

and doctoral tutor in the School of
Electronics Engineering and Com-
puter Science, Peking University. He
presided over and participated seve-
ral national scientific and technolog-
ical projects. His research inter-

ests include high performance micro-
processor architecture design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

