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Abstract Project scheduling under uncertainty is a challenging field of research that has attracted increasing attention.
While most existing studies only consider the single-mode project scheduling problem under uncertainty, this paper aims
to deal with a more realistic model called the stochastic multi-mode resource constrained project scheduling problem with
discounted cash flows (S-MRCPSPDCF). In the model, activity durations and costs are given by random variables. The
objective is to find an optimal baseline schedule so that the expected net present value (NPV) of cash flows is maximized.
To solve the problem, an ant colony system (ACS) based approach is designed. The algorithm dispatches a group of ants to
build baseline schedules iteratively using pheromones and an expected discounted cost (EDC) heuristic. Since it is impossible
to evaluate the expected NPV directly due to the presence of random variables, the algorithm adopts the Monte Carlo (MC)
simulation technique. As the ACS algorithm only uses the best-so-far solution to update pheromone values, it is found
that a rough simulation with a small number of random scenarios is enough for evaluation. Thus the computational cost is
reduced. Experimental results on 33 instances demonstrate the effectiveness of the proposed model and the ACS approach.
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1 Introduction

Project scheduling is one of the most important
subjects in the project management field. The clas-
sical project scheduling model, namely the resource
constrained project scheduling problem (RCPSP), in-
volves scheduling the activities of a project to min-
imize makespan subject to precedence and resource
constraints. The problem has been proven to be NP-
hard[1-2]. A more general formulation is the multi-
mode RCPSP (MRCPSP)[3-4]. It considers a com-
mon situation in real-life projects that activities can
be performed by different alternative modes. These
modes consume different quantities of time, cost, and
resources to complete the same activity. To handle the
time/cost/resource trade-offs among these modes, MR-
CPSP has to deal with not only the processing order
of activities but also the selection of execution modes.
As a result, the computational complexity of MR-
CPSP significantly increases. It has been demonstrated
by Kolisch[5] that finding a feasible solution for the
MRCPSP with more than one nonrenewable resource

is already NP-complete, let alone the problem of find-
ing the optimal feasible solution. While the conven-
tional project scheduling models use makespan as the
criterion, financial criteria have been increasingly con-
sidered to be more meaningful for capital-intensive
projects [6-7]. The most commonly used financial cri-
terion is the net present value (NPV) of discounted
cash flows. NPV is defined as the difference between
cash inflows and outflows, taking into account the time
value of money by discounting the cash flows. The
presence of the NPV criterion results in a more com-
plicated model called MRCPSP with discounted cash
flows (MRCPSPDCF)[8-10].

Due to the importance and difficulty of project
scheduling, a considerable amount of research effort has
been devoted to proposing various project scheduling
algorithms during the last decades. However, in most
studies, the scheduling models are based on a premise
that the environmental parameters such as activity du-
rations and costs can be determined before schedul-
ing. In application, due to the occurrence of unex-
pected situations, it is almost impossible to determine
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all environmental parameters of a project a priori[11-13].
As the actual durations may be somewhat longer or
shorter than expected, the probability of processing a
project exactly following the predefined plan is very
low. As a result, the disrupted schedule may miss dead-
lines and incur deficit, and the validity of the schedules
generated by deterministic scheduling has been heavily
questioned[11]. For the scheduling models with financial
aspects, forecasting the cash inflows and outflows accu-
rately is a very difficult task[14]. In this sense, handling
uncertainty is even more important in the model with
financial aspects. Generally speaking, to be a practical
scheduling model for project selection and planning, un-
certainty is an innegligible factor.

Scheduling under uncertainty is a challenging field of
research that has attracted increasing attention. Seve-
ral types of scheduling models and algorithms have
been proposed for the classical single-mode RCPSP
under uncertainty with the makespan criterion[15-20].
However, for the scheduling problem with financial as-
pects, the literature that considers uncertainty is rather
sparse[11]. In addition, the existing studies[21-25] only
consider the single-mode scheduling problem and dis-
regard the resource constraints in the project. To the
best of our knowledge, the more realistic and compli-
cated model with resource constraints and alternative
execution modes is still not considered in the litera-
ture.

This paper intends to deal with a multi-mode re-
source constrained project scheduling problem under
uncertainty with the objective to maximize the NPV of
cash flows. We term the scheduling model the stochas-
tic MRCPSPDCF (S-MRCPSPDCF). In the model, un-
certainty is sourced from activity durations and costs.
The duration and cost of every alternative execution
mode are given by random variables of certain proba-
bility distributions. Due to the presence of random en-
vironmental parameters, the scheduling problem can
be divided into two stages: the pre-execution stage
before knowing the actual values of random variables
and the post-execution stage when all random variables
have been revealed. In real-world application, in order
to evaluate the potential of a project, it is necessary
to first build an efficient baseline schedule in the pre-
execution stage. With this requirement, the objective
of the considered S-MRCPSPDCF is actually to find a
baseline schedule in the pre-execution state, so that for
all possible realization of the random variables in the
post-execution state, the expected NPV of cash flows is
maximized.

To solve this problem, this paper proposes an ant
colony optimization (ACO) approach. ACO is a
population-based optimization algorithm proposed by

Dorigo[26-27] in the early 1990s in the light of how
ants manage to discover the shortest path from their
nest to a food source. It has been successfully applied
to many complicated scheduling problems[28-30]. Re-
cently, Gutjahr[31-32] and Balaprakash[33] have develo-
ped a simulation ACO algorithm (S-ACO) to tackle
the probabilistic traveling salesman problem (PTSP),
demonstrating the great potential of ACO for solving
optimization problems under uncertainty. Inspired by
these studies, this paper develops an ant colony sys-
tem (ACS) approach to S-MRCPSPDCF. In the algo-
rithm, artificial ants build baseline schedules iteratively
according to pheromones and an expected discounted
cost (EDC) heuristic. The EDC heuristic is defined
based on the expected values of activity durations and
costs. Since the model has uncertainties, it is impossi-
ble to evaluate the expected NPV of a baseline schedule
through a deterministic expression. In this situation,
the proposed algorithm adopts the Monte Carlo (MC)
simulation. Thus the algorithm is termed MC-ACS.
MC simulation is a computational method that com-
putes the properties of a system by repeatedly sampling
from the system using random numbers. If we need
very accurate results, we usually have to sample a large
number of simulation scenarios, and thus the computa-
tional cost of the simulation is very high. Fortunately,
different from other ACO variants, ACS only uses the
best-so-far solution to update pheromones. Therefore,
the proposed algorithm only needs a rough simulation
with a small number of simulation scenarios to distin-
guish the best-so-far solution. In addition, a special
technique that increases the sample size linearly[31] is
applied. These design schemes have the function of re-
ducing the computational cost for the algorithm. The
proposed algorithm is tested on 33 randomly-generated
instances. Experimental results show that the proposed
approach is effective.

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews the related work on RCPSP and
scheduling under uncertainty. Section 3 formulates the
considered S-MRCPSPDCF model. Section 4 presents
the proposed ACO approach. Experimental studies are
shown in Section 5, and the conclusions are finally sum-
marized in Section 6.

2 Background and Related Work

2.1 Resource Constrained Project Scheduling

Resource constrained project scheduling is an im-
portant model that has broad applications in industrial
projects. Given a project with n activities, the goal of
the conventional RCPSP is to arrange the processing
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time of each activity subject to the precedence and re-
source constraints so that the makespan of the project
is minimized. To find a feasible schedule, the most
common approach is to find an activity list that speci-
fies an order of the activities satisfying the precedence
relations[1]. Then the activities are assigned to fea-
sible processing time according to their order in the
activity list. Various methods have been proposed to
find the activity list, for example, exact approaches like
the branch-and-bound algorithm[34] and meta-heuristic
approaches like tabu search (TS), simulated annealing
(SA), genetic algorithm (GA)[35], and ACO[28].

In conventional RCPSP, each activity can only be
implemented in a single mode. In practice, it is common
that an activity can be implemented in multiple ways.
For example, an activity can be done by 10 employees
and four machines in four months in the normal mode.
We can also devote 20 employees and six machines to
the activity to shorten its duration to three months in
the urgent mode. Therefore, the different execution
modes represent different trade-offs among time, cost
and resource for an activity. The more general form
of RCPSP that considers multiple execution modes is
called multi-mode RCPSP. To handle the trade-offs in
the MRCPSP, we have to determine not only the ac-
tivity list, but also the mapping of each activity to a
suitable execution mode. Thus the computational com-
plexity of MRCPSP is significantly increased. By now,
the existing approaches to MRCPSP are mainly meta-
heuristics, for example, hybrid GA[3-4], ACO[36], SA[37].
For a more comprehensive survey to MRCPSP, please
refer to [1].

The traditional RCPSP and MRCPSP only consider
the makespan criterion and ignore the financial aspect.
In recent years, financial aspect is increasingly consi-
dered to be crucial to project scheduling. The most
commonly used financial criterion is NPV[6]. Compared
with the original makespan criterion, the NPV crite-
rion incurs higher computational cost for an evaluation
of the objective function, as the objective function is
nonlinear. In addition, as the evaluation of NPV in-
volves both the time and cost of a project, it is more
difficult to define effective heuristics for the problem.
Due to the difficulty and complexity of MRCPSPDCF,
by now, only several meta-heuristic approaches have
been developed for the problem, for example, the GA
approach proposed by Ulusoy[8], the SA and TS met-
hods proposed by Mika et al.[9], and the ACO approach
proposed by Chen et al.[10].

In this paper, we extend our previous work on
MRCPSPDCF[10] to make the model and the ACO
approach more practical by considering uncertainties.
Different from the previous study, in order to ad-
dress uncertainty, we incorporate MC simulation in the

ACO approach and develop an expected discounted
cost (EDC) based heuristic for the problem.

2.2 Scheduling under Uncertainty

Scheduling under uncertainty is a new and chal-
lenging direction in operations research. According to
Bianchi et al.[38-39] and Jin and Branke[40], the existing
approaches for handling uncertainty in scheduling can
be generally classified into four types: reactive models,
stochastic models, fuzzy models, and robust models.
Reactive scheduling models[41] arise when environmen-
tal parameters are highly uncertain. In this case, it
is impossible to build a solution that is usable for any
realization of the environmental parameters, and thus
activities are scheduled on-line with the execution of
the project. Stochastic models are by now the most
commonly used models for modeling uncertainty[15-18].
The main feature of stochastic models is that parame-
ters with uncertainty are described by random varia-
bles. Under this assumption, the objective function
in a stochastic scheduling model strongly depends on
the probabilistic structure of the model. Some typical
objective functions for this kind of scheduling models
involve minimizing the expected makespan, minimizing
the expected cost, and maximizing the probability of
obeying all constraints of the project. Different from
stochastic models, in the fuzzy models[19] and robust
models[20], uncertainty is modeled by fuzzy quantities
and interval values, respectively. For a comprehensive
survey of scheduling under uncertainty, please refer to
[11-12].

Although various models for scheduling under uncer-
tainty have been developed, the above-mentioned mod-
els only consider single-mode projects with uncertain-
ties only on activity durations. As it is difficult to accu-
rately forecast the cash flows of a project, handling un-
certainty is even more important in the project schedul-
ing models with the NPV criterion[13]. However, exist-
ing studies that consider uncertainty in project schedul-
ing with financial aspects are rather sparse[11]. The
studies of cash flow optimization in project scheduling
under uncertainty only include the dynamic schedul-
ing policy based on the backward stochastic dy-
namic programming recursion method[21-22], the dy-
namic scheduling algorithm[23], and the branch-and-
bound approaches[24-25]. In addition, in all these ap-
proaches, the scheduling models are somewhat simpli-
fied. For one thing, the resource constraints are ei-
ther disregarded[21-24] or relaxed to the single-machine
constraint[25]. For another, only a single execution
mode is considered for each activity. Overall, it is
desirable to further extend existing models and ap-
proaches to consider resource constraints, multiple exe-
cution modes and uncertainty in financial aspects.
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3 Formulation of Stochastic MRCPSPDCF

3.1 Problem Description

S-MRCPSPDCF is a problem of scheduling a multi-
mode project with uncertain durations and costs, sub-
ject to precedence and resource constraints, with the
objective to maximize the expected NPV. In the model,
a project is described by the following features.

3.1.1 Precedence Constraint

In the model, a project is described by an activity-
on-arc (AoA) network G = (E, A). The node set
E = {e1, e2, . . . , e|E|} corresponds to the set of events in
the project, where |E| is the number of events. The arc
set A = {a1, a2, . . . , an} corresponds to the set of ac-
tivities, where n is the number of activities. The AoA
network defines the precedence relations between the
activities. An example of the AoA network is shown in
Fig.1.

Fig.1. Example of the AoA network.

3.1.2 Resource Constraint

Renewable resource constraints are considered in the
model. Suppose the project uses R types of renewable
resources, for each time, the consumption of the k-th
(k = 1, 2, . . . , R) renewable resource is limited to Rk

units.

3.1.3 Multi-Mode

The model considered in this paper allows each ac-
tivity to be implemented in different ways. Each ac-
tivity ai (i = 1, 2, . . . , n) is associated with a set of
execution modes Mi = {mi1,mi2, . . . , mi|Mi|}, where
mij is the j-th mode for the execution of ai and |Mi| is
the total number of available modes for ai. To complete
an activity ai, the different modes corresponding to ai

may consume different quantities of time, cost and re-
sources. We denote the duration and cost of mode mij

as dij and cij , respectively. Mode mij also consumes
rk
ij units of the k-th renewable resource. In the model,

all of the execution modes are non-preemptive. That is,
once a mode mij begins, it has to be complete without
any interruption.

3.1.4 Uncertain Durations and Costs

Different from the traditional deterministic

scheduling models, S-MRCPSPDCF takes account of
uncertainty. In application, a common approach for
predicting durations and costs is to build frequency
distributions based on historical data[42]. Therefore,
in this paper, uncertainty is formulated as a stochastic
scheduling model.

In the model, duration dij and cost cij of mode mij

are given by random variables instead of deterministic
numbers. The random variables are of some pre-given
probability distributions (e.g., normal and beta distri-
butions). For the sake of convenience, we suppose that
the durations are positive integer valued random varia-
bles and the costs are non-negative random variables
in the form of either integer or real numbers. In ad-
dition, lower and upper bounds are defined to control
the domain of durations and costs. The durations and
costs of all execution modes are represented by a ran-
dom matrix ω.

ω =




d11, c11, d12, c12, · · · , d1|M1|, c1|M1|
d21, c21, d22, c22, · · · , d2|M2|, c2|M2|

...
dn1, cn1, dn2, cn2, · · · , dn|Mn|, cn|Mn|


 . (1)

Due to the presence of random variables, the schedul-
ing problem can be divided into two stages. At the
pre-execution stage, we need to first build an efficient
baseline schedule. Then at the post-execution stage,
according to the realization of the random variables,
the baseline schedule is converted into an actual sche-
dule, and the makespan and NPV of the actual sche-
dule can be computed. The goal of the considered S-
MRCPSPDCF is to find an optimal baseline schedule
that maximizes the expected NPV under all possible
realizations.

3.2 From Baseline Schedules to Actual
Schedules

Due to the presence of random variables, the NPV
of a baseline schedule cannot be evaluated directly. To
evaluate the NPV, we need to first convert the base-
line schedule into an actual schedule under a certain
realization of the random variables. In this subsection,
we discuss how to convert a baseline schedule to an ac-
tual schedule under a certain realization. A baseline
schedule S for S-MRCPSPDCF is in the form of

S =
(

(ap1, ap2, . . . , apn)
(kp1, kp2, . . . , kpn)

)
, (2)

where p1, p2, . . . , pn is a permutation of the numbers
from 1 to n, and kpi

means that activity api
is mapped

to execution mode mpikpi
. Here S actually defines

the processing order (ap1 , ap2 , . . . , apn) of activities and
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the selection (kp1 , kp2 , . . . , kpn
) of execution modes. To

guarantee the satisfaction of precedence constraints, if
ai is a predecessor activity of aj in the AoA network,
ai must appear earlier than aj in the processing order
(ap1 , ap2 , . . . , apn

).
We suppose the realization of the random matrix ω

is ω′.

ω′ =




d′11, c
′
11, d

′
12, c

′
12, · · · , d′1|M1|, c

′
1|M1|

d′21, c
′
21, d

′
22, c

′
22, · · · , d′2|M2|, c

′
2|M2

|
...

d′n1, c
′
n1, d

′
n2, c

′
n2, · · · , d′n|Mn|, c

′
n|Mn|


 ,

(3)
where d′ij and c′ij are the realizations of dij and cij ,
respectively. Under ω′, the baseline schedule S can be
converted into an actual schedule S(ω′) using the serial
schedule generation scheme (SSGS)[43]. The pseudo-
code of the SSGS is shown in Fig.2. The basic idea of
SSGS is to repeatedly pick the first unselected activity
from the processing order (ap1 , ap2 , . . . , apn

) of activi-
ties, map it to its corresponding execution mode, and
schedule it to the earliest possible time that satisfies
the precedence and resource constraints to execute. An
example of converting S to actual schedules under diffe-
rent realizations is illustrated in Fig.3. Given a baseline
schedule S with the processing order (a2, a1, a4, a3, a5)
and the selection of modes (1, 2, 2, 3, 1), we first se-
lect the first activity a2 from the order and map a2 to
its first mode m21. Then m21 is scheduled to the be-
ginning time of the project. Then the next activity a1

is picked and scheduled. These procedures run repeat-
edly until all activities have been arranged. According
to Fig.3, it can be seen that a baseline schedule can be
converted into different actual schedules under different
realizations of the random variables.

Procedure SSGS(S, ω′)
1 Initialize; /∗All units of resources are set available

2 for i = 1 to n + 1

3 Select the activity api from the list (ap1 , ap2 , . . . , apn )

in S;

4 Map api to the execution mode mpikpi
;

5 Schedule mpikpj
to the earliest possible start time t

to execute subject to precedence and resource con-

straints;

6 S(ω′).ST iki
← t;

7 Update resources;

8 end for

9 Set S(ω′).FT to the time when all the execution modes

have finished;

end procedure

Fig.2. Pseudo-code of SSGS.

After converting the baseline schedule S into an ac-
tual schedule S(ω′) under the realization ω′, the start

Fig.3. Example of converting a baseline schedule into different

actual schedules under different realizations of random variables.

In the example, the AoA network of the project is given in Fig.1.

The resource constraint is set to R1 = 6.

time and end time of each execution mode in the actual
schedule S(ω′) can be determined. Here if activity ai

is executed in mode miki in S, we denote the start time
of miki

in S(ω′) as S(ω′).ST iki
and the finish time of

S(ω′) as S(ω′).FT .

3.3 Evaluation of NPV of Cash Flows

Once the execution time of all execution modes have
been determined, we can further calculate the actual
NPV of cash flows NPV (S(ω′)) of the schedule S(ω′)
by

NPV (S(ω′)) = Inflow(S(ω′))−Outflow(S(ω′))+

BP(S(ω′)), (4)

where Inflow(S(ω′)), Outflow(S(ω′)) and BP(S(ω′))
represent the cash inflows, cash outflows, and bonus or
penalty, respectively.

3.3.1 Cash Inflows

Cash inflows occur when the contractor pays for
the execution of the project. At the beginning of
the project, suppose U is the total project value and
λ is the prepayment rate, the startup cash inflows
SInflow(S(ω′)) is given by

SInflow(S(ω′)) = λU. (5)

During the course of the project, the contractor pays
for the finishing activities at some predefined milestone
events. The cash flows are discounted according to a
discounted rate α. If Wi is the net worth of ai, θ is the
milestone payment rate, and the payment for ai under
S(ω′) occurs at time S(ω′).PT i, then the milestone
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inflows MInflow(S(ω′)) is given by

MInflow(S(ω′)) =
n∑

i=1

θWi × exp(−α× S(ω′).PT i).

(6)
Finally, the contractor pays the rest unpaid values for
the project, which is given by

FInflow(S(ω′)) =
(
U − λU −

n∑

i=1

θWi

)
×

exp(−α× S(ω′).FT ). (7)

So the present value of cash inflows can be computed
as follows.

Inflow(S(ω′)) =SInflow(S(ω′)) + MInflow(S(ω′))+

FInflow(S(ω′)). (8)

3.3.2 Cash Outflows

Cash outflows involve the cost of executing the
project. If activity ai is executed in mode miki

in
schedule S, under realization ω′, the actual duration
and cost of miki are d′iki

and c′iki
, respectively. So the

discounted cash outflows can be evaluated as follows.

Outflow(S(ω′))

=
n∑

i=1

c′iki
× exp(−α× (S(ω′).ST iki

+ d′iki
)).

(9)

3.3.3 Bonus or Penalty

The cash flows of bonus (or penalty) arise when the
project finishes earlier (or later) than a predetermined
interval of due dates [TLOW, TUP]. If the finish time
S(ω′).FT is earlier than TLOW, the company will gain
a bonus payment. Otherwise, if S(ω′) comes later than
TUP, the company will lose money. Suppose γ and δ are
the bonus and penalty rates, the cash flows of bonus or
penalty are given by

BP(S(ω′)) =





γU(TLOW − S(ω′).FT )×
exp(−α× S(ω′).FT ),

if S(ω′).FT < TLOW,

0, if TLOW 6 SS(ω′).FT 6 TUP

−δU(S(ω′).FT − TUP)×
exp(−α× S(ω′).FT ),

if TUP < S(ω′).FT .
(10)

Since a baseline schedule is not an actual schedule for
execution, to evaluate the performance of a baseline

schedule, the S-MRCPSPDCF model adopts the ex-
pected NPV of cash flows under all possible realiza-
tions as the criterion. If the random variables in ω are
of discrete values, the NPV expectation of a baseline
schedule S is defined as

E(NPV (S)) =
∑

ω′∈Ω

(NPV (S(ω′))× p(ω = ω′)), (11)

where Ω is the domain of ω and p(ω = ω′) is the proba-
bility of obtaining ω′ from ω.

If ω contains continuous random variables, the ex-
pected NPV of S is defined as

E(NPV (S)) =
∫

Ω

NPV (S(ω′))× p(ω′)dω′, (12)

where p(ω′) is the probability density function of ω.
Based on the above definitions, the objective of S-

MRCPSPDCF is actually to find a baseline schedule S
that maximizes E(NPV (S)). However, because of the
complexity of the random matrix ω and the function
NPV (S(ω′)), in general, it is impossible to calculate
the expected NPV directly through (11) or (12). There-
fore, in the proposed approach, we use Monte Carlo
simulation to estimate the expected NPV, E(NPV (S)),
of a baseline schedule.

4 Monte-Carlo Ant Colony System Algorithm

Compared with existing models with the considera-
tion of financial aspects under uncertainty[21-25], the S-
MRCPSPDCF model considered in this paper has the
following difficulties. First, as the model considers mul-
tiple execution modes, not only the processing order
of activities but also the selection of execution modes
has to be addressed. Consequently, the computational
complexity of the problem significantly increases. For a
problem with n activities, if each activity is associated
with m alternative execution modes, the computational
complexity becomes O(mn × (n − 1)!). Second, as the
S-MRCPSPDCF model takes account of resource con-
straints and uncertainty in durations and cash flows,
given a baseline schedule, its expected NPV cannot be
computed directly through certain expressions. The ex-
pected NPV is estimated by Monte Carlo simulation.
However, implementing a comprehensive MC simula-
tion is time consuming. Therefore, it is impractical to
run comprehensive MC simulation for the estimation of
every solution built by the algorithm.

In order to find a baseline schedule that maximizes
the expected NPV, this paper proposes an ACO ap-
proach. ACO is characterized by dispatching a group
of artificial ants to build solutions to the problem itera-
tively using pheromone and heuristic information. In
this paper, we adopt the ACS algorithm[27], which is
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by now one of the best-performed ACO variants. ACS
is suitable for solving the considered S-MRCPSPDCF
as it has a special feature that only the information
of the best-so-far solution is used in pheromone updat-
ing. With this feature, the expected NPVs of other
non-best-so-far solutions are not necessary to be esti-
mated accurately. Only a rough MC simulation is al-
ready enough for distinguishing the best-so-far solution.
In this way, the algorithm does not need to run com-
prehensive MC simulations for every solution, and thus
the computational cost is reduced.

As the proposed algorithm couples MC simulation
with ACS, we denote it as MC-ACS. The MC-ACS al-
gorithm is composed of the following procedures:

Step 1: Initialization. All the parameters, heuristic
information and pheromone values of the algorithm are
initialized at the beginning of the algorithm.

Step 2: Solution Construction. Each ant in the al-
gorithm sets out to construct a baseline schedule using
pheromone and heuristic information. During the con-
struction process, the local pheromone updating rule is
applied after each move of the ants.

Step 3: Evaluation and Comparison. The expected
NPVs of the baseline schedules built by the ants are
evaluated and compared based on Monte Carlo simu-
lation. If any of the schedules found in the current
iteration outperforms the previous best-so-far schedule
in the comparison, the best-so-far schedule found by
the algorithm is updated.

Step 4: Global Pheromone Updating. The

pheromone values corresponding to the best-so-far
schedule are updated.

Step 5: Terminal Test. If the algorithm has met
the terminal condition, the algorithm is terminated and
the best-so-far schedule is returned. Otherwise, go to
step 2.

The overall flowchart of the algorithm is shown in
Fig.4. In general, the above procedures include three
main operations: 1) Solution Construction — how to
build baseline schedules; 2) Evaluation and Comparison
— how to evaluate and compare the performance of the
schedules built by the ants; and 3) Pheromone Manage-
ment — how to manage the pheromone values in the al-
gorithm, including the initialization of pheromone val-
ues in step 1, the local pheromone updating rule used
in step 2, and the global pheromone updating rule used
in step 4. The details for these three operations are
shown in the following subsections.

4.1 Solution Construction

Let us denote the baseline schedule generated by the
l-th artificial ant as

S(l) =

(
(a(l)

p1 , a
(l)
p2 , . . . , a

(l)
pn)

(k(l)
p1 , k

(l)
p2 , . . . , k

(l)
pn

)
. (13)

The schedule defines an order of activities
(a(l)

p1 , a
(l)
p2 , . . . , a

(l)
pn) and the selection of the execution

modes (k(l)
p1 , k

(l)
p2 , . . . , k

(l)
pn). It can be actually mapped

Fig.4. Flowchart of the MC-ACS algorithm.
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to a list of execution modes

S(l) = (m
p1k

(l)
p1

,m
p2k

(l)
p2

, . . . , m
pnk

(l)
pn

). (14)

Therefore, to build a baseline schedule, the ants in MC-
ACS add execution modes to the list step by step using
pheromone and heuristic values until the schedule has
been completed. To facilitate description, here we first
define the pheromone and heuristic values. Then the
procedures of building baseline schedules will be de-
scribed in detail.

4.1.1 Definition of Pheromone and Heuristic Values

ACO algorithms are characterized by using
pheromone and heuristic values to build solutions.
Pheromone is a kind of memory of the previous search
experiences, and heuristic is some problem-based infor-
mation. In MC-ACS, pheromone values are defined on
the connections between execution modes, and heuris-
tic values are defined on execution modes. Suppose an
ant has chosen a mode muv in the list, the pheromone
value for choosing mode mij as the next execution
mode in the list is given by τ(uv, ij). The heuristic
value for choosing mode mij is given by η(ij). The
heuristic value is defined based on the expected dis-
counted costs of execution modes. Thus we term it the
EDC heuristic. Assuming d̄ij and c̄ij are the expected
values of dij and cij , η(ij) can be computed by

η(ij) =
1

c̄ij × exp(−α× d̄ij)
. (15)

With this definition, the EDC heuristic favors the
modes with low expected discounted cost.

4.1.2 Eligible Set

A feasible baseline schedule has to satisfy the prece-
dence constraints of the project. To guarantee the fea-
sibility of the schedules, MC-ACS applies the technique
of eligible sets.

In the algorithm, each ant maintains an eligible set of
feasible modes that satisfy the precedence constraints.
We denote the eligible set of the l-th ant as eligiblel.
For a mode mij , if its corresponding activity ai has not
been selected in the baseline schedule and all direct pre-
decessor activities of ai have been selected, then mij is
considered to be eligible. During the construction pro-
cess, only the execution modes in the eligible set can
be chosen. In this way, the schedules generated by ants
can always satisfy the precedence constraints.

4.1.3 Construction Process

Let m00 be a dummy mode that represents the

beginning of the project. At the beginning of the con-
struction process, every ant in the algorithm starts with
the dummy mode m00.

Suppose that in the (t− 1)-th step, the l-th ant has
selected the execution mode muv, then in the t-th step,
the selection rule for choosing the next execution mode
is given by (16) and (17).

mij =





arg maxmij∈eligiblel
{τ(uv, ij)× (η(ij))β},

if q 6 q0,

implement roulette wheel selection,

otherwise,
(16)

p(mij) =





τ(uv, ij)× (η(ij))β

∑

mxy∈eligiblel

τ(uv, xy)× (η(xy))β
,

if mij ∈ eligiblel,

0, otherwise.

(17)

In (16), a random number q ∈ [0, 1] is generated and
compared with parameter q0. If q 6 q0, the mode mij

that has the largest value of τ(uv, ij)× (η(ij))β among
all the modes in the eligible set is selected. Here η is
a parameter to weigh the influence of heuristic values.
Otherwise, if q > q0, the roulette wheel selection (RWS)
scheme is adopted. In the RWS, as shown by (17), the
probability of choosing mij is in direct proportion to
the value of τ(uv, ij)× (η(ij))β .

To summarize, the pseudo-code of how ants build
baseline schedules is shown in Fig.5.

procedure Solution Construction

1 Each ant selects the dummy mode m00 as the starting
mode;

2 Initialize the eligible set of all ants;

3 for t = 1 to n

4 for l = 1 to M

5 The l-th ant selects a mode mij from its eligible

set based on pheromone and heuristic values;

6 a
(l)
pt ← ai;

7 k
(l)
pt ← j;

8 Update the eligible set of te l-th ant based on

preceduence relations;

9 Local pheromone updating;

10 end for

11 end for

end procedure

Fig.5 Pseudo-code of constructing baseline schedules.

4.2 Monte Carlo Based Evaluation and
Comparison

Since there are random durations and costs in the S-
MRCPSPDCF model, it is impossible to evaluate the
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expected NPV of cash flows for a baseline schedule S
directly. In order to evaluate and compare the per-
formance of the schedules built by ants, the MC-ACS
algorithm has to use MC simulation to estimate the
expected NPVs.

Suppose the sample size in the simulation is N ,
to estimate the expected NPV of a baseline schedule
S, the algorithm first randomly samples N scenarios
ω(1),ω(2), . . . ,ω(N) from ω. Then for the i-th scenario,
it is possible to compute the NPV of the actual sched-
ule S(ω(i)) according to Subsections 2.1 and 2.2. So
the expected NPV of S can be estimated by

E(NPV (S)) ≈ 1
N

N∑

i=1

S(ω(i)).NPV . (18)

The pseudo-code of the MC simulation is given in Fig.6.

procedure MC Simulation(S)

1 Randomly sample N scenarios ω(1), ω(2), . . . , ω(N) from
ω;

2 E(NPV (S)) ← 0;

3 for i = 1 to N

4 SSGS (S, ω(i));

5 Evaluate S(ω(i)).NPV ;

6 E(NPV (S)) ← E(NPV (S)) + S(ω(i)).NPV ;

7 end for

8 E(NPV (S)) ← E(NPV (S))/N ;

end procedure

Fig.6. Pseudo-code of evaluating a baseline schedule S using N

simulations.

In general, a larger sample size in the simulation
will lead to a more accurate estimation of the expected
NPV. However, the computational cost of simulation
will also increase. Therefore, how to balance the trade-
off between the estimation accuracy and computational
cost is a key concern for the algorithm. Different from
other ACO variants, the ACS algorithm[27] has a special
characteristic that only the information of the best-so-
far solution is used to update pheromone values. There-
fore, for the rest worse solutions, it is not necessary to
estimate their expected NPVs accurately.

Based on this feature of ACS, inspired by the simula-
tion ACO algorithm proposed by Gutjahr for PTSP[31],
this paper applies a two-phase simulation method to
evaluate and compare the baseline schedules built by
ants in the MC-ACS algorithm. In the first phase, a
small number Na of random scenarios are realized from
ω. The expected NPVs of all the baseline schedules
built in this iteration are roughly estimated based on
the simulations on these Na scenarios. The schedule
that has the maximal estimated expected NPV is cho-
sen as the iteration-best schedule. In the second phase,
a relative larger number Nb of random scenarios are

realized. The iteration-best schedule and the current
best-so-far schedule then undergo a more accurate com-
parison based on the simulations on these Nb scenarios.
The winner of the comparison becomes the best-so-far
schedule found by the algorithm. In this way, the NPV
estimations of most schedules built by the algorithm
are only based on rough MC simulations with a small
number Na of scenarios. Thus the computational cost
is reduced.

4.3 Pheromone Updating

At the beginning of the algorithm, all pheromone
values on the connections between modes are initialized
to τ0 = 1. During the course of the MC-ACS algorithm,
pheromone values are updated by two rules: the local
pheromone updating rule and the global updating rule.

The local updating rule is applied immediately af-
ter the selection of modes (line 9 of the pseudo-code in
Fig.5). If an ant selects the mode muv in the (t − 1)-
th step and selects mode mij in the t-th step, the
pheromone value on the connection between muv and
mij is updated by

τ(uv, ij) ← (1− ξ)τ(uv, ij) + ξτ0, (19)

where ξ ∈ [0, 1] is a parameter. The function of
local pheromone updating is actually to reduce the
pheromone values on the selected connections so that
the following ants will have larger probabilities to ex-
plore other unselected connections.

After distinguishing the best-so-far schedule at the
end of each iteration, the global updating rule is ap-
plied to reinforce the connections used by the best-so-
far schedule. If muv is followed by mij in the best-so-
far schedule, the pheromone value on the connection
between muv and mij is updated by

τ(uv, ij) ← (1− ξ)τ(uv, ij) + ξ∆bs, (20)

where ∆bs is defined based on the estimated expected
NPV of the best-so-far schedule Sbs as follows

∆bs =
( Ẽ(NPV (Sbs))− firstWorst

firstBest − firstWorst
+ 1

)
× ψ. (21)

Here the estimated expected NPV Ẽ(NPV (Sbs)) is cal-
culated in the second-phase simulation based on Nb ran-
dom scenarios, firstBest is the estimated expected NPV
of the iteration-best schedule in the first iteration, first-
Worst is the smallest estimated expected NPV obtained
in the first iteration, and ψ (ψ > 1) is a parameter
to control the scale of pheromone amount. By imple-
menting the global pheromone updating rule, addition
pheromones are added on the best-so-far schedule Sbs.
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As a result, the components on Sbs will be more attrac-
tive for the following ants, making the search process
gradually converge to Sbs.

5 Experimental Results and Comparison
Studies

5.1 Test Instances

To validate the proposed algorithm, 33 instances are
randomly generated. The instances are of 11 different
sizes (numbers of activities), i.e., n ∈ {13, 16, 18, 28,
36, 40, 48, 58, 60, 80, 98}. Each size corresponds to
three instances. The three instances belong to three
groups: group a, group b, and group c. The degree
of uncertainty is different in different groups. For the
sake of convenience, we name the three instances with
13 activities as Ins13 a, Ins13 b, and Ins13 c, respec-
tively, and the other instances are named in the same
way.

In these instances, the project networks are de-
rived from our previous work[10]. These networks
are generated based on the random activity network
generator[44]. Each activity of the project is randomly
associated with one to five alternative execution modes.
For each execution mode mij (i = 1, 2, . . . , n and
j = 1, 2, . . . , |Mi|), the number of resources consumed
per time period is randomly given. The duration dij

of mij is assumed to be integer valued random variable
of uniform distribution within an interval [(1 − λ)d̄ij ,
(1 + λ)d̄ij ], where d̄ij is the expectation of dij . The
cost cij of mij is assumed to be real valued random
variable of normal distribution N(c̄ij , σ

2), where c̄ij is
the expectation of cij . The expectations of durations
d̄ij and costs c̄ij are all randomly given. For the in-
stances belonging to group a, group b, and group c,
we set (λ = 5%, σ = c̄ij), (λ = 8%, σ = 5c̄ij), and
(λ = 10%, σ = 10c̄ij), respectively. In other words, the
instances in group b have a higher degree of uncertainty
than the ones in group a, and the instances in group c
have the highest degree of uncertainty.

5.2 Parameter Configuration

The MC-ACS algorithm has the following parame-
ters: the number of ants M , the evaporation rate ξ in
(19) and (20), the parameter β to weigh the influence of
heuristics values in (16) and (17), the probability q0 of
directly selecting the execution mode with the largest
heuristic and pheromone values in (16), the parameter
ψ to control the scale of pheromone values in (21), and
the sample sizes Na and Nb in MC simulations.

The first five parameters are set as follows: M = 10,
ξ = 0.1, β = 1, q0 = 0.9, and ψ = 20. These con-
figurations are based on our previous studies of ACO

for solving the deterministic project scheduling problem
without uncertainties[10]. We find that these configura-
tions still contribute to good performance with respect
to S-MRCPSPDCF.

Here we focus on analyzing the performance of the
algorithm under different sample sizes Na and Nb. The
results of six configurations for Na and Nb on 33 in-
stances are reported in Table 1. In the table, Nb (I)
means a special scheme to increase Nb linearly from
1 to 10 with the growing iteration number[32]. In the
experiment, the algorithm with each configuration is
run for 30 times. Each run is terminated when the
total number of sampled scenarios has reached a pre-
defined maximum value MAX. In addition, to compare
the performance of different runs, 10 000 scenarios are
randomly sampled before executing the algorithm. For
every schedule outputted by the algorithm, its NPV ex-
pectation is estimated based on the simulation on these
10 000 scenarios. The table reports the average results
of each configuration on 30 runs.

From the table, it can be seen that with Na = Nb =
1, the performance of the algorithm is very unstable.
This is because only a single scenario is far from enough
for estimating the real quality of baseline schedules. In
this case, the algorithm has insufficient information to
distinguish the best-so-far solution. Thus it may re-
gard some sub-optimal solutions which are only good
at individual scenarios as the best-so-far solution. On
the other hand, if Na > 2 or Nb > 10, although the
simulation is more accurate, the computational cost in
each simulation is also increased. Therefore, under the
same evaluation number MAX, a larger Nb will lead to
less iterations and thus impair the performance of the
algorithm. Overall, the configuration with Na = 1 and
increasing Nb is able to achieve the best performance.

To understand why the above configuration is ef-
fective, we further analyze the successful rate of the
MC simulations under different sample sizes. At the
early stages of evolutions (from the iterations 1∼20),
we randomly choose 100 pairs of baseline schedules built
by the ants. We compare these schedules using rough
MC simulations with sample sizes 1, 2, 5, and 10, re-
spectively. If the comparison result of the rough MC
simulation for a pair of the baseline schedules is the
same as the result yielded by the MC simulation with
10 000 sample size, we consider this rough simulation
is successful. Otherwise, the simulation is considered
failed. We also study the successful rates of the MC
simulations at the later stages of evolutions (iterations
201∼220) or on 100 pairs of the iteration-best and the
best-so-far solutions. The results are shown in Table 2.
According to the table, at the early stage, because the
differences among the performance of the baseline
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Table 1. Performance of MC-ACS under Different Sample Sizes

Instance MAX Na = 1 Na = 1 Na = 1 Na = 1 Na = 2 Na = 1

Nb = 1 Nb = 5 Nb = 10 Nb = 20 Nb = 5 Nb (I)

Ins13 a 10 000 2 333 2 344 2 312 2 292 2 188 2 359

Ins13 b 10 000 2 430 2 530 2 543 2 520 2 507 2 569

Ins13 c 10 000 2 315 2 513 2 482 2 404 2 442 2 466

Ins16 a 10 000 2 957 2 987 2 966 2 920 2 931 2 972

Ins16 b 10 000 1 102 1 172 1 130 1 009 1 110 1 199

Ins16 c 10 000 3 642 3 725 3 694 3 673 3 699 3 730

Ins18 a 10 000 2 485 2 511 2 514 2 491 2 398 2 508

Ins18 b 10 000 3 827 3 862 3 756 3 637 3 589 3 947

Ins18 c 10 000 3 273 3 434 3 401 3 361 3 288 3 447

Ins28 a 10 000 3 388 3 193 2 957 2 825 2 826 3 386

Ins28 b 10 000 579 741 515 355 223 818

Ins28 c 10 000 5 668 5 933 6 036 5 982 5 798 6 098

Ins36 a 20 000 3 097 2 790 2 299 2 213 2 330 2 978

Ins36 b 20 000 2 717 2 699 2 473 2 379 2 401 3 017

Ins36 c 20 000 1 381 1 834 1 479 980 881 2 206

Ins40 a 20 000 8 420 9 347 9 149 8 891 8 719 9 279

Ins40 b 20 000 −1 242 −1 569 −1 718 −2 274 −2 410 − 754

Ins40 c 20 000 −2 921 21 −28 −507 −1 030 451

Ins48 a 20 000 1 −958 −1 452 −2 859 −2 691 −582

Ins48 b 20 000 1 828 853 860 −27 −130 1 417

Ins48 c 20 000 5 642 6 799 6 499 6 148 5 710 7 147

Ins58 a 30 000 7 408 9 304 9 405 9 286 9 001 9 545

Ins58 b 30 000 4 844 8 198 7 919 6 947 6 130 8 544

Ins58 c 30 000 7 236 9 223 9 382 9 023 9 210 9 289

Ins60 a 30 000 −199 −356 −658 −1 947 −2 134 448

Ins60 b 30 000 2 800 5 305 498 3 899 3 139 5 467

Ins60 c 30 000 −291 5 276 4 833 3 888 3 801 5 499

Ins80 a 40 000 −3 147 −1 215 −2 321 −3 086 −2 810 −73

Ins80 b 40 000 3 499 5 342 4 713 3 038 2 751 6 101

Ins80 c 40 000 −3 800 4 231 2 140 666 49 3 810

Ins98 a 50 000 67 2 562 2 546 360 −239 3 469

Ins98 b 50 000 −6 643 −2 065 −3 409 −4 012 −5 012 −1116

Ins98 c 50 000 −7 122 314 −515 −1 759 −2 310 1 594

Note: The best results yielded by the most suitable sample size are marked in bold.

Table 2. Analysis of the Successful Rates of Rough Simulations

Stages Comparison Objects Sample Size (%)

1 2 5 10

Iterations 1∼20 Ordinary solutions 92 96 99 100

Iterations 1∼20 Iteration-best and best-so-far solutions 84 89 94 98

Iterations 201∼220 Ordinary solutions 86 89 95 99

Iterations 201∼220 Iteration-best and best-so-far solutions 56 72 84 93

schedules built by the ants are significant, even the MC
simulation with only one sample already contributes
to a 92% successful rate. At the late stage, the MC
simulation with only one sample can still contribute to
an 86% successful rate. Therefore, setting Na = 1 is
already enough to correctly tell apart the better base-
line schedule in the comparison in most cases. On the
other hand, although the MC simulation with one sam-
ple achieves an 84% successful rate at the early stage

for the comparisons between the iteration-best and the
best-so-far solutions, its successful rate drops to 56%
at the late stage. As the difference between the per-
formance of the iteration-best and the best-so-far solu-
tions is usually slight at the late stage as the algorithm
converges, we need to use the MC simulation with 10
samples to guarantee a 93% successful rate. These re-
sults explain why increasing Nb from 1 to 10 linearly
can result in good performance.



Wei-Neng Chen et al.: Scheduling Multi-Mode Projects under Uncertainty 961

5.3 Parameter Configuration

By now, to the best of our knowledge, the stochastic
form of the MRCPSPDCF model has not been con-
sidered in the literature. In order to demonstrate the
effectiveness of the proposed algorithm, we implement
three other approaches to solve the S-MRCPSPDCF
in the comparison. The basic idea of these three
approaches are derived from some existing work on
project scheduling[10] and optimization under uncer-
tainty [31,39-40].

First, according to Bianchi et al.[39], when dealing
with stochastic optimization problems, a possible ap-
proach is to design a computable ad hoc function to
approximate the actual objective function. In tradi-
tional deterministic project scheduling models, the en-
vironmental parameters such as durations and costs are
given deterministically. As the execution of a project is
usually subject to uncertainty, the deterministic mod-
els can be actually regarded as using some predeter-
mined setting of environmental parameters (e.g., the
expected value of durations and costs) to approximate
the actual objective function of the scheduling problem.
Therefore, in the first approach, we apply the ACO al-
gorithm for deterministic MRCPSPDCF[10] and use the
expected durations and costs as the predetermined en-
vironmental parameters to solve S-MRCPSPDCF ap-
proximately. Since the algorithm is based on determin-
istic models, we term it D-ACO in this subsection.

Second, according to Jin and Branke[40], to deal with
stochastic optimization problems, there is an implicit
averaging method in which the population size of an
algorithm is increased to reduce the influence of noise.
Following this idea, we modify the proposed MC-ACS
algorithm to use a large population size M = 100 and
use the MC simulation with a single random scenario
(i.e., Na = Nb = 1) to estimate the performance of
baseline schedules. Since the algorithm has large pop-
ulation size, we denote it as MC-ACS-LPS for short.

Finally, in [31], a simulation ACO (S-ACO) algo-
rithm has been developed for solving a traveling sales-
man problem with time windows (TSPTW) in the case
of stochastic service times. In the third approach, we
follow [31] to implement an S-ACO algorithm for S-
MRCPSPDCF. In order to make S-ACO suitable for
the considered problem, we use the same pheromone
and heuristic definitions as the proposed MC-ACS in
S-ACO. The main difference between S-ACO and MC-
ACS lies in the implementation of ACO. While S-ACO
follows the conventional ACO procedure that uses the
roulette wheel selection rule in solution construction
and uses the pheromone evaporation rule in pheromone
management, MC-ACS follows the procedure of the
ACS algorithm[27]. Different from other ACO variants,

ACS only uses the information of the best-so-far solu-
tion to update pheromone values. Therefore, we only
need to tell apart the best-so-far solution and the rank-
ings of all the other solutions can be ignored. As a
result, in the evaluation and comparison procedure, we
can perform rough estimations to reduce the computa-
tional cost.

In the experiment, the parameter configuration of
MC-ACS has been given in Subsection 5.2, and the
parameter configurations of the three approaches for
comparison are given in Table 3. For each instance,
each algorithm is run for 30 times. Each run is ter-
minated when the total number of sampled scenarios
has reached a predefined maximum value MAX, which
has been given in Table 1. Similar to the experiments
in Subsection 5.2, for each instance, 10 000 scenarios
were first randomly sampled. The performance of the
schedules outputted by different algorithms is compared
based on these 10 000 random scenarios.

Table 3. Parameter Settings for the Algorithms

in Comparison

Algorithm Parameter Configuration

D-ACO M = 10, ξ = 0.1, β = 1, q0 = 0.9, and
ψ = 20

The parameters are set according to [9].

MC-ACS-LPS M = 100, ξ = 0.1, β = 1, q0 = 0.9, ψ =
20, Na = Nb = 1.

The parameters are set according to
the idea[39] of using larger population
size instead of running multiple random
sampling.

S-ACO M = 50, ρ = 0.1, the sampling number
in MC simulation is increased from 1 to
10 linearly with the growing number of
generations.

The parameters are set according to [30].

In Table 4, the results of MC-ACS, D-ACO, MC-
ACS-LPS and S-ACO averaged over 30 runs on the 33
S-MRCPSPDCF instances are tabulated. According to
the table, it can be seen that the proposed MC-ACS al-
gorithm outperforms the other approaches in the com-
parison in most instances. Out of the 33 instances,
MC-ACS obtains better average expected NPVs than
D-ACO, MC-ACS-LPS and S-ACO on 31, 28 and 30 in-
stances, respectively, and achieves the best results on 26
instances. In addition, we also run two-sample t-tests
to analyze if the differences between the results are sig-
nificant. The comparison results are listed in Table 5.
According to the t values in Table 5, MC-ACS yields
significantly better results than D-ACO, MC-ACS-LPS
and S-ACO on 26, 21 and 23 instances, respectively. In
particular, for the instances with 60 activities or more,
MC-ACS obtains significantly better results in all cases.
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Table 4. Experimental Results of MC-ACS, D-ACO,

MC-ACS-LPS and S-ACO

Algorithm Size Group a Group b Group c

MC-ACS 13 2 359 2 569 2 466

D-ACO 2215 2 577 2 420

MC-ACS-LPS 2 344 2 392 2 263

S-ACO 2 420 2 563 2 432

MC-ACS 16 2 972 1 199 3 730

D-ACO 2942 1 137 3 670

MC-ACS-LPS 2 941 1 172 3 617

S-ACO 2 935 1 208 3 690

MC-ACS 18 2 508 3 947 3 447

D-ACO 2 518 3 353 3 360

MC-ACS-LPS 2 512 3 870 3 264

S-ACO 2 415 3 834 3 318

MC-ACS 28 3 386 818 6 098

D-ACO 2 663 488 5 420

MC-ACS-LPS 3 477 407 5 597

S-ACO 3 063 768 5 746

MC-ACS 36 2 978 3 017 2 206

D-ACO 2 415 1 715 562

MC-ACS-LPS 3 099 2 689 1 293

S-ACO 2 568 2 211 1 846

MC-ACS 40 9 279 −754 451

D-ACO 7 601 −2 582 −1 661

MC-ACS-LPS 8 414 −1 585 −1 697

S-ACO 8 562 −968 −314

MC-ACS 48 −582 1 417 7 147

D-ACO −1 228 956 5 529

MC-ACS-LPS −125 1 638 4 951

S-ACO −97 25 6 486

MC-ACS 58 9 545 8 544 9 289

D-ACO 8547 5 059 7 129

MC-ACS-LPS 6 913 5 180 7 357

S-ACO 9 453 7 689 8 592

MC-ACS 60 448 5 467 5 499

D-ACO −1 479 3 842 2 865

MC-ACS-LPS −939 3 671 755

S-ACO −442 4 103 4 501

MC-ACS 80 −73 6 101 3 810

D-ACO −3 397 1 602 −628

MC-ACS-LPS −2 872 2 743 −2 733

S-ACO −2 433 3 738 119

MC-ACS 98 3 469 −1116 1 594

D-ACO 1278 −5 584 −1 830

MC-ACS-LPS −1 589 −7 202 −3 972

S-ACO 263 −3 197 −1 302

Note: The results are averaged on 30 runs. The best results

yielded by the algorithms are marked in bold.

These results reveal that the proposed algorithm is ef-
fective.

In stochastic optimization problems, we usually con-
cern not only the average results, but also the frequency
distribution of the results. As the schedules outputted

Table 5. t-test Comparison between MC-ACS and

Other Approaches

Algorithm Size Group a Group b Group c

MC-ACS−D-ACO 13 3.433# −0.505 1.069

MC-ACS−MC-ACS-LPS 0.580 3.640# 3.429#

MC-ACS−S-ACO −2.656* 0.290 0.834

MC-ACS−D-ACO 16 0.700 0.772 1.161

MC-ACS−MC-ACS-LPS 0.747 0.362 4.581#

MC-ACS−S-ACO 1.210 −0.159 2.252#

MC-ACS−D-ACO 18 −0.670 5.034# 3.026#

MC-ACS−MC-ACS-LPS −0.271 0.767 4.688#

MC-ACS−S-ACO 3.672# 1.294 4.474#

MC-ACS−D-ACO 28 4.622# 2.011# 6.306#

MC-ACS-MC−ACS-LPS −0.757 2.756# 4.331#

MC-ACS−S-ACO 2.737# 0.362 5.312#

MC-ACS−D-ACO 36 2.852# 5.018# 5.880#

MC-ACS−MC-ACS-LPS −0.537 1.806 2.599#

MC-ACS−S-ACO 2.231# 6.053# 1.738

MC-ACS−D-ACO 40 6.121# 4.002# 6.018#

MC-ACS−MC-ACS-LPS 3.516# 2.001# 5.705#

MC-ACS−S-ACO 4.929# 0.635 3.521#

MC-ACS−D-ACO 48 1.540 1.11 5.242#

MC-ACS−MC-ACS-LPS −1.000 −0.546 6.261#

MC-ACS−S-ACO −2.048* 3.691# 3.756#

MC-ACS−D-ACO 58 4.655# 8.613# 6.502#

MC-ACS−MC-ACS-LPS 4.142# 8.003# 6.783#

MC-ACS−S-ACO 0.473 3.819# 2.460#

MC-ACS−D-ACO 60 5.154# 5.446# 6.376#

MC-ACS−MC-ACS-LPS 2.611# 4.243# 6.560#

MC-ACS−S-ACO 2.604# 4.771# 2.931#

MC-ACS−D-ACO 80 7.381# 8.818# 7.761#

MC-ACS−MC-ACS-LPS 4.339# 5.166# 11.090#

MC-ACS−S-ACO 5.474# 5.940# 7.244#

MC-ACS−D-ACO 98 3.507# 5.728# 5.996#

MC-ACS−MC-ACS-LPS 5.818# 10.040# 11.760#

MC-ACS−S-ACO 6.094# 4.387# 5.604#

Note: “#” means the result of MC-ACS is significantly better
than the result obtained by the algorithm used in comparison
based on a two-sample t-test with 58 degree of freedom at the
0.05 level of significance. “∗” means the result of MC-ACS is
significantly worse than the result obtained by the algorithm
used in comparison based on a two-sample t-test with 58 de-
gree of freedom at the 0.05 evel of significance.

by the algorithms in comparison have been simulated
on 10 000 randomly sampled scenarios, we here further
study the distributions of NPVs on these 10 000 sce-
narios. For each algorithm, the best baseline schedule
found by the algorithm over the 30 runs is considered.
The histograms of the NPVs of the best schedules found
by MC-ACS, D-ACO, MC-ACS-LPS and S-ACO on
some representative instances are plotted in Fig.7. Ac-
cording to the histograms, the proposed MC-ACS al-
gorithm can find schedules with larger NPVs steadily.
This phenomenon is even more obvious in large-size
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Fig.7. Histograms of the NPVs of the best schedules found by S-ACO, MC-ACS-LPS, D-ACO and MC-ACS based on 10 000 randomly

sampled scenarios. (a) Ins58 c. (b) Ins60 c. (c) Ins80 c. (d) Ins98 c.

instances such as Ins80 c (Fig.7(c)) and Ins98 c
(Fig.7(d)). In Ins80 c, while the NPVs of the best
schedule found by MC-ACS are around 5 000 to 10 000
with the highest frequency on around 8 000, the NPVs
of the schedules found by other algorithms are only

around −2 000 to 7 000. In Ins98 c, the NPVs of the
schedule found by MC-ACS are around 3 000 to 8 000,
but the ones found by other algorithms are usually
smaller than 5 000. These results also reveal that the
proposed algorithm is effective.
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6 Conclusions

An MC-ACS algorithm has been proposed to solve
S-MRCPSPDCF. As the considered scheduling model
contains random variables, MC-ACS uses the MC simu-
lation to estimate the expected NPV of cash flows. In
the experiment, it is found that only a rough simulation
based on a small number of random scenarios is already
enough for balancing the simulation accuracy and com-
putational cost of the algorithm. Therefore, the algo-
rithm is effective to find promising baseline schedules.
For future research, designing local search methods and
developing adaptive schemes to tune the sample size
will be some potential ways to further enhance the per-
formance of the algorithm.
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