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Abstract Emerging nano-devices with the corresponding nano-architectures are expected to supplement or even replace
conventional lithography-based CMOS integrated circuits, while, they are also facing the serious challenge of high defect
rates. In this paper, a new weighted coverage is defined as one of the most important evaluation criteria of various defect-
tolerance logic mapping algorithms for nanoelectronic crossbar architectures functional design. This new criterion is proved
by experiments that it can calculate the number of crossbar modules required by the given logic function more accurately
than the previous one presented by Yellambalase et al. Based on the new criterion, a new effective mapping algorithm
based on genetic algorithm (GA) is proposed. Compared with the state-of-the-art greedy mapping algorithm, the proposed
algorithm shows pretty good effectiveness and robustness in experiments on testing problems of various scales and defect
rates, and superior performances are observed on problems of large scales and high defect rates.
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1 Introduction

Conventional lithography-based CMOS techniques
are rapidly approaching their realistic limits. It is
expected that emerging nanoelectronic techniques[1-2]

can achieve very high devices density (1012/cm2) and
operation frequency (excess of 100GHz) and will sup-
plement or even replace CMOS integrated circuits. Na-
noelectronic architectures can be built from nanowires
and nanoelectronic devices via bottom-up self-assembly
techniques[3]. The regular nature of chemically self-
assembly structure makes it well suited for imple-
menting regular crossbar-based arrays similar to pro-
grammable logic arrays (PLAs). Recently, the world’s
first programmable nanoprocessor consisting of pro-
grammable, non-volatile nanowire transistor arrays
(PNNTAs) has been developed and demonstrated[4].

However, due to the extremely small size of the na-
noelectronic devices and the hardness to control the
fabricating process from external, both the bottom-up
self-assembly techniques and nano-imprint techniques
are not able to avoid generating chips of high defect
rates. The exact level of defect rate is still unknown,

but it is assumed to be reasonable that 1% to 15% of
the resources (wires, switches, etc.) on a nano-chip
will be defective[5]. The researchers of Harvard and
MITRE[4] characterized the threshold voltage values of
nodes from the fabricated PNNTA structure in both
the active and inactive states. Notably, they found
that only 86% nodes in active state and 87% nodes
in inactive state met voltage requirement. Discarding
the nano-chip containing any defect is not affordable
any more as the yield hit will be substantial. Faced
with such a high defect rate of nano-architecture, future
nano-chip designing and fabricating industry definitely
need carefully crafted effective defect-tolerance design-
ing techniques.

Fortunately, the reconfigurability inherent in the na-
noelectronic crossbar architecture is well suited for the
implementation of defect-tolerance mechanisms. After
identifying defective resources in the chip (defect map)
via test and diagnosis processes, the defects can be by-
passed by a post fabrication configuration process[6-14]:
given a defective crossbar(s) with a logic function to
be implemented on it, a mapping from the function to
the crossbar is to be found with considering the defects,
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which is generally called defect-aware defect-tolerance
logic mapping problem.

In this paper, we first present the formal definition of
the defect-aware defect-tolerance logic mapping prob-
lem mathematically. Then a new weighted coverage is
defined as the evaluation criterion for various defect-
aware defect-tolerance logic mapping algorithms, and
its rationality is testified experimentally. This new cri-
terion is proved by experiments that it can calculate
the number of crossbar modules required by the given
logic function more accurately than the previous one[9].
Based on this new criterion, a new effective mapping
algorithm based on genetic algorithm (GA) is proposed
to optimize the coverage. Compared with the state-of-
the-art greedy mapping algorithm[9], the proposed al-
gorithm shows pretty good effectiveness and robustness
in experiments on testing problems of various scales and
defect rates, and superior performances are observed on
problems of large scales and high defect rates.

The rest of the paper is organized as follows. Section
2 introduces the preliminary knowledge of the defect-
tolerance logic mapping problem and some related work
will be reviewed in Section 3. A new weighted coverage
is defined and its rationality is testified experimentally
in Section 4. Section 5 proposes the GA-based mapping
algorithm for maximizing coverage. The experimental
results on various scale problems with different defect
rates are provided and analyzed in Section 6. Finally,
Section 7 concludes this paper.

2 Preliminaries

2.1 Problem Model

A nanoelectronic crossbar consists of two layers of
orthogonal nanowires or nanotubes. The region where
two wires cross is called junction or crosspoint, which
may be configured to implement a nanoelectronic de-
vice. The stochastic nature of the assembly or the in-
accurate nano-imprint means that the probability of
aligning three things will be very low. Therefore, three-
terminal devices will be hard to fabricate, while a two-
terminal connection can be established merely by over-
lapping two wires perpendicularly. Two-terminal de-
vices such as nanowire field effect transistors, diodes,
and molecular switches will be preferred[5].

For the sake of simplification and without loss of
generality, it is assumed that the defect in this paper
only indicates the “stuck-at-open” defect which is the
most common in nanoelectronic crossbar and the defect
probability distribution over the crossbar is uniform as
assumed in previous work[6-8,12]. A “stuck-at-open” de-
fect means that there is a nonprogrammable switch at
the crosspoint or missing a switch at the crosspoint,
thus the two cross wires at this crosspoint are always

disconnected. It is notable that the methods presented
in this paper can be easily extended to other defect
types (“stuck-at-closed” defect, “nanowire open” de-
fect and “nanowire bridging” defect[13]) and other de-
fect distributions (such as clustered distribution[9]) by
modifying the following bipartite graph model slightly.

An example of a defective 3×3 nanoelectronic cross-
bar is shown in Fig.1(a). The crossbar consists of two
sets of orthogonal nanowires. The vertical nanowires
are the inputs, whereas the horizontal nanowires are
the outputs. There is a programmable switch at each
crosspoint. The nonprogrammable defective switches
at the crosspoints are represented by an “X” for each.

Fig.1. (a) 3× 3 nanoelectronic crossbar with two defects. (b) Bi-

partite graph of crossbar in (a). (c) Bipartite graph of function:

F = ab + bc.

Given a 2-D crossbar with defect map, it can be
represented by a bipartite graph, as shown in Fig.1(b)
which is the bipartite graph of the crossbar in Fig.1(a).
A bipartite graph of an n × n crossbar is an undi-
rected bipartite graph G(U, V,E) with partitions U
and V , having |U | = n and |V | = n. U represents
the set of input nanowires, and V represents the out-
put nanowires. E consists of representative edges for
all the programmable non-defective crosspoints of the
crossbar.

A bipartite graph also can represent a two-level
logic function in a sum-of-products form, as shown in
Fig.1(c). U represents the set of logic variables, and
V represents the product terms. E consists of rep-
resentative edges for the corresponding product term
containing the variable.

When we use a crossbar structure to implement a
two-level logic function, the relationships between the
product term set and the variable set in the logic func-
tion are represented by the connections between hori-
zontal and vertical wires in the crossbar. Such logic-
function-to-crossbar mapping problem can be formu-
lated as embedding the logic function bipartite graph
into the nanowire crossbar bipartite graph. This bipar-
tite graph embedding problem by its nature is equiva-
lent to the subgraph isomorphism problem which is a
well-known NP-complete problem[15].
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2.2 Coverage-Based Mapping

We can employ two decision vectors to represent the
logic-function-to-crossbar mapping trial M [14]:

Input Mapping Vector (IMV): IMV [v] = i if varia-
ble v is assigned to vertical nanowire i.

Output Mapping Vector (OMV): OMV [p] = o if
product term p is mapped to horizontal nanowire o.

For each mapping trial M , its quality can be repre-
sented by a “score”, namely the coverage in the map-
ping. The coverage C was firstly defined in [9] as the
ratio of the number of product terms been successfully
mapped to the total number of product terms of the
function, which is regarded as the evaluation criterion
of various defect-tolerance logic mapping algorithms[9].
With the coverage C, the number of crossbar modules
N required for mapping the given logic function can be
estimated to be the upper bound of 1/C.

However, this estimation is always inaccurate, be-
cause the mapping costs (difficulties) of various pro-
duct terms are different. More variables contained in a
product term means more cost required to map it. In
this paper, a new weighted coverage is proposed to in-
corporate the consideration of mapping cost of product
terms, in which a weight wp is assigned to each product
term p to represent its mapping cost. Then the coverage
C can be reformulated as the ratio of the weighted sum
of successfully mapped product terms to the sum of to-
tal weights. In this case, the original form of coverage
C [9] is a special case with wp = 1 for all the product
terms p. In Section 4, we will test the effect of several
weighting strategies to the accuracy of estimation.

Now, we will give the generalized definition of the
weighted coverage-based defect-tolerance logic mapping
problem. The definitions of associated variables are
shown in Table 1.

Input:
0-1 function matrix:

FM = (fv,p)V×P ,

where fv,p = 1 represents input variable v is contained by
product term p.

0-1 crossbar matrix:

CM = (ci,o)I×O,

where ci,o = 1 represents that there is a stuck-at-open defect
between input nanowire i and output nanowire o.

Solution:
Two permutations: IMV and OMV, IMV ∈ SI and

OMV ∈ SO.
IMV (v) = i, represents input variable v is mapped on

input nanowire i, 1 6 v 6 V and 1 6 i 6 I.

OMV (p) = o, represents product term p is mapped on

output nanowire o, 1 6 p 6 P and 1 6 o 6 O.

Objective Function:

Maximum Formula:

Fitness =
P∑

p=1

wp ×
(
sgn

( V∑
v=1

fv,p×

(fv,p − cIMV (v),OMV (p))− dp

)
+ 1

)/
W.

(1)

Table 1. Definitions

V Number of variables

P Number of product terms

I Number of input nanowires

O Number of output nanowires

FR Density of the function matrix

DR Defect rate of the crossbar matrix

O1 Set of all the product terms

O2 Set of product terms which have been successfully

mapped

wp Weight w for product term p

W Sum of all the weights: W =
∑

p∈O1
wp

C Coverage: C =
∑

p∈O2
wp/W

Mcalculated Number of crossbar modules calculated:

Mcalculated = d1/Ce
Mactual Actual number of crossbar modules required

D Deviation:

D = |Mcalculated −Mactual|/Mactual × 100%

dp Degree (number of variables product term p

contains) of product term p

dmin Minimum degree of product terms set P

dmax Maximum degree of product terms set P

dmean Mean degree of product terms set P

Decision vectors IMV and OMV represent one pos-
sible mapping trial M from logic function to crossbar
architecture. One constraint is implicated in the solu-
tion: each variable v or product term p must be mapped
to a nanowire i or o, and each nanowire can only receive
one v or p. Another constraint is implicated in the sgn
function of the objective function: a “1” of FM(fv,p =
1) mapped to a “1” of CM(CIMV (v),OMV (p) = 1),
which means a defect crosspoint is used as a functional
switch and the corresponding product term p will never
contain the logic variable v, so p is unmapped and
weight wp will not affect Fitness; while all the “1”s of a
product term p (fv,p = 1) are mapped to “0”s of CM
(CIMV (v),OMV (p) = 0) means p is mapped successfully
and Fitness will increase.

Fitness = 1 means all the product terms are
mapped successfully around the crosspoint defects in
nano crossbar.

3 Related Work

Dehon and Naeimi[6] proposed a liner-time greedy
bipartite matching algorithm for mapping PLA logic
around crosspoint defects in nanoelectronic crossbar.
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The author assumed that the PLA inputs have been
previously assigned which resulted in very low mapping
success rates.

Hogg and Snider[7-8] identified reliability thresholds
in the ability of defective crossbars to implement
Boolean logic (binary adders in this paper) by exhaus-
tive search algorithms with bounded computing time.
These thresholds varied among different implementa-
tions of the same logical formula, allowing molecular
circuit designers to trade off reliability, circuit area,
crossbar geometry and the computational complexity
of locating functional components.

Yellambalase and Cho[9] evaluated three diffe-
rent greedy defect-tolerance logic mapping algorithms
for circumventing clustered defective crosspoints in
nanowire reconfigurable crossbar architectures. Then,
a cost-effective repair method was presented and ana-
lyzed.

Simsir et al.[10] proposed and evaluated a hybrid
nanowire-CMOS architecture that addressed defects
and faults at the same time. A companion to the archi-
tecture was a compiler with heuristics to quickly deter-
mine if the logic function can be mapped onto partially
defective nanoscale elements. The heuristic algorithm
does not attempt to find an optimal pin assignment
since that is NP-complete. It utilizes greedy pin as-
signment and constructs the bipartite matching step
by step instead of constructing the complete bipartite
graph, which is time-consuming.

Dai et al.[11] presented an information-theoretic ap-
proach to investigate the intrinsic relationship between
defect-tolerance and inherence redundancy in molecu-
lar crossbar architectures. By modeling defect-prone
molecular crossbars as non-ideal information process-
ing mediums, the information transfer capacity can be
interpreted as the bound on reliability that molecular
crossbars can achieve. The proposed method allows
us to evaluate the effectiveness of redundancy-based
defect-tolerance in a quantitative manner.

Rao et al.[12] modeled the PLA logic mapping prob-
lem as a bipartite graphs embedding problem and pro-
posed a recursive algorithm. Further on, three en-
hanced heuristic techniques were proposed to improve
the algorithm’s efficiency by significantly cutting down
unnecessary backtracking processes.

Crocker et al.[13] examined some fundamental as-
pects of defect-tolerance for QCA (Quantum-Dot Cel-
lular Automata)-based crossbar architectures, then pre-
sented an implementation independent defect model. In
this model, techniques were introduced to map Boolean
logic functions to defective QCA-based crossbar archi-
tectures via graph monomorphism matching.

4 Weighting Strategies

The previous form of coverage C defined in [9] is not
reasonable because it regards the mapping cost (diffi-
culty) of each product term p equally which results in
inaccurate estimation of the number of crossbar mod-
ules N required for mapping the given logic function.
In this paper, we assume that the mapping cost of each
product term p is determined by the number of varia-
bles contained by it, that is, the more variables it con-
tains, the harder to map it.

Based on the above hypothesis, we design the follow-
ing six forms of weight wp for each product term p and
test the effect of them to the accuracy of estimation:

w1p = 1,

w2p = dp,

w3p = dp − dmin + 1,

w4p =

{
dp − dmean, if dp > dmean,

1, if dp 6 dmean,

w5p = exp(k1 × (dp − dmin)/(dmax − dmin)),

w6p = exp(k2 × (dp − dmean)/dmean),

where
k1 = k2 = 2Size × FR ×DR.

Please note that w1 is the original form of coverage
in previous work. We employ the column-matching-
first algorithm[9] as defect-tolerance logic mapping al-
gorithm du to its effectiveness. We set V = P = I =
O = Size for simplification and if the function size is
less than the crossbar size, we can insert all-0 rows and
columns to the function matrix to make the matrix have
equal size with the crossbar matrix. For each case with
the same Size and DR, we randomly generate ten dif-
ferent test benchmarks F1 to F10.①

The simulation results over various problem scales
and defect rates show that the weight of exponential
with degree is the most close to the actual case, espe-
cially w6. We only show the results of w1 and w6 to
save space in Tables 1∼3 and the simulation results are
the statistical mean from 100 random samples, the unit
of deviation D is percent.

1) Size = 16: For this small-scale problem, we set
DR = 0.25 and 0.30. Table 2 shows the deviations D of
w1 and w6 (D1, D6) with different DRs. The estima-
tions of both w1 and w6 are accurate within a certain
limit when DR = 0.25, because the actual numbers of
crossbar modules required are less. The estimations of

①All the problem instances used in the simulation in the paper are available are: http://home.ustc.edu.cn/∼yuanbo/JCST2012.rar.
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Table 2. Deviations of w1 and w6 for Problem Scale

Size = 16 with Different DRs

Size DR = 0.25 DR = 0.30

= 16 Mactual D1 D6 Mactual D1 D6

F1 2.1 5.2 4.3 2.5 20.2 8.7

F2 2.3 13.0 1.3 3.4 41.2 15.6

F3 2.1 5.7 2.8 2.6 21.0 8.2

F4 2.2 8.7 3.7 2.8 29.3 3.9

F5 2.1 6.1 3.8 2.7 22.6 17.0

F6 2.4 17.7 8.6 3.4 37.4 19.3

F7 2.3 14.2 9.0 3.4 37.1 18.8

F8 2.4 18.0 1.6 3.4 40.5 23.1

F9 2.1 6.5 5.6 2.8 28.6 17.5

F10 2.4 16.0 8.0 3.2 36.9 1.9

Table 3. Deviations of w1 and w6 for Problem Scale

Size = 24 with Different DRs

Size DR = 0.25 DR = 0.30

= 24 Mactual D1 D6 Mactual D1 D6

F1 3.7 44.8 20.2 5.9 59.5 17.8

F2 3.2 31.5 22.4 4.7 38.8 12.1

F3 3.0 32.4 14.4 4.7 48.2 5.8

F4 3.6 39.9 23.3 5.8 52.9 14.6

F5 3.0 32.3 21.2 4.5 46.5 2.0

F6 3.6 44.2 6.0 6.9 62.9 14.0

F7 3.9 37.3 23.1 5.8 42.4 7.4

F8 4.3 47.3 4.0 7.5 61.4 26.6

F9 3.3 33.9 24.8 5.4 48.3 32.2

F10 3.4 37.3 29.0 5.5 48.8 23.0

w1 are not accurate any more when DR = 0.30, and
the maximal deviation is 41.2%; while the estimations
of w6 can keep accurate and the deviations range from
1.9% to 23.1%.

2) Size = 24: For this medium-size problem, we set
DR = 0.25 and 0.30. Table 3 shows the deviations D
of w1 and w6 with different DRs. The estimations of
w1 are inaccurate and the deviations range from 31.5%
to 47.3% and 38.8 to 62.9% with DR = 0.25 and 0.30,
respectively; while the deviations of w6 can keep in a
reasonable range below 30% in most cases, except for
F9 with DR = 0.30.

3) Size = 32: For this large-size problem, we set
DR = 0.20 and 0.25. Table 4 shows the deviations D
of w1 and w6 with different DRs. The estimations of
w1 are inaccurate and the deviations range from 18.3%
to 40.5% and 42.3 to 59% with DR = 0.20 and 0.25,
respectively; while the deviations of w6 can keep in a
reasonable range below 30% in all cases.

The simulation results above show that the weight
of exponential with degree w6 is most close to the ac-
tual case, especially for large-scale problems with high
defect rates. Consequently, this weight can estimate
N , the number of crossbar modules required accurately
and can be taken as a new evaluation criterion of the

Table 4. Deviations of w1 and w6 for Problem Scale

Size = 32 with Different DRs

Size DR = 0.25 DR = 0.30

= 32 Mactual D1 D6 Mactual D1 D6

F1 3.2 35.5 8.8 6.39 55.9 16.3

F2 2.5 18.3 16.3 4.42 42.3 28.7

F3 3.3 39.5 22.0 6.43 57.7 13.2

F4 3.7 39.1 13.6 6.63 49.8 23.1

F5 3.1 36.0 20.7 5.70 51.2 6.8

F6 3.5 38.8 14.4 7.09 55.6 6.8

F7 3.4 40.5 22.4 6.24 53.8 13.5

F8 2.8 27.3 23.6 4.65 52.7 27.1

F9 3.1 35.0 12.4 6.05 59.0 13.4

F10 3.2 36.7 14.7 6.41 57.6 12.2

performance for various defect-tolerance mapping algo-
rithms. Therefore we can use it in (1) which can be
employed as the fitness function for evolutionary algo-
rithms. Next, we will propose an effective mapping
algorithm to maximize the coverage based on GA with
specific design for the mapping problem.

5 GA-Based Mapping Algorithm

5.1 Framework of GA-Based Algorithm

Evolution algorithms simulate the behavior of nature
and social group, such as genetic algorithm[16], particle
swarm optimization[17], and differential evolution[18].
They make a remarkable success in the combinato-
rial optimization field, for example, traveling sales-
man, quadratic assignment, flow shop scheduling, pro-
tein structure prediction. The defect-tolerance logic
mapping problem is also a typical combinatorial op-
timization problem similar to the quadratic 3-D assign-
ment problem (Q3AP)[19] which is known as NP-hard
in the mathematical formulation, where the whole so-
lution contains two (in)complete permutations, IMV
and OMV for this problem. Therefore, we try to solve
this mapping problem by GA-based method for cove-
rage optimization which is expected to have a very good
effect.

The flow graph of the GA-based method for coverage
optimization is shown in Fig.2 which mostly follows a
standard GA. We initialize the population randomly
and use roulette wheel selection. In order to guarantee
the GA-based method converge to optimum solution or
suboptimum solution, we employ simple elite reserva-
tion strategy that selects one best group as the new
parent population in the combination of parent and
offspring population. The fitness of the individual is
the coverage computed after decoding according to (1).
When the coverage arrives to 1 or the given maximum
fitness evaluation times is arrived, the algorithm will
stop.
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Fig.2. GA-based mapping method for coverage optimization.

5.2 Coding Scheme

Effective coding schemes are very important to GA.
According to the nature of defect-tolerance mapping
problem, this paper makes use of the features of deci-
sion vector IMV and OMV and proposes the integer
coding scheme as shown in Fig.3.

Chromosome i

IMV i 2 7 6 4 9 5

1 2 3 4 5 6

OMV i 3 8 5 6 4 1

1 2 3 4 5 6

Fig.3. Coding scheme.

Each chromosome i contains two parts: IMVi and
OMVi, where IMVi represents the assignment from
variables to input nanowires, OMVi represents the as-
signment from product terms to output nanowires. The
index of the genes represents the index of variables
or product terms in the function. The values of the
genes represent the index of input nanowires or output
nanowires in the crossbar architecture.

5.3 Genetic Operators

Genetic operators play the key role in GA. In the
crossover stage of our method, we cross the parent indi-
viduals both in IMV and OMV. In order to guarantee
the rationality, we use order crossover method similar
to that used in TSP (traveling salesman problem) as
shown in Fig.4.

First, select two random crosspoints k1 (1 6 k1 <

n − 1) and k2 (k1 < k2 < n) for IMV1 and IMV2.
Second, the genes from k1 to k2 in offspring IMV1’ suc-
ceed the genes (1, 2, 8) from k1 to k2 in parent IMV2.
Third, delete the genes (2) in IMV1 whose values have
already existed in IMV1’. Forth, add the remaining
genes (7, 6, 4, 9, 5) in IMV1 to IMV1’ (7, 6, 4) in
sequence and ignore the excess part (9, 5). The same
strategy is used for IMV2’ that succeed the genes from

Fig.4. Crossover operator.

k1 to k2 in parent IMV1 firstly and then succeed the
genes which have never existed in parent IMV2. We
use similar crossover method for OMV as IMV.

The mutation method is simple in this paper. First,
test if there are genes whose values have never appeared
in IMVi or OMVi. If any, we will select a random gene
whose value has never appeared to replace the gene to
be mutated (corresponding to the case that the function
size is less than the crossbar size). Conversely, select a
random gene in IMVi or OMVi and interchange it
with the gene to be mutated (corresponding to the case
that the function size is equal to the crossbar size).

6 Simulation Results

In our simulation, we assume that V = P = I =
O = Size for simplification. Note that if the function
size is less than the crossbar size, we can insert all-0
rows and columns to the function matrix to make the
matrix have equal size with the crossbar matrix.

The experimental parameters of the GA-based cove-
rage optimization algorithm are set as follows:

Population size: 40.
Crossover probability: 100%.
Mutation Probability: we will discuss it in next sub-

section.
Maximum fitness evaluation times: 20 000, 40 000,

60 000 for different problem scales with Size = 16, 24,
32 respectively.

For each case with same problem scale and same
function density CR and defect rate DR, we generate 10
different benchmark functions from F1 to F10 with ran-
dom distribution model for function matrix and cross-
bar matrix as used in Section 4. The simulation results
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of the GA-based coverage optimization algorithm are
statistic from 30 independent runs for each instance.

6.1 Mutation Probability

In our simulation, we find that the performance of
the GA-based mapping algorithm is very sensitive to
the mutation probability of chromosomes. In general,
an appropriate larger mutation probability means a
better performance. It is notable that in this paper,
the mutation probability is for each chromosome but
not for each gene.

Under different mutation probabilities 0, 0.2, 0.5,
0.8, 1, we record the results (statistical mean from 30 in-
dependent runs) for 10 Size = 24 benchmark functions
from F1 to F10 with CR = 40% and DR = 30% in Table
5. Obviously, a more appropriate mutation probability
between 0.5 and 1 can result in better results. The
same obviations can be found in other problems with
different scales, CRs and DRs in our simulation. Hence,
the mutation probability is set at 0.8 for all benchmark
functions in the following simulation.

Table 5. Coverage Obtained by the GA-Based Algorithm

with Different Mutation Probability

Size Mutation Probability

= 24 0 0.20 0.50 0.80 1.00

F1 0.58 0.77 0.83 0.87 0.80

F2 0.27 0.53 0.59 0.61 0.52

F3 0.55 0.75 0.82 0.82 0.72

F4 0.44 0.62 0.70 0.75 0.67

F5 0.46 0.69 0.72 0.75 0.70

F6 0.69 0.82 0.85 0.86 0.82

F7 0.35 0.52 0.62 0.66 0.59

F8 0.41 0.54 0.59 0.67 0.64

F9 0.43 0.67 0.72 0.74 0.66

F10 0.41 0.64 0.69 0.72 0.62

6.2 Effectiveness and Robustness

The average convergence curves from 30 indepen-
dent runs of the GA-based algorithm are shown in
Figs. 5, 6 and 7 corresponding to different problem
scales Size = 16, 24 and 32 with the density of the
function 40% and various defect rates.

Further on, in Tables 6∼8 we compare the coverage
obtained by our GA-based mapping algorithm CGA

(statistical mean and standard deviation from 30 inde-
pendent runs) with the state-of-the-art greedy mapping
algorithm specialized for maximizing coverage: column-
matching-first algorithm[9] CGreedy which is a determin-
istic algorithm.

Please note that coverage C obtained above 0.5
means the number of crossbar modules N required for
mapping the given logic function is less than two. In

this case, we think a good result has been achieved by
the algorithm.

1) Size = 16: For this small-scale problems, we set
DR = 0.25 and 0.30. Fig.5 shows the coverage con-
vergence curves of the GA-based algorithm and Table
6 shows the coverage obtained by different algorithms.
The GA-based algorithm can achieve very high cove-
rage varying from 0.79 to 1 for different instances with
DR = 0.25, 0.30. The results of the greedy algorithm

Fig.5. Coverage convergence curves of the GA-based algorithm

for Size = 16, DR = 0.25 (a) and 0.30 (b).

Table 6. Coverage Obtained by the GA-Based

Algorithm (CGA) and Greedy Algorithm (CGreedy)

for Problem Scale Size = 16

Size = 16 DR = 0.25 DR = 0.30

CGA CGreedy CGA CGreedy

F1 0.98± 0.01 0.81 0.96± 0.03 0.69

F2 0.99± 0.01 0.81 0.98± 0.01 0.75

F3 0.94± 0.02 0.81 0.88± 0.03 0.63

F4 0.98± 0.02 0.88 0.97± 0.01 0.56

F5 0.92± 0.03 0.81 0.92± 0.03 0.81

F6 0.86± 0.04 0.63 0.81± 0.05 0.69

F7 0.85± 0.04 0.56 0.79± 0.06 0.44

F8 0.90± 0.04 0.69 0.92± 0.04 0.63

F9 0.87± 0.04 0.63 0.95± 0.03 0.56

F10 1.00± 0.01 0.94 0.89± 0.06 0.63
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are also acceptable. However, its performance is low at
some complex problem, such as F7 benchmark function
with DR = 0.30, the coverage is 0.44.

2) Size = 24: For this medium-size problem, we set
DR = 0.25 and 0.30. Fig.6 shows the coverage con-
vergence curves of the GA-based algorithm and Table
7 shows the coverage obtained by different algorithms.
We can see that the worst coverage obtained by the
greedy algorithm is reduced to about 0.46 and 0.25 at

Fig.6. Coverage convergence curves of the GA-based algorithm

for Size = 24, DR = 0.25 (a) and 0.30 (b).

Table 7. Coverage Obtained by the GA-Based

Algorithm (CGA) and Greedy Algorithm (CGreedy)

for Problem Scale Size = 24

Size = 24 DR = 0.25 DR = 0.30

CGA CGreedy CGA CGreedy

F1 0.84± 0.05 0.54 0.86± 0.04 0.54

F2 0.71± 0.04 0.50 0.64± 0.06 0.38

F3 0.89± 0.03 0.63 0.83± 0.04 0.58

F4 0.89± 0.04 0.58 0.76± 0.09 0.38

F5 0.82± 0.05 0.63 0.78± 0.07 0.33

F6 0.92± 0.03 0.67 0.86± 0.02 0.46

F7 0.82± 0.04 0.54 0.64± 0.06 0.25

F8 0.75± 0.04 0.46 0.67± 0.10 0.46

F9 0.78± 0.05 0.54 0.74± 0.05 0.54

F10 0.80± 0.03 0.50 0.72± 0.06 0.46

DR = 0.25 and 0.30 respectively, while the GA-based
algorithm also can reach high coverage varying from
0.64 to 0.92 in either case.

3) Size = 32: For this large-size problem, we set
DR = 0.20 and 0.25. Fig.7 shows the coverage con-
vergence curves of the GA-based algorithm and Table
8 shows the coverage obtained by different algorithms.
Obviously, the coverage obtained by the greedy al-
gorithm is low for this large and complex problem,

Fig.7. Coverage convergence curves of the GA-based algorithm

for Size = 32, DR = 0.20 (a) and 0.25 (b).

Table 8. Coverage Obtained by the GA-Based

Algorithm (CGA) and Greedy Algorithm (CGreedy)

for Problem Scale Size = 32

Size = 32 DR = 0.20 DR = 0.25

CGA CGreedy CGA CGreedy

F1 0.89± 0.03 0.56 0.80± 0.04 0.41

F2 0.79± 0.06 0.59 0.85± 0.05 0.50

F3 0.90± 0.05 0.69 0.91± 0.04 0.63

F4 0.80± 0.04 0.50 0.82± 0.07 0.47

F5 0.81± 0.06 0.56 0.85± 0.06 0.50

F6 0.87± 0.04 0.59 0.82± 0.03 0.47

F7 0.84± 0.05 0.63 0.65± 0.08 0.41

F8 0.91± 0.03 0.72 0.82± 0.05 0.66

F9 0.92± 0.02 0.56 0.86± 0.04 0.50

F10 0.92± 0.03 0.69 0.69± 0.07 0.34
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especially when DR = 0.25. The GA-based algorithm
can still find a good result (from 0.65 to 0.92) in any
instance.

The simulation results above show the effectiveness
and robustness of the GA-based mapping algorithm
that the coverage C obtained increases obviously as the
fitness evaluation and good results (0.5 to 1) are ob-
tained in the given fitness evaluation times for various
instances randomly generated.

6.3 Discussion

Obviously in our experiments, although the run-
time of GA-based mapping algorithm is limited and
acceptable, it is much more than the runtime of the
greedy mapping algorithm which has linear time com-
plexity. However, the coverage convergence curves of
the GA-based mapping algorithm (Figs. 5∼7) show that
the coverage obtained by GA can surpass the result of
the greedy algorithm in the early stage. Next we will
discuss how to improve the efficiency of the GA-based
mapping algorithm.

In fact the defect-tolerance mapping problem con-
tain two assignment sub-problems, one is variables as-
signment (IMV) and the other is product terms as-
signment (OMV). Decision vectors IMV and OMV
represent one possible mapping trial M and all combi-
nations of IMVs with OMVs are the whole solution
space. In this paper, we try to search the whole solu-
tion space which is very large (Size! × Size!). If we
fix either one of them (IMV or OMV), the search
space will reduced to Size!. Moreover, the remaining
assignment sub-problem will be very similar to some
existing assignment problems, such as quadratic assign-
ment problem[20], terminal assignment problem[21] and
task assignment problem[22]. Take the task assignment
problem on heterogeneous computing systems[22] as an
example, if we set the amount of resources wi = 1 for all
the tasks Ti and maximum resources available ri = 1 for
all the processors Pi, the EAs adapted in [22] can also
solve either sub-problem in this paper, and of course
the fitness function will be specialized for the defect-
tolerance mapping problem.

Therefore, our future work will employ some effi-
cient greedy or heuristic algorithms, for example the
greedy pin-assignment[10], to solve one assignment sub-
problem in defect-tolerance logic mapping and use some
excellent published EAs[21-22] to optimize the other sub-
problem which is expected to be a very good balance
between effectiveness and efficiency.

7 Conclusions

This paper redesigns the form of coverage which can
calculate the number of crossbar modules required more

accurately than the original form[9]. Based on this new
criterion, an effective GA-based mapping algorithm for
defect-tolerance logic design of nano crossbar architec-
ture is proposed. The experiment results over various
benchmark functions show the effectiveness and robust-
ness of the proposed algorithm.

It is expected that hybrid domain-specific knowledge
with evolutionary algorithms will improve the perfor-
mance of the mapping algorithm, which is our future
research direction.
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