
Lu XF, Tang K. Classification- and regression-assisted differential evolution for computationally expensive problems. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(5): 1024–1034 Sept. 2012. DOI 10.1007/s11390-012-1282-4

Classification- and Regression-Assisted Differential Evolution for

Computationally Expensive Problems

Xiao-Fen Lu (陆晓芬) and Ke Tang (唐 珂), Member, IEEE

Nature Inspired Computation and Applications Laboratory, School of Computer Science and Technology
University of Science and Technology of China, Hefei 230027, China

E-mail: xiaofen@mail.ustc.edu.cn; ketang@ustc.edu.cn

Received September 26, 2011; revised March 6, 2012.

Abstract Differential Evolution (DE) has been well accepted as an effective evolutionary optimization technique. How-
ever, it usually involves a large number of fitness evaluations to obtain a satisfactory solution. This disadvantage severely
restricts its application to computationally expensive problems, for which a single fitness evaluation can be highly time-
consuming. In the past decade, a lot of investigations have been conducted to incorporate a surrogate model into an
evolutionary algorithm (EA) to alleviate its computational burden in this scenario. However, only limited work was devoted
to DE. More importantly, although various types of surrogate models, such as regression, ranking, and classification models,
have been investigated separately, none of them consistently outperforms others. In this paper, we propose to construct a
surrogate model by combining both regression and classification techniques. It is shown that due to the specific selection
strategy of DE, a synergy can be established between these two types of models, and leads to a surrogate model that is more
appropriate for DE. A novel surrogate model-assisted DE, named Classification- and Regression-Assisted DE (CRADE)
is proposed on this basis. Experimental studies are carried out on a set of 16 benchmark functions, and CRADE has
shown significant superiority over DE-assisted with only regression or classification models. Further comparison to three
state-of-the-art DE variants, i.e., DE with global and local neighborhoods (DEGL), JADE, and composite DE (CoDE), also
demonstrates the superiority of CRADE.

Keywords surrogate model, differential evolution, computationally expensive problem

1 Introduction

Differential Evolution (DE), proposed by Storn and
Price in 1995[1], is a simple yet powerful evolution-
ary algorithm (EA). Like other EAs, one main ad-
vantage of DE is that it can search for an optimal
or a near optimal solution without the need for gra-
dient information. Hence, DE is applicable to any
problem as long as the quality of candidate solu-
tions is measurable, and has achieved great success
on a wide variety of real-world problems[2]. How-
ever, evaluating the quality of a candidate solution
(i.e., fitness evaluation) is not always a trivial task
in real-world applications, especially for computa-
tionally expensive problems, which broadly exist in
complex engineering design fields such as structural
design[3-5], electromagnetics[6] and multidisciplinary
system design[7]. For such problems, one fitness evalua-
tion may require the simulation of high-fidelity analysis
codes, such as Computational Structural Mechanics,

Computational Electro-Magnetics, and Computational
Fluid Dynamics, which may take from minutes to hours
of supercomputer time. As a result, it often becomes
prohibitive to use DE to solve computationally expen-
sive problems.

In fact, computationally expensive problems raise
challenges not only for DE, but also for all EAs, since all
EAs rely on the fitness of solutions to guide their search.
Hence, much research has been conducted to make
EAs suitable for computationally expensive problems.
Among them, the most commonly adopted approach
is to construct the so-called surrogate models[8-10].
Briefly speaking, a surrogate model is a computation-
ally efficient model, which is expected to provide guid-
ance to the search in a way that requires less real fit-
ness evaluations. For example, a surrogate model can
be a regression model that is used to predict the fit-
ness of candidate solutions. In an ideal scenario where
the regression model can predict the fitness of all can-
didate solutions precisely, there is no need to call the

Regular Paper
This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61028009, U0835002,

and 61175065, the Natural Science Foundation of Anhui Province of China under Grant No. 1108085J16, and the Open Research Fund
of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing of China under Grant No. 10R04.

©2012 Springer Science +Business Media, LLC & Science Press, China



Xiao-Fen Lu et al.: Classification- and Regression-Assisted DE 1025

real fitness evaluations at all, and thus the computa-
tional burden can be greatly reduced. However, in
practice, it is non-trivial (if not impossible) to build
such an ideal regression model. Therefore, a lot of in-
vestigations have been devoted to finding better met-
hods of building surrogate models. Polynomial Models,
Kriging Models, Multi-layer Perceptron (MLP), Radial
Basis Function (RBF) Networks, Support Vector Re-
gressors (SVRs), Gaussian Processes and ensembles of
models have all been employed in the literature, and a
comprehensive description of them can be found in [10].
On the other hand, it is well recognized that surrogate
models should be used together with real fitness evalua-
tions to limit the negative effect caused by a possibly
inaccurate model[3,11-12].

Though regression models might be the most popu-
lar type of surrogate model so far, they are not the
only one. For specific types of EAs, such as Covaria-
nce Matrix Adaption Evolution Strategies (CMA-ES),
it has been stated that the prediction of fitness of can-
didate solutions is unnecessary to be accurate, as long
as the surrogate model can always rank candidate solu-
tions correctly[13]. Hence, Rank-based Support Vector
Machines (SVMs) have been employed to build rank-
ing models to accelerate CMA-ES[14]. Furthermore, in
the context of constrained optimization, classification
models have been employed to accelerate constrained
Memetic algorithms (MAs)[15-18]. In these studies, clas-
sifiers were built with SVMs to estimate the feasibility
of individuals. Based on this, MAs would only choose
a part of individuals to refine in every generation and
thus solve the constrained problems more efficiently.

In recent years, DE has received much attention
and a lot of DE variants, such as self-adaptive NSDE
(SaNSDE)[19], DE with global and local neighbor-
hoods (DEGL)[20], JADE[21], generalized adaptive DE
(GaDE)[22], composite DE (CoDE)[23] and OX-based
DE (OXDE)[24] have been proposed to accelerate DE.
However, previous work on DE for computationally ex-
pensive problems is few. Furthermore, most existing
studies employed regression models such as MLP or
RBF networks as the surrogate model[25-26]. Accord-
ing to previous studies, different EAs may favor diffe-
rent types of surrogate models[14-15]. Given a specific
EA, other types of surrogate models, such as ranking
models, can actually lead to even better performance.
This implies that, for different EAs, specially designed
surrogate models are necessary. Different from many
other EAs, each individual in the parent population of
DE corresponds to a unique offspring individual. An
offspring individual will enter the next generation only
if its fitness is higher than its corresponding parent.
Therefore, in a recent work, it was pointed out that it

is more appropriate to formulate the selection process
of DE as a classification problem, rather than regres-
sion or ranking problem, and a Classification-Assisted
DE (CADE) was proposed[27]. Different from [15-18],
classifiers in CADE were built to compare different in-
dividuals, i.e., for each pair of parent and offspring in-
dividuals, SVMs were utilized to train a classifier to
identify the better one between them. Experimental
studies have shown the advantage of CADE over DE
assisted with regression or ranking models.

In brief, the idea behind CADE is to employ a clas-
sifier as a selector. In the selection process of DE,
offspring individuals that are worse than their corre-
sponding parents are discarded directly. Hence, it is
unnecessary to actually evaluate the fitness of this type
of individuals. In other words, CADE employs a clas-
sifier, which is unable to predict the fitness of a solu-
tion, to avoid wasting fitness evaluations on those off-
spring individuals that are worse than their parents.
By this means, some fitness evaluations can be saved
in every generation. One disadvantage of CADE is
that every surviving offspring individual needs a real
fitness evaluation, which can still be very costly. On the
other hand, a regression model can be used to predict
the fitness of individuals, and the predicted fitness of
some individuals will be considered as the real fitness
in later evolution. To summarize, both classification
and regression models would be helpful to reduce the
number of real fitness evaluations, but from different
perspective. Based on these considerations, a novel ap-
proach named Classification- and Regression-Assisted
DE (CRADE) is proposed in this paper.

CRADE employs both regression and classification
techniques to assist DE in solving computationally ex-
pensive problems. Concretely, classifiers are built to
check whether an offspring individual is better than
its parent. Then, offspring individuals that are con-
sidered to be better than their corresponding parents
will be evaluated either by a regression model, or by
the real fitness function. Moreover, which individuals
will undergo real fitness evaluations is determined based
on the consistency between classification and regression
models. By this means, we have arrived at a surrogate
model construction approach that relies on the synergy
between classification and regression techniques. Al-
though multiple surrogate models have been employed
in [28], all of them are regression models, and the pur-
pose of using multiple models is to build an even more
accurate regressor. In contrast, CRADE employs two
different types of surrogate models, i.e., regression and
classification models, and combines them together in
DE. No previous work has combined such two different
types of surrogate models. Experimental studies show



1026 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

that CRADE significantly outperforms CADE and DE
assisted with only regression models.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief introduction to DE. The proposed
CRADE is described in detail in Section 3. Experimen-
tal results are presented in Section 4 to evaluate the
efficacy of CRADE. Finally, Section 5 concludes this
paper.

2 Differential Evolution

DE is a population-based stochastic search method
for global optimization, especially for dealing with con-
tinuous optimization problem[1]. We assume in this
paper the objective function to be minimized is f(x),
where x is a vector of n design variables in a decision
space D.

An overview of DE is given in Algorithm 1. The out-
put of the pseudocode is the individual with the small-
est objective function value in the final population. Like
any other EA, DE starts with a population of popsize
n-dimensional candidate solutions, where each solution
is generated according to a uniform distribution func-
tion within the decision space D. We denote the cur-
rent generation in the evolutionary process of DE by
G and its value ranges from 0 to Gmax. The notation
PG = {xi,G|i = 1, 2, . . . , popsize} represents the pop-
ulation at the current generation, where xi,G denotes
the i-th individual of the population. After initializa-
tion, three reproductive strategies (mutation, crossover,
and selection strategy) are executed in DE to generate
PG+1 for next generation from the current population
PG. This process is repeated until a stopping criterion
is met. The mutation, crossover, and selection strategy
of DE will be briefly described in turn.

Algorithm 1. DE(f,Gmax)
1: Set G = 0, popsize
2: Initialize a population PG = {xi,G|i = 1, 2, . . .,

popsize}
3: while G < Gmax do
4: PG+1 = ∅
5: for each xi,G in PG do
6: vi,G = DE -Mutate(P G)
7: ui,G = DE -Crossover(vi,G, xi,G)
8: xi,G+1 = DE -Select(xi,G, ui,G, f)
9: PG+1 = PG+1

⋃{xi,G+1}
10: end for
11: G = G + 1
12: end while

The mutation strategy of DE is carried out by adding
a weighted difference between two different individuals
to another individual. At each generation, for each in-
dividual xi,G of the PG, three mutually distinct individ-
uals xi1,G, xi2,G and xi3,G are randomly selected from

the population. Then the mutation strategy is executed
as the following formula shows:

vi,G = xi1,G + F · (xi2,G − xi3,G), (1)

where the scale factor F is greater than 0 and 0.5
is recommended as the default value. Actually, the
formula only represents the typical mutation strategy
“DE/rand/1”. Other mutation strategies of DE can be
found in [1].

After mutation, for each pair of vi,G and xi,G, a
binary crossover operation is usually performed using
(2):

uj,i,G =
{

vj,i,G, if rand j(0, 1) 6 CR or j = jrand ,

xj,i,G, otherwise,
(2)

where uj,i,G, vj,i,G, and xj,i,G represents the j-th varia-
ble of ui,G, vi,G, and xi,G, respectively. Meanwhile,
rand j(0, 1) represents a number drawn uniformly be-
tween 0 and 1 and jrand is a randomly selected inte-
ger ∈ [1, n]. The crossover rate CR ∈ (0, 1) and 0.9
is recommended as the default value. By now, one
offspring individual ui,G has been generated for each
parent xi,G. The offspring population is denoted as
UG = {ui,G|i = 1, 2, . . . , popsize} hereafter.

Last, the selection strategy is implemented in DE by
pair-wise comparison:

xi,G+1 =
{

ui,G, if f(ui,G) < f(xi,G),

xi,G, otherwise.
(3)

For each pair of xi,G and ui,G, the one with lower func-
tion value between them is selected to enter next gene-
ration. Thus, PG+1 = {xi,G+1|i = 1, 2, . . . , popsize} is
generated for next generation.

3 CRADE: Classification- and
Regression-Assisted DE

Since DE employs pair-wise selection, the replace-
ment of an individual is allowed only if its fitness is
lower than that of the corresponding offspring individ-
ual. In the rest of this paper, we refer to the offspring
individuals that are better than their parents as im-
proved solutions. The number of real fitness evalua-
tions consumed by DE can be reduced from two as-
pects. First, it would be good not to invest real fitness
evaluations into those offspring individuals that are not
improved solutions, since they will be discarded directly
and will not influence the search later on. Second, the
fitness of some improved solutions could be approxi-
mated by a surrogate model. For the first case, regres-
sion, ranking and classification can all be employed, and
classification models have been shown to perform the



Xiao-Fen Lu et al.: Classification- and Regression-Assisted DE 1027

best[27]. On the other hand, only regression models are
appropriate for the second case. Hence, an intuitive way
is to combine both classification and regression models
to construct a more effective surrogate model. Consi-
dering this, a novel method, called Classification- and
Regression-Assisted DE (CRADE) is proposed.

In general, CRADE divides the offspring individuals
in every generation into three groups: 1) those not en-
tering the next generation; 2) those entering the next
generation and being evaluated with the real fitness
function; 3) those entering the next generation with fit-
ness approximated by a surrogate model. In CRADE,
the classification model is employed to identify those
individuals belonging to the first group. The latter two
groups are distinguished by a regression model, i.e., if
the fitness of an individual can be well approximated by
the regression model, it should fall into the third group.
Unfortunately, regression models themselves cannot tell
which approximate fitness values they give are accu-
rate. To cope with this problem, CRADE adopts a rule
based on the consistency between classification and re-
gression models. That is, for each individual that is
classified to be superior to its parent, if the approxi-
mate fitness of this individual is better than the fitness
of its parent, the fitness of this individual can be consid-
ered to be well approximated by the regression model
and the individual will enter the next generation with
the approximate fitness; otherwise, the individual will
be evaluated with the real fitness function and pair-wise
comparison will be made between it and its parent.

An overview of CRADE is given in Algorithm 2. The
input parameter MaxEval equals the maximal num-
ber of function evaluations and f denotes the objection
function of the optimization problem. Without loss of
generality, the term optimization indicates minimiza-
tion in this section.

Algorithm 2. CRADE(f,MaxEval)
1: Set popsize,MaxGb, G = eval = 0,DB = ∅
2: Initialize a population PG = {xi,G|i = 1, 2, . . .,

popsize}
3: Archive all (xi,G, f(xi,G)) into DB
4: eval = eval + popsize
5: while eval < MaxEval do
6: if G < MaxGb then
7: PG+1 = DE -Mutate-Crossover -Select(PG, f)
8: G = G + 1
9: Archive all (xi,G, f(xi,G)) into DB
10: eval = eval + popsize
11: else
12: PG+1 = ∅
13: for each xi,G in PG do
14: vi,G = DE -Mutate(PG)
15: ui,G = DE -Crossover(vi,G, xi,G)
16: NB = Neighborhood(ui,G,DB , k)
17: Build a regression model R by using NB

as the training set
18: Classify individuals in NB into two classes

(1: outperform xi,G, −1: otherwise)
19: Build a classifier C by using classified

NB as the training set
20: xi,G+1 = Evaluate-Replace(xi,G, ui,G, R, C, f)
21: P G+1 = P G+1

⋃{xi,G+1}
22: Archive new real evaluation into DB
23: end for
24: end if
25: G = G + 1
26: end while

At the beginning, the initial population P0 =
{xi,0|i = 1, 2, . . . , popsize} is evolved using the muta-
tion, crossover, and selection strategy of DE for MaxGb
generations. This process aims to accumulate sufficient
evaluated points for training surrogate models and all
real evaluations are archived into a database DB.

After this, for every newly generated offspring in-
dividual ui,G, a neighborhood NB including k nearest
points to it in DB is identified. Based on the neigh-
borhood, a regression model and a classifier are built.
When building a classifier, points in NB are first cate-
gorized into two classes in order to form a training set
with class labels. If the fitness of a point is higher than
that of xi,G, it is labeled as a point in class “+1”; oth-
erwise, it is categorized into the “−1” class.

With the two surrogate models, CRADE differs from
existing methods in the way of using the models, i.e.,
Evaluate-Replace procedure in line 20 of Algorithm 2.
Given an offspring individual ui,G and its correspond-
ing parent xi,G, we denote C(ui,G) and R(ui,G) as the
class label predicted by the classifier and the predicted
objective function value on ui,G. Further, let f(xi,G)
be the objective function value of xi,G, details of the
Evaluate-Replace procedure are described below.
• If C(ui,G) == 1 and R(ui,G) < f(xi,G), xi,G+1 =

ui,G, and f(ui,G) is set to R(ui,G). Here, xi,G is re-
placed by ui,G because both C and R predict that ui,G

is a better solution than xi,G. Moreover, since the pre-
diction made by the regression model is consistent with
that made by the classifier, it is more likely that re-
gression model is making an accurate prediction about
the objective function value of ui,G. Hence, the pre-
dicted R(ui,G) is used as f(ui,G) in the later evolution
without evaluating ui,G with the real fitness function.
• If C(ui,G) == 1 and R(ui,G) > f(xi,G), ui,G is

evaluated with the real objective function. Then, if
f(ui,G) < f(xi,G), xi,G+1 = ui,G, otherwise, xi,G+1 =
xi,G. Here, the classifier model predicts that ui,G is
a better solution than xi,G. However, the prediction
made by the regression model is inconsistent with that
made by the classifier, R(ui,G) cannot be directly used
as f(ui,G) in later evolution, and thus a real function



1028 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

evaluation needs to be carried out.
• If C(ui,G) == −1, ui,G will be discarded di-

rectly without undergoing a real function evaluation
and xi,G+1 = xi,G.

After the Evaluate-Replace procedure, if ui,G has
been evaluated with f in the evaluation phase,
(ui,G, f(ui,G)) is archived into DB. The above process
iterates until all function evaluations are used up.

4 Experimental Studies

To assess the efficacy of CRADE, performance com-
parisons have been made between it and relevant algo-
rithms. In this comparative study, 10 low-dimensional
test functions, denoted as f1 ∼ f10, and 6 high-
dimensional test functions, denoted as f11 ∼ f16, were
chosen from [29] and [30], respectively. The number of
decision variables, n, is set to 30 for f1 ∼ f10 and 500
for f11 ∼ f16 in our experiments. A short description
of them is given in Table 1 and more detailed descrip-
tion can be found in [29] and [30]. For each algorithm
and each test function, the best function error values
achieved over 25 runs were collected. The function error
value of a solution equals to the function value of the so-
lution minus the minimal function value of the objective
function. Each algorithm is assigned with 10 000 fitness

evaluations. The simulation environment is MATLAB
with PRTools[31].

4.1 Compared with Regression-Assisted DE
and Classification-Assisted DE

To investigate whether CRADE can enhance the ef-
ficiency of DE, CRADE was compared with DE. More-
over, CRADE was compared with other two surro-
gate model-assisted DEs, i.e., regression-assisted DE
(RADE) and CADE[27], where RADE and CADE only
employ regression and classification techniques, respec-
tively. All the four algorithms were built up with the
classic DE as introduced in Section 2. The control pa-
rameters of DE were set as follows: F = 0.5, CR = 0.9
and popsize = 100. To make a fair comparison, for
the other three surrogate model-assisted DEs, MaxGb
were set to 20, and k is 120 on low-dimensional prob-
lems and 200 on high-dimensional problems. More-
over, soft-margin support vector classification[32] was
used to construct classifiers for CADE and CRADE,
and support vector regression (SVR) with ε-insensitive
loss function[33] to build regression models for RADE
and CRADE.

In Tables 2 and 3, the average and standard devia-
tion of the function error value of each algorithm over

Table 1. Short Description about the Test Functions Used in This Study

Test Functions Characteristics

f1, f11 Shifted Sphere Function unimodal
f2 Shifted Schwefel’s Problem 1.2 unimodal
f3 Shifted Rotated High Conditioned Elliptic Function unimodal
f4 Shifted Schwefel’s Problem 1.2 with Noise in Fitness unimodal
f5 Schwefel’s Problem 2.6 with Global Optimum on Bounds unimodal
f6, f13 Shifted Rosenbrock’s Function multimodal
f7 Shifted Rotated Griewank’s Function without Bounds multimodal
f8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds multimodal
f9, f14 Shifted Rastrigin’s Function multimodal
f10 Shifted Rotated Rastrigin’s Function multimodal
f12 Shifted Schwefel’s Problem 2.21 unimodal
f15 Shifted Griewank’s Function multimodal
f16 Shifted Ackley’s Function multimodal

Table 2. Experimental Results of DE, RADE, CADE, and CRADE on 10 Test Functions of 30 Variables

Function CRADE DE RADE CADE

f1 1.80e−04±7.33e−05 2.16e+03±4.43e+02 − 6.32e−01±9.19e−02 − 1.07e−01±3.67e−02 −
f2 1.09e+03±3.75e+02 2.79e+04±4.85e+03 − 1.64e+04±4.87e+03 − 3.54e+03±1.33e+03 −
f3 7.93e+06±2.68e+06 1.09e+08±1.91e+07 − 1.10e+08±2.75e+07 − 1.80e+07±5.75e+06 −
f4 3.97e+03±1.96e+02 3.49e+04±7.50e+03 − 2.70e+04±7.06e+03 − 7.71e+03±2.77e+03 −
f5 2.38e+03±7.90e+02 1.00e+04±1.12e+03 − 2.24e+03±5.69e+02 ≈ 2.39e+03±5.71e+02 ≈
f6 9.76e+02±2.03e+03 6.79e+07±2.59e+07 − 2.32e+07±1.43e+07 − 2.54e+03±3.11e+03 −
f7 9.33e−01±1.28e−01 6.70e+02±1.07e+02 − 1.64e+00±2.47e−01 − 1.66e+01±4.11e−01 −
f8 2.11e+01±5.84e−02 2.11e+01±5.70e−02 ≈ 2.11e+01±6.39e−02 ≈ 2.08e+01±6.61e−02 ≈
f9 3.18e+01±8.49e+00 2.35e+02±1.48e+01 − 2.01e+02±1.14e+01 − 2.09e+02±1.31e+01 −
f10 4.27e+01±2.17e+01 2.64e+02±1.46e+01 − 2.15e+02±1.29e+01 − 2.15e+02±1.37e+01 −
− 9 8 8
+ 0 0 0
≈ 1 2 2

Note: +, − and ≈ denote that the performance of the corresponding algorithm is better than, worse than, and similar to
that of CRADE according to the result of the Wilcoxon rank sum test, respectively.



Xiao-Fen Lu et al.: Classification- and Regression-Assisted DE 1029

Table 3. Experimental Results of DE, RADE, CADE, and CRADE on 6 Test Functions of 500 Variables

Function CRADE DE RADE CADE

f11 5.44e+05±4.37e+04 1.52e+06±5.35e+04 − 5.06e+05±3.49e+04 ≈ 6.98e+05±4.27e+04 −
f12 1.23e+03±4.40e+02 1.59e+02±2.50e+00 − 1.18e+02±4.06e+00 + 1.19e+02±4.09e+00 ≈
f13 2.15e+11±1.83e+10 7.97e+11±5.39e+10 − 6.96e+11±7.98e+10 − 2.16e+11±1.67e+10 ≈
f14 5.99e+03±2.28e+02 8.73e+03±1.65e+00 − 7.14e+03±1.63e+02 − 7.36e+03±9.87e+01 −
f15 4.31e+03±2.44e+02 1.25e+04±4.57e+02 − 4.23e+03±2.63e+02 ≈ 5.63e+03±3.12e+02 −
f16 1.99e+01±1.44e−01 2.10e+01±4.68e−02 − 2.10e+01±3.50e−02 − 1.99e+01±1.40e−01 ≈
− 6 3 3
+ 0 1 0
≈ 0 2 3

Note: +, − and ≈ denotes that the performance of the corresponding algorithm is better than, worse than, and similar to
that of CRADE according to the result of the Wilcoxon rank sum test, respectively.

Table 4. Average Improvement Rates of Evaluation for RADE, CADE, and CRADE
over 25 Independent Runs on 10 Test Functions of 30 Variables

Algorithm f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

CRADE 0.9382 0.3471 0.2266 0.3764 0.6787 0.5730 0.8656 0.2551 0.6686 0.6659
RADE 0.5530 0.1309 0.1086 0.0821 0.4074 0.2061 0.5214 0.0424 0.1332 0.1635
CADE 0.6270 0.2319 0.1874 0.1622 0.3064 0.4948 0.5097 0.0417 0.1255 0.1504

25 independent runs on each test function are pre-
sented. Wilcoxon rank sum test at a 0.05 significance
level was performed between CRADE and the com-
pared algorithms. The results are also presented in Ta-
bles 2 and 3. On the 10 low-dimensional test functions,
CRADE outperforms DE, RADE, and CADE on 9, 8,
and 8 test functions, respectively. None of DE, RADE,
and CADE achieves better solutions than CRADE. On
the 6 high-dimensional test functions, CRADE is su-
perior to DE, RADE, and CADE on 6, 3, and 3 test
functions, respectively. Neither DE nor CADE is bet-
ter than CRADE on any test function, and RADE out-
performs CRADE only on 1 test function. In general,
CRADE is the clear winner when compared to any of
DE, RADE, and CADE according to the Wilcoxon rank
sum test.

Since CRADE intends to reduce the number of real
fitness evaluations by identifying the improved solu-
tions with surrogates and only evaluating part of the
improved solutions in each generation. It is interesting
to verify how many improved solutions were actually
selected with this strategy. For this purpose, we define
the indicator named Improvement Rate. For each run,
the improvement rate is calculated using the following
formula:

IRi = NS i/Eval i, (4)

where NS i denotes the total number of improved solu-
tions that have been selected by the surrogates to enter
the next generation, and Eval i denotes the total num-
ber of fitness evaluations in the run, which is 10 000 in
our experiments. Furthermore, we also define the ave-
rage improvement rate (IRavg) over all the 25 runs, and
it is calculated using (5):

IRavg =
25∑

i=1

IRi/25. (5)

Table 5. Average Improvement Rates of Evaluation
for RADE, CADE, and CRADE over 25 Independent

Runs on 6 Test Functions of 500 Variables

Algorithm f11 f12 f13 f14 f15 f16

CRADE 0.7093 0.2640 0.4956 0.4382 0.8345 0.3515
RADE 0.6609 0.1820 0.1608 0.2530 0.6695 0.1144
CADE 0.4784 0.1760 0.4503 0.2418 0.4766 0.3394

It should be noted that the improvement rate does
not aim to measure whether CRADE generally outper-
forms CADE or RADE in terms of solution quality.
Instead, it aims to analyze whether the surrogates uti-
lized by CRADE have played their roles as we expected,
i.e., spending more real fitness evaluations on improved
solutions. Tables 4 and 5 present the average improve-
ment rates of RADE, CADE, and CRADE on all the
16 test functions. On the 16 test functions, CRADE
achieved higher improvement rates than RADE and
CADE. That means, by combining classification and
regression models together, more real fitness evalua-
tions were spent on improved solutions. In other words,
CRADE wastes much less fitness evaluations on those
offspring individuals that should be directly discarded.
This provides a partial explanation to the superior per-
formance of CRADE.

To get a more complete picture of the performance
of CRADE, the evolutionary curves of DE, RADE,
CADE, and CRADE are plotted in Figs. 1∼3. For each
algorithm, the evolutionary curve is obtained by avera-
ging over 25 runs.

For the low-dimensional test functions, it is evident
that the evolutionary curves of CRADE are almost
always beneath those of DE, RADE, and CADE on
each function after the phase that aims at accumulat-
ing enough evaluated points.

For the high-dimensional test functions, CRADE



1030 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

almost always performs better than, or comparable to
the other three algorithms on f13 ∼ f16. However, the
cases on f11 ∼ f12 are a bit different. On f12, CRADE
performs well until the later stage of the evolutionary
process (i.e., after 8 000 fitness evaluations have been
consumed). This denotes that CRADE has an advan-
tage over other algorithms when the available compu-
tational resource is even more limited than the setup of
our experiments. On f11, it can be seen that CRADE
is almost always inferior to RADE. Taking a closer
look at the evolutionary process, it is observed that
CRADE actually selects fewer improved solutions to en-
ter the next generation than RADE in the early stage
of evolution, although its overall improvement rate is
higher. This phenomenon indicates that the combina-
tion of classification and regression models failed to pro-
vide advantages over a single regression model. In fact,
since the neighborhood size was set to 200 for high-
dimensional problems in our experiments, there is no
guarantee that an accurate model can be built in the
500-dimensional space. For this reason, the combina-
tion of two inaccurate models may even deteriorate the
performance.

4.2 Compared with Three State-of-the-Art
DEs

CRADE was also compared with three state-of-
the-art DE variants, i.e., DEGL[20], JADE[21] and
CoDE[23]. DEGL employed a hybrid DE-type mutation
operator that is a linear combination of an explorative
and an exploitive mutation operator. In JADE, the
control parameters F and CR were self-adapted during
the evolutionary process. In CoDE, three well-studied
mutation strategies were combined with three control
parameter settings in a random way to generate off-
spring individuals. The parameter settings for the three
DE variants were the same as in their original papers.
The number of fitness evaluations was also set 10 000.
The average and standard deviation of the function er-
ror value of each algorithm over 25 independent runs on
each test function were recorded. Wilcoxon rank sum
test at a 0.05 significance level was also performed be-
tween CRADE and each of DEGL, JADE and CoDE.
Tables 6 and 7 summarize the experimental results.

Overall, CRADE outperforms DEGL, JADE, and
CoDE according to the Wilcoxon rank sum test. In fact,

Fig.1. Evolutionary curves for f1 ∼ f4. (a) f1. (b) f2. (c) f3. (d) f4.



Xiao-Fen Lu et al.: Classification- and Regression-Assisted DE 1031

Fig.2. Evolutionary curves for f5 ∼ f10. (a) f5. (b) f6. (c) f7. (d) f8. (e) f9. (f) f10.

on low-dimensional test functions, CRADE performs
better than DEGL, JADE and CoDE on 6, 9, and 9
out of 10 test functions, respectively. DEGL outper-
forms CRADE only on two test functions, and neither
JADE nor CoDE beats CRADE on any test function.
On high-dimensional test functions, CRADE achieves
better solutions than DEGL, JADE and CoDE on 5, 3,
and 5 out of 6 test functions, respectively. DEGL and
JADE beat CRADE on 1 and 2 test functions, respec-

tively. CoDE is not superior to CRADE on any test
function.

5 Conclusions and Future Work

In this paper, a surrogate model-assisted DE,
CRADE, is proposed by incorporating both classifica-
tion and regression techniques into DE for solving
computationally expensive problems. The experimental
studies in this paper were carried out on 10 benchmark



1032 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

Fig.3. Evolutionary curves for f11 ∼ f16. (a) f11. (b) f12. (c) f13. (d) f14. (e) f15. (f) f16.

functions in the CEC2005 special session on real-
parameter optimization and 6 benchmark functions in
the CEC2008 special session and competition on large
scale global optimization. CRADE was compared with
DE, RADE, CADE, and three other state-of-the-art
DE variants, i.e., DEGL, JADE, and CoDE. The ex-
perimental results suggest that CRADE can enhance
the computational efficiency of DE. Assisted by the
combination of classification and regression, in general,

CRADE achieved better solutions than DE that em-
ploys regression or classification technique only. More-
over, its overall performance on the test functions was
better than the three state-of-the-art DE variants.

An important issue in surrogate model-assisted EAs
is that which individuals should be evaluated with real
fitness functions. In previous work, two evolution con-
trol rules have been proposed along this direction[3].
However, the ratio of the number of individuals that



Xiao-Fen Lu et al.: Classification- and Regression-Assisted DE 1033

Table 6. Experimental Results of DEGL, JADE, CoDE, and CRADE on 10 Test Functions of 30 Variables

Function CRADE DEGL JADE CoDE

f1 1.80e−04±7.33e−05 4.31e−02±5.99e−02 − 8.61e+00±2.22e+00 − 1.69e+02±5.26e+01 −
f2 1.09e+03±3.75e+02 7.03e+02±3.69e+02 + 8.35e+03±2.73e+03 − 8.55e+04±2.30e+03 −
f3 7.93e+06±2.68e+06 4.77e+06±2.14e+06 + 2.50e+07±5.55e+06 − 2.31e+08±1.08e+07 −
f4 3.97e+03±1.96e+02 4.84e+03±2.91e+03 ≈ 1.49e+04±3.41e+03 − 1.73e+04±4.10e+03 −
f5 2.38e+03±7.90e+02 3.15e+03±7.10e+02 − 4.73e+03±5.49e+02 − 7.19e+03±7.79e+02 −
f6 9.76e+02±2.03e+03 4.67e+03±7.82e+03 − 1.29e+04±8.92e+03 − 7.87e+05±3.56e+05 −
f7 9.33e−01±1.28e−01 1.07e+01±1.34e+01 − 9.02e+00±3.64e+00 − 1.32e+02±5.06e+01 −
f8 2.11e+01±5.84e−02 2.11e+01±3.85e−02 ≈ 2.11e+01±4.61e−02 ≈ 2.11e+01±3.41e−02 ≈
f9 3.18e+01±8.49e+00 2.12e+02±2.15e+01 − 1.55e+02±1.07e+01 − 1.38e+02±1.26e+01 −
f10 4.27e+01±2.17e+01 2.20e+02±1.56e+01 − 2.26e+02±1.24e+01 − 2.49e+02±1.85e+01 −
− 6 9 9
+ 2 0 0
≈ 2 1 1

Note: +, − and ≈ denotes that the performance of the corresponding algorithm is better than, worse than, and similar to
that of CRADE according to the result of the Wilcoxon rank sum test, respectively.

Table 7. Experimental Results of DEGL, JADE, CoDE, and CRADE on 6 Test Functions of 500 Variables

Function CRADE DEGL JADE CoDE

f11 5.44e+05±4.37e+04 1.00e+06±5.08e+04 − 6.11e+05±3.68e+04 − 1.06e+06±5.82e+04 −
f12 1.23e+03±4.40e+02 1.11e+02±2.71e+00 + 1.20e+02±3.64e+00 ≈ 1.20e+02±3.44e+00 ≈
f13 2.15e+11±1.83e+10 3.58e+11±3.10e+10 − 1.75e+11±1.66e+10 + 3.65e+11±2.36e+10 −
f14 5.99e+03±2.28e+02 7.41e+03±6.21e+02 − 7.10e+03±1.11e+02 − 7.60e+03±1.23e+02 −
f15 4.31e+03±2.44e+02 8.12e+03±3.79e+02 − 4.91e+03±2.94e+02 − 8.57e+03±3.83e+02 −
f16 1.99e+01±1.44e−01 2.08e+01±7.00e−02 − 1.96e+01±1.89e−01 + 2.05e+01±8.40e−02 −
− 5 3 5
+ 1 2 0
≈ 0 1 1

Note: +, − and ≈ denote that the performance of the corresponding algorithm is better than, worse than, and similar to that
of CRADE according to the result of the Wilcoxon rank sum test, respectively.

are chosen to evaluate to the number of all individuals
is usually hard to determine and disagreement exists
in previous work[12]. In this paper, a rule based on
the consistency between classification and regression
models is made to tell whether the fitness of an in-
dividual is well approximated by the regression model.
Through this, it can be easily determined which individ-
uals should be evaluated with the real fitness function,
thus the determination of the fraction is avoided. Ac-
cording to the experimental results, this rule can also
help make efficient use of fitness evaluations.

The experiments were done using 10 000 fitness eva-
luations. However, even such a number of fitness eva-
luations may still be computationally prohibitive if one
fitness evaluation is too time-consuming in real world.
Consequently, in future work, it will be necessary to
evaluate CRADE’s performance, in comparison to oth-
ers, using a much smaller number of fitness evaluations.
Further, although it is generally difficult to build accu-
rate models in a high-dimensional space, CRADE still
shows appealing performance on some high-dimensional
problems. Hence, another potential research direction
is to further investigate the relationship between the
characteristics of problems and surrogate models. Such
investigations will provide more insights about under
what conditions the combination of several inaccurate
models can beat each of the single model in the context

of evolutionary optimization, and eventually lead to an
even more effective scheme for constructing and com-
bining multiple surrogate models.

References

[1] Storn R, Price K. Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 1997, 11(4): 341-359.

[2] Price K, Storn R M, Lampinen J A. Differential Evolution: A
Practical Approach to Global Optimization. New York, USA:
Springer-Verlag, 2005.

[3] Jin Y, Olhofer M, Sendhoff B. Managing approximate mod-
els in evolutionary aerodynamic design optimization. In
Proc. the 2001 IEEE Congress on Evolutionary Computa-
tion (CEC2001), Seoul, Korea, May 2001, pp.592-599.

[4] Ong Y S, Nair P B, Keane A J. Evolutionary optimization of
computationally expensive problems via surrogate modeling.
AIAA Journal, 2003, 41(4): 687-696.

[5] Zhang P, Yao X, Jia L, Sendhoff B, Schnier T. Target shape
design optimization by evolving splines. In Proc. CEC2007,
Singapore, Sept. 2007, pp.2009-2016.

[6] Farina M, Sykulski J. Comparative study of evolution strate-
gies combined with approximation techniques for practical
electromagnetic optimization problems. IEEE Transactions
on Magnetics, 2002, 37(5): 3216-3220.

[7] Hajela P, Lee J. Genetic algorithms in multidisciplinary ro-
tor blade design. In Proc. the 36th Conference on Struc-
tures, Structural Dynamics, and Materials, New Orleans,
USA, April 1995, pp.2187-2197.

[8] Shi L, Rasheed K. A survey of fitness approximation methods
applied in evolutionary algorithms. Computational Intelli-
gence in Expensive Optimization Problems, 2010, 2(1): 3-28.



1034 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

[9] Jin Y, Olhofer M, Sendhoff B. A framework for evolution-
ary optimization with approximate fitness functions. IEEE
Transactions on Evolutionary Computation, 2002, 6(5): 481-
494.

[10] Jin Y. A comprehensive survey of fitness approximation in
evolutionary computation. Soft Computing, 2005, 9(1): 3-12.

[11] Jin Y, Olhofer M, Sendhoff B. On evolutionary optimization
with approximate fitness functions. In Proc. Genetic and
Evolutionary Computation Conference, Las Vegas, Nevada,
USA, July 2000, pp.786-793.

[12] Buche D, Schraudolph N N, Koumoutsakos P. Accelerating
evolutionary algorithms with Gaussian process fitness func-
tion models. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews, 2005, 35(2):
183-194.

[13] Runarsson T. Ordinal regression in evolutionary computation.
In Proc. the 9th Int. Conf. Parallel Problem Solving from
Nature-PPSN IX, Reykjavik, Iceland, Sept. 2006, pp.1048-
1057.

[14] Loshchilov I, Schoenauer M, Sebag M. Comparison-based op-
timizers need comparison-based surrogates. In Proc. the 11th
Int. Conf. Parallel Problem Solving from Nature-PPSN XI,
Krakov, Poland, September 2010, pp.364-373.

[15] Handoko S D, Kwoh C K, Ong Y S. Using classification for
constrained memetic algorithm: A new paradigm. In Proc.
IEEE International Conference on Systems, Man and Cyber-
netics. Suntec, Singapore, Oct. 2008, pp.547-552.

[16] Handoko S D, Kwoh C K, Ong Y S. Classification-assisted
memetic algorithms for equality-constrained optimization
problems. In Proc. the 22nd AI, Melbourne, Australia, May
2009, pp.391-400.

[17] Lim D, Ong Y S, Setiawan R, Idris M. Classifier-assisted con-
strained evolutionary optimization for automated geometry
selection of orthodontic retraction spring. In Proc. the 2010
IEEE Congress on Evolutionary Computation (CEC2010),
Barcelona, Spain, July 2010, pp.1-8.

[18] Handoko S D, Kwoh C K, Ong Y S. Feasibility structure
modeling: An effective chaperone for constrained memetic al-
gorithms. IEEE Transactions on Evolutionary Computation,
2010, 14(5): 740-758.

[19] Yang Z, Tang K, Yao X. Self-adaptive differential evolu-
tion with neighborhood search. In Proc. the 2008 IEEE
Congress on Evolutionary Computation (CEC2008), Hong
kong, China, June 2008, pp. 1110-1116.

[20] Das S, Abraham A, Chakraborty U K, Konar A. Differen-
tial evolution using a neighborhood-based mutation opera-
tor. IEEE Transactions on Evolutionary Computation, 2009,
13(3): 526-553.

[21] Zhang J, Sanderson A C. JADE: Adaptive differential evolu-
tion with optional external archive. IEEE Transactions on
Evolutionary Computation, 2009, 13(5): 945-958.

[22] Yang Z, Tang K, Yao X. Scalability of generalized adaptive
differential evolution for large-scale continuous optimization.
Soft Computing, 2011, 15(11): 2141-2155.

[23] Wang Y, Cai Z, Zhang Q. Differential evolution with com-
posite trial vector generation strategies and control param-
eters. IEEE Transactions on Evolutionary Computation,
2011, 15(1): 55-66.

[24] Wang Y, Cai Z, Zhang Q. Enhancing the search ability of dif-
ferential evolution through orthogonal crossover. Information
Sciences, 2012, 185(1): 153-177.

[25] Zhang J, Sanderson A. DE-AEC: A differential evolution algo-
rithm based on adaptive evolution control. In Proc. the 2007
IEEE Congress on Evolutionary Computation (CEC2007),
Singapore, Sept. 2007, pp.3824-3830.

[26] Wang Y, Shi Y, Yue B, Teng H. An efficient differential evolu-
tion algorithm with approximate fitness functions using neural
networks. In Proc. the 2010 Int. Conf. Artificial Intelligence

and Computational Intelligence, Part 2, Oct. 2010, pp.334-
341.

[27] Lu X, Tang K, Yao, X. Classification-assisted differen-
tial evolution for computationally expensive problems. In
Proc. the 2011 IEEE Congress on Evolutionary Computation
(CEC2011), New Orleans, USA, June 2011, pp.1986-1993.

[28] Lim D, Jin Y, Ong Y S, Sendhoff B. Generalizing surrogate-
assisted evolutionary computation. IEEE Transactions on
Evolutionary Computation, 2010, 14(3): 329–355.

[29] Suganthan P N, Hansen N, Liang J J, Deb K, Chen Y P, Auger
A, Tiwari S. Problem definitions and evaluation criteria for
the CEC 2005 special session on real-parameter optimization.
Technical Report, Nanyang Technological University, Singa-
pore, and KanGAL Report, Kanpur Genetic Algorithms Lab-
oratory, IITkanpur, 2005.

[30] Tang K, Yao X, Suganthan P N, MacNish C, Chen Y P, Chen
C M, Yang Z. Benchmark functions for the CEC2008 special
session and competition on large scale global optimization.
Technical Report, Nature Inspired Comput. Applicat. Lab.,
USTC, China, 2007. http://nical.ustc.edu.cn/cec08ss.php

[31] Duin R, Juszczak P, Paclik P, Pekalska E, Ridder D de, Tax
D M J, Verzakov S. PRTools 4.1, a matlab toolbox for pattern
recognition. Delft University of Technology, 2007.

[32] Yu H, Kim S. SVM tutorial: Classification, regression, and
ranking. In Handbook of Natural Computing, Rozenderg G,
Bäck T, Kok J (eds.), Springer 2009.

[33] Gunn S. Support vector machines for classification and regres-
sion. Technical Report, University of Southampton, 1998.

Xiao-Fen Lu received the
B.Eng. degree in computer science
from the Nature Inspired Compu-
tation and Applications Laboratory
(NICAL), School of Computer Scie-
nce and Technology, University of
Science and Technology of China
(USTC), Hefei, in 2009. Currently,
she is pursuing the Ph.D. degree in
NICAL, USTC. Her research inte-

rests include evolutionary computation, surrogate-based
optimization.

Ke Tang received the B.Eng.
degree from the Huazhong Uni-
versity of Science and Technology,
Wuhan, China, in 2002 and the
Ph.D. degree from the School of
Electrical and Electronic Engineer-
ing, Nanyang Technological Univer-
sity, Singapore, in 2007. In 2007, he
joined the Nature Inspired Compu-
tation and Applications Laboratory

(NICAL), School of Computer Science and Technology, Uni-
versity of Science and Technology of China, Hefei, where he
was promoted to Professor in 2011. He is the author/co-
author of more than 60 refereed publications. His major re-
search interests include evolutionary computation, machine
learning, and their real-world applications. Dr. Tang is an
associate editor of IEEE Computational Intelligence Maga-
zine and the Chair of the IEEE Task Force on Collabora-
tive Learning and Optimization. He served as a program
co-chair of 2010 IEEE Congress on Evolutionary Computa-
tion, held in Barcelona.


