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Abstract With the rapid development of Internet and multimedia technology, cross-media retrieval is concerned to retrieve
all the related media objects with multi-modality by submitting a query media object. Unfortunately, the complexity and the
heterogeneity of multi-modality have posed the following two major challenges for cross-media retrieval: 1) how to construct
a unified and compact model for media objects with multi-modality, 2) how to improve the performance of retrieval for large
scale cross-media database. In this paper, we propose a novel method which is dedicate to solving these issues to achieve
effective and accurate cross-media retrieval. Firstly, a multi-modality semantic relationship graph (MSRG) is constructed
using the semantic correlation amongst the media objects with multi-modality. Secondly, all the media objects in MSRG are
mapped onto an isomorphic semantic space. Further, an efficient indexing MK-tree based on heterogeneous data distribution
is proposed to manage the media objects within the semantic space and improve the performance of cross-media retrieval.
Extensive experiments on real large scale cross-media datasets indicate that our proposal dramatically improves the accuracy
and efficiency of cross-media retrieval, outperforming the existing methods significantly.

Keywords cross-media retrieval, multi-modality, semantic correlation, indexing structure

1 Introduction computed in an isomorphic feature space. For exam-
ple, it is difficult to measure the similarity between an

Cross-media retrieval is coming as a new trend along image with visual features (e.g., color, shape and tex-
with the rapid development of Internet and multimedia ture) and an audio with auditory features (e.g., timbre,
technology. Compared with the traditional content- pitch and amplitude) in an isomorphic feature space.
based multimedia retrieval with single modality, cross- ~ In other words, the complexity and the heterogeneity
media retrieval is more in accordance with the user’s of the multi-modality are the fundamental challenges
experience. Because the modality of query example of cross-media retrieval. In order to solve these issues,
and returned results are often different, it is propitious we use semantic concepts® as the high-level semantic
to satisfy the various requirements of users'™3!. For features to measure the semantic correlation amongst
instance, as shown in Fig.1, if users submit a query media objects with multi-modality. The media objects

example (an image of eagle), they may not only want
to obtain some similar images about eagle, but also

want to obtain the description of text or video clips fext

about eagle.
Traditional content-based multimedia retrieval

methods generally extract low-level features of media

objects, which can be utilized to measure the similarity =~ _

amongst media objects with single modality*. Image
However, the similarity measure of media objects Al\ﬁtﬂ

with multi-modality by only exploring low-level fea- %F.‘( M‘&.‘

tures is a very difficult problem. Because different RS «¥x

kinds of low-level features of media objects cannot be Fig.1. Example of user query of cross-media retrieval.
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of different modalities, such as text, image and video,
generally possess some information of latent semantic
correlation among each other. In addition, semantic
concept is certainly closer to the natural representation
of human which is in favor of unifying the features of
media objects with multi-modality.

For the cross-media retrieval, the other major chal-
lenge is to manage and retrieve various types of me-
dia objects stored in large-scale multimedia database.
When faced with the large-scale datasets, most of ex-
isting retrieval methods ignore the retrieval cost of
cross-media retrieval, which usually leads to degrade
the performance of cross-media retrieval. Therefore, it
is important to effectively retrieve the results associ-
ated with the user request from large-scale multimedia
database. Specifically, there is a urgent need of indexing
techniques which can manage the cross-media database
and support the execution of similarity queries.

Accordingly, an effective cross-media retrieval
method should address following two problems: 1) how
to construct a unified and compact model by exploring
the semantic correlation of media objects with multi-
modality, 2) how to improve the performance of cross-
media retrieval for large-scale multimedia database. In
this paper, we propose a new method which is dedicated
to solving these difficulties to achieve effective and ac-
curate cross-media retrieval. Firstly, a multi-modality
semantic relationship graph (MSRG) is constructed by
using the semantic correlation information of media ob-
jects with multi-modality. Specifically, semantic cor-
relation among media objects with multi-modality is
learned by canonical correlation analysis!”). Further,
all the media objects are mapped onto an isomorphic
semantic space. To manage and retrieve all the media
objects, an efficient indexing MK-tree based on hetero-
geneous data distribution is proposed to manage media
objects within the semantic space and improve the per-
formance of cross-media retrieval with the large scale
cross-media database. Finally, we execute the range
query and the k-nearest neighbor (kNN) query to ex-
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amine the performance of cross-multimedia retrieval.
An overview of our approach is shown in Fig.2.

In summary, the main contributions of the paper are:

1) In order to effectively address the problem of the
heterogeneity of multiple media objects, we propose
MSRG which covers multiple media objects by explor-
ing the semantic concepts as high-level features of me-
dia objects.

2) We propose a unified indexing structure called
MK-tree to efficiently improve the large scale cross-
media retrieval. Specifically, we consider the character-
istics of different media objects to implement the steps
of data partitions of MK-tree based on the key dimen-
sion and data distribution of multiple media objects.

3) We consider extensive experiments over real large
scale cross-media datasets to evaluate our proposed
method. Moreover we present theoretical analysis and
comparison on the search and storage cost of the pro-
posed indexing scheme.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 introduces
the data representation and the method of extracting
high-level semantic features. Section 4 introduces the
construction of MSRG in details. In Section 5, we dis-
cuss cross-media retrieval based on MK-tree indexing.
Section 6 reports the experimental evaluation of our
method. We finally conclude the paper in Section 7.

2 Related Work

In recent years, the academic community has pro-
posed concept-based multimedia retrieval by pooling
a set of pre-trained semantic concept detectors which
can be regarded as intermediate descriptors to bridge
the semantic gap!® %89 The semantic concepts gene-
rally cover a wide range of topics which include objects,
scenes, people, events, etc. Some multimedia research
communities have put tremendous efforts into manual
annotation and released a large number of ground truth
annotations, such as TRECVID!'Y | imageCLEF[] and
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Fig.2. Framework of our approach. (a) Multi-modality semantic relationship graph (MSRG). (b) Semantic space. Note that heteroge-

nous media objects have different data distributions. (¢) MK-tree based on heterogeneous data distribution.
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LSCOMU!2, These concept annotations involve image
or video data complement with annotations, closed-
caption information or speech recognition transcripts.

An intrinsic problem of cross-media retrieval is to in-
vestigate the semantic correlation amongst the hetero-
geneous multimedia data. There are many researches
have focused on this issuel*316],

Yang et al.l?l proposed a two-level manifold learning
method for cross-media retrieval. Firstly three inde-
pendent graphs are constructed for image objects, au-
dio objects and text objects respectively. According
to the graphs, media objects are projected onto three
spaces which are then combined to obtain the final
data representation in multimedia document seman-
tic space. However, the semantic correlations among
heterogeneous multimedia objects are not used when
construct the independent spaces for image, audio and
text objects. In addition, the two-level manifold learn-
ing method is so complex that it must simultaneously
adjust more than 10 parameters, which making it less
applicable in the real applications.

In [3], the researchers proposed a ranking algorithm
for the cross-media retrieval, namely ranking with lo-
cal regression and global alignment, which learns a ro-
bust Laplacian matrix for data ranking. For each data
point, they employed a local linear regression model to
predict the ranking value of its top-k nearest neighbor-
ing points. Furthermore, they proposed a global objec-
tive function to assign an optimal ranking value to each
point.

The multimedia indexing is a kind of high-
dimensional indexing problem. The academic com-
munity has made many efforts on solving the high-
dimensional indexing problem. Existing techniques can
be divided into three main categories. The first cate-
gory is based on data space partition, hierarchical tree
index structures such as the R-treel'” and its variants.
Their performance deteriorates rapidly as the dimen-
sionality increases. The second category is to repre-
sent original feature vectors using smaller approximate
representations, such as VA-file'8l. Although it can
accelerate the sequential scan by data compression, it
suffers from the higher computational cost for decod-
ing the bit string. The last category uses a distance-
based indexing method, such as iDistancel*]. iDistance
is a distance-based scheme, in which high-dimensional
points are mapped onto a single-dimensional distance
values by computing their distance from the centroid
respectively.

Ciaccia et al.?% proposed a paged metric called M-
tree, which is a paged and balanced dynamical index
based on a bottom-up construction with node promo-
tion and split mechanism. However, the overlap of sub-
spaces in M-tree is usually considerable large, which
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leads to the decrease of the performance.

In this paper, we propose MK-tree to index heteroge-
neous media objects, which truly supports cross-media
retrieval. Analogous to M-tree, MK-tree is a dynamical
paged and balanced tree. Besides inheriting the mer-
its of M-tree, MK-tree improves the data partitioning
based on different data distributions and extends M-
tree with key dimension to obtain higher performance
of retrieval.

3 Preliminaries
3.1 Data Representation

We consider the problem of cross-media retrieval
from a multimedia database which contains compo-
nents of text, image and video. Some symbols to be
used in the rest of the paper are shown in Table 1.
Each media object is represented as an z-dimensional
semantic feature vector, such as the text object t; is
denoted as f, = ( i fa ..., f4%). Tmage and video
objects are represented in the same way.

Table 1. Notations

Symbol Meaning
T Set of text objects, T'= {t1,t2,...,tw}
I Set of image objects, I = {p1,p2,...,Pm}
1% Set of video objects, V = {s1,s2,...,8n}
D Multimedia dataset, D = {T,I,V'}
fr High-level semantic features set of text, fT = {ftl,

.ft27"-1.ftw}

I High-level semantic features set of image, f! = {fp17
Fpor- o Fopn}

v High-level semantic features set of video, f¥V = {f51,
f327~-.7fs"}

3.2 Extraction of High-Level Semantic
Features

In order to construct a unified and compact semantic
correlation model, in this paper, we extract the high-
level semantic concept features of heterogeneous media
objects. The method of extraction is introduced as fol-
lowing.

For the text objects, we use a state-of-the-art IE
system developed for the automatic content extraction
(ACE) program to process text and automatic speech
recognition output!?=22/, The pipeline includes name
tagging, nominal mention tagging, time expression ex-
traction and normalization, relation extraction and
event extraction. Entities include co-referred persons,
geo-political entities, locations, organizations, facilities,
vehicles and weapons; relations include 18 types (e.g.,
a town some 50 miles south of Salzburg indicates a
located relation); events include the 33 distinct event
types defined in ACE 2005 (e.g., “Barry Diller on
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Wednesday quit as chief of Vivendi Universal Enter-
tainment.” indicates a personnel-start event). Names
are identified and classified using an HMM-based name
tagger. Nominals are identified using a maximum en-
tropy based chunker and then semantically classified
using statistics from ACE training corpora. Rela-
tion extraction and event extraction are also based on
maximum entropy models, incorporating diverse lexi-
cal, syntactic, semantic and ontological knowledge.

For image and video objects, we employ a semantic
concept extraction system, which is developed by IBM
for the TREC retrieval evaluation[?3l. This system can
extract 2617 semantic concepts defined by TRECVID.
It uses Support Vector Machine (SVM) to learn the
mapping between low level features extracted from vi-
sual modality as well as from transcripts and produc-
tion related meta-features. It also exploits a correlative
multi-label learner, a multi-instance kernel and label
propagation through linear neighborhoods to extract all
other high-level semantic features. For each classifier,
different models are trained on a set of different modali-
ties (e.g., the color moments, wavelet textures, and edge
histograms), and the predictions made by these classi-
fiers are combined together with a hierarchical linearly
weighted fusion strategy across different modalities and
classifiers.

4 Construction of Multi-Modality Semantic
Relationship Graph

As we know from above, in order to effectively ad-
dress the problem of the heterogeneity of media objects
with multi-modality, we construct a unified and com-
pact semantic correlation model. In this section, we
describe the main steps of the construction of MSRG.
The details of each step are then explained sequentially.

The formal definition of MSRG is given below.

Definition 1. A multi-modality semantic relation-
ship graph (MSRG) is denoted as MSRG = (M, FE),
where M is a set of media objects, E is a set of edges.
Note that, ifVa;, x; € DAz, x; € T (Ior V), E refers
to the similarity between x; and ;. Otherwise, i.e., if
Va;, x;j € DA =(z5,2; € T (I orV)), E refers to the
semantic correlation between x; and x;.

There are three kinds of media objects in MSRG,
text, image and video. And the MSRG can be repre-
sented by an affinity matrix, which indicates the seman-
tic correlation amongst different media objects.

4.1 Measuring Semantic Correlation

Let R be an n-by-n affinity matrix (7i;)nxn to
represent the MSRG, in which r;; represents the se-
mantic correlation among media objects with multi-
modality and n represents the total number of media
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objects. Here, semantic correlation among media ob-
jects is learned by canonical correlation analysis(”). The
semantic correlation of the three kinds of media objects
is measured with each other. We explore the correlation
structure of two sets of variables, one represents a set
of independent variables and the other one represents
a set of dependent variables. The canonical correlation
is optimized so that the linear correlation between two
latent variables is maximized.

The mathematical formulation of semantic correla-
tion metric is described as follows. Given two types
media objects X and Y, denoted as

X:<f1X>f2Xa"'7fr)L()T7Y:(fly’fQY""vfgz/)T7 (1)

we extract the correlated modes between vectors X
and Y by searching for a set of transformation pairs
as a; and 3,. For maximizing the canonical correlation
amongst latent variables, we give the canonical variants
u; and v; as follows:

u; = XTCXZ', V; = YTﬁi, (2)
where symbol ¢ denotes the i-th transformation pair.
The transformation in (2) obtains the i-th pair of varia-
tes u; and v;. Then, the maximum semantic correlation
between u; and v; is defined as

OliTCXYIBi
’;Ié%%xﬂ T ’
Y af Cxxaiy/B; CyyB;

where C'xy is the cross-covariance matrix of X and
Y, Cxx and Cyy are auto-covariance matrices. To
maximize (3), we obtain the partial derivative of p; with
respect to a; and set the derivative to be zero. We have

(3)

T .
alCxvB, ¢,

CxyB; =
? T
(e % CXXai

X, (4)

As the same way, setting the partial derivative of p;
with respect to B, to be zero, we have

B Cyxa;
ﬁiTnypmbbetai

CyvpB;. (5)

Cyxo; =

By combining (4) and (5), we have

CyCxyCyyCyxai = pla;,
CyyCyxCxxCxyB; = p;B;- (6)

By solving the eigenvalue in (6), we obtain the

correlation values in ascending order {pi,p2,...,pn}
and the corresponding transformation sets, @ =
{ay,a9,...,a,} and 8 = {B1,8,,...,8,}+ The cor-

responding sets of canonical variants can be expressed
as U = {uq,ug,...,up} and V = {vy,va,...,v,}.
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Note that, the semantic correlation values
{p1,p2,-..,pn} is the pairwise correlation among the
high-level semantic features of media objects. As a

result, we have p; = [r;;], where r;; means the correla-
tion between two media objects. Then, we obtain the
semantic correlation matrix R.

4.2 Media Objects Mapping

In order to efficiently manage and retrieve all the
media objects, we need to map the media objects onto
an isomorphic semantic space. As mentioned above, we
derive the semantic correlation of all the media objects
from the MSRG. In this subsection, we decompose the
semantic correlation matrix R and construct an isomor-
phic semantic space.

The semantic correlation matrix R is defined as:

i1 T2 -
R: (Tij)nxn = 21 . (7)

Then, the eigenvalue decomposition of semantic cor-
relation matrix R can be calculated by

A1
R=040"=0 o7,
Ay

0<v<n,

(8)
where A is the diagonal matrix. Its elements of diag-
onal correspond to the eigenvalues of correlation ma-
trix R. O is an orthogonal eigenvector matrix cor-
responding to all the eigenvalues, which is defined by
O = (q;.45,---,q,)". OT represents the transpose of
O. g, is the normalized eigenvector of semantic correla-
tion matrix R corresponding to the eigenvalue \;. Here,
all the eigenvalues are real and all the eigenvectors are
mutually orthogonal because the semantic correlation
matrix R is symmetric.

We denote that (qy,qs,...,q,)" is an orthogonal
basis vector of semantic space. Thus, the isomorphic
semantic space can be defined as:

SemanticSpace — span(qy, s, - - ., q,)"

)

which is an orthogonal space generated by linear com-
binations of (q;,qs,--.,q,)".

5 Cross-Media Retrieval Based on MK-Tree

The cross-media datasets is usually large scale, and
it is inefficient to retrieve over large scale cross-media
datasets only using linear scan. In this section, we pro-
pose an efficient indexing MK-tree based on heteroge-
neous data distribution to index all the media objects
which are mapped onto the isomorphic semantic space.

J. Comput. Sci. & Technol., Nov. 2012, Vol.27, No.6

5.1 Data Partition Based on Data
Distribution and Key Dimension

MK-tree is a dynamically index structure, which
can be used to index large scale multimedia objects
datasets. Specifically, we both consider heterogeneous
data distribution and key dimension to improve the ef-
ficiency of data space partition and reduce the response
time of similarity search for various media objects.

As we know, heterogeneous media types have diffe-
rent data distributions. For example, the set of video
data may be normal distribution and the set of text
data may be uniform distribution. In [24], it was con-
firmed that the optimal query processing depends on
not only the number of objects stored in the database
but also the underlying data distribution. Therefore,
data distribution is an important factor for influencing
query processing.

In an isomorphic semantic space, a key dimension is
a dimension that mostly affects similarity computation.
Meanwhile, it is crucial to select the key dimension for
filtering irrelevant data. In addition, a key dimension
can be used to minimize the overlap, and thus avoid a
lot of unnecessary path traversals over the index.

The best strategy of the key dimension selection
should keep the media objects nearer from each other
in the same subspace so that the twin nodes are not
overlapped. The most optimal partition method is to
segment the data space along the axis with maximal
variance, which has been proved to be efficient. This
approach ensures the optimization of semantic space
partition and reduces the number of paths traversed.
Thus, a dimension with the maximal variance is se-
lected to serve as the key dimension.

In this paper, data partition of semantic space is per-
formed as follows: 1) according to heterogenous data
distribution, we firstly segment the original semantic
space based on the key dimension, 2) the partitioned
subspace is split by m-RAD-2 way!20, 3) the subspace
is further segmented into twin subspaces. An overview
of steps of the data partition of semantic space is shown
in Fig.3.

5.2 Filtering Principle

We consider the filtering principle based on the key
dimension in the semantic space with respect to the
rang query. The case is similar to the k-nearest neigh-
bor (kNN) query. Let @ = {q1,q2,...,qn} be a set of
query objects, X = {x1,22,...,2,} be a set of media
objects in the semantic space, which can be any kinds
of text, image and video, and r be the search radius.
Then the distance metric between @ and X can be cal-
culated as

d(QaX) = \/(ql *1’1)2+~~.

+ (gn —zn)?. (9)
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Fig.3. Overview of data partition with regard to different data distributions in semantic space. (a) Original isomorphic semantic space.

(b) Partition the original semantic space based on the key dimension. (c) and (d) Partitioned subspaces are split by m-RAD-2 way.

(e) Subspaces partitioned into twin subspaces based on the key dimension.

Since (qx —xx)?* < (g1 —21)* + (g2 —22)* ++ -+ (g0 —
x,)? is always true, that is to say, |qx — zx| < d(Q, X)
is always true. For any dimension k, if g, — zp > T,
then d(Q,X) > r. In this case, the media object X
can be filtered without the similarity computation. In
general, for any similarity measure function d, the fil-
tering principle of the key dimension is valid if and only

if |gr — x| < d(Q, X).
5.3 Data Structure of MK-Tree

In indexing MK-tree, there are two types of
mode objects, routing objects and leaf objects.
The data structure for leaf entries denoted as
L(z;, oid(x;), d(z;, P(x;))), where z; is a set of media
objects in leaf node, which may be text, image and
video. oid(x;) is an object identifier, and d(z;, P(x;))
is the distance of x; from its parent.

The data structure of routing entries denoted as

R(o.,7(0),d(0r, P(0)), Kno, left TwinPtr(Ty (o)),
Ml maxs M"' min7 TightTWinPtr(Trt (Or))),

where o, is a set of media objects in routing ob-
ject, r(o,) is the covering radius of o,, d(o.,P(0,))
is the distance of o, from its parent, Kyo is the
number of key dimension, leftTwinPtr(Ty(o,)) and
right TwinPtr(Ty(0,)) are two pointers to the left twin
sub-tree and to the right twin sub-tree respectively,
M max and M, nin are the maximal value of key dimen-
sion in the left twin sub-tree and the minimal value
of key dimension in the right twin sub-tree. Fig.4 in-
dicates the MK-tree index structure, corresponding to
semantic space shown in Fig.3.

5.4 Query Algorithms

In this subsection, we introduce the details of the al-
gorithms on range query and kNN query respectively.

5.4.1 Range Query

We first consider the range query. Given a set of

Leai Node
|¢———Text ———»|¢—— Image ——»|¢——Video —»|

Fig.4. MK-tree index structure.

query objects @@ and a query radius r(Q), the range
query starts from the root node and recursively tra-
verses all the paths in which the objects match the
search condition. The algorithm is described in Fig.5.

Input: N: node, Q: a set of query objects, r(Q): query
radius

Output: Top-k query results

1 if N is not leaf node then

2 or, 0op in N, do:

if |d(op, Q) — d(or, 0p)| < 7(Q) +r(0r) then
Compute d(or, Q)

if d(or, Q) < r(Q) + (o) then

if key dim Val(Q) < Mimax + 7(Q) then
range-query (xleft TwinPtr( Tlt(or)),
Q,7(Q))

/* key dim Val(Q) is the key dimension
value of @Q*/

8 if key dim Val(Q) = Mymin — 7(Q) then
9 range-query (xright TwinPtr( Trt(or)),
| er@)

10 else if |d(op — Q) — d(z; — 0p)| < 7(Q) then

11 L Compute d(z;, Q)

12 else if d(z;, Q) < 7(Q) then

13 L Add oid(z;) to the result

N O Ot W

Fig.5. Range query algorithm.

As shown in Fig.5, range query begins from the root.
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For all subspaces in the current space, those subspaces
not containing any query result can be filtered accord-
ing to the property of triangular inequality. If the sub-
tree is active and cannot be filtered, the distance be-
tween the querying object and the routing object is cal-
culated, and further filtering can be done according to
the property of triangular inequality. Then, filtering
based on the key dimension is performed on the twin
nodes. The process is done recursively till the leaf node.
In a leaf node, the results can be obtained by calculat-
ing directly.

5.4.2 k-Nearest Neighbor Query

Given a set of query objects  and the number of
objects to be searched k, the kNN query retrieves the
k nearest neighbor of ). Sharing the method proposed
in M-tree, MK-tree uses PR, a priority queue that con-
tains pointers to active sub-trees. We define NN as an
array used to store the final search results. The ENN
search algorithm is described in Fig.6.

J. Comput. Sci. & Technol., Nov. 2012, Vol.27, No.6

Input: T: root node, Q): a set of query objects, k: integer
Output: Top-k query results

1 PR« [T, -]

2 fori=1to k do

3 [ NN[i] <[]

4 while PR # @ do

5 | NextNode = ChooseNode(PR)

/* ChooseNode is used to select the candidate
results from PR */

6 if the flag of NextNode = True then

7 NeztNode = TtwinNode( NextNode)

/* TtwinNode is to get the children node of
NextNode */

8 k-nearest neighbor query (NextNode, Q, k)

Input: T: root node, Q: a set of query objects, k: integer
Output: Top-k query results

1 if N is not leaf node then

2 or, 0p in N, do:

if |d(op, Q) — d(or, 0p)| < di + 7(0r) then

L Compute d(or, Q)

if d(0r, T)min < di then

Filter by the key dimension

S Ot W

/* d(0r, T)min is the minimum distance from o,
to T */

7 Set Flag = True or False

8 Push result of NN into PR

9 if d(0r, T)max < di then

10 dr, = NN _Update([—, d(0r, T )max))

/* d(0r, T)max is the maximum distance from
or to T */

11 if d(0r, T)min < di then

12 L Remove candidate nodes from PR

/* NN_Update is the updated result in NN */
13 else

14 | | zinN,dor

15 | if |d(op, Q) — d(zi,0p)| < di then

16 L Compute d(z;, Q)

17 | if d(zi, Q) < d then

18 L di, = NN _Update([oid(z;), d(z:, Q)])

19 if (d(Ii,T)min =< dk) then

/* (d(xs, T)min is the minimum distance from x;
to T */

20 Remove candidate nodes from PR

Fig.6. k-nearest neighbor query algorithm.

In the k-nearest neighbor query algorithm, the prior-
ity queues operation can be improved based on the key
dimension filtering and described as follows. For each
node N of PR, if its twin node is active, its flag of N
is set to True; otherwise, its flag is set to False. When
the two twin nodes of N are all active, only one PR ac-
cess is needed to do. In this way, many PR accesses are
saved. As a result, the cost of query is lowered. First,
the root is kept into PR and the maximal distance is
kept in NN. Then a priority node is chosen from PR
and node search are performed. If the flag of this node
is TRUE, the same search process is needed to do for
its twin node. The improved k-nearest neighbor query
algorithm is described in Fig.7.

Fig.7. Improved k-nearest neighbor query algorithm.

6 Experimental Evaluation

In this section, we evaluate the performance of
our proposed approach on real large-scale multimedia
dataset through extensive experiments.

6.1 Experiments Setup

We introduce the setup of the experiments, including
the data preparation, experimental environment and
parameter setting.

In order to test the effectiveness and efficiency of
our proposed method: Efficient Indexing-Based Cross-
Media Retrieval (IBCR), we conduct the experiments
on a real large-scale multimedia dataset. The experi-
mental data includes 45000 texts, 75000 image objects
and 15000 video clips, which are downloaded from the
Internet or collected from Microsoft Encarta. Specifi-
cally, the text objects are categorized into 29 categories
by Wikipedia. These category labels were assigned
to text components. Since some of the categories are
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very scarce, we consider only the 15 most populated
ones. For the video clips, we use the annotations of
TRECVIDO5 dataset from Columbia3741%°), which has
a lexicon of 374 semantic concepts. The optimization
is performed independently on each video for simulta-
neously labeling all concepts and video shots. In Ta-
ble 2, we summarize the parameters and their varying
ranges in our experiments. The default value of each
parameter is highlighted in bold. All the experiments
are conducted on Intel Core2 2.8 GHz CPU with 4 GB
memory and a 500 GB hard disk.

Table 2. Parameters Setting

Parameter Varying Range
0.1, 0.15, 0.2, 0.25
0.3, 0.35, 0.4, 0.45
0.3, 0.4, 0.5, 0.6
4, 8, 16, 32, 64

Euclidean

Search range of text
Search range of image
Search range of video
k of k-NN query
Ground distance

6.2 Effectiveness of Cross-Media Retrieval
Method

We testify the effectiveness and efficiency of our
cross-media retrieval method. As shown in Fig.8, we
execute the kNN query, where k& = 20. When the user
submits a query image of eagle, 20 candidate video clips
are retrieved by our approach.

3 uery Image
er g

20 Video Clip Candidates with KNN Query d =20

Fig.8. Example of k-nearest neighbor query with our approach,
where k = 20.

Note that, it is difficult to browse large-scale multi-
media datasets to generate the manually ground truth
for a query. In this paper we obtain a query’s ground
truth (the top-k best results in kNN search) by com-
paring the query with database media objects using the
similarity measure. Denote the set of ground truth as
rel, and the set of results returned by a summarization
method as ret, the recall and precision achieved by the
retrieval method are defined as:
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N ret
recall = [7eLO et
|ret]

|rel N ret]
|rel] (10)

precision =

Fig.9 illustrates a recall-precision curve for the per-
formance comparisons between our approach (IBCR)
and CIndex!?0l. In [26], the researchers employed index
structure like B*-tree by reducing the dimensions of
the original space and used low level features of media
object to measure the correlation of heterogenous me-
dia types. The drawback of Clndex is that it drops out
some important correlation information when reduce
the dimensions of the data space, and the low level fea-
tures cannot well represent the semantic correlations of
heterogenous media objects. In particular, we compare
the average retrieval result (indicates the average pre-
cision rate under the average recall rate) of 20 media
objects queries randomly chosen from the multimedia
dataset. From Fig.9, we observe that the performance
of our proposed retrieval method is better than that of
Clndex by a large margin.

1.0

o8l

0.6 |

0.4t

Precision

02} —— IBCR
~— Clndex

0.0 - . . .
00 02 04 06 08 10

Recall

Fig.9. Recall vs precision.

6.3 Sensitivity of Dataset Size

We measure the performance behavior with varied
number of media objects, as shown in Fig.10. The com-
parison of IBCR, Clndex and sequential scan method
(Seq. scan) is conducted on range search with the
number of media objects varying from 2000 to 35 000.
Fig.10 shows the performance of query processing for
all the three media types in terms of CPU cost. It
is evident that IBCR outperforms Clndex and the se-
quential scan method significantly. The CPU cost of
IBCR increases slowly as the data size grows. We also
notice that the gap between IBCR and the sequential
scan is considerable, since the sequential scan is a CPU-
intensive operation for large-scale datasets.

6.4 Experiments on Range Query

In this subsection, we discuss the influence of query
radius of range query on the average precision of
retrieve, CPU and I/O cost respectively. As shown in
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Fig.11, the performance of our proposed method is su-
perior to Clndex and sequential scan. For processing
of range query, the CPU and I/O cost of our approach
is much lower than the two other methods. Specifi-
cally, when the query radius is smaller, more twin nodes
in indexing MK-tree can be filtered by the key dimen-
sion. The runtime of our method is averagely four times
faster than the sequential scan. Simultaneously, we con-
sider the average precision of range query, and the ac-
curacy of retrieval by exploring our method does not
change more along with the larger query radius.

6.5 Experiments on kNN Query

We also conduct experiments to compare the perfor-
mance of the kNN query of our approach with Clndex
and sequential scan. As shown in Fig.12, the perfor-
mances of Clndex and sequential scan gradually de-
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crease with larger k, but our method is obvious advan-
tageous over them. Note that the average precision of
our retrieve approach changes smoothly with different
k. It is obvious that our method is appropriate for
the cross-media retrieval with large-scale multimedia
datasets.

7 Conclusions

In this paper, we presented a novel and efficient
method for cross-media retrieval. We firstly con-
structed a multi-modality semantic relationship graph
(MSRG) by exploring the semantic correlation of me-
dia objects with multi-modality. Further, all the media
objects within MSRG were mapped onto an isomorphic
semantic space, which is used to encapsulate the het-
erogenous media objects. Finally, an efficient indexing
MK-tree was proposed to manage media objects and

1000 2500
—— IBCR 2000 —— IBCR —— IBCR
2 800 | — Clndex z ¢ Clndex = 2000 } —> CIndex ‘
g *-- Seq. Sean _..-x" g 1500 «- Seq. Scan - E *— Seq. Sean __..x""
> 600 P 5 = 1500 e
£ o £ 1000 x E
=400 5 e . = 1000
2 7 e
S 200) S 500 T T 500
S
0 0 0
4 8 12 16 20 15 20 25 30 35 1 2 3 4 5
Dataset Size (x107) Dataset Size (x10%) Dataset Size (x10°)
(@ (W] (©
Fig.10. Sensitivity of datasets size. (a) Text. (b) Image. (c) Video.
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Fig.11. Analysis of the performance of Range query. (a) Average precision. (b) CPU cost. (c) I/O cost.
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Fig.12. Analysis of the performance of kNN query. (a) Average precision. (b) CPU cost. (c) I/O cost.
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effectively speedup the cross-media retrieval perfor-
mance for handling the large-scale multimedia datasets.
In order to effectively index the heterogenous media
objects, MK-tree partitioned the data space based on
the different media data distribution and key dimen-
sions. Extensive experiments on real large-scale multi-
media datasets indicate that our proposal dramatically
improves the accuracy and efficiency of cross-media re-
trieval, outperforming existing methods significantly.
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