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Abstract Automatic prosodic break detection and annotation are important for both speech understanding and natural
speech synthesis. In this paper, we discuss automatic prosodic break detection and feature analysis. The contributions of
the paper are two aspects. One is that we use classifier combination method to detect Mandarin and English prosodic break
using acoustic, lexical and syntactic evidence. Our proposed method achieves better performance on both the Mandarin
prosodic annotation corpus — Annotated Speech Corpus of Chinese Discourse and the English prosodic annotation corpus —
Boston University Radio News Corpus when compared with the baseline system and other researches’ experimental results.
The other is the feature analysis for prosodic break detection. The functions of different features, such as duration, pitch,
energy, and intensity, are analyzed and compared in Mandarin and English prosodic break detection. Based on the feature
analysis, we also verify some linguistic conclusions.

Keywords prosodic break, intonational phrase boundary, classifier combination, boosting classification and regression

tree, conditional random field

1 Introduction

Features of spoken language which cannot be easily
identified as discrete segments are variously referred as
prosodic features or supra-segmental[1]. Term “supra-
segmental” implies a difference between sound units
(phones) and features such as pitch and tempo which
are likely to be perceived as features extending over
longer stretches of speech. The functions of prosody
are many and fascinating. While speech-sounds, such
as vowels and consonants, function mainly to provide
an indication of the identity of words and the regional
variety of the speaker, prosody can indicate syntax,
turn-taking in conversational interactions, types of ut-
terance, such as questions and statements, and people’s
attitudes and feelings[1]. They can also indicate word-
identity (although only occasionally in English). The
prosody of a word sequence can be described by a set
of prosodic variables such as prosodic phrase boun-
dary, pitch accent (stress), and lexical stress. Among
these prosodic variables, pitch accent and intonational
phrase boundary (IPB) have the most salient acoustic
correlates, and may be most perceptually robust[2].

Many speech applications can benefit from corpora
annotated with prosodic information, but it is very

expensive and time-consuming to annotate prosody
manually. Therefore, an automatic prosodic annota-
tion algorithm will be very useful for building spoken
language understanding systems.

In this paper, we propose a classifier combination
method to detect prosodic event. The prosodic event
that we consider is prosodic phrase boundary or break.
The classifier combination model is obtained by com-
bining different models which are modeled by using all
features coming from acoustic, lexical and syntactic ev-
idence. We use boosting classification and regression
tree (CART) to model acoustic, lexical and syntactic
features. The model can encode well the distributions
of acoustic, lexical and syntactic features of syllable.
The conditional random fields (CRFs) are more effec-
tive for acoustic, lexical and syntactic features, and
commendably model the context property of syllable.
We verify our proposed method through three diffe-
rent ways. First, we verify the method on Annotated
Speech Corpus of Chinese Discourse (ASCCD)[3-4],
where 90.34% prosodic break detection precision rate
can be achieved and 6.09% is improved when compared
with the baseline. The baseline system is the combi-
nation of two different systems, where the acoustic fea-
tures of one system are modeled by neural network,
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and the lexical and syntactic features of the other sys-
tem are modeled by decision tree. Second, we verify
our proposed method on Boston University Radio News
Corpus (BURNC)[5]. There are 2.95% precision rate
improvement on break detection and 2.33% precision
rate improvement on intonational phrase boundary de-
tection respectively when compared with the baseline
system. When compared with the previous work on
BURNC, our proposed method also has different de-
grees of improvement. Finally, we use our proposed
automatic prosodic break annotation method to label
other continuous speeches. When compared with man-
ual annotation, the concordance rate is 92.21%.

In this paper, we also analyze the effects of the du-
ration, pitch, energy and intensity features in prosodic
break detection, compare the effect of these features in
ASCCD prosodic break detection and BURNC break or
intonational phrase boundary detection, and get some
significative conclusions.

The paper is organized as follows. Next section will
describe the related work. In Section 3, we provide de-
tails on the corpora. In Section 4, the features used
in Mandarin and English prosodic break detection are
introduced, which include acoustic features, lexical and
syntactic textual features. In Section 5, the prosodic
break detection algorithm is presented. Our experi-
ments and results are introduced in Section 6. In Sec-
tion 7, we make the feature analysis and compare the
differences and similarities between Mandarin and En-
glish prosodic break detection. In Section 8, based on
the results of feature analysis, we discuss the differences
between Mandarin and English prosodic break detec-
tion further. The final section gives a brief summary
along with future research directions.

2 Related Work

Many approaches have explored the prosodic break
detection at the word, syllable and vowel levels based
on acoustic, lexical and syntactic information.

Initial attempts at automatic detection of prosodic
events were presented in the work by Wightman et al.[6]

and Ross and Ostendorf[7]. Wightman utilized deci-
sion tree to model acoustic evidence (such as pitch, en-
ergy and duration evidence), and combined it with a
probabilistic model (bi-gram) to detect binary prosodic
boundary. Their method achieved 71% accuracy for
boundary detection at syllable level on BURNC. The
performance of boundary detection is not better than
human annotators (95%∼98% for intonational phase
boundaries)[6]. Ostendorf et al. used a multi-level hie-
rarchical model based on decision tree framework to
predict boundary tone types. The three-way boundary

tone classifier at intonation phrase level, which is iden-
tified as those segments marked with a break index
value of 4 or above on Tones and Break Indices (ToBI)
break index tier, could achieve 66.9% accuracy rate[7].
More recent related researches were reported by Chen
et al.[8], Ananthakrishnan and Narayanan[9], Jeon and
Liu[10], Sridhar et al.[11], and Chou et al[12]. Chen et al.
built Gaussian mixture model (GMM) based on acous-
tic evidence and artificial neural network (ANN) model
based on syntactic evidence at maximum likelihood
framework for binary intonational phrase boundary de-
tection, and achieved 93.07% accuracy rate at word
level[8]. Ananthakrishnan and Narayanan used a maxi-
mum a posteriori (MAP) framework for prosodic event
detection. They used an n-gram structure for prosodic
language model, and utilized neural network (NN) to
model acoustic evidence. When combining acoustic-
prosodic model based on NN with lexical and syntactic
prosodic model based on n-gram, they could achieve
91.61% binary prosodic phrase accuracy rate at sylla-
ble level[9]. Jeon and Liu showed that the neural net-
work classifier achieved the best performance for mode-
ling acoustic evidence, and support vector machines
(SVMs) were more effective for lexical and syntactic
evidence. The combination of the acoustic and syntac-
tic models yielded 93.3% intonational phrase boundary
detection accuracy and 91.1% break index detection
accuracy[10]. Sridhar et al. described a maximum en-
tropy based automatic prosody labeling framework, and
applied the proposed framework to both prominence
and phrase structure detection within ToBI annotation
scheme. On BURNC, their proposed model achieved
pitch accent and boundary tone detection accuracies of
86.0% and 93.1% respectively. The phrase structure de-
tection through prosodic break index labeling provided
accuracy of 84% on BURNC[11]. Chou et al. proposed
an unsupervised joint prosody labeling and modeling
(PLM) method for exploiting the prosody of spon-
taneous Mandarin speech. Many meaningful chara-
cteristics of spontaneous-speech prosody were investi-
gated from the parameters of the well-trained prosodic
models[12].

Great progresses have been made about the prosodic
break detection based on acoustic, lexical and syntactic
information in recent years. But there is one shortcom-
ing in most prosodic break detection methods. The
shortcoming is the independent assumption between
acoustic features and lexical and syntactic features. In
fact, the acoustic features and lexical and syntactic
features are not independent. In this paper, our pro-
posed method can avoid the independent assumption
and achieves better experimental results when com-
pared with other methods.
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3 Corpora

Two corpora — ASCCD and BURNC, annotated
with prosody are used in our experiments. ASCCD
is designed for TTS and labeled with prosodic ties.
The text of ASCCD contains 18 pieces of narration or
argumentum. Each piece contains 2∼5 sections and
500∼600 syllables. The text was read by 10 speak-
ers, who are M001, M002, M003, M004, M005, F001,
F002, F003, F004 and F005 separately (five males and
five females). The speech was annotated based on
SAMPA-C system to describe sound variation pheno-
mena, such as centralization, reduction, insertion[3].
The break indices and stress are annotated based on C-
ToBI system[4]. In the corpus, prosodic boundary is la-
beled by 0, 1, 2, 3, 4, which stand for syllable boundary
in prosodic word, prosodic word break, minor prosody
phrase break, major prosody phrase break, and intona-
tion group break respectively. Stress is labeled by 0,
1, 2 and 3, which stand for unstressed, prosodic word
(PW) stress, minor prosodic phrase (MIP) stress and
major prosodic phrase (MAP) stress respectively. In
this paper, we only concern whether the syllable is fol-
lowed by a prosodic break or not. We do not make
distinction between different types of prosodic breaks
further. This means that the prosodic word break, mi-
nor prosodic break, major prosodic phrase break and
intonation group break are regarded as the same type
of prosodic break. Table 1 lists the distribution of
prosodic break in ASCCD corpus. In [13], Hu described
the consistency about ASCCD prosodic break annota-
tion. According to Hu’s statistics, there are about 4 282
common words as the non-break annotation according
to the annotation files coming from all 10 speakers,
which means that there are about 78.41% (4 282/5 461)
same non-break annotation pattern for each speaker
data. For break annotation, there are more freedoms
for each speaker data, which may be lead by speakers
or annotators.

Table 1. Prosodic Break Distribution in ASCCD Corpus

Total Non-Break Break

87 586 54 614 32 972

100% 62.35% 37.65%

BURNC is used to verify our proposed method for
English prosodic break detection[5]. It is a database
of broadcast news style read speech that contains the
ToBI-style prosodic annotations for part of the data.
Data annotated with ToBI-style labels are available
for six speakers (f1a, f2b, f3a, m1b, m2b, and m3b),
which amounts to 3 hours of speeches. The corpus
is annotated with orthographic transcription, auto-
matically generated and hand-corrected part-of-speech

(POS) tags, and automatic phone alignments. In break
index tiers, the break indices range in value from 0 to 4,
where 4 means intonational phrase boundary, 3 means
intermediate phrase boundary, and a value less than 3
means phrase-medial word boundary. In BURNC, we
take binary break and IPB detection. The values 3
and 4 are grouped to represent there is a break. The
phrase boundary tones are annotated at every interme-
diate phrase boundary or intonational phrase boundary.
All of the IPB tones are grouped into one category. Ta-
ble 2 lists the statistics of BURNC. In [5], Ostendorf
et al. listed their studies of labeler consistency on a
set of three stories containing 1 002 words. They found
that boundary tone agreement was 93% for 207 words
marked by both labelers with an intonational phrase
boundary, and agreement for the five ToBI break index
levels was within the uncertainty level for 95% of 989
words. Therefore, there is high consistency about the
BURNC annotation.

Table 2. Statistics of Boston University Radio News Corpus

Female Male

f1a f2b f3a m1b m2b m3b

No. Utterances 74 164 33 72 51 24

No. Words 3 993 12 607 2 733 5 059 3 608 2 093

No. Syllables 6 562 20 700 4 422 8 144 5 904 3 354

No. IPBs 748 2 801 437 784 657 292

No. Breaks 1 116 3 914 744 1 247 986 459

In our experiment, we use another Mandarin conti-
nuous speech corpus which is provided by a project sup-
ported by the High Technology Research and Develop-
ment 863 Program of China for Mandarin large vocabu-
lary continuous speech recognition (LVCSR) system
development, to implement automatic prosodic break
annotations. 83 male speakers’ data are employed
for training (48 373 sentences, 55.6 hours) and 6 male
speakers’ for testing (240 sentences, 17.1 minutes).

4 Features

In the following subsection, the acoustic, lexical
and syntactic features used in Mandarin and English
prosodic break detection are introduced. In order to
eliminate the natural variations among different speak-
ers, some features must be normalized.

4.1 Features Used in Mandarin Prosodic Break
Detection

4.1.1 Duration

The linguistic theories of prosodic break tend to con-
sider syllable duration as one of the fundamental acous-
tic parameters for detecting syllable prosodic break.
Our previous work also indicates that the duration of
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the syllable before a prosodic break is lengthened[14].
For every syllable, we extract the following duration
related features listed in Table 3.

Table 3. Duration Related Features

Feature Name Feature Description

SilD The silence duration after the syllable

SylDur The duration of the syllable

SylDurRatio The ratio between the following syllable dura-
tion and the current syllable duration

PDur The duration of pitch discontinuing between
the syllable and the following syllable

4.1.2 Pitch

At first, we use the command “To Pitch. . .”, and
set time step to 0.01 second, pitch floor to 50 Hz, pitch
ceiling to 500Hz to extract pitch contour with the help
of Praa①. And then in order to reduce the effect by
both inter-speaker and intra-speaker variation, we use
z-score② method to normalize pitch. For each sylla-
ble, we compute the statistical features, such as mini-
mum, maximum, range (maximum minus minimum),
and mean. We also get an approximation of the pitch
contour by using 5-order Legendre polynomial expan-
sion.

Let us suppose f(t) to be a pitch or energy contour
(where t represents time), then the Legendre polyno-
mial expansion of f(t) can be approximated as

f(t) ≈
M∑

n=0

anPn(t), (1)

where

Pn(t) =





1, if n = 0,

t, if n = 1,
2n− 1

n
tPn−1(t)− n− 1

n
Pn−2(t), if n > 2,

is the i-th Legendre polynomial, an is the coefficient of
the expansion equation. Each coefficient in (1) repre-
sents a certain meaning and models a particular aspect
of the contour, such as a0 stands for the mean of the
segment and a1 is interpreted as the slope.

The previous work indicates that the comparison of
adjacent syllable pitch is helpful for the prosodic break
detection[8-12]. Therefore, we also compute these fea-
tures, such as the difference between the pitch mean of
the syllable and the pitch mean of the following sylla-
ble. Table 4 lists all these pitch-related features used
in the prosodic break detection.

Table 4. Pitch-Related Features

Type Feature Name Feature Description

Pitch Pth Max The maximum of the syllable
pitch

Statistical Pth Min The minimum of the syllable
pitch

Pth Range The difference between Pth Max
and Pth Min

Pth Mean The mean of the syllable pitch

Pitch
Contour

Con Pth a0,
Con Pth a1,

The coefficient of 5-order Legen-
dre polynomial expansion

Con Pth a2,

Con Pth a3,

Con Pth a4,

Con Pth a5

Pitch
Comparison

PDlt The difference between the last
non-zero pitch value of the syl-
lable and the first non-zero pitch
value of the following syllable

BPDlt The difference between the mini-
mum pitch of the syllable and
the minimum pitch of the follow-
ing syllable

TPDlt The difference between the
maximum pitch of the syllable
and the maximum pitch of the
following syllable

PMDlt The difference between the mean
pitch of the syllable and the
mean pitch of the following syl-
lable

PRatio The ratio between the last non-
zero pitch value of the syllable
and the first non-zero pitch value
of the following syllable

4.1.3 Energy

The methods of computing the energy-related fea-
tures and pitch-related features are similar. In order to
get energy values, we use the command “To Intensity
. . .” and set minimum pitch to 50 Hz, time step to 0.01
second to extract intensity of speech with the help of
Praat. Table 5 lists the energy-related features.

4.1.4 Lexical and Syntactic Features

Predicting prosodic break from text has been studied
extensively in the past due to its critical role in text-
to-speech system. It has been shown that many factors
can affect prosodic break placement. For Chinese words,
Packard used the linguistic and cognitive approach to
describe in detail[15]. For example, Chinese character
“中国 (China)” is a word. It contains two syllables “中
(zhong)” and “国 (guo)”. For Chinese “中国人民解放

①Boersma P, Weenink D. Praat: Doing phonetics by computer. http://www.praat.org/, May 2009.
②z-score normalization: xnorm = x−µ

σ
, where x is a value to normalize, µ and σ are mean and standard deviations which are

estimated from all syllable duration, or pitch, energy and intensity for a speaker.
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Table 5. Energy-Related Features

Type Feature Name Feature Description

Energy Eng Max The maximum of the syllable en-
ergy

Statistical Eng Min The minimum of the syllable en-
ergy

Eng Range The difference between Eng Max
and Eng Min

Eng Mean The mean of the syllable energy

EngRatio The ratio between the mean of the
syllable energy and the mean of the
following syllable

Energy Con Eng a0, The coefficient of 5-order Legendre

Contour Con Eng a1, polynomial expansion

Con Eng a2,

Con Eng a3,

Con Eng a4,

Con Eng a5

军 (the Chinese People’s Liberation Army)”, different
segment word systems may generate different segments.
It may be believed as a Chinese word “中国人民解放军
(the Chinese People’s Liberation Army)”, or three Chi-
nese words “中国 (China)” , “人民 (People)” and “解放
军 (Liberation Army)”, or others. For us, we only use
Chinese word segmenter to segment Chinese words. In
this work, we first use Stanford Chinese word segmenter
to segment Chinese word, then use Stanford postagger
to get part-of-speech tags[16-18]. Table 6 lists the lexical
and syntactic related features. In Table 6, the different
syllables in the same Chinese word have same POS tags.

Table 6. Lexical and Syntactic Related Features

Feature Name Feature Description

BSeg Whether the syllable is the boundary of Chi-
nese character or not

Tone The tone of the syllable

ID The identification of the syllable

PosTag The Pos tag of the syllable

Wen The number of syllables that the Chinese char-
acter contains

Hdis The number of syllables between the syllable
and the beginning of Chinese character

Tdis The number of syllables between the syllable
and the ending of a Chinese character

We also compute lexical and syntactic related fea-
tures in the contextual window. We choose the two
syllables before and after the current syllable as the
contextual window. So we add “P ” before the feature
name in order to represent the lexical and syntactic of
the previous syllable, and add “F ” before the feature
name in order to represent the lexical and syntactic of
the following syllable.

So far, we have listed all these features used in Man-
darin prosodic break detection. There are 51 features

(4 duration-related, 15 pitch-related, 11 energy-related
and 21 lexical and syntactic related features) in total.

4.2 Features Used in English
Prosodic Break and IPB Detection

The features that we use in English prosodic break
and IPB detection on BURNC almost are the same as
the features listed in [10]. Table 7 lists part features
used in English prosodic break and IPB detection. In
order to reduce the effect by both inter-speaker and
intra-speaker variation, both values of pitch and energy
are normalized (z-value) with utterance specific means
and variances.

We also compute these lexical and syntactic features
at the three previous and two next contextual windows,
and also add “P ” before the feature name in order to
represent the lexical and syntactic of the previous syl-
lable, add “F ” before the feature name in order to
represent the lexical and syntactic of the following syl-
lable.

So far, we have listed all these features used in En-
glish prosodic break detection. There are 42 features
(10 pitch-related, 10 energy-related, 4 duration-related
and 18 lexical and syntactic related) in total.

5 Classifiers

The combination of different classifiers is often uti-
lized for the prosodic events detection, which can com-
bine different information sources and different model-
ing methods, and compound the advantage of different
models.

In [10], Jeon and Liu listed (2)∼(5) that are often
used for prosodic break detection. We cite directly and
list these equations below.

The most likely sequence of prosodic break P ∗ =
{p∗1, p∗2, . . . , p∗n} is

P ∗ = arg max p(P |A,S) (2)

≈ arg max p(P |A)p(P |S) (3)

≈ arg max
n∏

i=1

p(pi|ai)λp(pi|φ(si)) (4)

≈ arg max λ
n∑

i=1

log(p(pi|ai)) +
n∑

i=1

log
(
p(pi|φ(si))

)
,

(5)

where A = {a1, a2, . . . , an} is the sequence of acoustic
feature, ai = (a1

i , a
2
i , . . . , a

t
i) is the acoustic feature vec-

tor corresponding to the syllable, S = {s1, s2, . . . , sn} is
the sequence of syntactic evidence, si = (s1

i , s
2
i , . . . , s

l
i)

is the lexical and syntactic feature vector corresponding



Chong-Jia Ni et al.: Prosodic Break Detection, Annotation and Feature Analysis 1189

Table 7. Part of Features Used in English Prosodic

Break and IPB Detection

Type Feature Name Feature Description

Duration dSilDur Silence duration after the sylla-
ble

durSyl Duration of the syllable

dDurRatio Ratio between the following and
the current syllable

durVowel Vowel duration of the syllable

Pitch pthMax Maximum of the syllable pitch

Statistical pthMin Minimum of the syllable pitch

pthRange Difference between Pth Max
and Pth Min

pthMean Mean of the syllable pitch

Pitch pthCoef0, Coefficient of 5-order Legendre

Contour pthCoef1, polynomial expansion

pthCoef2,

pthCoef3,

pthCoef4,

pthCoef5

Energy engMax Maximum of the syllable energy

Statistical engMin Minimum of the syllable energy

engRange Difference between Eng Max
and Eng Min

engMean Mean of the syllable energy

Energy engCoef0, Coefficient of 5-order Legendre

Contour engCoef1, polynomial expansion

engCoef2

engCoef3,

engCoef4,

engCoef5

Lexical and Pos POS tag of the syllable

syntactic WordInit Number of syntactic phrases the
word initiates

WordTerm Number of syntactic phrases the
word terminates

to the syllable, φ(si) is chosen such that it contains
lexical and syntactic evidence from the contextual win-
dow of the current syllable, log(p(pi|ai)) is the acoustic-
prosodic model score, log(p(pi|φ(si))) is the syntactic-
prosodic model score, and λ is a weighting between the
acoustic-prosodic and syntactic-prosodic models. The
acoustic-prosodic model and syntactic-prosodic model
can be obtained by machine learning methods. The sta-
tistical machine learning methods, such as classification
and regression tree, neural network, support vector ma-
chine, can be used to model the acoustic-related or lex-
ical and syntactic related features, and then apply (5)
to combine the acoustic-prosodic model and syntactic-
prosodic models in order to acquire the final model.
When modeling the acoustic-related or lexical and syn-
tactic related features, the same method or different
methods can be utilized to model different kinds of fea-
tures. About the combination of different classifiers,
Ghahramani and Kim explored a general framework for

the Bayesian model combination in the context of clas-
sification. Their framework models the relationship ex-
plicitly between each model’s output and the unknown
true label[19]. In fact, (5) is a specific case of classifier
combination of two models.

Features extracted from acoustic, lexical and syntac-
tic evidence are not fully independent. In order to rep-
resent the complex relationship among features coming
from different evidences, we utilize the Bayesian net-
work to represent these relationships. Fig.1 lists the
Bayesian network.

Fig.1. Bayesian network representing the complex relationship

among different features.

In Fig.1, P denotes a sequence of prosody labels as-
sociated with each word in the word sequence W , de-
scribing the prosodic status of each word. S represents
a sequence of labels describing the prosodic and syn-
tactical role of each word. M denotes the meaning of
the utterance which may affect the distribution of S, W
and P . A is the acoustic observation sequence sampled
at either frame or segmental level, and Y is the prosodic
observation sequence sampled at syllable or word level.
From the figure, we can find 1) A is dependent on both
W and P . 2) Y is also dependent on both W and P .
3) P and W are mutually dependent. 4) W , P and S
are all dependent on M .

In order to reduce the computational complexity,
p(P |A,S) has been simplified to p(P |A)p(P |S) in (3).

We can transform (2) into (6)∼(9).

P ∗ = arg max p(P |A,S)

= arg max(λ× p(P |A,S)+

(1− λ)× p(P |A,S)) (6)

= arg max(λ× p1(P |A,S)+

(1− λ)× p2(P |A,S)) (7)

= arg max
( λ

(1− λ)
× p1(P |A,S)+

p2(P |A,S)
)

(8)
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= arg max(w × p1(P |A,S)+

p2(P |A,S)), (9)

where λ
(1−λ) is equal to w. In (8), we suppose 0 < λ < 1.

We give λ × p(P |A,S) a new symbol λ × p1(P |A,S)
and (1− λ)× p(P |A,S) another new symbol (1− λ)×
p2(P |A,S). This is only a deformation of (2).

From (6)∼(9), we can find that: 1) For each classi-
fier p1 or p2, both the acoustic features and lexical and
the syntactic features are utilized to model. 2) After
modeling both the acoustic features and the lexical and
syntactic features, two different classifiers are combined
linearly. 3) In fact, (9) or (7) is also the combination
of different classifiers, and this combination method is
two levels.

(6)∼(9) are only a deformation of (2). If we hold
some hypothesis, (6)∼(9) can turn out to be other
methods. For example, if the same method is used to
model p1 and p2, the method used in (9) is one type of
methods, of which ensemble machine learning method
is one[20]. If we do not use the same method to model p1

and p2, and hold the hypothesis that the acoustic fea-
tures and the syntactic features are independent, (9)
can be written as (5).

The differences between our proposed method and
the one proposed by Jeon and Liu[10] are that: 1) Our
proposed classifier combination method does not adopt
the independent assumption between the acoustic fea-
tures and the lexical and syntactic features; 2) Our pro-
posed classifier combination method first models all fea-
tures, including the acoustic and the lexical and syntac-
tic features, and then combines these models by classi-
fier combination method, while the Jeon’s method first
models the acoustic or lexical and syntactic information
separately, and then combines these models by classifier
combination method.

“Boosting” is a general method for improving the
performance of the learning algorithm. It is a method
for finding a highly accurate classifier on the training
set, by combining “weak hypotheses”, each of which
needs only to be moderately accurate on the training
set. It has been applied with great success to several
benchmark machine learning problems by using deci-
sion trees mainly as base classifiers. AdaBoost is very
popular and perhaps the most significantly historical
milestone as it is the first algorithm that could be
adapted for the weak learners[21]. CRFs are undirected
graphical models that encode a conditional probability
distribution with a given set of features. CRFs are of-
ten used for labeling or parsing sequential data, such
as natural language text[22]. No matter what the word
or syllable is or whether it is a prosodic break or not,

it may depend on not only the current word or sylla-
ble features, but also the previous and following word
or syllable features. Boosting methods can make use
of the current word or syllable features greatly. CRFs
methods can model the previous and following word or
syllable features. We use Boosting classification and
regression tree and CRFs methods to model p1 and p2

respectively.

6 Experiments

6.1 Experiments Setup

In our experiments, Weka implementation of C4.5
algorithm classifier (J48) is used to train decision tree
model[23]. LibSVM is used to train SVM model (we
choose RBF as the SVM kernel)[24]. CRF++ 0.53 is
used to train CRF model③. We create 3-layer feed
forward back propagation network to train multi-layer
perception (MLP) model, and set the size of the hid-
den layer to be half of the number of input features.
The Boosting CART classifier that we use in our ex-
periments is obtained by using Weka classifier Multi-
BoostAB as the strong classifier, and select C4.5 deci-
sion tree (J48) as the weak classifier.

In ASCCD, we randomly select 50 sections from
each speaker (totally 10 speakers, 75 sections for each
speaker) to compose the training set TR, and the others
make up the test set T . The ratio between the sizes of
training set and testing set at sentence level is 2:1. The
training set contains 58 949 syllables and the testing set
contains 28 637 syllables.

In BURNC, we use the pitch information, duration
information and POS tag information coming from the
annotation. The energy information is extracted us-
ing Praat. The method of getting energy information
is the same as in Section 3. We randomly split the
utterances coming from all speakers in the corpus and
perform 5-fold cross validation for binary intonational
phrase boundary and binary break detection tasks. The
final result is the average of the 5-fold cross validation
results. In the following, we use asterisk to denote clas-
sifiers trained using all acoustic, lexical and syntactic
features.

6.2 Experimental Results and Analysis

6.2.1 Acoustic Prosodic Model

First, we use decision tree and neural network to
model the acoustic features. The testing results are
shown in Table 8.

From Table 8, we can find that there are certain dif-
ferences between the performances of the decision tree

③CRF++: Yet another CRF toolkit, http://crfpp.sourceforge.net/
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Table 8. Performance of Various Acoustic Prosodic

Models on ASCCD

Classifier Category Precision Recall F -

(%) (%) Measure

Decision Non-break 79.19 93.73 0.858 5

tree Break 84.77 58.61 0.693 0

Mean 81.27 80.63 0.809 5

Neural Non-break 80.99 93.34 0.867 3

network Break 84.95 63.18 0.724 6

Mean 82.46 82.09 0.822 7

classifier and neural network classifier. The perfor-
mance of neural network classifier is slightly better.

6.2.2 Lexical and Syntactic Prosodic Model

For lexical and syntactic features, we use three dif-
ferent classifiers: decision tree, SVM and CRFs. Table
9 shows the performance of various lexical and syntactic
prosodic models on testing set. From Table 9, we can
find that the CRFs classifier and SVM classifier achieve
relatively good results. The recall rate of the prosodic
break detection on ASCCD corpus obviously is better
than break and IPB detection on BURNC.

Table 9. Performance of Various Lexical and Syntactic

Prosodic Models on ASCCD

Classifier Category Precision Recall F -

(%) (%) Measure

Decision tree Non-break 90.60 77.72 0.836 7

Break 69.78 86.45 0.772 2

Mean 82.83 80.98 0.818 9

SVM Non-break 92.80 90.90 0.918 0

Break 85.20 88.10 0.866 0

Mean 89.90 89.80 0.899 0

CRFs Non-break 91.44 87.50 0.894 3

Break 80.41 86.24 0.832 2

Mean 87.33 87.03 0.871 8

From the comparison between Table 8 and Table 9,
we can find the performance of the lexical and syntac-
tic prosodic model is better than that of the acoustic
prosodic model.

6.2.3 Combined Model

Table 10 shows the performance of various combined
models on testing set. The value of λ is a constant, but
in different classification combinations, the value may
not be the same. In our experiments, we find that the
value of λ in (5) ranging from 0.4 to 0.9 has good effect,
and can fuse the classification results of the acoustic
prosodic classifier and the syntactic-prosodic classifier.
From Table 10, we can find that: 1) the combination of

different knowledge obtains better performance when
compared with each one alone; 2) the Boosting CART
classifier can provide better classified efficiency.

Table 10. Performance of Various

Combined Models on ASCCD

Classifer Category Precision Recall F -

(%) (%) Measure

NN/Decision Non-break 90.44 82.00 0.860 1

tree Break 73.85 85.43 0.792 2

Mean 84.25 83.28 0.837 6

NN/SVM Non-break 92.76 90.89 0.918 2

Break 85.20 88.07 0.866 1

Mean 89.94 89.84 0.898 9

NN/CRFs Non-break 93.18 90.28 0.917 1

Break 84.48 88.90 0.866 3

Mean 89.93 89.77 0.898 5

Boosting Non-break 91.35 90.10 0.907 2

CART∗ Break 83.74 85.66 0.846 9

Mean 88.51 88.45 0.8848

CRFs∗ Non-break 92.15 90.26 0.912 0

Break 84.17 87.08 0.856 0

Mean 89.18 89.07 0.891 2

In Table 10, Boosting CART∗ classifier and CRFs∗

classifier are obtained by using acoustic, lexical and syn-
tactic features, and are not obtained by weighting com-
bination through (5). In Table 10, the combined model
“NN/Decision tree” means that the acoustic-based fea-
tures are modeled by NN, and the lexical-based and
syntactic-based features are modeled by decision tree.
“NN/SVM” and “NN/CRFs” are similar.

Now, we can obtain a new classifier by weighting
the combination of the Boosting CART* classifier and
CRFs* classifier according to (9). The value of w in (9)
is 1. This means that the weight in (7) is 0.5. We find
that the choice of weight is related to the performance
of different classifiers. If the performance of one classi-
fier is better than the other classifier, the weight in (5)
and (7) is greater than 0.5; if the performance of one
classifier is equal to the other, the weight in (5) and
(7) is about 0.5. When using this classifier to detect
Mandarin prosodic break, the classifier yields 90.34%
prosodic break detection precision rate and 6.09% im-
provement when compared with the baseline. Table 11
lists the prosodic break detection results on ASCCD.

From Table 11, we can find that the performance
of the classifier classification is better than Boost-
ing CART* or CRFs* model alone. Because CRFs*
model provides the context information and is a mu-
tual complementarity to Boosting CART* model, the
performance of “Boosting CART* + CRFs*” model
improves.
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Table 11. Performance of Our Proposed Model on ASCCD

Classifier Category Precision Recall F -

(%) (%) Measure

Baseline Non-break 90.44 82.00 0.860 1

(NN/Decision Break 73.85 85.43 0.792 2

tree) Mean 84.25 83.28 0.837 6

Boosting Non-break 93.20 91.05 0.921 1

CART∗ Break 85.53 88.83 0.871 5

+ CRFs∗ Mean 90.34 90.23 0.902 8

6.2.4 Further Verification of Our Proposed Classifier
Combination

On English Prosodic Annotation Corpus – BURNC.
In order to verify our proposed method and compare
Mandarin and English prosodic break detection, we
train and test break and IPB model on BURNC. Ta-
ble 12 and Table 13 list our experimental results about
break and IPB detection on BURNC respectively.

Table 12. Performance of Different Models on

BURNC for Break Detection

Classifier Category Precision Recall F -

(%) (%) Measure

NN/Decision Non-break 92.80 96.98 0.948 4

tree Break 81.53 63.81 0.715 3

(Baseline) Mean 90.86 91.27 0.910 6

NN/SVM Non-break 90.02 97.77 0.937 4

Break 81.78 47.95 0.604 4

Mean 88.61 89.19 0.889 0

NN/CRFs Non-break 92.67 97.68 0.951 1

Break 84.96 62.86 0.722 4

Mean 91.34 91.68 0.915 2

Boosting Non-break 95.04 96.71 0.958 7

CART∗ Break 82.72 75.74 0.790 7

Mean 92.92 93.10 0.930 1

CRFs∗ Non-break 94.69 96.47 0.955 7

Break 81.33 74.19 0.774 7

Mean 92.39 92.60 0.925 0

Boosting Non-break 95.47 97.33 0.963 9

CART∗ + Break 85.79 77.76 0.815 8

CRFs∗ Mean 93.81 93.96 0.938 8

From Tables 12 and 13, we can find that: 1) Our
proposed method can obtain better effect. The recall
rate of our proposed method on break or IPB detection
improves a lot compared with the method which com-
bines the acoustic prosodic model with lexical and syn-
tactic model by utilizing (5), such as NN/decision tree,
NN/SVM. 2) The recall rates of the combined mod-
els, such as NN/decision tree, NN/SVM, NN/CRFs,
are low although the precision rates of these models
were not low. From this side, we can get the conclusion
that if we only model one type of the acoustic-related

features, the recall rate may be very low. Our pro-
posed methods which combine all features can avoid
this. This also indicates that our proposed method is
effective.

Table 13. Performance of Different Models on

BURNC for IPB Detection

Classifier Category Precision Recall F -

(%) (%) Measure

NN/ Non-IPB 93.66 98.84 0.961 8

Decision tree IPB 84.86 49.22 0.622 9

(Baseline) Mean 92.64 93.07 0.928 6

NN/SVM Non-IPB 93.19 98.72 0.958 8

IPB 82.28 45.19 0.582 8

Mean 91.92 92.49 0.922 0

NN/CRFs Non-IPB 94.45 98.83 0.965 9

IPB 86.31 55.86 0.678 2

Mean 93.50 93.83 0.936 7

Boosting Non-IPB 95.41 98.59 0.969 7

CART∗ IPB 85.60 63.98 0.732 2

Mean 94.27 94.56 0.944 1

CRFs∗ Non-IPB 96.21 97.76 0.969 8

IPB 80.63 70.78 0.753 7

Mean 94.40 94.62 0.945 1

Boosting Non-IPB 96.04 98.62 0.973 1

CART∗ + IPB 86.84 69.14 0.769 9

CRFs∗ Mean 94.97 95.19 0.950 8

When compared the previous work by Jeon and
Liu[10], our proposed method has 2.71% improvement
for break detection and 1.67% improvement for IPB de-
tection.

On the Mandarin Continuous Speech Corpus. We
also verify our proposed method in Mandarin continu-
ous speech corpus (“863” corpus). We have annotated
all sentences in the speech corpus. In order to verify our
automatic labeling methods, we select 200 sentences to
annotate manually from 10 speakers randomly. Each
sentence is annotated by three persons. If the sylla-
ble is annotated as a break by at least two persons, we
think the syllable is a break. If the syllable is anno-
tated as a non-break by at least two persons, we think
the syllable is a non-break. We suppose that the an-
notation labeled by people is right. Table 14 lists the
experimental results on the 200 sentences at the syllable
level.

Table 14. Annotation Results on Part of Mandarin

Continuous Speech Corpus

Category Precision Recall F -

(%) (%) Measure

Non-break 91.91 95.17 0.935 1

Break 92.64 87.89 0.902 0

Mean 92.21 92.19 0.922 0
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From Table 14, we can find that our proposed
method can get better effect when labeling the speech.
Through labeling the prosody, we can construct the
prosodic dependent large-scale continuous speech cor-
pus. This lays foundation for the further application,
such as prosody dependent speech recognition.

7 Feature Analysis

In this section, we first analyze the function of du-
ration, pitch, energy and intensity related features in
Mandarin and English prosodic break detection com-
prehensively, and then the importance of the single fea-
ture in Mandarin and English prosodic detection is exa-
mined one by one.

7.1 Different Feature Groups

We utilize duration, pitch, energy, lexical and syn-
tactic related features separately to detect prosodic
break on ASCCD or break and IPB on BURNC. Ta-
ble 15 lists the experimental results.

From Table 15, we can find that: 1) The lexical
and syntactic features have good effect for the prosodic
break (or break, IPB) detection not only on ASCCD
but also on BURNC. 2) For the acoustic-related fea-
tures, the duration-related features are proved the most
reliable, and the following are energy-related features
and pitch-related features.

7.2 Single Feature

We analyze the importance of the individual type
of acoustic features, such as duration, pitch, energy
and intensity, and lexical and syntactic features in the
prosodic break or IPB detection. We compute the dif-
ference in means between the two classes using a 2-
sample t-test with unequal variance, and rank the fea-
tures. When making t-test at 5% significance level on
ASCCD, we find the p-value of all features is less than
5%. That is, all features in the prosodic break detec-
tion on ASCCD are important. For the break detec-
tion on BURNC, when making t-test at 5% significance
level, we find that the p-value of some features is greater
than 5%, including PPP WordInit, PPP WordTerm,
PP Pos, PP WordInit, PP WordTerm, F Pos, FF Pos.
That is, these features are not so important as
the other features for break detection on BURNC.
For the IPB detection on BURNC, when making t-
test at 5% significance level, we find that the p-
value of some features is greater than 5%, includ-
ing pthCoef4, pthCoef2, PPP Pos, PPP WordInit,
PP WordInit, PP WordTerm, P Pos, F Pos, FF Pos.
Table 16 lists the top 20 features used in the prosodic
break (or IPB) detection on ASCCD (or on BURNC).

Table 15. Contribution of the Different Feature

Groups for Prosodic Break and IPB Detection

Corpus Features Type Precision Recall F -

(%) (%) Measure

ASCCD Duration Non-break 79.58 94.86 0.865 5

Break 87.24 59.08 0.704 5

Mean 82.44 81.51 0.819 7

Pitch Non-break 76.73 90.69 0.831 3

Break 77.46 53.79 0.634 9

Mean 77.00 76.92 0.769 6

Energy Non-break 76.64 92.60 0.838 7

Break 80.88 52.57 0.637 2

Mean 78.22 77.67 0.779 4

Lexical Non-break 93.49 89.56 0.914 9

and Break 83.62 89.53 0.864 7

syntactic Mean 89.81 89.55 0.896 8

BURNC Duration Non-break 89.20 98.05 0.934 2

Break 80.61 40.59 0.539 9

Mean 87.77 88.48 0.881 2

Pitch Non-break 85.02 99.17 0.915 5

Break 75.10 12.51 0.214 4

Mean 83.36 84.74 0.840 5

Energy Non-break 85.37 99.06 0.917 0

Break 76.05 15.00 0.250 5

Mean 83.82 85.06 0.844 3

Lexical Non-break 93.14 96.16 0.946 2

and Break 77.06 64.52 0.702 3

syntactic Mean 90.46 90.89 0.906 8

BURNC Duration Non-IPB 93.26 98.86 0.959 8

IPB 82.91 43.57 0.571 3

Mean 92.10 92.65 0.923 7

Pitch Non-IPB 89.97 99.50 0.944 9

IPB 75.72 12.38 0.212 8

Mean 88.36 89.70 0.890 3

Energy Non-IPB 90.26 99.28 0.945 6

IPB 73.09 15.41 0.254 4

Mean 88.33 89.85 0.890 8

Lexical Non-IPB 93.15 97.85 0.954 4

and IPB 71.74 43.19 0.539 2

syntactic Mean 90.74 91.70 0.912 2

From Table 16, we can find that the top 20 fea-
tures are almost the same in BURNC break detection
and IPB detection. The difference is that the fea-
ture F WordTerm only exists in the top 20 features
for BURNC break detection; the feature pthCoef3 only
exists in the top 20 features for BURNC IPB detec-
tion. The order of the top 20 features is not the same
in BURNC break detection and IPB detection, but the
order of the top 5 features is the same. In the top 20
features, there are 4 duration-related features, 7 energy-
related features, 5 pitch-related features and 4 lexical
and syntactic related features. For the prosodic break
detection on ASCCD, there are 3 duration-related fea-
tures, 2 energy-related features, 7 pitch related features
and 8 lexical and syntactic related features in the top 20
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features. In the top 5 features, there are 4 lexical and
syntactic related features. In the top 10 features, there
are 6 lexical and syntactic related features, 2 duration-
related features and 2 pitch-related features. The lexi-
cal and syntactic features are important for ASCCD
prosodic break detection.

Table 16. Contribution of Different Features for

Break or IPB Detection

Rank ASCCD Prosodic BURNC Break BURNC IPB

Break

1 BSeg durSyl durSyl

2 Tdis durVowel durVowel

3 F Hdis WordInit WordInit

4 F BSeg engMin engMin

5 PDur engRange engRange

6 SilD dDurRatio pthMean

7 BPDlt engCoef4 pthMin

8 F Tdis dSilDur dSilDur

9 PMDlt pthRange engCoef4

10 P BSeg pthMin pthRange

11 EngCoef1 pthMean dDurRatio

12 Hdis engMean engMean

13 PDlt engCoef5 engCoef5

14 P Tdis pthCoef5 pthCoef5

15 PthMin F WordInit WordTerm

16 PRatio WordTerm engCoef3

17 PthMean engCoef3 F WordInit

18 TPDlt pthMax engCoef0

19 EngRange F WordTerm pthMax

20 SylDur engCoef0 pthCoef3

For Mandarin prosodic break detection, the features,
which are related to Chinese characters, such as BSeg,
Tdis, F Hdis, F BSeg F Tdis, are important. This
also indicates that there is an overlapping between the
prosodic break and Chinese characters boundary. For
BURNC break or IPB detection, the first feature is
durSyl, which is the duration of the syllable. This
phenomenon is also found in previous work[10]. The
context POS related features, such as P Pos, F Pos,
FF Pos, are not important on BURNC break or IPB
detection. For ASCCD prosodic break detection, the
duration-related features and the relation of adjacent
syllable in pitch value side have good performance. The
tone-related features do not appear in the top 20 fea-
tures.

8 Discussion

There are lots of researches about how the syllables
are organized into groups and the relationship between
intonational phrasing and syntactic structure in lan-
guage production[25-27]. Frazier et al. believed that
prosodic phrasing is central to language comprehension,
and they speculated that prosody might supply the

basic skeleton that allows us to hold an auditory linguis-
tic sequence in memory while the brain processes it[25].
Watson and Gibson evaluated several theories of how
syntactic/semantic structure influences the placement
of intonation boundaries in language production. They
presented evidence that the intonational phrasing of a
sentence is partly a function of the size of upcoming and
recently processed syntactic constituents, modulated by
the semantic relationships among the constituents’ syn-
tactic heads[26]. Xu and Wang investigated grouping-
related F0 patterns in Mandarin by examining the ef-
fect of syllable position in a group while controlling for
tone, speaking mode, number of syllables in a group,
and group position in a sentence[27].

From the feature analysis in Mandarin and English
prosodic break detection, similarity between Mandarin
and English prosodic break detection is that the lexi-
cal and syntactic related features are important in both
Mandarin and English prosodic break detection. The
features, which are related with position in Chinese
character, are important to Mandarin prosodic break
detection. In Mandarin and English prosodic detec-
tion, the lexical and syntactic features coming from the
following syllable of the current syllable are important.
This means that the prosodic break mainly relates with
the features coming from the following syllables of the
current syllable.

Although the acoustic related features are impor-
tant both in Mandarin and English prosodic break de-
tection, the difference between Mandarin and English
prosodic break detection is that the acoustic-related
features in English prosodic break detection provide
higher discrimination than the acoustic-related features
in Mandarin prosodic break detection. Now we ana-
lyze these differences between duration, pitch and en-
ergy. 1) The duration-related features, such as “SilDur”
and “PDur”, are important to Mandarin and English
prosodic break detection. This also indicates that the
syllables grouped by two prosodic breaks have the most
consistent grouped-related patterns in the syllable du-
ration aspect. The two features “SilDur” and “PDur”
are especially important to discriminate prosodic break.
2) The pitch-related features provide minor discrimina-
tion in Mandarin and English prosodic break detection
when compared with the duration-related features in
Mandarin and English prosodic break detection. The
three features “PRatio” “PDlt” and “BPDlt” are rela-
tively more important in Mandarin prosodic break de-
tection. The feature “PRatio” is also F0 displacement
at the prosodic break position. Of the pitch-related
features, the two features “BPDlt”, “PMDlt” are rela-
tively more important in English prosodic break detec-
tion. These features, which are related to pitch contour,
are not important to Mandarin and English prosodic
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break detection. 3) The energy-related features pro-
vide higher discrimination both in Mandarin and En-
glish prosodic break detection when compared with the
pitch-related features in both Mandarin and English
prosodic break detection.

9 Conclusions and Future Work

In this paper, we developed the classifier combi-
nation method to detect Mandarin prosodic break by
using acoustic, lexical and syntactic evidence. This
method has the following advantages: 1) We do not
adopt the independent assumption between the acous-
tic features and the lexical and syntactic features, and
do not increase the complexity of model training at the
same time; 2) The method models not only the fea-
tures of the current syllable but also the contextual
features of the current syllable at model level, and reali-
zes the complementarities by taking the advantages of
each model; 3) The method not only can improve the
precision rate when detecting prosodic break or intona-
tional phrase boundary but also can avoid the decrease
of the recall rate on prosodic annotation corpus, es-
pecially on English prosodic annotation corpus. This
method achieves the complementarities by taking the
advantages of each model, and yields 90.34% prosodic
break detection accuracy rate. We verified our pro-
posed method on BURNC, and also utilized our trained
model to annotate the actual Chinese sentences based
on continuous speech corpus. Our proposed method got
better effect in all these comparisons. In this paper, we
also analyzed the features used in our experiment, and
got some significant conclusions, which will be help-
ful for the prosodic break detection. In the future, we
will refine our models and features, and exploit other
methods to model acoustic, lexical and syntactic fea-
tures. We will utilize the prosodic annotation contin-
uous speech corpus to train prosody dependent phone
model, and build prosody dependent speech recogni-
tion system in order to integrate prosodic information
to improve the performance of the speech recognition
system.
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