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Abstract Supervised machine learning methods have been employed with great success in the task of biomedical relation
extraction. However, existing methods are not practical enough, since manual construction of large training data is very
expensive. Therefore, active learning is urgently needed for designing practical relation extraction methods with little human
effort. In this paper, we describe a unified active learning framework. Particularly, our framework systematically addresses
some practical issues during active learning process, including a strategy for selecting informative data, a data diversity
selection algorithm, an active feature acquisition method, and an informative feature selection algorithm, in order to meet
the challenges due to the immense amount of complex and diverse biomedical text. The framework is evaluated on protein-
protein interaction (PPI) extraction and is shown to achieve promising results with a significant reduction in editorial effort
and labeling time.
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1 Introduction

One of the most motivations for the biomedical text
mining is the exponential growth of the biomedical
literature and the urgent need of biologists to seek
information more accurately and efficiently[1]. In ad-
dition, the growth in new publications is still in great
expansion[2], which makes it difficult for biologists to
keep up with the new information hidden in those
new publications. Therefore, automatic text mining
methods are required to facilitate the biomedical infor-
mation acquisition.

Since biomedical relations, such as protein-protein
interaction (PPI), gene-gene interactions, play an im-
portant role in understanding biological processes[3],
biomedical relation extraction is a very important re-
search topic in the field of biomedical text mining. The
major goal of relation extraction is to discover the rela-
tions embedded within sentences, paragraphs, or entire
documents. Over the past years, significant progress
has been made in biomedical relation extraction by
adopting supervised machine learning methods[4-17],
which essentially represent each candidate relation pair
and its context by a feature vector or the weights of
features which are learned from labelled training data.

However, such methods tend to suffer from the bottle-
neck, since labeling large training data is very expen-
sive and even unrealistic. Therefore, how to achieve
promising results with a small amount of labelled data
still remains a challenge.

Recently, active learning comes as a framework to
reduce the labeling effort in supervised learning, and
has shown good performance when the labelled data
is in short supply[18]. The key idea of active learning
is to iteratively select a small set of unlabelled exam-
ples to be labelled and added into the training data,
in order to maximally improve the classifier’s perfor-
mance. Specifically, a typical active learning system
is composed of two parts, that is, a learning mod-
ule and an example selection module which work ite-
ratively. In each iteration, the learning module trains a
model based on the current training data，while the ex-
ample selection module selects the most informative un-
labelled samples for manual labeling to enrich training
data. Unfortunately, to the best of our knowledge, there
is still limited work on biomedical relation extraction by
active learning. Moreover, due to the intrinsic charac-
teristics of biomedical text, such as the complexity and
diversity of language used in biomedical domain and
the different annotation schema employed in different

Regular Paper
The work is supported by the National Natural Science Foundation of China under Grant No. 60973104 and the National Basic

Research 973 Program of China under Grant No. 2012CB316301.
©2012 Springer Science +Business Media, LLC & Science Press, China



Hong-Tao Zhang et al.: Active Learning for Biomedical Relation Extraction 1303

groups[5], current methods that only focus on the exam-
ple selection strategy cannot cope with more complex
tasks. Considering a learning model used in PPI ex-
traction task which only accesses to a small amount of
labelled training data, because other labelled data re-
quire complex or expensive manual construction, it is
quite possible that the model is to extract PPIs using
incomplete feature description because of the restriction
of extracting features from limited labelled data. In
other words, enriching and selecting most informative
features from selected examples during the active learn-
ing procedures is also a very important step. Therefore,
the systematic design of active learning for biomedical
relation extraction is an essential task.

In this paper, we propose a unified active learn-
ing framework for biomedical relation extraction. In
particular, we systematically study several issues in-
volved in active learning process, including a strategy
for selecting informative data, a diversity data selec-
tion algorithm, an active feature acquisition method,
and an informative feature selection algorithm. In in-
formative data selection stage, two simple but effective
selection strategies, maximum uncertainty based strat-
egy and density-based strategy, are employed to select
informative examples in groups. In diversity data se-
lection stage, an efficient heuristic selection algorithm
is employed to enforce selected data to have no du-
plicates, with the purpose of reducing computational
requirements and making it feasible for large-scale ap-
plication with thousands of examples. In active feature
acquisition stage, rule-based methods are proposed to
enrich features from the selected data, in order to allow
the learner to express complete feature information for
the entire population. In informative feature selection
stage, a feature selection method is proposed to iden-
tify the most relevant features between training and
test data. The experimental results on protein-protein
interaction (PPI) extraction show that the proposed
framework is practical and effective. More importantly,
our proposed framework is generic and may be applica-
ble to the extraction of all biomedical relations.

The remainder of this paper is structured as follows.
In Section 2, we discuss previous approaches, includ-
ing supervised machine learning methods for biomedi-
cal relation extraction and recent active learning appli-
cation in some fields. In Section 3, a brief description
of biomedical relation extraction is given. In Section
4, the unified active learning framework is presented.
Section 5 shows the experimental results supporting the
efficiency of our framework; finally, the conclusion and
future work is given in Section 6.

2 Related Work

In biomedical field, researchers are usually interested

in PPIs, gene-gene interactions and protein-disease in-
teractions. The major goal of relation extraction is
to discover the relations embedded within sentences,
paragraphs, or entire documents[19]. Currently, the
most popular relation extraction methods are based
on supervised machine learning. These methods can
be broadly characterized into feature-based or kernel-
based, depending on the manner in which samples are
represented. In feature-based methods, candidate rela-
tion pairs are represented by a feature vector, which
usually includes bag-of-word features, part-of-speech
(POS) tagger features and parser-related features. Ka-
trenko and Adriaans made use of dependency parsing
information and employed Bayes net, Näıve Bayes and
K-nearest neighbor to detect PPI[4]. Miwa et al. de-
signed a rich feature vector with three types of fea-
tures, including bag-of-words features, shortest depen-
dency path features and graph features made from de-
pendency tree, in order to express important informa-
tion for PPI extraction[5]. Yang et al. developed a
system for PPI extraction based on support vector ma-
chines (SVMs) and the link grammar parser. The set
of features in that paper includes surface word, key-
word, protein name distance and link path features[6].
Li et al. used Feature Coupling Generalization (FCG),
a recently proposed semi-supervised learning strategy,
to learn an enriched feature representation of local con-
texts in sentences from millions of unlabelled samples[7].
Landeghem et al. reported extensive study of feature
selection for bio-molecular event extraction, where they
not only analyzed the contribution of different feature
types, but also investigated the most important features
within one specific type. They reported that the fea-
tures expressing syntactic information about the trigger
words (called trigger features in that paper), lexical in-
formation about triggers and the bag-of-words features
appear to be highly relevant and include practically no
irrelevant features, while the part-of-speech taggers of
the words on the syntactic trees as well as the trigrams
appear to be much less informative in general[8]. Bui
et al. proposed a hybrid approach to extract protein-
protein interactions. They firstly applied semantic rules
to partition the dataset into subsets according to its se-
mantic properties and extract candidate PPI pairs from
these subsets; secondly, they introduced enhanced fea-
ture sets for use with an SVM classifier to classify these
extracted PPI pairs[9]. In addition, van Landeghem et
al.[10], Fayruzov et al.[11], Miyao et al.[12], and Niu et
al.[13] also studied individual impact of a variety of fea-
ture types on the PPI extraction task. In kernel-based
methods, candidate relationship pairs are encoded as
structural representations such as bag-of-words, word-
sequence, parse trees or dependency graphs to measure
the similarity between them. Erkan et al. defined one
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kernel based on cosine similarity and another on edit
distance between the paths between the protein names
to extract protein interaction sentences[14]. Kim et
al. designed four kernels: predicate, walk, depen-
dency, and hybrid kernels to encapsulate the informa-
tion of sentential structures for relation prediction[15].
Airola et al. developed all-path graph kernel to make
use of full, general dependency graphs for represent-
ing the sentence structure[16]. Segura-Bedmar et al.
used a shallow linguistic kernel for drug-drug interac-
tion extraction[17]. In summary, both the feature-based
and the kernel-based methods achieved state-of-the-
art performance on benchmark datasets. Most of the
above methods are based on supervised machine learn-
ing, which means large enough amounts of labelled data
are required to train the learning model. However, the
manual construction of training data is proven time and
resource consuming, it would be nice to achieve promis-
ing result with a small amount of labelled data.

Active learning is well motivated in many modern
machine learning problems where data may be abun-
dant but labels are scarce or expensive to obtain[18].
In comparison with passive learning that trains mod-
els with pre-collected large training data, active learn-
ing is able to select the most representative data in an
iterative manner based on the model learned in each
iteration. From a practical point of view, active learn-
ing concerns about the selection strategy for informa-
tive examples, the batch-mode setting and its variants,
and the strategy for feature enrichment when examples
have incomplete feature descriptions. Active learning
has been widely explored in many kinds of research field
for its capability of reducing human annotation effort,
including multimedia research community[20], learning
to rank on web search[21], image retrieval[22], machine
translation[23]. In BioNLP (natural language process-
ing of biology text) domain, active learning has been
employed in sequenced-based PPI predication[24]. Un-
fortunately, this work only focuses on the example se-
lection strategy, rather than the general active learn-
ing framework analysis. In this paper, we address this
problem by systematically studying active learning in
the biomedical domain, where we not only focus on exa-
mple selection, but also discuss the acquisition of new
features and diverse example selection, in order to de-
sign an effective and practical active learning method.

3 Biomedical Relation Extraction Task

As mentioned in Section 2, the goal of biomedical
relation extraction is to detect occurrences of relations
between a pair of entities of given types. While the
type of the entities is usually very specific (e.g., genes,
proteins or drugs), the type of relations may be very

general (e.g., any biochemical association) or very spe-
cific (e.g., a regulatory relation).

Take PPI extraction as an example. Let us consider
the following sentence containing three protein names
(shown in italic): NAT1 binds eIF4A but not eIF4E
and inhibits both cap-dependent and cap-independent
translation. This sentence contains three protein pairs,
namely NAT1-eIF4A, NAT1-eIF4E, and eIF4A-eIF4E.
Generally, a protein pair is a positive example if
the original sentence expresses an interaction between
members of this pair, and a negative example if they
just co-occur in the sentence. Therefore, there is only
one positive example, namely, NAT1-eIF4A, while the
other two examples are negatively hidden in the above
sentence. Based on these, the task of protein interac-
tion extraction is setup as a binary classification task:
each feature vector corresponds to a pair of proteins
and it is classified as positive pair or negative pair.

Formally, the relation extraction extractor is a func-
tion to a set of triples, {〈Ent1, rel ,Ent2〉}, where Ent1
and Ent2 are biomedical entities and rel is a textual
fragment indicating the relation between the two enti-
ties. The extractor should produce one triple for every
relation stated explicitly in the text, but is not required
to infer implicit facts. At present, we usually assume
that all relational examples are stated within a single
sentence.

4 Active Learning Framework

Active learning attempts to overcome the labeling
bottleneck by iteratively selecting a small amount of
unlabelled data to be labelled by an “oracle” (e.g., a
human annotator), aiming to achieve high performance
using as few labelled examples as possible, and mini-
mize the cost of obtaining labelled data. To design a
practical and effective active learning framework, there
are four practical issues to be considered[18]:

1) How evaluate the informativeness of unlabelled
examples?

2) How improve the diversity of the selected data
when employ the batch-mode setting during active
learning process?

3) Should new features be generated from the se-
lected data to overcome the incomplete feature descrip-
tions?

4) How identify the most relevant features based on
the entire population?

In this section, a unified active learning framework is
presented to address these problems mentioned above.
Our proposed framework mainly consists of four com-
ponents: an information data selection strategy based
on maximum entropy and density, a diversity data selec-
tion algorithm incorporating a diversity measure, rule-
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based active feature acquisition methods, and an infor-
mative feature selection algorithm.

4.1 Informative Data Selection

All active learning methods involve selecting infor-
mative unlabelled examples. The key point is how to
measure the informativeness of an unlabelled example,
and select a new example with maximal informativeness
to augment the training data. In this paper, we employ
two simplest and most commonly used strategies, the
density-based strategy and the maximum uncertainty
based strategy.

Maximum Uncertainty Based Strategy. The stra-
tegy implies that the current classifier has the least
confidence in its classification of this example. The
well-known entropy is a good uncertainty measurement
widely used in active learning[18]:

x∗ = arg maxx

{
−

∑

i

pM (yi|x) log pM (yi|x)
}

, (1)

where x∗ means the most informative instance accord-
ing to the entropy measurement, pM (yi|x) stands for
the posterior probability under model M , x is the in-
put example (in this paper x is the candidate relation
pair), yi ranges over all possible class labels. For bi-
nary classification, yi ∈ {0, 1}. Therefore, the method
is equivalent to select the examples with a class poste-
rior closest to 0.5, so does it in this paper.

As shown in the above equation, this strategy itera-
tively selects a single new example from a set of un-
labelled examples, queries the corresponding class la-
bel and then performs retraining of the current model.
However, sometimes the time required to induce a
model is slow or expensive, especially in biomedical do-
main when using advanced natural language process-
ing (NLP) tools. To reduce computational time for
training, it might be necessary to select batches of new
training examples instead of single example, namely,
the batch-mode setting, as follows:

D(x∗) = {x∗|fmin 6 x∗ 6 fmax}, (2)

where fmin and fmax are two prediction threshold val-
ues. In this paper, we empirically define these two
threshold values with the purpose of selecting more
and more informative examples. For instance, fmin and
fmax are usually assigned as 0.45 and 0.65. When there
are not enough examples in this interval (less than 150
in this paper), we will appropriately expand this inter-
val, in order to select enough uncertainty examples.

Density-Based Strategy. The strategy is another
batch-mode setting strategy. The main idea of the
density-based strategy is that informative instances

should be those which are “representative” of the un-
derlying distribution (i.e., inhabit dense regions of the
input space)[18]. In this paper, we implement this
strategy by using the K-means algorithm. In each itera-
tion, we fix the number of examples to be labelled. The
selected examples are distributed across the clusters in
proportion to the size of the cluster. In each iteration,
we select the examples that are closest to the cluster’s
centroid.

4.2 Diversity Data Selection

In general, the batch-mode active learning is more
efficient when a parallel labeling instance is available,
e.g., a number of labels can be determined at the
same time by an experimental test procedure. How-
ever, from the practical point of view, we have to con-
sider the turnaround time between obtaining a newly
labelled example from the human annotator to gener-
ating the next example. It is essential to make full use
of turnaround time, rather than waste the editorial re-
sources by presenting copies of the selected examples
for labeling. Therefore, we need to improve the diver-
sity of the selected examples, in order to select the most
informative examples while without duplicate ones. In
this paper, we employ a heuristic algorithm based on
cosine distance[25]. The algorithm can be modified to
be a two-step process. First, we construct an initial se-
lected examples set by using the maximal entropy with
batch-mode setting (using (1) and (2)). Then, we adopt
a heuristic selection algorithm incorporating a diversity
measure, in order to do data diversity selection. The
details are shown in Algorithm 1.

Algorithm 1. Diversity Data Selection

Input: n, the threshold value of the size of the resulting
diversity dataset.

Output: The resulting diversity set H.

1: Initialize H = ∅.

2: Construct the initial selected examples set D(x∗) us-
ing maximal entropy with batch-mode setting.

3: For any two examples xi, xj in D(x∗), calculate the
cosine distance:

cosine(xi, xj) =
w(xi) ·w(xj)

‖w(xi)‖‖w(xj)‖ ,

where, w(xi) and w(xj) are the feature vectors of xi

and xj , respectively.

4: Add xi, xj into H if these two examples have the
maximal cosine distance.

5: Reset D(x∗) = D(x∗)\{xi, xj}.
6: While n∗ < n (n∗ is the size of H) Do

xk = arg maxxk∈D(x∗){arg minxl∈H{cosine(xk, xl)}},
H = H ∪ xk,
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D(x∗) = D(x∗)\{xk}
End.

7: Output H.

Note that, when the number of selected examples is
relative small (less than 150 in this paper), we suggest
that it should be better to make full use of the selected
examples, instead of doing diversity data selection.

4.3 Active Feature Acquisition

As we continually select new examples into the train-
ing data, it is quite possible that new features that are
hitherto unseen are also being made available to the
classifier. For example, consider a classifier for PPI ex-
traction and suppose that the training data do not con-
tain the keyword “complex” and we restrict ourselves to
the original keyword feature space. It should be noted
that keyword feature is a kind of significant feature in
PPI extraction. In this paper, we refer the keywords list
generated in [26] as the original keyword feature space.
Now even if we select the examples that contain the
keyword “complex” for labeling, we still risk missing a
very important feature for this classifier by the keyword
feature space restriction. In our active learning frame-
work, we attempt to minimize the risk of losing out on
important features by generating features from the se-
lected examples, namely, the active feature acquisition.
At present, keyword features, shortest dependency path
features, and lexical pattern features significantly con-
tribute to biomedical relation extraction[12,26]. At the
same time, we notice that previous study has reported
that the generalization of POS tagger patterns from
lexical patterns is crucial for a text mining framework,
as it enables extraction and prediction of events con-
cerning previously unpublished entities[27]. Therefore,
in this paper, we construct the POS tagger pattern fea-
tures from the original lexical pattern. Then, we try to
enrich these kinds of features from the selected true ex-
amples through active feature acquisition. To be brief,
we give simple description for each kind of features,
shown in Table 1. Then, three rule-based methods
are designed for the acquisition process for these three

types of features.

4.3.1 Active Acquisition of POS Tagger Pattern
Features

We present the rule-based method as follows:
1) Generate POS taggers sequences for each true

example, including the i (i = 4) taggers (if there is
any) before the first entity, i taggers (if there is any)
after the second entity, and all taggers between the two
entities. The entities themselves are represented by a
special token “Ent”.

2) Filter the “illegal” sequences. If a sequence has
neither verb tag nor noun tag, reject it; if the last tag of
a pattern is IN or TO, reject it; if the left neighborhood
of a CC tag is not equal to the right one in the pattern,
reject it.

3) Remove useless tags from each sequence. The
useless tags include JJ, JJS (superlative adjective), JJR
(comparative adjective), RB, RBS (superlative adverb),
RBR (comparative adverb) and DT, which are given
detailed description in [26].

4) Format these sequences as the soft matching pat-
terns. For example, the sequence “Ent NN IN Ent” is
formatted as “Ent ∗ NN ∗ IN ∗ Ent”.

5) Re-rank these patterns according to the frequency
that each pattern appears in test data. Select top n
patterns as the candidate pattern features.

4.3.2 Active Acquisition of Keyword Features

The method for keyword features is given as follows:
1) For each true example, extract nouns and verbs

at the corresponding position, including before (four to-
kens (if there is any) before the first entity), between,
and end (four tokens (if there is any) after the second
entity).

2) Filter the obvious “noise” and remove those to-
kens that are already in the original keywords list by
the oracle.

3) Re-rank these keywords according to the fre-
quency that each keyword appears in test data. Select
top n keywords as the candidate keyword features.

Table 1. Feature Description

Feature Examples Description

Keyword active; regulate activation; in-
teraction

The original keyword features in this paper include noun keywords and verb
keywords, which are all reproduced from [26].

Shortest
dependency
path

pobj ∗ prep ∗ nn
nn ∗ pobj ∗ prep ∗ nn

The shortest dependency paths are all extracted from true relation pairs. The
tokens, such as “pobj” and “prep”, are dependency relations. In this paper, these
paths are used as the syntactic patterns, in which the asterisk in these paths
indicates that any word can be skipped, namely, the soft matching.

POS tagger
pattern

Ent ∗ VB ∗ Ent
NN IN ∗ Ent ∗ IN ∗ Ent

All the original POS tagger patterns are reproduced from [3]. In this paper,
all the lexical words in lexical patterns are replaced with their POS tags. The
biomedical entities, such as gene, protein, are all replaced by a special token
“Ent”. Similarly, these POS tagger patterns employ the soft matching.
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Finally, the new shortest dependency path features
are directly extracted from these true examples.

By using the active feature acquisition, we can ex-
ploit new features and compensate for feature distribu-
tions’ difference between the training data and the test
data, which is better than restricting ourselves to the
initial feature space.

4.4 Informative Feature Selection

Through the active feature acquisition, the num-
ber of candidate features grows significantly. In theo-
ry, more features should provide more discriminating
power[28]. However, in fact, due to the limited amount
of training data, it is common knowledge that a large
number of features are either irrelevant or redundant
with respect to the class concept.

Take PPI extraction task as an example. The
dataset analyzed here is the BioInfer corpus①, where
10% randomly chosen data for training and the other
90% as the test data. The original feature space in-
cludes keyword features, shortest dependency path fea-
tures, and POS tagger pattern features. As shown in
Fig.1, although the three types of features are all sig-
nificant in PPI extraction task, most of features are not
available in both training and test data. Therefore, it is
very important to do informative feature selection, with
the purpose of identifying the most relevant features
and exhibiting the maximal predictive performance.

Fig.1. Coverage of features. The legends at the left side of the

figure means that one feature appears zero time, or no more than

five times, or more than five times and no more than ten times,

or more than ten times, respectively. (a) Features coverage in

training data. (b) Features coverage in test data.

The key aspect of feature selection is to measure the

relevance of features. Here, we define two measures
in order to identify the most relevant features between
training and test data. To find the common relevant
keywords between training and test data, we calculate
the relevant score based on the following metric:

s(wi) =
(ptraining(wi) + ptest(wi)

2

)
×

e(−|ptraining(wi)−ptest(wi)|), (3)

where, ptraining(wi) and ptest(wi) are the probabilities
of the candidate keyword wi occurring in the training
and test data, respectively.

If wi has high score, which indicates that wi occurs
frequently and similarly in both training and test data,
then it should be considered as a common relevant key-
word feature.

To identify the common relevant patterns, including
syntactic patterns and POS tagger patterns, for each
candidate pattern, we calculate its relevant score based
on the metric modified from AutoSlog-TS[29]:

s(pi) =





eAcc(pi) × log2(Freq(pi)), if Freq(pi) > 1,

eAcc(pi) × 0.1, if Freq(pi) = 1,

eAcc(pi) × 0.01, if Freq(pi) = 0,
(4)

where, Freq(pi) is the frequency of the pattern pi ob-
served in test data, Acc(pi) is the accuracy of the pat-
tern pi in training data. For example, if a pattern pi

totally matches ni true PPI pairs, and the number of
total true PPI pairs in the training data is n, then
Acc(pi) = ni/n. As mentioned above, metric s(pi) aims
to identify the patterns that are precise in training data
and satisfied frequently in test data.

Based on the above two metrics, we summarize the
feature selection algorithm as Algorithm 2:

Algorithm 2. Informative Feature Selection

Input: FI , the initial feature set; FG, the generated
feature set; λ, the threshold value of relevance score.

Output: The resulting feature set F .

1: Initialize F = ∅.

2: For each feature Fi in FI ∪ FG, calculate the rele-
vance score si, according to (3) and (4), respectively.

3: If si > λ, F = F ∪ {Fi}.
4: Output F .

It should be noted that FI is firstly extracted from
the initial training data. As the active learner itera-
tively selects examples from the entire population into
the training data, FI is also iteratively updated, in or-
der to minimize the risk of losing out on important fea-
tures. At the same time, our feature selection methods

①http://mars.cs.utu.fi/PPICorpora/eval-standard.html
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are induced from the entire population (rather than just
from selected examples). This is because models in-
duced from all available data have been shown to be
superior to models induced when examples with miss-
ing values are ignored[30].

4.5 Framework Overview

Our framework is shown in Fig.2. Instead of learn-
ing from a large pool of labelled data, the framework
starts by few labelled examples. More importantly, the
classifiers iteratively augment their training data with a
limited number of examples from the entire population,
and choose the most relevant features generated from
the selected examples into the feature space, in order
to furthermore improve the learning model.

Fig.2. Unified active learning framework.

The basic classifier is constructed by following the
method reported in [31], which is based on SVMs with
linear kernels. Except for the three types of features
described in Table 1, another four types of features are
furthermore incorporated in the classifier. The first one
is negation keyword features, which are used to exclude
those sentences that contain no relation pairs due to
the use of negation words. The second one is window
POS tagger features, which extract the POS taggers
from the words at the corresponding position, includ-
ing before, between and after. The third one is shortest
path POS tagger features. For a given protein pair, we
first obtain the shortest path between the two proteins
and then extract the POS tags of the nodes in the path
as a feature. For example, we first obtain a shortest de-
pendency path {Ent ∗ nsubj ∗ Ent} for the lexical path
{Protein1 bind Protein2}; then the shortest POS tag-
ger feature for this path is {nn ∗ veb ∗ nn}. The fourth
one is the dependency relation features, which use the
corresponding dependency relation set for each short-
est path as a feature. For example, we first obtain the
shortest dependency relation path for a given protein
pair, such as the path {prep-pobj-conj-pobj-conj-amod}.

Then we break up the path and obtain the correspond-
ing dependency relation set for this path {prep, pobj,
conj, amod}. Each dependency relation in the set cor-
responds to one dimension in the feature space.

Specifically, the original keyword features are repro-
duced from the mined keyword in [26], the initial short-
est dependency path features are extracted from all the
true examples in initial training data, and the POS
tagger patterns are reproduced from lexical patterns
reported in [3]. Instead of the compact feature rep-
resentation reported in that method, we apply more
flexible feature representation in this paper. Consider-
ing that the shortest dependency path features adopt
soft matching, a shortest path could match more than
one syntactic pattern, thus the dependency path fea-
ture for one example contains less than five matched
paths from the true path set, so does the POS tagger
pattern features.

In addition, a divide-and-conquer approach is de-
signed in that method: if the target relation pairs con-
tain less than four tokens, only keyword features, nega-
tion keyword features, POS tagger pattern features,
and window POS tagger features are used; otherwise,
all the features are adopted as described before.

5 Experimental Results and Discussion

As a general extraction framework for biomedical re-
lations, our method can be applied to a wide range of
relation extraction applications. Since PPI is central
to all the biological processes and structural scaffolds
in living organisms, in this paper, we focus on PPI ex-
traction from text to demonstrate the properties and
effectiveness of our method.

5.1 Data and Evaluation Measures

All data used in this paper is shown in Table 2.
The AIMed corpus consists of 225 abstracts, 200 of
which contain annotated human gene and protein in-
teractions. Another 25 abstracts contain protein names
but do not describe any interactions. The BioInfer cor-
pus contains 1 100 sentences describing protein-protein
interactions. HPRD50 contains sentences that were ex-
tracted from a subset of 50 abstracts, referenced by the
Human Protein Reference Database (HPRD) and an-
notated with protein names and interactions between
them. The LLL corpus consists of 76 sentences describ-
ing interactions concerning Bacillus subtilis transcrip-
tion. Both HPRD50 and LLL contain relatively short
hand-picked sentences with a simple syntactic struc-
ture. In this paper, we use these data with a unified
formation. More detailed description can be found in
[32].
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Table 2．．．PPI Data

Corpus Positive Pairs All Pairs

AIMed 1 000 5 834

BioInfer 2 534 9 653

HPRD50 163 433

LLL 335 330

To classify those data, we use the SVM implementa-
tion from LIBSVM②, where the underlying yet effective
linear kernel is selected for this binary classifier. Also,
the Weka Package③ is used to implement the K-means
clustering. The final predictions are evaluated by the
common golden standard evaluation measures, includ-
ing precision, recall and F -score (harmonic of precision
and recall). In this paper, we only report the macro
biggest F -score to compare different methods.

5.2 Single Corpus Evaluation

In this subsection, we choose the biggest corpus
BioInfer for single corpus evaluation, where 10% ran-
domly chosen data are used as initial training data and
the other 90% as the pool data for each round of the
active learning. Furthermore, all of the test data are
randomly divided into five sub-corpora, namely, we do
five iterations during our active learning procedure. We
also conduct a baseline that trains a model on the 10%
initial training data and directly test the 90% data by
this model. Both the number of initial training data
and the original feature space are identical. The results
are summarized in Table 3.

Table 3. Results on Single Corpus

Method Precision (%) Recall (%) F -Score (%)

Baseline 61.74 34.39 44.17

Density 46.51 57.50 51.42

Uncertainty 47.69 57.00 51.93

It should be noted that density refers to using a
density-based strategy to select the informative exam-
ples, while uncertainty refers to using an uncertainty-
based strategy. Both methods do active feature acqui-
sition, informative feature selection, and diversity data
selection (if needed). As illustrated in the above ta-
ble, the lower baseline results further prove that dif-
ferent data distributions and low coverage of features
in training or test data (shown in Fig.1) significantly
degrade the performance, especially when the training
dataset is small. After using active learning, both met-
hods achieve considerable improvements on recall and
F -score. These results show the effectiveness of the ac-
tive learning strategies in obtaining better performance

when adding a relatively small amount of labelled data
(the detailed discussion about the number of added la-
belled data points will be presented in the following
subsection). We think that higher recall means better
extraction of correct examples, which establishes a good
foundation for the further development of extraction
techniques. It is also observed that the active learn-
ing methods obtain lower precision than the baseline.
This is mainly because the classifier has not learned
well enough for these selected examples, especially for
the negative examples which may confuse the classifier.

Then, the effectiveness of different paradigms is
investigated during the active learning process. We
conduct the leave-one-out experiments, including only
using IDS (informative data selection), using IDS
and AFA (active feature acquisition), using IDS +
AFA+ IFS (informative feature selection), and IDS +
AFA+ IFS+ DDS (diversity data selection). Table 4
summarizes the experimental results. To be brief, we
only study the uncertainty-based strategy in IDS stage.

Table 4．．．Results with Different Paradigms

Paradigm Precision (%) Recall (%) F -Score (%)

Baseline 61.74 34.39 44.17

IDS 44.36 53.87 48.65

IDS+AFA 42.88 60.65 50.23

IDS+AFA+ 48.01 56.30 51.82

IFS

IDS+AFA+ 47.69 57.00 51.93

IFS+DDS

As shown in Table 4, we observe that: 1) AFA
outperforms the method only using IDS, since AFA
incrementally generates features from these selected
examples, which allows the classifier to request more
complete feature information to improve the predictive
model. 2) The method using IFS furthermore achieves
better performance with fewer features than methods
with all features, since IFS selects the most informa-
tive features to obtain during training, rather than ran-
domly or exhaustively acquiring all new features for all
training examples, which is capable of eliminating noisy
and irrelevant dimensions. 3) Although the method us-
ing DDS outperforms the method not using DDS, the
improvement appears to be quite small. This result
suggests that selecting diverse examples leads to more
effective learning. The performance using DDS is pretty
close to the method without using DDS, even obtaining
a slight improvement on F -score and recall, suggest-
ing that DDS can select the diverse examples during
the learning process. In other words, we can achieve
promising results with less labelled data, which is very

②http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
③http://www.cs.waikato.ac.nz/ml/weka/
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important for practical applications. In the following
subsection, we will give a detailed discussion.

5.3 Practical Considerations

So far, most active learning researches have focused
on mechanisms for informative data selection from the
learner’s perspective. In essence, the recent active
learning work attempts to address the problem that
can machines learn with fewer training instances, and
shows good performances subject to some assumptions.
For example, it often assumes that the cost for labeling
selected examples is either free or generally expensive,
which is not true in many real-world situations. In ad-
dition, in biomedical text mining field, annotation is
known to be very expensive and time-consuming, due
to the complex and diverse biomedical text. Therefore,
we think that a practical and effective active learning
framework should satisfy the two issues: robust and
economical.

The first one is that the designed active learning
framework should be feasible for large-scale application
with several thousands of examples, which means the
performance of this method should always maintain a
stable growth trend, rather than dramatically different
or even less efficient. We show the learning curves of
different paradigms on different test data in Fig.3, in
which we report the maximal F -score improvement ap-
pears in each fold for each paradigm (compared to the
baseline in Table 3). Similarly, we only discuss the
uncertainty-based strategy in IDS stage.

As shown in the figure, because of the differences of

Fig.3. Learning curves of different paradigms on different test

data.

data in each fold, the performances of each paradigm
varies with different folds, while all the four paradigms
are able to achieve noticeable improvement in F -score,
except for the IDS in the fourth fold. Furthermore,
we observe that the improvement obtained by the IDS
paradigm in the fourth fold has a negative value, which
means the performance is slightly smaller than that
of the baseline. In fact, the improvement made by
IDS paradigm varies dramatically with different folds.
This is likely because when we do not do AFA, the
existing feature space does not express enough infor-
mation for these new selected examples. That the clas-
sifier does not learn the characteristics of new exam-
ples well enough and therefore has more confusion as
we continually select new uncertainty examples. When
we employ another three paradigms, the curves always
show a stable growth trend compared with the base-
line, because AFA and IFS can explore more and more
highly relevant features for these new selected data,
which makes the feature space express much better in-
formation for the unknown relation extraction. At the
same time, DDS can furthermore select the most repre-
sentative examples, decreasing the possibility of adding
noise data (i.e., the so-called less relevant negative exa-
mples). Therefore, our unified active learning frame-
work with different paradigms is robust.

The second one is that the active learning framework
should take the computational time and the turnaround
time into account, in order to avoid wasting the edito-
rial resources by presenting duplicates of the selected
examples to be labelled. Table 5 shows the number of
examples to be labelled in different folds when using
the methods with DDS and without DDS, respectively.
Note that the method using DDS selects the equal num-
ber of positive and negative examples into the training
data in each fold, in order to avoid the class imbalance
distribution between positive and negative. As shown
in Table 5, we observe that although the number of
examples to be labelled decreases sharply, the perfor-
mance using DDS is even slightly better than that the
one without DDS, which means that the classifiers re-
main valid after using DDS paradigm to those selected
examples. In other words, DDS can furthermore select
most representative examples from the initial selected

Table 5. Number of Examples to Be Labelled in Different Folds

Paradigm Class
Fold Number Total Performance

1 2 3 4 Number F -Score(%)

Without DDS Positive+Negative 259 333 343 312 1 247+835 51.82

Positive 95 153 126 92

With DDS Positive+Negative 190 168 142 104 604+835 51.93

Positive 95 84 71 52

Common method Positive+Negative − 9 653 54.79
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examples, so that reduce the number of examples to be
labelled.

Furthermore, we compare the active learning re-
sults with results using common method. The common
method employs the same SVM with a linear kernel
used as the baseline in Table 3, but it uses a different
proportion on training and test examples. It randomly
chooses 80% data from BioInfer for training and 20%
data for test. Then, we perform a 5-fold cross validation
on this corpus. As shown in Table 5, although the ac-
tive learning results are evaluated on 90% BioInfer cor-
pus, and are relative lower than the common results, we
achieve considerable reduction on editorial effort and la-
beling time, proving that our method is more economi-
cal to deal with the large scale of biomedical data. It
should be noted that the “Total Number” row includes
the 10% initial labelled training data.

Finally, we present the learning curves of different se-
lection strategies when using the percentage increase of
the labelled data during the learning process. First, we
randomly choose 10% of data (containing 235 positive
examples and 610 negative examples) from the BioIn-
fer corpus as initial training data, the other 45% of
the data (containing almost 1 000 positive examples and
3 100 negative examples) as the pool of labelled data for
each round of the active learning, and the rest of data
(containing almost 1 300 positive examples and 3 500
negative examples) as the test data. In each round,
we choose a fixed percentage increase of the examples
from the pool of the labelled data, and we add these
data into the initial training data. Then, we train a
model on these data, and predict the test data by this
model. Similarly, we also select equal number of posi-
tive and negative examples into the training data in
each fold, in order to avoid the class imbalance distribu-
tion between positive and negative. In this experiment,
we use three selection strategies, including a density-
based strategy, an uncertainty-based strategy, and a
random-based strategy. Among of them, the former
two strategies also employ AFA, IFS, and DDS during
the learning process, while the latter one does not use
any paradigms. The initial feature spaces are identi-
cal for these three methods. Fig.4 shows these learning
curves (in terms of F -score).

As illustrated in Fig.4, when we add only 400 exa-
mples, the density- and uncertainty-based methods
achieve considerable improvements on F -score, while
the random-based method only obtains a slight im-
provement. When we add 1 600 examples (almost 40%
of the total labelled data), the density- and uncertainty-
based method reach their best performances, which
are pretty close to the upper limit 54.18% (the upper
limit is obtained by adding 100% of the labelled data).

During the whole learning process, the random-based
method shows a relative slow growth trend. The learn-
ing curves furthermore prove that our unified active
learning framework is practical.

Fig.4. Learning curves of different percentage increases of la-

belled data.

5.4 Comparison Results

In biomedical domain, it is known that the perfor-
mances cannot be compared directly because of the
differences in corpora and the parsers used in data
preprocessing[12]. To compare with other methods, we
conduct cross-corpora evaluation, where we use two
small corpora HPRD50 and LLL as the initial train-
ing data, and two relative large corpora AIMed and
BioInfer as the pool data for each fold of the active
learning. Similarly, both AIMed and BioInfer are ran-
domly divided into five sub-corpora. In other words, we
do five iterations during our active learning procedure.
We choose the method reported in [16] for comparison,
since we use the same parser and same corpora. All the
results are summarized in Table 6. The results in Table
6 demonstrate that our methods outperform others on
AIMed and BioInfer corpora.

Table 6. Comparison Results

AIMed BioInfer

Airola[16] Our Airola[16] Our

Results Results

HPRD50 42.20 42.86 42.50 44.78

LLL 33.30 38.06 42.50 48.27

Note: Columns correspond to test data and rows correspond
to training data. The performance is measured by F -score
(%).

6 Conclusions

In this paper, we described the challenges and prac-
tical issues with respect to the development of unified
active learning framework for biomedical relation ex-
traction. The proposed solution provides us with a very
effective and practical way to design a robust and
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economical method for biomedical relation extraction.
Our active learning framework, not only achieves good
performance with small amount of labelled data, but
also provides us valuable savings in editorial time and
maximal use of the labeling process. Experiments on
PPI extraction have demonstrated the great potential
and effectiveness of the proposed framework.

In the future, we plan to explore more examples se-
lection methods, and apply this technique to extract
more complex pathways in biomedical domain. Besides,
in order to further explore the extension of our frame-
work, we also plan to test active learning with other
approaches, including Hidden Markov Model (HMM),
Random Forest, Boosted Wrapper Induction.
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