
Tang J, Thanarungroj P, Liu C et al. Pinned OS/services: A case study of XML parsing on Intel SCC. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 28(1): 3–13 Jan. 2013. DOI 10.1007/s11390-013-1308-6

Pinned OS/Services: A Case Study of XML Parsing on Intel SCC

Jie Tang1 (� �), Student Member, IEEE, Pollawat Thanarungroj2, Chen Liu2 (� �)
Shao-Shan Liu3 (���), Zhi-Min Gu1 (���), and Jean-Luc Gaudiot4, Fellow, IEEE, Member, ACM

1School of Computer, Beijing Institute of Technology, Beijing 100081, China
2Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33199, U.S.A.
3Microsoft, Redmond, Washington 98223, U.S.A.
4Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92617, U.S.A.

E-mail: tangjie.bit@gmail.com; pthan001@fiu.edu; cliu@fiu.edu; shaoliu@microsoft.com; zmgu@x263.net; gaudiot@uci.edu

Received December 31, 2011; revised May 10, 2012.

Abstract Nowadays, we are heading towards integrating hundreds to thousands of cores on a single chip. However,
traditional system software and middleware are not well suited to manage and provide services at such large scale. To
improve the scalability and adaptability of operating system and middleware services on future many-core platform, we
propose the pinned OS/services. By porting each OS and runtime system (middleware) service to a separate core (special
hardware acceleration), we expect to achieve maximal performance gain and energy efficiency in many-core environments.
As a case study, we target on XML (Extensible Markup Language), the commonly used data transfer/store standard in

the world. We have successfully implemented and evaluated the design of porting XML parsing service onto Intel 48-core
Single-Chip Cloud Computer (SCC) platform. The results show that it can provide considerable energy saving. However,
we also identified heavy performance penalties introduced from memory side, making the parsing service bloated. Hence, as
a further step, we propose the memory-side hardware accelerator for XML parsing. With specified hardware design, we can
further enhance the performance gain and energy efficiency, where the performance can be improved by 20% with 12.27%
energy reduction.

Keywords XML parsing, homogeneous multi-core, Intel Single-Chip Cloud Computer

1 Introduction

As Moore’s law[1] continues to take effect, general-
purpose processor design enters the many-core era to
break the limit of uni-processor. If the number of cores
continues to double with each technology generation,
within 20 years we would be looking at integrating more
than 10 000 cores on a single chip[2]. However, how to
generate enough parallelism at the software level to take
advantage of the computing power these many cores
provide remains a daunting task for system architect.

On the software side, traditional operating systems
are designed for single-core and multi-core, but not for
many-core. Usually, OS runs on one host processor
and manages the system resources (CPU, memory, I/O)
by the time-shared model. Besides, the host processor
has to manage task creation and application mapping[3]

to maximize the overall throughput of the system. In

cloud computing data center environment, which scales
up to tens of thousands of cores, the host processor will
become the performance bottleneck and seriously hurt
the availability and responsiveness of the server. In ad-
dition, it incurs extra energy consumption as well.

On the hardware side, Application-Specific IC
(ASIC) and general-purpose microprocessor represent
the trade-off between the performance and programma-
bility on two ends of the spectrum. With the emer-
gence of the multi-core processors, the two once “ex-
clusive” designs are now seeing a chance for unifica-
tion. With heterogeneous multi-core processor repre-
sented by CELL Broadband Engine[4], we could have
a combination of general purpose processors and spe-
cial processing elements, such that we can minimize the
performance and energy overheads of system services in
many-core environment.

In the future (and already happening), the majority

Regular Paper
This work is supported by the National Science Foundation of USA under Grant Nos. CCF-1065147, ECCS-1125762, the Schol-

arship Council of China, as well as the Beijing Institute of Technology Yu-Miao Ph.D. Scholarship of China. Any opinions, findings,
and conclusions as well as recommendations expressed in this material are those of the authors and do not necessarily reflect the views
neither of the National Science Foundation of USA nor of the Scholarship Council of China.

The preliminary version of the paper was published in the Proceedings of NPC 2011.
�2013 Springer Science +Business Media, LLC & Science Press, China

4 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

of applications would share the same middleware layer
and OS services, such as scheduling, common language
runtime, browser, security, web applications. There-
fore, it is generic to make hardware acceleration for
them in a many-core system. Given such background,
we propose pinning each OS and runtime system (mid-
dleware) service onto a separate core, such that the
server becomes always available and highly responsive.
Here, we target at general OS services, all of which are
ubiquitous enough and worth to accelerate by hard-
ware. In future thousand-core scenario, we can turn
off or wake up corresponding cores depending on the
application load. If the service is not needed, its dedi-
cated core will keep asleep or shut down, with low or no
energy consumption. By doing so, we hope to provide
superb FLOPS (floating-paint operations per second)
per Watt ratio to system, to greatly reduce the non-
recurring cost (hardware investment) and recurring cost
(energy bill) of the deployment of servers in the cloud
computing data center eco-system.

As a case study, we start our proposal by accelera-
ting XML (Extensible Markup Language) parsing ser-
vice. XML has been widely used as the standard in data
exchange and representation�. It usually resides in the
middleware layer in cloud computing environment. Al-
though XML can provide benefits like language neu-
trality, application independency and flexibility, it also
comes with heavy performance overhead[5-6] due to its
verbosity and descriptive nature. Generally, in cloud
computing environments, XML parsing is proven to be
both memory and computation intensive[7-8]. A real-
world example would be Morgan Stanley’s financial ser-
vices system, which spends 40% of its execution time
on processing XML documents[9]. This situation is only
going to get even worse as the XML dataset gets larger
and more complicated.

To alleviate the pain in XML parsing, as we pro-
posed, we port the XML parsing service to a dedicated
core of Intel Single-Chip Cloud Computer (SCC)[10-13],
which is a 48-core homogenous system. By doing so,
we can study how it behaves on performance and power
consumption. Our results show that when porting XML
service onto a homogenous system, we can get consid-
erable energy reduction but huge overhead from the
memory side. To overcome this drawback, we further
tailor the XML parsing service core into a specified
memory-side hardware accelerator. The results turn
out to be that the memory-side XML parsing accelera-
tor can achieve both performance and energy efficiency;
it is also feasible in terms of bandwidth and hardware
cost.

The rest of the paper is organized as follows. We

review background of our proposal in Section 2. Then,
we introduce the Intel SCC system in Section 3, which
is the platform of our proposal. In Section 4, we talk
about our experiment methodology. In Section 5, we
give the first step of the case study: porting XML pars-
ing service to a dedicated core of SCC and analyzing
its performance and energy behaviors. To overcome
the overhead from memory-side in XML data parsing,
we introduce the specified XML parsing accelerator in
Section 6, showing its improvement in performance and
energy consumption. In the last section, we make the
conclusion and discuss our future work.

2 Backgrounds

We give the background information in this section,
including our proposal, related work, and XML parsing
basics.

2.1 Step-by-Step Pinned OS/Service

Considering the diversity of current system architec-
tures, our grand plan is laid out in three steps.

As the first step, we choose to port OS/services onto
homogeneous many-core design (such as Intel SCC plat-
form) with one service per core, such that we can study
its performance and power consumption. However, we
expect that some cores are under-utilized and some
cores are over-utilized in this situation since not all ser-
vices are equally weighted or requested.

As the next step, in order to get the maximal per-
formance gain and energy efficiency, we tailor speciali-
zed core (special hardware acceleration) for different
service. For heavy-weighted and well-established ser-
vices (e.g., browser, file manager), which are generic
and static (no major changes for extended period of
time), we can use ASIC cores for acceleration. For ser-
vices that are less generic and prone to change (e.g.,
different cryptography algorithms, even future emerg-
ing applications), we can use FPGA accelerators which
can be modified at runtime to adjust to applications’
need.

As the final goal, we plan to construct a prototype
Extremely Heterogeneous Architecture (EHA) by inte-
grating above-mentioned pieces together. This EHA
prototype will consist of multiple homogeneous light-
weight cores, multiple ASIC (hard) accelerators, and
multiple reconfigurable (soft) accelerators; each of these
cores will host a service. It is supposed to have the best
balance in performance, energy consumption and pro-
grammability.

In this paper, we focus on the first step by pinning
XML parsing service onto one core in the homogeneous

�International HapMap project. http://hapmap.ncbi.nlm.nih.gov/, Dec. 2011.

Jie Tang et al.: Pinned OS/Services: A Case Study of XML Parsing on Intel SCC 5

many-core Intel SCC; we also delve into the second step
by identifying hardware acceleration opportunities to
improve the performance of XML parsing service.

2.2 Related Work

There have been some work discussing how to de-
compose OS/service in multi-core systems. FOS[14] is a
factored operating system targeting multi-core, many-
core, and cloud computing systems. In FOS, each ope-
rating system service is factored into a set of commu-
nicating servers, which in aggregate implement a sys-
tem service via message passing. These servers provide
traditional kernel services and replace traditional ker-
nel data structures in a factored, spatially distributed
manner. Corey[15] is another operating system for
multi-core processors, which focuses on allowing appli-
cations to direct how shared memory data is shared
between cores. However, we believe shared memory
model will not scale well for future thousands-of-cores
systems. GreenDroid[16] is a prototype mobile appli-
cation processor designed to dramatically reduce en-
ergy consumption in smart phones. GreenDroid pro-
vides many specialized processors targeting key por-
tions of Google’s Android smart-phone platform. The
resulting specialized circuits can deliver up to 18x in-
crease in energy efficiency without sacrificing perfor-
mance. It also focuses on reconfigurability that allows
the system to adapt to small changes in the target ap-
plication while still realizing efficiency gains. However,
GreenDroid targets selected applications such as web
browsers, email software and music players for embed-
ded platform.

Different from previous studies, we are targeting the
generic OS/middleware services of general systems and
cloud platform. In addition to factoring out operating
system services, we can also design special hardware
(core) to accelerate each service. If available, we can
extend more dedicated cores or specialized hardware
for the purpose of acceleration. Therefore, it can scale
up very well.

2.3 XML Parsing

In the experiments, we select XML service as our
targeting application. XML has become the standard
in data storage and exchange; however it produces high
overhead to the system. It has been proven in cloud
computing environments XML processing is both me-
mory and computation intensive. It consumes about
30% of processing time in web service applications[7],

and has come to be a major performance bottleneck
in real-world database servers[8]. As the pre-requisite
for any processing of an XML document, XML parsing
scans through the input document, breaks it into small
elements, and builds corresponding inner data represen-
tation or reports corresponding events according to the
underneath parsing model� �. The XML data can be
accessed or modified only if it goes through the parsing
stage at first. As a result, all those XML data based
applications must include the overhead produced in the
parsing stage when considering the entire system per-
formance and energy consumption.

There are two kinds of commonly-used parsing mod-
els: tree-based model and event-driven model. DOM�

is the official W3C standard for tree-based parser. It
reads the entire XML document and creates an inner
tree structure to represent the meta-data information.
Therefore, it has huge requirement for memory space
to keep those structures. However, the constructed tree
can be navigated and revised freely, providing flexibility
for massive data updates. SAX� is the most popular
implementation of event-driven parsing model. It does
not store any information of XML document; it just
transmits and parses infosets sequentially at runtime,
reporting corresponding events. Compared with DOM,
it does not stress storage but can only process partial
data before parsing is completed.

3 Intel SCC

To start the case study on porting XML pars-
ing service, we select Intel Single-Chip Cloud Com-
puter (SCC)[10-13] as our platform, which is a homoge-
nous many-core system with 48 identical cores on the
same chip. Intel SCC is built to study many-core
CPUs, including the performance and power character-
istics, programmability and scalability of shared me-
mory message-passing architecture, and benefits and
costs of software-controlled dynamic voltage and fre-
quency scaling. Through experimenting on it, we can
discuss how pinning OS/service behaves on both per-
formance and energy consumption.

3.1 Overview of SCC Architecture

As seen in Fig.1, Intel SCC contains an integration
of 24 tiles and each tile contains two P54C-based full-
IA (Intel Architecture) processing cores. The SCC chip
is organized in a 6X4 2D mesh network with one em-
bedded high-speed router (R in Fig.1) associated with
each tile. The routers enable message passing capability

�SAX Parsing Model: http://sax.sourceforge.net, Dec. 2011.
�W3C. Document Object Model (DOM) level 2 core specification (Version 1.0). http://www.w3.org/TR/DOM-Level-2-Core, Dec.

2011

6 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

for SCC cores to communicate with each other. There
also exist four on-die memory controllers (MCs in Fig.1)
taking charge of off-die DDR3 memory access (DIMM
in Fig.1 is the off-die memory module). For control
of power, the Voltage Regulator Controller (VRC) is
used to adjust the voltage as well as the frequency in
both tiles and board area. The whole SCC board is
connected to the PCIe (Peripheral Component Inter-
connect express) for the communication.

Fig.1. SCC architecture.

3.2 SCC Tile-Level Architecture

In Fig.2, we give the tile-level architecture of SCC.
Each core on the chip has its own private L1 and L2
caches. The L1 cache has been divided into 16KB in-
struction cache and 16KB data cache. The L2 cache
is a unified cache of 256KB in size. A featured small
memory unit, called Message Passing Buffer (MPB),
is implemented to accelerate the message passing pro-
cess of each core. Each MPB has a total size of 16KB
shared by two cores. Traffic generator (Gen.) is used
to inject and check traffic patterns at runtime to test
the performance capabilities of the mesh[13].

Fig.2. Tile architecture.

3.3 Power Management

The component named VRC is the voltage regula-
tor controller. It allows full application control of the
power state of the cores. As a result, SCC allows users
to adjust voltage and frequency level of the SCC cores

dynamically. SCC divides the 48 cores into different fre-
quency and voltage domains as shown in Fig.3, where
the square divided by dotted lines denotes the tile of
SCC which has two cores inside. On one hand, the 48
cores can be separated into six voltage domains, ranging
between 0.7V and 1.3V. Each voltage domain contains
eight cores and can have its own voltage level. On the
other hand, each tile can have its own operating fre-
quency, ranging between 100 to 800MHz. Thus, SCC
has the ability to perform fine-grain dynamic power
management[12-13].

Because of the dynamic power management capabi-
lity of SCC platform, we can assign specific jobs with
similar computation demand to one or more dedicated
cores on SCC and manage the frequency and voltage
levels for the domains those cores belong to. In our
study, we dedicate one core to performing XML pars-
ing function. Other cores are allowed to send the re-
quest of parsing an XML document to this core and
keep working on their XML-independent jobs with high
throughput. If needed, we can increase the number of
cores dedicated for XML parsing, hence it can scale up
well as required.

Fig.3. Frequency domains and voltage domains on SCC chip.

4 Methodology

In this section, we discuss the methodology to study
the performance, power and energy consumption of our
proposal, covering the experiment setup, the selected
XML parsers we port on SCC and its frequency and vol-
tage setup, the applied benchmarks and profiling tools.

4.1 Experimental Setup

Intel SCC platform consists of two hardware compo-
nents. The first hardware component is called “Board
Management Controller” (BMC), which houses the
SCC chip. The second hardware component is called
“Management Console PC” (MCPC), which is con-
nected to BMC via both PCIe and Ethernet. MCPC
allows us to configure and load programs to be executed
on the SCC cores[12].

Jie Tang et al.: Pinned OS/Services: A Case Study of XML Parsing on Intel SCC 7

4.2 XML Parser on SCC

To study the pinned XML parsing on SCC, we in-
tend to analyze the popular parsing workloads. As in-
troduced in Section 2, there are two kinds of commonly-
used parsing models: DOM and SAX. DOM model con-
structs a tree database to collect data from an XML
document. It converts data elements into tree nodes
and stores them in memory, which imposes high me-
mory requirement and significant access delay. Espe-
cially, when the document size is large, the great im-
pact from the memory access will hurt the system per-
formance badly. That is because DOM needs a huge
memory space to keep variables for the tags and data
inside, and some of the tags and data are rewritten and
recalled frequently. Considering the extreme case that
future mass data processing will stress both the memory
side and computation side, we focus on DOM parsing
model in this study due to its more memory-intensive
nature.

We port a lightweight and customizable DOM parser
implementation named simplexml� onto SCC chip. We
further modify the parser for handling newer versions
of XML and enhance it with the ability to accept XML
version tags and short notation of tag ending.

4.3 Benchmarks

To make a complementary study, six XML bench-
marks have been used in our experiment. These six
benchmarks are different in size, number of elements
and structure of XML data. Each of the benchmarks
represents different types of workload to the XML
parser. For some XML benchmarks that cannot be
processed entirely due to the memory limitation of the
ported XML parser program, we truncate them in size
accordingly. For some small sized benchmarks, we run
them for several iterations to get accumulated results.
In Table 1, we summarize the benchmarks and their
adaption.

4.4 Power and Energy Consumption
Measurement on SCC

To describe the energy consumption characteristic,
we monitor execution time and power consumption of
XML parsing in different voltage and frequency setups
on SCC. Power consumption is calculated from the
product of voltage and current over the entire SCC chip.
Together with power consumption, we also measure the
time elapsed at the end of an iteration. The product
between power consumption and execution time per ite-
ration is the chip’s energy consumption during the ite-
ration. Thus, the sum of the energy consumption from
all iterations is the total energy consumption. Hence,
we run each benchmark on a single core with 21 pairs
of frequency and voltage levels. To evaluate the perfor-
mance of Intel SCC, we employ a performance monitor-
ing tool, HPCToolkit� to profile the XML parsing on
SCC platform. It measures the hardware performance
of a program execution via the performance counters
available on the processor and merges all the profiling
data into a statistical table.

5 XML Parsing on Intel SCC

In this section, we evaluate pinning XML parsing
service in SCC from both performance and energy sides.
We also give the analysis of how to get better exe-
cution efficiency on execution time as well as energy
consumption.

5.1 Performance Evaluation

To evaluate computation and memory intensive-
ness in DOM parsing, using HPCToolkit[17] we com-
pare the six real-world benchmarks with a synthetic
computation-intensive benchmark named speedtest. It
performs basic recursive arithmetic computation for 1
billion times, where the memory miss rate is extremely

Table 1. XML Parsing Benchmarks

Benchmark Size (KB) Description Iterations Modification

long.xml (Long) 65.7 A few tags, long data length 100 None

mystic-library.xml (Mystic) 1 384.0 Massive repetition of the several tags,
short data length

1 Truncated to 146.4 KB in size

personal-schema.xml (Personal) 1.4 A small case from employee database 100 None

physicsEngine.xml (Physics) 1 171.0 Massive repetition of the same tag, long
data length

1 Truncated to 990.3 KB in size

resume w xsl.xml (Resume) 51.8 Various information under the same tag
pattern

10 Truncated to 11.1KB in size

test-opc.xml (Test-Opc) 1.8 A few repetitions of a few tags, short
data length

1 000 None

�Ecker B. Simple XML. http://www.omegadb.net/simplexml, Dec. 2011.
�Rice University. HPCToolkit, http://hpctoolkit.org, Dec. 2011.

8 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

low because of its high data locality. In Fig.4 we show
the performance measurement in term of Instructions
per cycle (IPC). Obviously, the computation-intensive
benchmark speedtest achieves a good execution perfor-
mance with 1.29 instructions per cycle. That is more
than double of the best IPC of XML benchmarks. For
the rest XML benchmarks, their IPCs are far less than
that of speedtest. In the worst case, PhysicsEngine,
the IPC is just about 0.06, even cannot reach 5% of
speedtest’s IPC. When we analyze the results, we can
find that: speedtest is a computation-intensive bench-
mark; hence its performance is mostly determined by
the computation rather than memory subsystem. Con-
sidering the huge gap between their IPCs, the results
imply that the performance bottleneck of XML parsing
may actually be memory access latency. Looking into
each XML benchmark, different benchmarks perform
differently according to their file size and structure. If
there are massive tag repetitions and bulky data stored
inside the tag, the XML benchmarks always have to
pay considerable cost to memory accesses, leading to a
very low IPC.

Fig.4. Comparison of the IPC among the benchmarks.

To further backup our observations in Fig.4, we col-
lect the values of MPKI (misses per kilo instructions)
on both L1 instruction cache and L1 data cache, and
list them in Fig.5. Obviously, the speedtest benchmark

Fig.5. MPKI of both L1 instruction cache (L1 INS MPKI) and

L1 data cache (L1 DATA MPKI).

has the lowest MPKI because it is really a computation-
intensive benchmark with very few long-latency me-
mory accesses. It matches our previous finding. All
the XML benchmarks have comparative higher MP-
KIs. The worst case is benchmarks PhysicsEngine and
Mystic-library. In L1 instruction cache, PhysicsEn-
gine has about 9.25 MPKIs. In L1 data cache, it even
has average 45.6 MPKIs. The data means when run-
ning parsing service, the parser keeps requesting long-
latency memory accesses. The more cache misses in-
curred, the higher performance overhead the memory
subsystem imposes. Hence, the IPC of PhysicsEngine
is the lowest one as it possesses the highest MPKI.

However, L1 MPKIs cannot absolutely imply that
the benchmark is memory-intensive. Therefore, we take
advantage of another event, duration of pipeline stalled
by data memory read, which provides us more informa-
tion on the L2 cache and main memory accesses. This
duration has been compared with the total execution
time in a percentage format for each benchmark. Once
a miss occurs in L1 cache, the targeted data will be
requested from the lower memory hierarchy. No mat-
ter it results in a hit or miss, such memory behavior
will directly influence the duration of pipeline stalled
by data memory access. The longer the duration of
pipeline stall and the lower level of memory subsystem
the access happens, the more performance overhead it
incurs to the system. Thus, we can use the duration of
pipeline stalled by data memory access as a metric to
determine how memory-intensive an application is.

In Fig.6 we compare the percentage of pipeline stall
duration of each benchmark, normalized to the total
execution time. Without any doubt, speedtest gets
least stalled pipeline time percentage because it per-
forms simple computations and most of its memory ope-
ration will result in cache hits. For XML benchmarks,
averagely percentage of duration of pipeline stalled by
data memory read is 13.8%, meaning 13.8% of total
execution time is consumed by memory-side operations.
For the most intensive one, Long, it even takes 35.29%
of the overall execution time. This confirms the finding

Fig.6. Percentage of duration of pipeline stalled.

Jie Tang et al.: Pinned OS/Services: A Case Study of XML Parsing on Intel SCC 9

that XML parsing service introduces high overhead to
the system and most of the overhead is jammed in the
memory side, leading to low performance.

5.2 Power and Energy Consumption

In this subsection, we list the results of power and
energy consumption when porting the XML parsing ser-
vice onto a dedicated core. We also show how power
and energy consumption varies with different frequency
and voltage combinations.

In Fig.7 we show results that relate the total exe-
cution time with the execution frequency of the SCC
core. We do not plot them against the voltage level
since the total execution time does not depend on the
supply voltage; it only depends on the frequency of exe-
cution. Each benchmark finishes its execution earlier
with higher frequency setup. The decaying execution
time slope turns flat when we keep increasing the core’s
frequency. That is because higher execution frequency
makes more instructions executed per unit time, short-
ening the total execution time. However, the total exe-
cution time is not only determined by the frequency.
The overhead from long-latency memory accesses poses
great limit for the execution optimization, leaving less
room for higher frequency to get more performance
gain. Actually, when we define the efficiency as the
execution time over operating frequency, the efficiency
degrads up to 14.24% from 100MHz to 800MHz.

Fig.7. Total execution time spent at different frequency levels

within 1.1V.

Because we execute the XML parser on a single core,
the time, power and energy characteristics of the bench-
marks are following the same trend. Thus, we only show
the rest of the results for benchmark Long.

In Fig.8, we show the average power consumption
for benchmark Long at different frequency and voltage
setups. We can find our results match perfectly with

the power consumption mathematical model:

P ∝ CV 2f. (1)

Fig.8. Average power consumption of the Long benchmark.

Power consumption is quadratic increasing with the
supplying voltage: P ∝ V 2. When configuring with the
1.1V voltage, its power consumption jumps over those
in other lower voltages. Meanwhile, power consump-
tion is growing linearly with frequency: P ∝ f , so that
the power consumption gradually keeps growing with
the increasing operating frequency on the same voltage
setups.

Fig.9 shows the total energy consumption of parsing
benchmark Long when applying three different supply
voltage levels at different frequencies. The energy con-
sumption ranges from 3 500 joules to 500 joules with
different configurations. In 0.7V and 100MHz setting,
the energy consumption is about 3 000 joules. Please
note the energy consumption here refers to the entire
SCC chip.

Fig.9. Total energy consumption of the Long benchmark.

To better understand these energy consumption
numbers, we make a comparison between the energy
taken to execute the benchmark on Intel SCC versus the
energy taken to execute it on a normal desktop CPU:
we run the XML parsing service on an Intel Core 2
Duo P8600 CPU and using the Vtune tool� to capture

�Intel� VTuneTM Amplifier XE 2013. http://software.intel.com/en-us/intel-vtune-amplifier-xe, Dec. 2011.

10 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

its energy consumption. We find when porting parsing
service onto a dedicated core of SCC, the energy con-
sumption has been reduced by more than 40%, and note
that with fine-grain power management techniques to
reduce the static power consumption of the idle cores,
this gap (energy saving) can be further increased. This
piece of data indicates that by pinning services to each
core of many-core machines, we could achieve great en-
ergy efficiency to the system, especially for cloud data
center where innumerable XML data need be processed.

In Fig.9, we can also find that for a given frequency,
SCC chip gets the highest energy consumption when we
execute benchmark Long at 1.1V. There is only sub-
tle difference in the total energy consumption between
0.7V and 0.8V supply voltages. The results suggest
that to achieve better energy efficiency for a configured
frequency, it is better to lower voltage level in the exe-
cution. If we continue increasing the frequency, due to
technology limitation, only voltage at 1.1V can support
such high frequencies (533MHz to 800MHz). Hence,
when running at 800MHz frequency within 1.1V vol-
tage, SCC chip just consumes 500 joules, 1/6 of that
in 100MHz and 0.7V configuration. This is because
in such configuration workload can be completed more
quickly and the reduced execution time can compensate
for the energy consumption.

However, as stated before, in SCC chip two cores
in one tile are set with the same frequency, and eight
cores in the same domain are set with the same voltage
as well. Hence, our pinned XML parsing core cannot be
configured separately. It has to share its frequency level
with another SCC core in the same tile and share its vol-
tage level with another seven cores in the same voltage
domain. As a result, to enlarge the energy efficiency,
there exist two scenarios: considering frequency wise
and considering voltage wise. To consider voltage wise,
given a fixed frequency level with a neighboring core,
the XML parsing core should request the lowest sup-
ply voltage level available inside its voltage domain to
save energy consumption. To consider frequency wise,
given a fixed voltage level, the XML parsing core should
request to run at the highest frequency level available
inside its frequency domain to save execution time.

5.3 Summary

The evaluation of pinning XML parsing service on
SCC from both performance and energy sides indicates
that the performance of XML parsing suffers from in-
tensive memory access pattern. The performance eva-
luation verifies the computation and memory intensive-
ness of the XML parsing by reporting up to 0.53 IPC
while incurring up to 45.6 MPKI L1 misses and 35.29%
pipeline stall duration due to memory access. These

results recommend an improvement on memory side
due to those penalties.

The chip voltage level, which is directly proportional
to the power consumption, has a small influence on the
overall energy consumption when compared with the
change in operating frequency. Therefore, if the sys-
tem supports, we would better maximize frequency and
minimize voltage supply on SCC to get the optimal en-
ergy consumption. Our experimental results also indi-
cate a potential on Intel SCC to elevate energy-efficient
run-time execution on many-core environment.

6 Memory-Side Acceleration for XML Data
Parsing

In previous section, we have found that: when pin-
ning XML parsing service onto a dedicated core of In-
tel SCC, there are heavy penalties incurred from the
memory side, which leaves less room for performance
improvement. To alleviate this pain, we proposed and
evaluated the memory-side XML parsing accelerator,
which is a tailored hardware prefetching engine ded-
icated for memory-side acceleration. It is a generic
acceleration scheme independent of the parsing model
applied underneath. Even there are any updates for
parsing algorithm, the memory-side accelerator keeps
working. For more details of the acceleration work,
please refer to [19].

In the following subsections, we first introduce the
selected eight hardware prefetchers and applied profil-
ing tools for evaluation. Second, we give the results to
show how memory-side XML parsing accelerator can
improve the performance of DOM modeled parsing.

6.1 Prefetchers

As we can see from previous sections, the perfor-
mance bottleneck of XML parsing actually comes from
memory access latency. Thus, as a natural step forward
in our grand plan (please see Subsection 2.1 for more
details), we start looking into hardware techniques to
hide memory latency, or to accelerate from the memory-
side. In our study, we evaluate how different prefetch-
ing techniques behave as the memory-side accelerator
to impact the performance of XML. To make a com-
plementary discuss, we select eight prefetchers named
n1 through n8, all of which are different in size, algo-
rithm and complexity. We summarize these prefetchers
in Table 2:

Cache hierarchy: the coverage of the prefetching,
means which hierarchy/hierarchies the prefetching is
applied to;

Prefetching degree: suggests whether the prefetcher
can adjust its aggressiveness statically or dynamically.

Jie Tang et al.: Pinned OS/Services: A Case Study of XML Parsing on Intel SCC 11

Table 2. Summary of Prefetchers

Cache Hierarchy Prefetch Degree Trigger L1 Trigger L2

n1 L1 & L2 Dynamic Miss Access

n2 L1 Static Miss N/A

n3 L1 & L2 Dynamic Miss Miss

n4 L1 Static N/A N/A

n5 L2 Static N/A Miss

n6 L1 & L2 Dynamic Miss Miss

n7 L2 Static Miss Access

n8 L2 Static N/A Access

Usually, the dynamic prefetching degree can adapt itself
to the phase change of the application so as to produce
more efficient prefetching;

Trigger L1 and trigger L2: show the trigger set for
covered cache hierarchy respectively. In this case, de-
mand “access” stands for access requests from upper
memory level regardless whether it is a miss or hit, and
N/A means no prefetching is applied.

All selected prefetchers can filter out redundant ac-
cess requests.

6.2 Performance and Memory Profiling Tools
for Prefetchers

To study the performance of the memory-side accele-
ration, we utilize CMP�IM[20] to characterize cache
performance of single-threaded, multi-threaded, and
multi-programmed workloads. The simulation frame-
work models an out-of-order processor with the basic
parameters outlined in Table 3.

Table 3. Simulation Parameters

Frequency 1GHz

Issue width 4

Instruction window 128 entries

L1 data cache 32KB, 8-way, 1 cycle

L1 instruction cache 32KB, 8-way, 1 cycle

L2 unified cache 512KB, 16-way, 20 cycles

Main memory 256MB, 200 cycles

To understand the implementation feasibility of the
memory-side accelerators, we also study the energy con-
sumption of these designs. To model their energy con-
sumption, we utilize CACTI[18], an energy model which
integrates cache and memory access time, area, leak-
age, and dynamic power. Using CACTI, we are able
to generate energy parameters of different storage and
interconnect structures implemented in different tech-
nologies.

6.3 Performance Evaluation

We choose DOM parser implementations from
Apache Xerces� as the studied workload. Using
CMP�IM, we can understand how much performance
gain hardware accelerator can achieve. Table 4 sum-
marizes the reduction of cache misses as a result of
applying the prefetchers. Here, we only focus on the
cache miss reduction of the lowest level cache that the
prefetcher is applied to. For example, n1 is applied to
both L1 and L2 caches, so we show the cache miss re-
duction of L2 cache; n2 is applied to only L1, so we
show the cache miss reduction of L1 cache. The results
indicate that prefetching techniques are very effective
for XML parsing workloads, as most prefetchers are
able to reduce cache miss by more than 50%. In the
best case, n3 is able to reduce L2 cache miss by 85% in
DOM.

Table 4. Cache Miss Reduction

n1 n2 n3 n4 n5 n6 n7 n8

DOM (%) 77 52 85 85 61 52 77 84

Cache Level L2 L1 L2 L1 L2 L2 L2 L2

In Fig.10, we show how the cache miss reduction
is translated into performance improvement on DOM
parsing. The results indicate that prefetching tech-
niques are able to improve DOM parsing performance
by up to 20%. When averaging the results, memory-
side acceleration produces 13.74% execution cycle re-
duction for mystic-library. It is obvious that n3 is the
most effective prefetcher: even in the worst case, it can
still reduce execution time by 6%. Since DOM parsing
must construct inner data structure in memory for all
elements, the bigger the document, the more space it
would consume and the more cache miss it would in-
duce. As a result, large-size benchmarks such as mystic-
library, physics-engine and standard can get a higher
performance gain from memory-side acceleration, rang-
ing from 7.65% up to 13.75%. These results confirm
that memory-side acceleration can be effective regard-
less of the parsing models.

Fig.10. Performance improvement for DOM parsing.

�Apache XercesTM project. http://xerces.apache.org/index.html, Dec. 2011.

12 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

7 Conclusions and Future Work

In this study, we proposed to port OS/service to
a dedicated core to achieve both performance and en-
ergy efficiency. In our grand plan, it was implemented
by three steps: first, to port OS/services onto homo-
geneous many-core design with one service per core;
second, to tailor specialized core for different services
to achieve performance and energy efficiency; third,
to build a prototype extremely heterogeneous archi-
tecture (EHA) by integrating multiple homogeneous
light-weight cores and multiple specified accelerators to-
gether.

In this paper, as a case study, we targeted XML pars-
ing service, which is the bottleneck of all XML-based
applications. We first ported XML parsing service onto
Intel SCC, a 48-core homogeneous system. We found
it shows great energy efficiency, which is very impor-
tant for future energy-efficient applications. However,
we also found that heavy performance penalty is intro-
duced from memory side, making the parsing middle-
ware bloated. Hence, as a further step, we proposed
to make hardware acceleration for XML parsing. With
specified hardware accelerator, we can get up to 20%
performance gain. This case study focuses on the first
stage of our grand plan and delves into the second stage
as well. The results of this case study indicate that our
proposal is feasible in achieving performance and en-
ergy efficiency, and encourage us to move forward with
the grand plan.

To make further summary, we believe our design is
suitable for the server side of cloud computing data
center eco-system. At first, our design does not stress
out one core but distributes the system services across
cores instead. Thus this design can support extremely
high throughput, allowing the server to be highly re-
sponsive. Meanwhile, distribution of workload brings
fine-grain control of resources. In future thousand-core
scenario, we will not be able to turn on all the cores
at the same time due to the constrained overall power
budget. In this case, most of the cores will be turned off
and will be woken up depending on the application load.
So do the system services. By running OS services on
dedicated cores, we will have multiple specialized cores
dedicated to the same system service. We can imple-
ment power management module to turn on and off the
cores adaptively according to the operating system load
as necessary, resulting in lower power consumption and
energy overhead.

As future work, we aim to extend our technique to a
broader scope: to pin and accelerate different heavy-
weighted system services, for example the garbage
collection[21-22]. By doing so, we can check how it can
achieve middleware execution efficiency and maximum

overall system throughput.

References

[1] Moore G E. Cramming more components onto integrated cir-
cuits. Electronics, 1965, 38(8): 114-117.

[2] Gries M, Hoffmann U, Konow M, Riepen M. SCC: A flexible
architecture for many-core platform research. Computing in
Science & Engineering, 2011, 13(6): 79-83

[3] Liu L, Li X, Chen M, Ju R D C. A throughput-driven task
creation and mapping for network processors. In Proc. the
2nd Int. Conf. High Performance Embedded Architectures
and Compilers, January 2007, pp.227-241.

[4] Kahle J A, Day M N, Hofstee H P, Johns C R, Maeurer T R,
Shippy D. Introduction to the cell multiprocessor. IBM Jour-
nal of Research and Development, 2005, 49(4/5): 589-604.

[5] Chiu K, Govindaraju M, Bramley R. Investigating the limits
of SOAP performance for scientific computing. In Proc. the
11th Int. Symp. High Performance Distributed Computing,
July 2002, pp.246-254.

[6] Head M R, Govindaraju M, van Engelen R, Zhang W. Bench-
marking XML processors for applications in grid web services.
In Proc. Conf. Supercomputing, November 2006, Article
No.121.

[7] Apparao P, Bhat M. A detailed look at the characteristics of
XML parsing. In Proc. the 1st Workshop on Building Block
Engine Architectures for Computers and Networks, October
2004.

[8] Nicola M, John J. XML parsing: A threat to database per-
formance. In Proc. the 12th Int. Conf. Information and
Knowledge Management, November 2003, pp.175-178.

[9] Apparao P, Iyer R, Morin R et al. Architectural character-
ization of an XML-centric commercial server workload. In
Proc. the 33rd Int. Conf. Parallel Processing, August 2004,
pp.292-300.

[10] Howard J, Dighe S, Hoskote Y et al. A 48-core IA-32 message-
passing processor with DVFS in 45nm CMOS. In Proc. IEEE
Int. Solid-State Circuits Conference Digest of Technical Pa-
pers, February 2010, pp.108-109.

[11] Mattson T G, Riepen M, Lehnig T et al. The 48-core SCC
processor: The programmer’s view. In Proc. Int. Conf. High
Performance Computing, Networking, Storage and Analysis,
November 2010, pp.1-11.

[12] Intel labs. SCC platform overview. http://communities.intel.
com/docs/DOC-5512.

[13] Jim H. Single-chip cloud computer. In Proc. Intel Labs
Single-Chip Cloud Computer Symposium, February 2010.

[14] Wentzlaff D, Agarwal A. The case for a factored operating
system (FOS). Technical Report, MIT-CSAIL-TR-2008-060,
MIT CSAIL, October 2008.

[15] Boyd-Wickizer S, Chen H, Chen R et al. Corey: An operating
system for many cores. In Proc. the 8th USENIX Symp. Ope-
rating Systems Design and Implementation, December 2008,
pp.43-57.

[16] Goulding N, Sampson J, Venkatesh G et al. GreenDroid: A
mobile application processor for a future of dark future. In
Proc. the 22nd Hot Chips, Aug. 2010.

[17] Adhianto L, Banerjee S, Fagan M et al. HPCToolkit: Tools
for performance analysis of optimized parallel programs. Con-
currency and Computation: Practice and Experience, 2010,
22(6): 685-701.

[18] Shivakumar P, Jouppi N P. CACTI3.0: An integrated cache
timing, power, and area model. Technical Report, Compaq
Western Research Laboratory, Feb. 2001.

[19] Tang J, Liu S S, Gu Z M, Liu C, Gaudiot J. Memory-
side acceleration for XML parsing. In Proc. the 8th IFIP

Jie Tang et al.: Pinned OS/Services: A Case Study of XML Parsing on Intel SCC 13

Int. Conf. Network and Parallel Computing, October 2011,
pp.277-292.

[20] Jaleel A, Cohn R S, Luk C K, Jacob B. CMP�im: A pin-based
on-the-fly multi-core cache simulator. In Proc. the 4th An-
nual Workshop on Modeling, Benchmarking and Simulation,
June 2008.

[21] Tang J, Liu S S, Gu Z M et al. Hardware-assisted middle-
ware: Acceleration of garbage collection operations. In Proc.
the 21st Int. Conf. Application-Specific Systems, Architec-
tures and Processors, July 2010, pp.281-284.

[22] Tang J, Liu S S, Gu Z M et al. Achieving middleware exe-
cution efficiency: Hardware-assisted garbage collection oper-
ations. Journal of Supercomputing, 2012, 59(3): 1101-1119.

Jie Tang is a Ph.D. candidate
in Beijing Institute of Technology,
China. She got a B.S. degree in com-
puter science from National Univer-

sity of Defense Technology, Chang-
sha. During her Ph.D. study, Jie also
worked as a visiting researcher in the
Center for Embedded Computer Sys-
tems, University of California, Irvine,
USA.

Pollawat Thanarungroj is cur-
rently a Ph.D. student at Electrical
and Computer Engineering Depart-
ment of Florida International Uni-
versity, USA. He received his B.E.

degree in computer and network en-
gineering, in March 2009, from As-
sumption University, Bangkok, Thai-
land. His current work is to perform
profiling for SPEC CPU 2000 bench-

mark programs using Pintool and Simpoint.

Chen Liu is an assistant pro-
fessor in the Department of Elec-
trical and Computer Engineering at
Florida International University, Mi-

ami, USA. He received the B.E. de-
gree in electronics and information
engineering from University of Sci-
ence and Technology of China, in
2000, the M.S. degree in electrical en-
gineering from the University of Cal-

ifornia, Riverside, USA, in 2002, and the Ph.D. degree in
electrical and computer engineering from the University
of California, Irvine in 2008. His research interests in-
clude multi-core multi-threading architecture, the interac-
tion between system software and microarchitecture, power-
aware many-core computing, hardware acceleration tech-
niques and reconfigurable computing. He is a member of

the IEEE and IEEE Computer Society. He also served as
the chair of Computer Society Chapter, IEEE Miami Sec-
tion from 2010 to 2011.

Shao-Shan Liu is currently with
Microsoft. He received his Ph.D. de-
gree in computer engineering, M.S.
degree in biomedical engineering,
M.S. degree in computer engineer-
ing, and B.S. degree in computer en-

gineering, in 2010, 2007, 2006, and
2005 respectively, all from the Uni-
versity of California, USA. His re-
search interests include parallel com-

puter architectures, embedded systems, runtime systems, as
well as biomedical engineering.

Zhi-Min Gu is a professor of

computer science at Beijing Institute
of Technology. Prior to that he was
a visiting scholar of computer science
at University of Birmingham in UK
from 2003 to early period of 2004,
and an associate professor and post-
doctorate researcher of computer sci-

ence at Northwest Polytechnic Uni-
versity from 1997 to 1999. He re-

ceived the B.S. degree in computer science from Shanxi Uni-
versity in 1985, the M.S. degree in computer science from
Harbin Institute of Technology in 1991, and the Ph.D. de-
gree in computer science from Xi’an Jiaotong University in

1997, all in China.

Jean-Luc Gaudiot received the
Diplôme d’Ingénieur from the Élole
Supérieure d’Ingénieurs en Elec-
trotechnique et Electronique, Paris,
France in 1976 and the M.S. and
Ph.D. degrees in computer science

from the University of California, Los
Angeles, USA in 1977 and 1982, re-
spectively. He is currently a professor
and Chair of the Electrical and Com-

puter Engineering Department at the University of Califor-
nia, Irvine (UCI). Prior to joing UCI in January 2002, he
was a professor of electrical engineering at the University of

Southern California since 1982, where he served as the direc-
tor of the Computer Engineering Division for three years.
His research interests include multithreaded architectures,
fault-tolerant multiprocessors, and implementation of recon-
figurable architectures. He has published over 170 journal
and conference papers. In January 2006, he became the

first Editor-in-Chief of IEEE Computer Architecture Let-
ters. From 1999 to 2002, he was the Editor-in-Chief of the
IEEE Transactions on Computers. In June 2001, he was
elected as the chair of the IEEE Technical Committee on
Computer Architecture, and re-elected in June 2003 for a
second two-year term. He is a member of the ACM, ACM
SIGARCH, and IEEE. He has also served as program chair

of several international conferences. In 1999, he became a
Fellow of the IEEE. He was elevated to the rank of AAAS
Fellow in 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

