
Wang GL. Collision attack on the full extended MD4 and pseudo-preimage attack on RIPEMD. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 28(1): 129–143 Jan. 2013. DOI 10.1007/s11390-013-1317-5

Collision Attack on the Full Extended MD4 and Pseudo-Preimage

Attack on RIPEMD

Gao-Li Wang (王高丽)

School of Computer Science and Technology, Donghua University, Shanghai 201620, China

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences
Beijing 100093, China

E-mail: wanggaoli@dhu.edu.cn

Received January 11, 2012; revised September 12, 2012.

Abstract The cryptographic hash functions Extended MD4 and RIPEMD are double-branch hash functions, which consist
of two parallel branches. Extended MD4 was proposed by Rivest in 1990, and RIPEMD was devised in the framework of the
RIPE project (RACE Integrity Primitives Evaluation, 1988∼1992). On the basis of differential analysis and meet-in-the-
middle attack principle, this paper proposes a collision attack on the full Extended MD4 and a pseudo-preimage attack on
the full RIPEMD respectively. The collision attack on Extended MD4 holds with a complexity of 237, and a collision instance
is presented. The pseudo-preimage attack on RIPEMD holds with a complexity of 2125.4, which optimizes the complexity
order for brute-force attack. The results in this study will also be beneficial to the analysis of other double-branch hash
functions such as RIPEMD-160.

Keywords collision attack, preimage attack, hash function, Extended MD4, RIPEMD

1 Introduction

Cryptographic hash functions remain one of the
most prevailing cryptographic primitives, and they can
guarantee the security of many cryptosystems and pro-
tocols such as digital signature, message authentication
code, and so on. In 1990, Rivest introduced the first
dedicated hash function MD4[1]. After the publica-
tion of MD4, several dedicated hash functions were
proposed, and these functions are called MD-family.
Depending on the methods of the message expansion
and the number of parallel branches, the MD-family
is divided into three subfamilies. The first subfamily
is MD4-family, which consists of MD4[1], MD5[2] and
HAVAL[3]. The characteristics of MD4-family are us-
ing roundwise permutations for the message expan-
sion and only one branch of computation. The sec-
ond subfamily is RIPEMD-family, which consists of
RIPEMD[4], RIPEMD-{128, 160, 256, 320}[5] and Ex-
tended MD4①[1]. The crucial difference between MD4-

family and RIPEMD-family is that RIPEMD-family
uses two parallel branches of computations. The third
subfamily is SHA-family, which consists of SHA-{0, 1,
224, 256, 384, 512}[6-8]. These functions use only one
branch of computation, but the message expansion is
achieved by some recursively defined functions. Sev-
eral important breakthroughs have been made in the
cryptanalysis of hash functions and they imply that
most of the current standard hash functions are vul-
nerable. In this circumstance, National Institute of
Standards and Technology (NIST) launches the NIST
Hash Competition②, a public competition to develop
a new hash standard, which is called SHA-3 and was
announced at 2012.

From the security perspective, a cryptographic hash
function should satisfy several properties such as prei-
mage resistance, second-preimage resistance and col-
lision resistance. A hash function is considered aca-
demically broken if it is possible to find a collision or
(second) preimage faster than birthday attack or brute

Regular Paper
This work was supported by the National Natural Science Foundation of China under Grant No. 61103238, the “Chen Guang”

project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation of China under Grant No.
09CG29, and the Fundamental Research Funds for the Central Universities of China.

①Extended MD4 has two copies of (modified) MD4, and the hash value is obtained by concatenating the results of both copies
of MD4. However, its security against collision attack is much stronger than that of MD4, so we classify it as a double-branch hash
function.

②NIST. Cryptographic hash project, http://csrc.nist.gov/groups/ST/hash/index.html, September 2012.
©2013 Springer Science +Business Media, LLC & Science Press, China



130 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

force attack respectively. The first analysis of MD4 and
MD5 was made by Vaudenay[9] and by den Boer and
Bosselaers[10]. Along with the development of the hash
functions, there is some continuous analysis on them
and the work reveals that most of the hash functions are
not so secure as claimed[11-21]. Wang et al. presented a
series collision attacks on the most prevailing ARX-type
(modular addition, rotation and bitwise XOR) hash
functions including MD4[22], RIPEMD[22], RIPEMD-
128[23], MD5[24], SHA-0[25], SHA-1[26], HAVAL[27-28],
SIMD[29] and Skein[30], etc. using an attack technique
which is based on differential cryptanalysis[31]. Wang’s
method was also adopted in searching the second-
preimage of MD4[32], and was further developed in the
analysis of SHA-1[33-34]. With the collision attacks
on some dedicated hash functions, more attentions are
payed to evaluate the preimage resistance of hash func-
tions. So far, in the sense of preimage resistance,
full MD2[35-36], MD4[14,37-41], MD5[42], HAVAL[43],
Tiger[39], and step-reduced RIPEMD[44-45], RIPEMD-
128[46], RIPEMD-160[46], SHA-0[47], SHA-1[47], SHA-
2[39,48], GOST[49], Skein[50], Whirlpool[51], Grøstl[52],
etc. have been broken. Most of these preimage at-
tacks follow a technique of meet-in-the-middle[53-54].
It is worth noting that, in FSE 2012, Li et al. con-
verted meet-in-the-middle pseudo-preimage attack into
pseudo collision attack, and gave applications to SHA-
2, etc[55].

Extended MD4 was proposed in the original article[1]

by Rivest in 1990 with 256-bit hash value. Its compres-
sion function consists of two parallel branches called left
branch and right branch. The left branch is the stan-
dard MD4 algorithm, and the right branch is a modified
MD4 algorithm. The initial values of left branch and
right branch are denoted by IV 0 and IV 1 (IV 0 6= IV 1)
respectively. Dobbertin proposed a pseudo-collision at-
tack for Extended MD4 with a complexity of 240 un-
der the condition that IV 0 = IV 1 is prescribed. How-
ever, no collision attack on Extended MD4 under the
standard initial values was proposed yet. RIPEMD[4]

was developed in the European RIPE project (RACE
Integrity Primitives Evaluation, 1988∼1992), and was
designed by Dobbertin, Bosselaers, and Preneel. Its
compression function consists of two parallel branches
of transformations and generates the output by mixing
the results of the two branches. Wang et al. presented
a collision attack on RIPEMD[22]. As for the preimage
attack, the security of step-reduced RIPEMD has been
analyzed in [44-45③, 56].

Many studies have been conducted on the security of
ARX-type hash functions using Wang’s method. How-

ever, owing to the two parallel branches of RIPEMD-
family, it is difficult to deduce the correct differential
path and to use message modification technique to im-
prove the success probability for RIPEMD-family. The
security of RIPEMD-family hash functions against col-
lision attack has been strengthened greatly. [22] reports
that among 30 selected collision differential paths, only
one can produce a real collision, and in other paths, the
conditions of both branches in some step cannot hold
simultaneously. Extended MD4 is such a representa-
tive hash function of RIPEMD-family. It is difficult
to deduce a correct differential path for both branches
and to modify the messages to greatly improve the suc-
cess probability of the attack, so to find a practical
collision. In Section 3, we propose a practical collision
attack on Extended MD4 under the standard initial val-
ues, and present a collision instance for Extended MD4.
By choosing a proper message difference, we can find a
differential path of both left branch and right branch,
and deduce the corresponding sufficient conditions that
ensure the differential path hold. We use the message
modification techniques to modify the messages so that
almost all sufficient conditions hold. Our attack re-
quires less than 237 computations to get a collision of
the full Extended MD4. To the best of our knowledge,
this is the first work that a practical collision attack on
the full Extended MD4 has been proposed.

The meet-in-the-middle technique works efficiently
on narrow-pipe Merkle-Damg̊ard hash functions. How-
ever, because the size of the internal state of RIPEMD
is 256 bits which is a double of the size of hash value,
if we apply the meet-in-the-middle technique directly,
it will has no advantage compared with the complexity
2128 of the brute force attack. So it is difficult to ap-
ply the meet-in-the-middle technique to propose prei-
mage attacks on RIPEMD directly. In Sections 4 and
5, we find some new observations and propose the first
pseudo-preimage attack on the full RIPEMD using the
meet-in-the-middle principle combined with some other
techniques such as initial structure, partial-matching,
partial-fixing. The complexity of our attack to find a
pseudo-preimage of RIPEMD is 2125.4. The attack op-
timizes the complexity order for brute-force attack. See
Table 1 for a summary of our results in Sections 4 and
5 and the comparison with the previous attacks.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some notations, describes the Ex-
tended MD4 and RIPEMD algorithms, and summarizes
some useful properties of the Boolean functions in two
hash functions. The next section proposes the detailed
description of the collision attack on Extended MD4.

③The attack contains a flaw on the message-word order. If the correct order is used, the attack can work on the first 31 steps
instead of 26 steps.



Gao-Li Wang: Collision Extended MD4 Pseudo-Preimage RIPEMD 131

Table 1. Comparison of Our Results with Previous

(Pseudo-)Preimage Attacks

Number of Pseudo-Preimage (Second) Preimage Reference

Steps Attacks Attacks

Complexity Complexity

Time/Memory Time/Memory

26/29∗ 2110/233 2115.2/233 [45]

33 2121/210 2125.5/210 [44]

35∗ 296/235 2113/235 [44]

47? 2119/210.5 2124.5/210.5 [56]

48 2125.4/258 Ours

Note: ∗: the attacked steps start from some intermediate
step. ?: the attack is only applicable to find second preim-
ages.

Sections 4 and 5 describe the procedure of our pseudo-
preimage attack on the full RIPEMD compression func-
tion. Finally, Section 6 concludes the paper.

2 Preliminary

2.1 Notations

In order to describe our analysis conveniently, we
introduce some notations, where 0 6 j 6 31.

1) M = (m0,m1, . . . , m15) represents a 512-bit
block, where mi (0 6 i 6 15) is a 32-bit word.

2) ¬,∧,⊕,∨ denote bitwise complement, AND, XOR
and OR respectively.

3) ≪ s (≫ s) is circular shift s-bit positions to the
left (right).

4) x ‖ y denotes concatenation of the two bit strings
x and y.

5) +,− denote addition and subtraction modulo 232

respectively.
6) The least significant bit is the first bit (0th bit)

and the most significant bit is the last bit (31st bit).
7) xi,j denotes the j-th bit of 32-bit word xi.
8) ∆xi = x′i − xi is the modular subtraction diffe-

rence of two words x′i and xi.
9) x′i = xi[j] is the value obtained by modifying the

j-th bit of xi from 0 to 1, i.e., xi,j = 0, x′i,j = 1, and the
other bits of xi and x′i are all equal. Similarly, xi[−j] is
the value obtained by modifying the j-th bit of xi from
1 to 0.

10) xi[±j1,±j2, . . . ,±jk] denotes the value obtained
by modifying the bits in positions j1, . . . , jk of xi ac-
cording to the ± signs.

11) In Section 3, (ai, bi, ci, di) and (aai, bbi, cci, dd i)
(0 6 i 6 12) represent the chaining variables corre-
sponding to the message block M1 of left branch and
right branch respectively.

12) In Section 3, (a′i, b
′
i, c

′
i, d

′
i) and (aa ′i, bb

′
i, cc

′
i, dd

′
i)

(0 6 i 6 12) represent the chaining variables corre-
sponding to the message block M ′

1 of left branch and
right branch respectively.

13) In Sections 4 and 5, (ai, bi, ci, di) and
(aai, bbi, cci, dd i) (0 6 i 6 48) represent the chaining
variables of left branch and right branch respectively.

14) 0α∼β means that the bits from the β-th bit to
the α-th bit are all 0, where α > β.

15) wα∼β mean that the bits from the β-th bit to
the α-th bit of the variable w are arbitrary bits.

16) [α ∼ β] means that the bits from the β-th bit
to the α-th bit are known, and all the other bits are
unknown.

17) [α ∼ β, γ ∼ δ] means that the bits from the β-th
bit to the α-th bit and from the δ-th bit to the γ-th bit
are known, and all the other bits are unknown.

Note that the differential definition in Wang’s
method[24] is a kind of precise differential which uses
the difference in terms of integer modular subtraction
and the difference in terms of XOR. The combination
of both kinds of differences gives attackers more infor-
mation. For example, the output difference in step 1 of
Table 2 (collision differential path of Extended MD4) is
∆a1 = a′1 − a1 = 219, for the specific differential path,
we need to expand the one-bit difference in bit 19 into
a three-bit differences in bits 19, 20 and 21. That is,
we expand a1[19] to a1[−19,−20, 21], which means the
19th and 20th bits of a1 are 1, and the 21st bit of a1

is 0, while the 19th and 20th bits of a′1 are 0, and the
21st bit of a′1 is 1.

2.2 Description of Extended MD4

The hash function Extended MD4 compresses a mes-
sage of length less than 264 bits into a 256-bit hash
value. Firstly, the algorithm pads any given message
into a message with the length of 512-bit multiple. We
do not describe the padding process here because it has
little relation with our attack, and the details of the
message padding can refer to [1]. Each 512-bit message
block invokes a compression function of Extended MD4.
The compression function takes a 256-bit chaining value
and a 512-bit message block as input and outputs an-
other 256-bit chaining value. The initial chaining value
is a set of fixed constants. The compression function
consists of two parallel branches named left branch and
right branch. Left branch is the standard MD4 and
right branch is a modified MD4. Each branch has three
rounds, and the nonlinear functions in each round are
as follows:

F (X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z),

G(X, Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z),

H(X, Y, Z) = X ⊕ Y ⊕ Z.

Here X, Y , Z are 32-bit words. The operations of the
three functions are all bitwise. Each round of the com-
pression function in each branch consists of 16 similar



132 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

Table 2. Collision Differential Path of Extended MD4

Step Chaining Variable for M mi Shift ∆mi Step Difference Chaining Variable for M ′

1 a1 m0 3 216 219 a1[−19,−20, 21]

2 d1 m1 7 227 d1[−27, 28]

3 c1 m2 11 26 c1[−6,−7, 8]

4 b1 m3 19 b1

5 a2 m4 3 −210 + 222 − 230 a2[−10, 22,−30]

6 d2 m5 7 22 d2[−2,−3, 4]

7 c2 m6 11 217 c2[17]

8 b2 m7 19 −221 b2[21,−22]

9 a3 m8 3 −2− 213 a3[1,−2,−13]

10 d3 m9 7 29 d3[−9, 10]

11 c3 m10 11 228 c3[28]

12 b3 m11 19 −28 b3[8,−9]

13 a4 m12 3 −24 − 216 a4[−4,−16]

14 d4 m13 7 d4

15 c4 m14 11 27 c4[−7, 8]

16 b4 m15 19 b4

17 a5 m0 3 216 −27 a5[7,−8]

18 d5 m4 5 d5

19 c5 m8 9 c5

20 b5 m12 13 b5

21 a6 m1 3 −210 a6[−10]

22 d6 m5 5 d6

23 c6 m9 9 c6

24 b6 m13 13 b6

25 a7 m2 3 −213 a7[−13]

26 d7 m6 5 d7

27 c7 m10 9 c7

28 b7 m14 13 b7

29 a8 m3 3 −216 a8[−16]

30 d8 m7 5 d8

31 c8 m11 9 c8

32 b8 m15 13 b8

33 a9 m0 3 216 a9

...
...

...
...

...
...

...

48 b12 m15 15 b12

steps, and in each step one of the four chaining variables
a, b, c, d is updated.

φ0(a, b, c, d,mk, s) = (a + F (b, c, d) + mk) ≪ s,

φ1(a, b, c, d,mk, s) = (a + G(b, c, d) + mk + 5a827999)

≪ s,

φ2(a, b, c, d,mk, s) = (a + H(b, c, d) + mk + 6ed9eba1)

≪ s,

ψ0(a, b, c, d,mk, s) = (a + F (b, c, d) + mk) ≪ s,

ψ1(a, b, c, d,mk, s) = (a + G(b, c, d) + mk + 50a28be6)

≪ s,

ψ2(a, b, c, d, mk, s) = (a + H(b, c, d) + mk + 5c4dd124)

≪ s.

The initial value of left branch is (a0, b0, c0, d0) =
(67452301, efcdab89, 98badcfe, 10325476). The ini-

tial value of right branch is (aa0, bb0, cc0, dd0) =
(33221100, 77665544, bbaa9988, ffeeddcc).

Compression Function of Extended MD4. For a
512-bit message block M = (m0,m1, . . . , m15) of the
padded message M , the compression function consists
of left branch and right branch.

Left Branch. For the 512-bit block M , left branch is
as follows:

1) Let (a0, b0, c0, d0) be the input of left branch for
M . If M is the first message block to hashed, then
(a0, b0, c0, d0) are set to be the initial value. Otherwise
it is the output from compressing the previous message
block by left branch.

2) Perform the following 48 steps (three rounds):
For j = 0, 1, 2,
For i = 0, 1, 2, 3,
a = φj(a, b, c, d,mord(j,16j+4i+1), sj,16j+4i+1),



Gao-Li Wang: Collision Extended MD4 Pseudo-Preimage RIPEMD 133

d = φj(d, a, b, c, mord(j,16j+4i+2), sj,16j+4i+2),
c = φj(c, d, a, b, mord(j,16j+4i+3), sj,16j+4i+3),
b = φj(b, c, d, a, mord(j,16j+4i+4), sj,16j+4i+4),

where mord means order of message.
The compressing result of left branch is

(A,B, C, D) = (a0 + a, b0 + b, c0 + c, d0 + d).
Right Branch. For the 512-bit block M , right branch

is as follows:
1) Let (aa0, bb0, cc0, dd0) be the input of right

branch for M . If M is the first block to be hashed,
(aa0, bb0, cc0, dd0) are the initial value. Otherwise it
is the output from compressing the previous message
block by right branch.

2) Perform the following 48 steps (three rounds):
For j = 0, 1, 2,
For i = 0, 1, 2, 3,
aa = ψj(aa, bb, cc, dd,mord(j,16j+4i+1), sj,16j+4i+1),
dd = ψj(dd, aa, bb, cc, mord(j,16j+4i+2), sj,16j+4i+2),
cc = ψj(cc, dd, aa, bb, mord(j,16j+4i+3), sj,16j+4i+3),
bb = ψj(bb, cc, dd, aa,mord(j,16j+4i+4), sj,16j+4i+4).

The compressing result of right branch is
(AA,BB ,CC ,DD) = (aa0 +aa, bb0 +bb, cc0 +cc, dd0 +
dd).

Note that after every 16-word block is processed, the
values of the a register in left branch and the aa register
in right branch are exchanged. The ordering of message
words and the details of the shift positions can be seen
in Table 3.

Table 3. Order of the Message Words and Shift

Positions in Extended MD4

Step Order of Shift Step Order of Shift Step Order of Shift

i Message s0,i i Message s1,i i Message s2,i

ord(0, i) ord(1, i) ord(2, i)

1 0 3 17 0 3 33 0 3

2 1 7 18 5 34 8 9

3 2 11 19 8 9 35 4 11

4 3 19 20 12 13 36 12 15

5 4 3 21 1 3 37 2 3

6 5 7 22 5 5 38 10 9

7 6 11 23 9 9 39 6 11

8 7 19 24 13 13 40 14 15

9 8 3 25 2 3 41 1 3

10 9 7 26 6 5 42 9 9

11 10 11 27 10 9 43 5 11

12 11 19 28 14 13 44 13 15

13 12 3 29 3 3 45 3 3

14 13 7 30 7 5 46 11 9

15 14 11 31 11 9 47 7 11

16 15 19 32 15 13 48 15 15

If M is the last block of M , (A ‖ B ‖ C ‖ D ‖
AA ‖ BB ‖ CC ‖ DD) is the hash value of the mes-
sage M . Otherwise, repeat the above process with the
next 512-bit message block by taking (A,B, C, D) and

(AA,BB,CC,DD) as the input chaining variables of
left branch and right branch respectively.

2.3 Description of RIPEMD

The hash function RIPEMD compresses any arbi-
trary length message into a message with the length of
128 bit. Firstly RIPEMD pads any given message into
a message with the length of 512 bit multiple. For each
512-bit message block, RIPEMD compresses it into a
128-bit hash value by a compression function. The com-
pression function consists of two parallel operations,
which are denoted by left branch and right branch re-
spectively. The nonlinear functions are the same as the
functions F, G, H in Extended MD4.

Left Branch. For a 512-bit block M = (m0,m1, . . .,
m15), left branch is as follows:

1) Let (a0, b0, c0, d0) be the input of left branch for
M . If M is the first block to be hashed, (a0, b0, c0, d0)
is the initial value. Otherwise it is the output of the
previous block compressing.

2) Perform the following 48 steps (three rounds):
a) For i = 1, · · · , 16, do the following 16

operations: ai = di−1, bi = (ai−1 +
F (bi−1, ci−1, di−1) + mσ(i)) ≪ si, ci = bi−1,
di = ci−1.

b) For i = 17, · · · , 32, do the following 16
operations: ai = di−1, bi = (ai−1 +
G(bi−1, ci−1, di−1) + mσ(i) + 5a827999) ≪ si,
ci = bi−1, di = ci−1.

c) For i = 33, · · · , 48, do the following 16
operations: ai = di−1, bi = (ai−1 +
H(bi−1, ci−1, di−1)+mσ(i) +6ed9eba1) ≪ si,
ci = bi−1, di = ci−1.

Right Branch. For a 512-bit block M = (m0,m1, . . .,
m15), right branch is as follows:

1) Let (aa0, bb0, cc0, dd0) be the input of right
branch for M . If M is the first block to be hashed,
(aa0, bb0, cc0, dd0) is the initial value. Otherwise it is
the output of the previous block compressing.

2) Perform the following 48 steps (three rounds):
a) For i = 1, · · · , 16, do the following 16 ope-

rations: aai = dd i−1, bbi = (aai−1 +
F (bbi−1, cci−1, dd i−1)+mσ(i) +50a28be6) ≪
si, cci = bbi−1, dd i = cci−1.

b) For i = 17, · · · , 32, do the following 16 ope-
rations: aai = dd i−1, bbi = (aai−1 +
G(bbi−1, cci−1, dd i−1) + mσ(i)) ≪ si, cci =
bbi−1, dd i = cci−1.

c) For i = 33, · · · , 48, do the following 16 opera-
tions: aai = dd i−1, bbi = (aai−1 + H(bbi−1,
cci−1, dd i−1)+mσ(i) +5c4dd124) ≪ si, cci =
bbi−1, dd i = cci−1.



134 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

Note that the initial values of left branch and right
branch are identical. The orders of message words and
the details of the shift positions can be seen in Ta-
ble 4. Add the output of left branch to the output
of right branch as follows: H0 = b0 + c48 + dd48,H1 =
c0+d48+aa48,H2 = d0+a48+bb48,H3 = a0+b48+cc48.
If M is the last message block of the message MM ,
then H(MM) = H0 ‖ H1 ‖ H2 ‖ H3 is the hash value
for the message MM . Otherwise repeat the compres-
sion process for the next 512-bit message block and
(H0,H1,H2,H3) as input. For the completed specifi-
cation, refer to [4].

Table 4. Word Processing Orders and Shift

Positions in RIPEMD

Step Order of Shift Step Order of Shift Step Order of Shift

i Message si i Message si i Message si

σ(i) σ(i) σ(i)

1 0 11 17 7 7 33 3 11

2 1 14 18 4 6 34 10 13

3 2 15 19 13 8 35 2 14

4 3 12 20 1 13 36 4 7

5 4 5 21 10 11 37 9 14

6 5 8 22 6 9 38 15 9

7 6 7 23 15 7 39 8 13

8 7 9 24 3 15 40 1 15

9 8 11 25 12 7 41 14 6

10 9 13 26 0 12 42 7 8

11 10 14 27 9 15 43 0 13

12 11 15 28 5 9 44 6 6

13 12 6 29 14 7 45 11 12

14 13 7 30 2 11 46 13 5

15 14 9 31 11 13 47 5 7

16 15 8 32 8 12 48 12 5

2.4 Some Basic Conclusions of the Three
Nonlinear Functions

We will recall some well-known properties of the
three nonlinear Boolean functions because they are very
helpful for determining the collision differential path,
the corresponding sufficient conditions and the initial
structure. In the following, x ∈ {0, 1}, y ∈ {0, 1} and
z ∈ {0, 1}.

Proposition 1. For the nonlinear function
F (x, y, z) = (x ∧ y) ∨ (¬x ∧ z), there are the following
properties.

1) a) F (x, y, z) = F (¬x, y, z) if and only if y = z.
b) F (x, y, z) = x and F (¬x, y, z) = ¬x if and

only if y = 1 and z = 0.
c) F (x, y, z) = ¬x and F (¬x, y, z) = x if and

only if y = 0 and z = 1.
2) a) F (x, y, z) = F (x,¬y, z) if and only if x = 0.

b) F (x, y, z) = y and F (x,¬y, z) = ¬y if and only
if x = 1.

3) a) F (x, y, z) = F (x, y,¬z) if and only if x = 1.
b) F (x, y, z) = z and F (x, y,¬z) = ¬z if and only

if x = 0.
Proposition 2. For the nonlinear function

G(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z), there are the
following properties:

1) a) G(x, y, z) = G(¬x, y, z) if and only if y = z.
b) G(x, y, z) = x and G(¬x, y, z) = ¬x if and

only if y 6= z.
2) a) G(x, y, z) = G(x,¬y, z) if and only if x = z.

b) G(x, y, z) = y and G(x,¬y, z) = ¬y if and only
if x 6= z.

3) a) G(x, y, z) = G(x, y,¬z) if and only if x = y.
b) G(x, y, z) = z and G(x, y,¬z) = ¬z if and only

if x 6= y.
4) G(x, 0, 0) = G(0, y, 0) = G(0, 0, z) = 0.
Proposition 3. For the nonlinear function

H(x, y, z) = x⊕y⊕z, there are the following properties:
1) H(x, y, z) = ¬H(¬x, y, z) = ¬H(x,¬y, z) =

¬H(x, y,¬z).
2) H(x, y, z) = H(¬x,¬y, z) = H(x,¬y,¬z) =

H(¬x, y,¬z).
Proposition 4[56]. Suppose (a1, b1, c1, d1) is known

and m0 is unknown, then we can get b0, c0, d0 and
a0 + m0 = (b1 ≫ 11) − F (b0, c0, d0). Because the
input of left branch and right branch is identical, we
can get bb0 = b0, cc0 = c0, dd0 = d0. According to
bb1 = (aa0 + m0 + F (bb0, cc0, dd0) + 50a28be6) ≪
11 = (a0 + m0 + F (b0, c0, d0) + 50a28be6) ≪ 11, we
can get bb1 = ((b1 ≫ 11) + 50a28be6) ≪ 11. There-
fore, (aa1, bb1, cc1, dd1) can be obtained.

3 Practical Collision Attack Against Extended
MD4

In this section, we present a practical collision at-
tack on Extended MD4. Each message in the collision
includes two 512-bit message blocks. We search the col-
lision pair (M0 ‖ M1, M0 ‖ M ′

1) in the following four
parts:

1) Denote Extended MD4 by h and the hash value
h(M0) by (a ‖ b ‖ c ‖ d ‖ aa ‖ bb ‖ cc ‖ dd). (a, b, c, d)
and (aa, bb, cc, dd) are also the input chaining variables
of left branch and right branch of the next compres-
sion function respectively. Find a message block M0

such that h(M0) satisfies some conditions which are
part of the sufficient conditions that ensure the dif-
ferential path hold, and the conditions of h(M0) are
bi = ci(i = 19, 21), bi = 0(i = 20, 27, 28), c0,20 = 1,
bbi = cci(i = 19, 21), bbi = 0(i = 20, 27, 28) and
cc0,20 = 1.

2) Choose an appropriate message difference ∆M1 =
M ′

1−M1 and deduce the differential path according to
the specified message difference.



Gao-Li Wang: Collision Extended MD4 Pseudo-Preimage RIPEMD 135

3) Derive a set of sufficient conditions which en-
sure the differential path hold. This means that if
h(M1) satisfies all the conditions in Table 5, then
(M0 ‖ M1,M0 ‖ M ′

1) consist of a collision.
4) Modify the message M1 to fulfill most of the suf-

ficient conditions.
Obviously the first part is easy to be carried out. We

will describe the last three parts in details.

Table 5. Set of Suffcient Conditions for the Differential

Path Given in Table 2

c0 c0,20 = 1

b0 b0,19 = c0,19, b0,20 = 0, b0,21 = c0,21, b0,27 = 0,
b0,28 = 0

a1 a1,19 = 1, a1,20 = 1, a1,21 = 0, a1,27 = 1, a1,28 = 1

d1 d1,6 = a1,6, d1,7 = a1,7, d1,8 = a1,8, d1,19 = 0,
d1,20 = 0, d1,21 = 0, d1,27 = 1, d1,28 = 0

c1 c1,6 = 1, c1,7 = 1, c1,8 = 0, c1,19 = 1, c1,20 = 1,
c1,21 = 1, c1,27 = 0, c1,28 = 0

b1 b1,6 = 0, b1,7 = 1, b1,8 = 0, b1,10 = c1,10, b1,22 =
c1,22, b1,27 = 0, b1,28 = 1, b1,30 = c1,30

a2 a2,2 = b1,2, a2,3 = b1,3, a2,4 = b1,4, a2,6 = 1,
a2,7 = 1, a2,8 = 1, a2,10 = 1, a2,22 = 0, a2,30 = 1

d2 d2,2 = 1, d2,3 = 1, d2,4 = 0, d2,10 = 0, d2,17 = a2,17,
d2,22 = 0, d2,30 = 0

c2 c2,2 = 1, c2,3 = 0, c2,4 = 0, c2,10 = 1, c2,17 = 0,
c2,21 = d2,21, c2,22 = 1, c2,30 = 1

b2 b2,1 = c2,1, b2,2 = 1, b2,3 = 1, b2,4 = 1, b2,13 = c2,13,
b2,17 = 0, b2,21 = 0, b2,22 = 1

a3 a3,1 = 0, a3,2 = 1, a3,9 = b2,9, a3,10 = b2,10,
a3,13 = 1, a3,17 = 1, a3,21 = 0, a3,22 = 0

d3 d3,1 = 0, d3,2 = 0, d3,9 = 1, d3,10 = 0, d3,13 = 0,
d3,21 = 1, d3,22 = 1, d3,28 = a3,28

c3 c3,1 = 1, c3,2 = 1, c3,8 = d3,8, c3,9 = 0, c3,10 = 0,
c3,13 = 1, c3,28 = 0

b3 b3,4 = c3,4, b3,8 = 0, b3,9 = 1, b3,10 = 1, b3,16 = c3,16,
b3,28 = 0

a4 a4,4 = 1, a4,8 = 0, a4,9 = 1, a4,16 = 1, a4,28 = 1

d4 d4,4 = 0, d4,7 = a4,7, d4,8 = 1, d4,9 = 1, d4,16 = 0

c4 c4,4 = 1, c4,7 = 1, c4,8 = 0, c4,16 = 1

b4 b4,7 = d4,7, b4,8 = d4,8

a5 a5,7 = 0, a5,8 = 1

d5 d5,7 6= b4,7, d5,8 6= b4,8

c5 c5,7 = d5,7, c5,8 = d5,8

b5 b5,10 = c5,10

a6 a6,10 = 1

d6 d6,10 = b5,10

c6 c6,10 = d6,10

b6 b6,13 = c6,13

a7 a7,13 = 1

d7 d7,13 = b6,13

c7 c7,13 = d7,13

b7 b7,16 = c7,16

a8 a8,16 = 1

d8 d8,16 = b7,16

c8 c8,16 = d8,16

3.1 Collision Differential Path for Extended
MD4

Constructing the differential path and deriving the
sufficient conditions go on simultaneously. On one
hand, we derive the sufficient conditions according to
the differential path. On the other hand, we adjust the
differential path to avoid the contradictory conditions.
If the sufficient conditions in some steps of left branch
and right branch contradict each other, the correspond-
ing differential path is an error and no collision can be
found, then we must search other differential paths from
scratch.

Almost all the conditions in the first round and
some conditions in the second round can be modified
to hold by the message modification technique, the
other conditions in the last rounds are difficult to be
modified to hold. Therefore, we will ensure the suf-
ficient conditions in the last rounds to be as less as
possible. In order to find such a differential path, we
select a difference between two messages as follows:
∆M1 = M ′

1 − M1 = (∆m0,∆m1, . . . ,∆m15), where
∆m0 = 216, ∆mi = 0, 0 < i 6 15.

The whole differential path is shown in Table 2. The
first column denotes the step, the second is the chaining
variable in each step for M1, the third is the message
word of M1 in each step, the fourth is the shift rota-
tion, the fifth is the message difference between M1 and
M ′

1, the sixth is the chaining variable difference for M1

and M ′
1, and the seventh is the chaining variable for

M ′
1. The empty items both in the fifth and the sixth

columns denote zero differences, and steps which are
not listed in the table have zero differences for message
words and chaining variables.

3.2 Deriving the Sufficient Conditions for
Differential Path

In light of the propositions of the nonlinear Boolean
functions given in Subsection 2.4, we can derive the con-
ditions that guarantee the differential path in Table 2
hold. A set of sufficient conditions is shown in Table 5.

We give an example to describe how to derive a set
of sufficient conditions that guarantees the differential
path in step 9 of Table 2 hold. Other conditions can
be derived similarly. The differential path in step 9 of
Table 2 is:

(a2[−10, 22,−30], d2[−2,−3, 4], c2[17], b2[21,−22]) −→
(d2[−2,−3, 4], c2[17], b2[21,−22], a3[1,−2,−13]).

1) According to a3 = (a2 + F (b2, c2, d2) + m8) ≪ 3
and b) of Proposition 1 1), the conditions c2,22 = 1
and d2,22 = 0 ensure that the change of b2,22 results



136 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

in F (b2[−22], c2, d2) − F (b2, c2, d2) = −222, combined
with ∆a2 = 222, which will lead to no change in a3.

2) According to a) of Proposition 1 1), the condition
c2,21 = d2,21 ensures that the change of b2,21 results in
no change in a3.

3) According to a) of Proposition 1 2), the condition
b2,17 = 0 ensures that the change of c2,17 results in no
change in a3.

4) According to a) of Proposition 1 3), the condi-
tions b2,2 = 1, b2,3 = 1 and b2,4 = 1 ensure that the
changes in the 2nd, 3rd and 4th bits of d2 result in no
change in a3.

5) Because the shift is 3 in step 9, ∆a2 = −210 must
lead to ∆a3 = −213, and the condition a3,13 = 1 results
in a′13 = a13[−13].

6) Similarly, ∆a2 = −230 must lead to ∆a3 = −2,
and the condition a3,1 = 0 and a3,2 = 1 result in
a′3 = a3[1,−2].

The above 10 conditions consist of a set of sufficient
conditions for the differential path in step 9.

3.3 Message Modification

In order to improve the collision probability, we
modify M1 so that most of the sufficient conditions in
Table 5 hold. The modification includes basic and ad-
vanced techniques. Because Extended MD4 has two
branches, the modification is much more complicated
than that of MD4, MD5, HAVAL, etc. which only con-
tain one branch operation.

1) We modify M1 word by word so that both
branches with the modified M1 satisfy almost all the
conditions in the first round.

a) By using the basic modification technique, we
modify mi−1 such that the i-th step conditions in the
first round of left branch hold. For example, to ensure
the eight conditions of d1 in Table 5 hold, we modify
m1 as follows:

d1 ←− d1⊕ (d1,19 ≪ 19)⊕ (d1,20 ≪ 20)⊕ (d1,21 ≪
21)⊕(d1,28 ≪ 28)⊕((d1,27⊕1) ≪ 27)⊕((d1,6⊕a1,6) ≪
6)⊕ ((d1,7 ⊕ a1,7) ≪ 7)⊕ ((d1,8 ⊕ a1,8) ≪ 8),

m1 ←− (d1 ≫ 7)− d0 − F (a1, b0, c0).

b) By using the advanced modification technique,
we modify the message word from low bit to high bit to
correct the corresponding conditions in the first round
of right branch.
• Firstly, we can correct the conditions by bit carry.

For example, because there are no constraint condi-
tions in a1,18 in Table 5, we can correct aa1,19 = 0
to aa1,19 = 1 as follows. If a1,18 = 0 and aa1,18 = 1,
let m0 ←− m0 + 215, then there is a bit carry in right
branch and no bit carry in left branch, so the condition
in aa1,19 can be corrected, and the corrected a1,19 will
not be changed. Similarly, if a1,18 = 1 and aa1,18 = 0,
let m0 ←− m0 − 215, then aa1,19 can be corrected and
a1,19 will not be changed. If a1,18 = aa1,18, we can use
the lower bit carry to change a1,18 or aa1,18 such that
a1,18 6= aa1,18, and then use the bit carry. The details
for correcting aa1,19 are given in Table 6.
• Secondly, we can correct the condition on ai,j by

changing the corresponding variables in the previous
steps. For example, we can correct dd1,20 = 1 to
dd1,20 = 0 as follows. If b0,13 ⊕ c0,13 6= bb0,13 ⊕ cc0,13

(which means when b0,13 = c0,13, then bb0,13 6= cc0,13;
when b0,13 6= c0,13, then bb0,13 = cc0,13), let m0 ←−
m0 ± 210, then a1,13 and aa1,13 will be changed, and
the changed a1,13, aa1,13 only cause one of d1,20 and
dd1,20 to change according to 1) of Proposition 1.
Then if d1,20 = dd1,20 = 1, let m1 ←− m1 − 213, if
d1,20 = dd1,20 = 0, modify the next bit of dd1. Note
that there is no condition in a1,13 and aa1,13 in Table 5,
so the changes in a1,13 and aa1,13 do not invalidate the
differential path. The details for correcting dd1,20 are
given in Table 7.

2) There are 18 × 2 = 36 conditions in total in the
second round in both branches. We can utilize some
more precise modification techniques to correct some
conditions in the second round. Sometimes, it needs to
add some extra conditions in the first round in advance
such that the change of any condition does not affect
all the corrected conditions.

Table 6. Message Modification for Correcting aa1,19 = 0 to aa1,19 = 1

Known Conditions Modified m0 New Chaining Variables

a1,18 = 0, aa1,18 = 1 m0 ←− m0 + 215 aa1,19 = 1, a1,19 unchanged

a1,18 = 1, aa1,18 = 0 m0 ←− m0 − 215 aa1,19 = 1, a1,19 unchanged

a1,18 = aa1,18 = 1 m0 ←− m0 + 214 aa1,19 = 1, a1,19 unchanged

a1,17 = 0, aa1,17 = 1

a1,18 = aa1,18 = 1 m0 ←− m0 − 214 − 215 aa1,19 = 1, a1,19 unchanged

a1,17 = 1, aa1,17 = 0

a1,18 = aa1,18 = 0 m0 ←− m0 + 214 + 215 aa1,19 = 1, a1,19 unchanged

a1,17 = 0, aa1,17 = 1

a1,18 = aa1,18 = 0 m0 ←− m0 − 214 aa1,19 = 1, a1,19 unchanged

a1,17 = 1, aa1,17 = 0



Gao-Li Wang: Collision Extended MD4 Pseudo-Preimage RIPEMD 137

Table 7. Message Modification for Correcting dd1,20 = 1 to dd1,20 = 0

Step Case mi Shift Modified mi Chaining Variables Conditions

1 m0 3 m0 ←− m0 ± 210 a1,13, aa1,13 changed

2 Case 1 m1 7 m1 ←− m1 − 213 d1,20 changed, i.e., d1,20 = 1 b0,13 6= c0,13

dd1,20 unchanged, i.e., dd1,20 = 1 bb0,13 = cc0,13

d1,20 = 0, dd1,20 = 0

2 Case 2 m2 7 d1,20 unchanged, i.e., d1,20 = 0 b0,13 = c0,13

dd1,20 changed, i.e., dd1,20 = 0 bb0,13 6= cc0,13

3.4 Overview of the Collision Attack
Algorithm

From the above description, an overview of the col-
lision attack algorithm on Extended MD4 can be ex-
pressed as follows.

1) Find a message block M0 such that h(M0) = (a ‖
b ‖ c ‖ d ‖ aa ‖ bb ‖ cc ‖ dd) satisfies bi = ci(i = 19, 21),
bi = 0(i = 20, 27, 28), c20 = 1, bbi = cci(i = 19, 21),
bbi = 0(i = 20, 27, 28) and cc20 = 1.

2) Repeat the following steps until we can find a
message block M1 which satisfies all the sufficient con-
ditions in the first round of left branch and right branch
in Table 5.

a) Select a random message block M1.
b) Modify M1 by step 1 of message modification

described above.
c) Test if the hash value of M1 satisfies all the

sufficient conditions in the first round in both
branches in Table 5.

3) Repeat the following steps until a collision (M0 ‖
M1,M0 ‖ M ′

1) is found.
a) Select random message words m14 and m15 of

M1.
b) Modify M1 by step 1 of message modification

described above such that all the conditions in
c4, b4, cc4 and bb4 satisfied.

c) Modify M1 by step 2 of message modification
described above such that some conditions in
the second round satisfied.

d) Then M1 and M ′
1 = M1 + ∆M1 satisfy all the

sufficient conditions in both branches in Ta-
ble 5 with the probability higher than 2−36.

e) Test if the hash value of M1 is equal to the
hash value of M ′

1.
It is easy to find proper M0 in step 1 and to find M1

which satisfies all the sufficient conditions in the first
round in both branches in Table 5, and the complexity
can be neglected. There are 36 conditions in total in
the second round in both branches, so M1 and M ′

1 lead
to a collision with probability higher than 2−36, and the
complexity to find a collision (M0 ‖ M1,M0 ‖ M ′

1) is
less than 237 Extended MD4 computations. A collision
for Extended MD4 can be seen in Table 8.

4 Strategies of the Pseudo-Preimage on the
Compression Function of RIPEMD

Suppose CF is the compression function and y is a
given targeting hash value, a pseudo-preimage is a pair
(x,M) that satisfies CF (x,M) = y, where x is not re-
quired to be equal to the standard initial value. This
section studies the pseudo-preimage resistance against
the full RIPEMD. We choose proper neutral words for
the first chunk and the second chunk. By constructing
proper initial structure and applying the partial-fixing
and partial-matching techniques, a few steps can be
skipped. Combined with the exhaustive search, we can
propose a pseudo-preimage on the full RIPEMD algo-
rithm.

Table 8. Collision of Extended MD4

M0 a4eff7cd 87afe33e b96f8657 1054fe49 8397de8d 23bc04b8 b683a020 3b2a5d9f c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31

97e31fe5 2794bf08 b9e8c3e9

H0 b5aac7e7 c1664fe2 01705583 ac3cc062 65c931e6 452829ae 527e12c7 30fafffb

M1 54b7b7e1 65336f98 7621fe73 ffa42822 13dda7e1 1c28a008 bf20c341 3e8e28f2 578bdb87 afd42be4 b9ecab2e 0aaa9293 02e7070b

eab6f4cf 2e96aaf7 5ab41efd

M ′
1 54b8b7e1 65336f98 7621fe73 ffa42822 13dda7e1 1c28a008 bf20c341 3e8e28f2 578bdb87 afd42be4 b9ecab2e 0aaa9293 02e7070b

eab6f4cf 2e96aaf7 5ab41efd

H 3055a689 7fe0b4a6 88d59251 af8afd0f 3826bda2 942f0939 c2673493 a6c56bac

Note: H0 is the hash value for the message block M0 with little-endian and no message padding. H is the common hash value for
the message M0 ‖ M1 and M0 ‖ M ′

1 with little-endian and no message padding.



138 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

Fig.1. Overview of pseudo-preimage attack on RIPEMD.

4.1 Choice of Chunks and Neutral Words

As shown in Fig.1, we construct the initial structure
in the left branch. We choose (m3, b25) as the neutral
words for the first chunk, and (m0, b33) as the neutral
words for the second chunk. The initial structure con-
sists of eight steps in the left branch. The partial-fixing
and partial-matching techniques enable us to skip seven
steps in the right branch by considering two possible
carried number patterns.

The first chunk is independent of (m0, b33). It starts
from step 25 in the left branch with a backward com-
putation, and ends with a forward computation until
step 25 in the right branch because the initial values of
both branches are identical. The second chunk is inde-
pendent of (m3, b25), and it is from step 33 to step 48
in the left branch with a forward computation.

We can get partial bits of aa32(= bb29) from the
computation of the first chunk. Performing the con-
sistency check together with the partial-matching test
and exhaustive search guarantees our attack hold even
if the number of matched bits is small. See Fig.2 for a
pictorial depiction of the attack, where IS means initial
structure, and ES means exhaustive search.

4.2 Details of Initial Structure, Partial-Fixing
and Partial-Matching

In Table 9, the initial structure is constructed in the

Fig.2. Pseudo-preimage attack on RIPEMD.

left branch. (m3, b25) are the neutral words for the first
chunk, and (m0, b33) are the neutral words for the sec-
ond chunk. Considering the initial structure, partial-
fixing and partial-matching techniques, we fix the the
bit positions 27 ∼ 24, 19 ∼ 0 of m0, the bit positions
15 ∼ 0 of b25, and all the other bits of m0, b25 are free
bits. All the 32 bits of m3, b33 are free bits. We try all
the values of free bits in the meet-in-the-middle attack.

Let x1st represents a free bit of m0 and y2nd rep-
resents a free bit of (m3, b25). The free bits ′y′2nds in
m3 only impact b33 which is satisfied with probability
2−32 in the consistency check of the initial structure.
Thus in order to construct the initial structure, the re-
maining work is to guarantee that (a25, b25, c25, d25) are
independent of ′x′1sts, and (a33, c33, d33) are indepen-
dent of ′y′2nds. We choose a25 = −5a827999, c25 = 0,
d25 = 0 and b25 = y31∼16

2nd 015∼0, which means that



Gao-Li Wang: Collision Extended MD4 Pseudo-Preimage RIPEMD 139

Table 9. Initial Structure

i mi ai bi ci di Shift

25 −k1 y31∼16
2nd 015∼0 0 0

26 m0 = x31∼28
1st 0 m0 ≪ 12 = y31∼16

2nd 015∼0 0 12

027∼24x23∼20
1st 031∼12x11∼8

1st 07∼4x3∼0
1st

019∼0

27 m9 = −k1 0 0 031∼12x11∼8
1st y31∼16

2nd 015∼0 15

07∼4x3∼0
1st

28 m5 = −k1 y31∼16
2nd 015∼0 0 0 031∼12x11∼8

1st 07∼4x3∼0
1st 9

29 m14 = −k1 031∼12x11∼8
1st a28 ≪ 7 = 0 0 7

07∼4x3∼0
1st y31∼23

2nd 022∼7y6∼0
2nd

30 m2 = −k1 0 a29 ≪ 11 = 031∼23 y31∼23
2nd 022∼7 0 11

x22∼19
1st 018∼15x14∼11

1st 010∼0 y6∼0
2nd

31 m11 = −k1 0 0 031∼23x22∼19
1st y31∼23

2nd 022∼7y6∼0
2nd 13

018∼15x14∼11
1st

010∼0

32 m8 = −k1 y31∼23
2nd 022∼7y6∼0

2nd 0 0 031∼23x22∼19
1st 018∼15 12

x14∼11
1st 010∼0

33 m3 = y31∼0
2nd 031∼23x22∼19

1st 018∼15 ? 0 0 11

x14∼11
1st 010∼0

Note: ?: all possible values of b33.

(a25, b25, c25, d25) is independent of ′x′1sts. Therefore
the remaining work is to guarantee that (a33, c33, d33)
can be computed independently of ′y′2nds in b25. Let
m0 = x31∼28

1st 027∼24x23∼20
1st 019∼0, m3 = y31∼0

2nd , b25 =
y31∼16
2nd 015∼0, we give a detailed explanation in the fol-

lowing Algorithm 1.

Algorithm 1.

1) In step 26, we choose c25 = 0 and d25 = 0
such that the free bits ′y′2nds of b25 do not affect the
variable b26. Choose a25 = −5a827999 to cancel the
addition of 5a827999 for simplicity. Then the variable
b26 = (m0 + a25 + G(b25, c25, d25) + 5a827999) ≪ 12 =
(x31∼28

1st 027∼24x23∼20
1st 019∼0 + (−5a827999) + G(b25, 0, 0) +

5a827999) ≪ 12 = (x31∼28
1st 027∼24x23∼20

1st 019∼0) ≪ 12 =
031∼12x11∼8

1st 07∼4x3∼0
1st , which is independent of ′y′2nds.

2) In step 27, we choose m9 = −5a827999 to can-
cel the addition of 5a827999 for simplicity. According to
b27 = (m9 +a26 +G(b26, c26, d26)+5a827999) ≪ 15, we can
get b27 = G(031∼12x11∼8

1st 07∼4x3∼0
1st , y31∼16

2nd 015∼0, 0) ≪ 15.
According to the property of the nonlinear function G, we
can get b27 = 0.

3) In step 28, we choose m5 = −5a827999, and according
to b28 = (m5 + a27 + G(b27, c27, d27) + 5a827999) ≪ 9, we
can get b28 = 0.

4) In step 29, we choose m14 = −5a827999 to can-
cel the addition of 5a827999 for simplicity. According to
b29 = (m14 + a28 + G(b28, c28, d28) + 5a827999) ≪ 7, we
can get b29 = (a28 + G(0, 0, d28)) ≪ 7 = a28 ≪ 7 =
y31∼23
2nd 022∼7y6∼0

2nd .

5) In step 30, we choose m2 = −5a827999 to can-
cel the addition of 5a827999 for simplicity. According to

b30 = (m2 +a29 +G(b29, c29, d29)+5a827999) ≪ 11, we can
get b30 = (a29 + G(b29, 0, 0)) ≪ 11 = a29 ≪ 11 = b26 ≪
11 = 031∼23x22∼19

1st 018∼15x14∼11
1st 010∼0.

6) In step 31, we choose m11 = −5a827999 to can-
cel the addition of 5a827999 for simplicity. According to
b31 = (m11+a30+G(b30, c30, d30)+5a827999) ≪ 13, we can
get b31 = G(031∼23x22∼19

1st 018∼15x14∼11
1st 010∼0, y31∼23

2nd 022∼7

y6∼0
2nd , 0) ≪ 13. According to the property of the nonlin-

ear function G, we can get b31 = 0.

7) In step 32, we choose m8 = −5a827999, and according

to b32 = (m8 + a31 + G(b31, c31, d31) + 5a827999) ≪ 12, we

can get b32 = 0.

Thus, a33 = bb30 = 031∼23x22∼19
1st 018∼15x14∼11

1st 010∼0,
c33 = bb32 = 0, d33 = bb31 = 0 can be computed inde-
pendently of the free bits ′y′2nds of b25.

Owe to the bit positions 27 ∼ 24, 19 ∼ 0 of m0 are
fixed, and (aa25, bb25, cc25, dd25) in the right branch
can be computed in the first chunk, we can obtain par-
tial bits of aa32 in the forward computation in the fol-
lowing Algorithm 2. Table 10 illustrates the partial-
matching process.

Algorithm 2.

1) In the forward computation for step 26 in the right
branch, because bb26 = (aa25+G(bb25, cc25, dd25)+m0) ≪
12 and aa25, bb25, cc25, dd25, the bits positions 27 ∼
24, 19 ∼ 0 of m0 are fixed, we can get two candidates of
bits 31 ∼ 12 and 7 ∼ 4 of bb26 for each m0 by considering
two possible carried number patterns from the 23nd bit to
the 24th bit.

2) In the forward computation for step 27, aa26, cc26,



140 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

Table 10. Partial Matching

i mi aai bbi cci ddi Shift

25 aa25 bb25 cc25 dd25

26 m0[27 ∼ 24, dd25 [31 ∼ 12, 7 ∼ 4] bb25 cc25 12

19 ∼ 0]

27 m9 cc25 [31 ∼ 27, 22 ∼ 19, [31 ∼ 12, 7 ∼ 4] bb25 15

14 ∼ 0]

28 m5 bb25 [31 ∼ 28, 8 ∼ 4] [31 ∼ 27, 22 ∼ 19, [31 ∼ 12, 7 ∼ 4] 9

14 ∼ 0]

29 m14 [31 ∼ 12, 7 ∼ 4] [14 ∼ 11, 6 ∼ 3] [31 ∼ 28, 8 ∼ 4] [31 ∼ 27, 22 ∼ 19, 7

14 ∼ 0]

30 m2 [31 ∼ 27, 22 ∼ 19, [14 ∼ 11, 6 ∼ 3] [31 ∼ 28, 8 ∼ 4] 11

14 ∼ 0]

31 m11 [31 ∼ 28, 8 ∼ 4] [14 ∼ 11, 6 ∼ 3] 13

32 m8 [14 ∼ 11, 6 ∼ 3] 12

32 m8 aa32 bb32 cc32 dd32 12

33 m3 aa33 bb33 cc33 dd33 11

...
...

...
...

...
...

...

48 m12 aa48 bb48 cc48 dd48 5

dd26, m9 and bits 31 ∼ 12, 7 ∼ 4 of bb26 are known. Ac-
cording to bb27 = (aa26 + G(bb26, cc26, dd26) + m9) ≪ 15,
we can get 22 candidates of bits 31 ∼ 27, 22 ∼ 19, 14 ∼ 0 of
bb27 for each (m0, bb26) by considering two possible carried
number patterns from the 3rd bit to the 4th bit and two
possible carried number patterns from the 11th bit to the
12th bit.

3) In the forward computation for step 28, aa27, dd27,
m5, bits 31 ∼ 27, 22 ∼ 19 of bb27 and bits 31 ∼ 12, 7 ∼
4 of cc27 are known. According to bb28 = (aa27 +
G(bb27, cc27, dd27) + m5) ≪ 9, we can get 22 candidates
bb28 of bit positions 31 ∼ 28, 8 ∼ 4 for each (m0, bb27, cc27)
by considering two possible carried number patterns from
the 18th bit to the 19th bit and two possible carried num-
ber patterns from the 26th bit to the 27th bit.

4) In the forward computation for step 29, aa28, m14,
bits 31 ∼ 28, 8 ∼ 4 of bb28, bits 31 ∼ 27, 22 ∼ 19, 14 ∼ 0 of
cc28 and bits 31 ∼ 12, 7 ∼ 4 of dd28 are known. According
to bb29 = (aa28 + G(bb28, cc28, dd28) + m14) ≪ 7, we can
get 22 candidates bb29 of bit positions 14 ∼ 11, 6 ∼ 3 for
each (m0, bb28, cc28, dd28).

5) In the backward computation from step 48 to step 33

in the right branch, by exhaustively search m0 and m3, we

can get the value (aa32, bb32, cc32, dd32).

So far, we have successfully obtained eight bits val-
ues of aa32 = bb29 with seven unknown carried numbers
in the forward computation, which is compared with the
value aa32 computed from the backward direction.

5 Pseudo-Preimage Attack on the Full
RIPEMD

In this section, we present the pseudo-preimage at-

tack on the full RIPEMD compression function based
on the initial structure and partial-matching proposed
in Section 4.

5.1 Pseudo-Preimage Attack Procedure

The procedure of our pseudo-preimage attack on the
full RIPEMD compression function is as follows.

1) Set chaining variables in the initial structure in
the left branch as shown in Table 9. Set m0, m2, m3,
m5, m8, m9, m11 and m14 as shown in Table 9.

2) Set randomly chosen values to other message
words, and let m15 satisfy the padding.

3) For all possible values of m3 and bit positions
31 ∼ 16 of b25, in total 48 free bits, do the following:

a) Compute (b25 ≪ 7) + m3 for efficient consis-
tency check. Denote this value as C1st.

b) Compute from step 25 in the backward direc-
tion in the left branch until the initial state.
The values of b0, c0, d0 can be computed.
a0 + m0 = (b1 ≫ 11) − F (b0, c0, d0) can also
be computed, denote this value as D.

c) Because the initial value of the right branch
is the same as the initial value of the left
branch, the value of bb1 in the right branch
can be computed as bb1 = (a0 + m0 +
F (b0, c0, d0) + 50a28be6) ≪ 11 = ((b1 ≫
11) + 50a28be6) ≪ 11. Therefore, we obtain
the internal state at step 1 in the right branch.

d) Compute from step 2 in the right branch in
the forward direction until step 25 to get the
internal state (aa25, bb25, cc25, dd25).



Gao-Li Wang: Collision Extended MD4 Pseudo-Preimage RIPEMD 141

e) From Algorithm 2, we can obtain 8 bit posi-
tions 14 ∼ 11, 6 ∼ 3 of aa32.

f) Make a table of
(m3, b25, C

1st, aa32, D, b0, c0, d0).
4) For all possible values of bit positions 31 ∼

28, 23 ∼ 20 of m0 and all bits of b33, in total 40 free
bits, do the following:

a) Compute a33 as shown in Table 9.
b) Compute (b33 ≫ 11) − H(c33, d33, a33) −

6ed9eba1 for the efficient consistency check.
Denote the value as C2nd.

c) Compute from step 33 until step 48 in the left
branch to get the value (a48, b48, c48, d48).

d) i) Check whether C2nd is matched with C1st

in the table.
ii) If they match, compute the value aa0 =

a0 = D − m0 by the value D in the
table generated in f) of step 3. From
a0, b0, c0, d0 in the table, we can get the
initial value (aa0, bb0, cc0, dd0) of the right
branch. Then compute the corresponding
value of (aa48, bb48, cc48, dd48) according
to the given target hash value and the ini-
tial value (aa0, bb0, cc0, dd0). Compute
from step 48 to step 33 in the backward
direction in the right branch to get aa32.
Check whether bit positions 14 ∼ 11, 6 ∼ 3
of aa32 are matched in the table.

iii) If they match, for the remaining (m0, b33,
m3, b25), compute aa31 in the backward
direction, and check whether bits 31 ∼
28, 8 ∼ 4 of aa31 are matched.

iv) Similarly, for the remaining (m0, b33,m3,
b25), compute aa30, aa29 and check the
matching. If all bits are matched and the
carried number assumptions are correct, a
pseudo-preimage is found.

5) If no pseudo-preimage is found, change the values
of the message words in step 2, and repeat steps 3∼4.

5.2 Complexity Evaluation

One step computation is regarded as 1
48×2 = 1

96

RIPEMD compression function computation. The
complexity of the attack can be evaluated as follows.

Step 1: Negligible.
Step 2: Negligible.

Step 3(a): 248 × 1
96 RIPEMD compression function.

Step 3(b): 248 × 25
96 RIPEMD compression function.

Step 3(c): 248 × 1
96 RIPEMD compression function.

Step 3(d): 248 × 24
96 RIPEMD compression function.

Step 3(e): 248 × 2× 1
96 + 248 × 23 × 1

96 + 248 × 25 ×
1
96 + 248 × 27 × 1

96 RIPEMD compression function.

Step 3(f): Negligible.

Step 4(a): 240 × 1
96 RIPEMD compression function.

Step 4(b): 240 × 1
96 RIPEMD compression function.

Step 4(c): 240 × 15
96 RIPEMD compression function.

Step 4(d) i: Negligible. The number of remaining
pairs is 256(= 248 × 240 × 2−32).

Step 4(d) ii: 256× 16
96 RIPEMD compression function.

The number of remaining pairs is 255(= 256×2−8×27).

Step 4(d) iii: 255 × 1
96 RIPEMD compression func-

tion. The number of remaining pairs is 246(= 255×2−9).

Step 4(d) iv: Approximately 246× 1
96 RIPEMD com-

pression function.
The overall complexity of the above computations is

about 256 × 16
96 . By performing the attack procedure

272(= 2128 × 232 × 2−48 × 2−40) times, we expect to
get a pseudo-preimage. Therefore the overall comple-
xity of finding a pseudo-preimage of RIPEMD is about
2125.4(≈ 272 × 256 × 16

96 ) computations. The attack re-
quires 255 (m3, b25, C1st, aa32, D, b0, c0, d0)s to be
stored, and the memory complexity is 255 × 8 = 258

words.
The padding rule forces some constraints on the last

message words, and there are some restrictions on m14

in our attack. So the padding rule is an obstacle to
extend the pseudo-preimage attack to preimage attack
on RIPEMD.

6 Conclusions

In this paper, for two double-branch hash functions
Extended MD4 and RIPEMD, we examined their se-
curity against collision attack and pseudo-preimage at-
tack respectively. A practical attack on Extended MD4
for finding 2-block collision was proposed and a true
collision instance of Extended MD4 was found. Based
on 8-step initial structure, partial-fixing and partial-
matching techniques, etc., a pseudo-preimage attack on
RIPEMD was implemented.

A generic method to convert meet-in-the-middle
preimage attack to pseudo collision attack was proposed
in [55]. On one hand, it greatly improves the number
of attacked steps of hash functions, compared with pre-
vious collision attack based on differentials and previ-
ous meet-in-the-middle preimage attack which needs to
take into account padding bits. On the other hand, the
method only converts the meet-in-the-middle preimage
attack to a pseudo collision attack, not collision attack,
and the time complexity is high. Future analysis should
be able to explore the security of other double-branch



142 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

hash functions, and to explore other practical relations
between preimage attack and collision attack.

References

[1] Rivest R. The MD4 message digest algorithm. In Proc. the
10th Int. Cryptology Conference (CRYPTO), Aug. 1990,
pp.303-311.

[2] Rivest R. The MD5 message-digest algorithm. 1992, http://
www.ietf.org/rfc/rfc1321.txt.

[3] Zheng Y, Pieprzyk J, Seberry J. HAVAL—A one-way hashing
algorithm with variable length of output. In Proc. Workshop
on the Theory and Application of Gyptographic Techniques:
Advances in Cryptology (AUSCRYPT), Dec. 1992, pp.81-
104.

[4] Bosselaers A, Preneel B (eds.). Integrity Primitives for Se-
cure Information Systems, Final Report of RACE Integrity
Primitives Evalution, Springer-Verlag, 1995.

[5] Dobbertin H, Bosselaers A, Preneel B. RIPEMD-160: A
strengthened version of RIPEMD. In Proc. the 3rd Int.
Workshop on Fast Software Encryption, Feb. 1996, pp.71-
82.

[6] National Institute of Standards and Technology of USA. Se-
cure hash standard. Federal Information Processing Stan-
dard Publication, FIPS-180, May 1993, http://www.mavi-
1.org/web security/cryptography/applied-crypto/fips180.txt.

[7] National Institute of Standards and Technology of USA. Se-
cure hash standard. Federal Information Processing Stan-
dards Publication, FIPS-180-1, April 17, 1995, http://www.
itl. nist.gov/fipspubs/fip/189-1.htm.

[8] National Institute of Standards and Technology of USA. Se-
cure hash standard. Federal Information Processing Stan-
dards Publication, FIPS-180-2, August, 26, 2002, http://
csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.

[9] Vaudenay S. On the need for multipermutations: Crypta-
nalysis of MD4 and SAFER. In Proc. the 2nd Int. Workshop
on Fast Software Encryption, Dec. 1994, pp.286-297.

[10] den Boer B, Bosselaers A. Collisions for the compression func-
tion of MD5. In Proc. Workshop on the Theory and Ap-
plication of Cryptographic Techniques (EUROCRYPT), May
1993, pp.293-304.

[11] Biham E, Chen R. Near-collisions of SHA-0. In Proc. Int.
Cryptology Conf. (CRYPTO), Aug. 2004, pp.290-305.

[12] Biham E, Chen R, Joux A, Carribault P, Lemuet C, Jalby
W. Collisions of SHA-0 and reduced SHA-1. In Proc. the
24th Int. Conf. Theory and Applications of Cryptographic
Techniques (EUROCRYPT), May 2005, pp.36-57.

[13] Chabaud F, Joux A. Differential collisions in SHA-0. In Proc.
the 18th Int. Cryptology Conf. (CRYPTO), Aug. 1998,
pp.56-71.

[14] Dobbertin H. The first two rounds of MD4 are not one-way.
In Proc. the 5th Int. Workshop on Fast Software Encryption,
Mar. 1998, pp.284-292.

[15] Dobbertin H. Cryptanalysis of MD4. In Proc. the 3rd Int.
Workshop on Fast Software Encryption, Feb. 1996, pp.53-69.

[16] Dobbertin H. Cryptanalysis of MD5 compress. In Proc. Int.
Conf. Theory and Application of Cryptology and Information
Security (Rump Session), May 1996, http://www.iacr.org/
conferences/ec96/ec96rump.html.

[17] Dobbertin H. RIPEMD with two round compress function is
not collision-free. Journal of Cryptology, 1997, 10(1): 51-70.

[18] Joux A. Collisions for SHA-0. In Proc. of CRYPTO 2004
(Rump Session), Aug. 2004, http://www.iacr.org/confere-
nces/ crypto2004/rump.html.

[19] Mendel F, Rechberger C, Rijmen V. Update on SHA-1. In
Proc. CRYPTO 2007 (Rump Session), Aug. 2007, http://
rump2007.cr.yp.to.

[20] Rompay B, Biryukov A, Preneel B, Vandewalle J. Crypta-
nalysis of 3-pass HAVAL. In Proc. the 9th Int. Conf. The-
ory and Application of Cryptology and Information Security
(ASIACRYPT), Nov. 30-Dec. 4, 2003, pp.228-245.

[21] Wang X Y, Feng D G, Lai X J, Yu H B. Collisions for hash
functions MD4, MD5, HAVAL-128 and RIPEMD. In Proc.
CRYPTO 2004 Rump Session, Aug. 2004, http://www.
iacr.org/conferences/crypto2004/rump.html.

[22] Wang X Y, Lai X J, Feng D G, Chen H, Yu X Y. Crypta-
nalysis of the hash functions MD4 and RIPEMD. In Proc. the
24th Int. Conf. Theory and Applications of Cryptographic
Techniques (EUROCRYPT), May 2005, pp.1-18.

[23] Wang G L, Wang M Q. Cryptanalysis of reduced RIPEMD-
128. Journal of Software, 2008, 19(9): 2442-2448.

[24] Wang X Y, Yu H B. How to break MD5 and other hash
functions. In Proc. the 24th Int. Conf. Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT), May
2005, pp.19-35.

[25] Wang X Y, Yu H B, Yin L. Efficient collision search attacks on
SHA-0. In Proc. the 25th Int. Cryptology Conf. (CRYPTO),
Aug. 2005, pp.1-16.

[26] Wang X Y, Yin Y L, Yu H B. Finding collisions on the full
SHA-1. In Proc. the 25th Int. Cryptology Conf. (CRYPTO),
Aug. 2005, pp.17-36.

[27] Wang X Y, Feng D G, Yu X Y. An attack on hash function
HAVAL-128. Science in China Ser. F: Information Sciences,
2005, 48(5): 545-556.

[28] Yu H B, Wang X Y, Yun A, Park S. Cryptanalysis of the full
HAVAL with 4 and 5 passes. In Proc. the 13th Int. Workshop
on Fast Software Encryption, Mar. 2006, pp.89-110.

[29] Yu H B, Wang X Y. Cryptanalysis of the compression function
of SIMD. In Proc. the 16th Australasian Conf. Information
Security and Privacy, Jul. 2011, pp.157-171.

[30] Yu H B, Chen J Z, Jia K T, Wang X Y. Near-collision at-
tack on the step-reduced compression function of Skein-256.
IACR Cryptology ePrint Archive, Report 2011/148, 2011,
http://eprint.iacr.org/.

[31] Biham E, Shamir A. Differential cryptanalysis of DES-like
cryptosystems. Journal of Cryptology, 1991, 4(1): 3-72.

[32] Yu H B, Wang G L, Zhang G Y, Wang X Y. The second-
preimage attack on MD4. In Proc. the 4th Int. Conf. Cryp-
tology and Network Security (CRYPTO), Dec. 2005, pp.1-12.

[33] De Cannière C, Rechberger C. Finding SHA-1 characteris-
tics: General results and applications. In Proc. the 12th Int.
Conf. Theory and Application of Cryptology and Information
Security (ASIACRYPT), Dec. 2006, pp.1-20.

[34] De Cannière C, Mendel F, Rechberger C. Collisions for 70-
Step SHA-1: On the full cost of collision search. In Proc. the
14th Int. Workshop. Selected Area in Cryptolography, Aug.
2007, pp.56-73.

[35] Knudsen L R, Mathiassen J E. Preimage and collision attacks
on MD2. In Proc. the 12th Int. Conf. Fast Software Encryp-
tion, Feb. 2005, pp.255-267.

[36] Muller F. The MD2 Hash function is not one-way. In Proc.
the 10th Int. Conf. Theory and Application of Cryptology
and Information Security (ASIACRYPT), Dec. 2004, pp.214-
229.

[37] Aoki K, Sasaki Y. Preimage attacks on one-block MD4, 63-
step MD5 and more. In Proc. the 15th Int. Workshop. Se-
lected Area in Cryptolography, Aug. 2008, pp.103-119.

[38] De D, Kumarasubramanian A, Venkatesan R. Inversion at-
tacks on secure Hash functions using SAT solvers. In Proc.
the 10th Int. Conf. Theory and Applications of Satisfiability
Testing, May 2007, pp.377-382.

[39] Guo J, Ling S, Rechberger C, Wang H. Advanced meet-in-
the-middle preimage attacks: First results on full Tiger, and
improved results on MD4 and SHA-2. In Proc. the 16th Int.



Gao-Li Wang: Collision Extended MD4 Pseudo-Preimage RIPEMD 143

Conf. Theory and Application of Cryptology and Information
Security (ASIACRYPT), Dec. 2010, pp.56-75.

[40] Leurent G. MD4 is not one-way. In Proc. the 15th Int. Conf.
Fast Software Encryption, Feb. 2008, pp.412-428.

[41] Zhong J M, Lai X J. Improved preimage attack on one-block
MD4. Journal of Systems and Software, 2012, 85(4): 981-994.

[42] Sasaki Y, Aoki K. Finding preimages in full MD5 faster than
exhaustive search. In Proc. the 28th Int. Conf. Theory and
Applications of Gryptolographic Techniques (EUROCRYPT),
Apr. 2009, pp.134-152.

[43] Sasaki Y, Aoki K. Preimage attacks on 3, 4, and 5-pass
HAVAL. In Proc. the 14th Int. Conf. Theory and Applica-
tion of Cryptology and Information Security (ASIACRYPT),
Dec. 2008, pp.253-271.

[44] Sasaki Y, Aoki K. Meet-in-the-middle preimage attacks on
double-branch hash functions: Application to RIPEMD and
others. In Proc. the 14th Australasian Conf. Information
Security and Privacy, Jul. 2009, pp.214-231.

[45] Wang G L, Wang S H. Preimage attack on Hash function
RIPEMD. In Proc. the 5th Int. Conf. Information Security
Practice and Experience, Apr. 2009, pp.274-284.

[46] Ohtahara C, Sasaki Y, Shimoyama T. Preimage attacks
on step-reduced RIPEMD-128 and RIPEMD-160. In Proc.
the 6th Int. Conf. Information Security and Cryptology
(INSCRYPT), Oct. 2010, pp.169-186.

[47] Aoki K, Sasaki Y. Meet-in-the-middle preimage attacks
against reduced SHA-0 and SHA-1. In Proc. the 29th Int.
Cryptology Conf. (CRYPTO), Aug. 2009, pp.70-89.

[48] Aoki K, Guo J, Matusiewicz K, Sasaki Y, Wang L. Preimages
for step reduced SHA-2. In Proc. the 15th Int. Conf. The-
ory and Application of Cryptology and Information Security
(ASIACRYPT), Dec. 2009, pp.578-597.

[49] Mendel F, Pramstaller N, Rechberger C. A (Second) preimage
attack on the GOST Hash function. In Proc. the 15th Int.
Conf. Fast Software Encryption, Feb. 2008, pp.224-234.

[50] Khovratovich D, Rechberger C, Savelieva A. Bicliques for
preimages: Attacks on Skein-512 and the SHA-2 family. In

Proc. the 19th Int. Conf. Fast Software Encryption, Mar.
2012, pp.244-263.

[51] Sasaki Y. Meet-in-the-middle preimage attacks on AES hash-
ing modes and an application to Whirlpool. In Proc. the
18thInt. Conf. Fast Software Encryption, Feb. 2011, pp.378-
396.

[52] Wu S, Feng D G, Wu W L, Guo J, Dong L, Zou J. (Pseudo)
preimage attack on reduced-round Grøstl hash function and
others. In Proc. the 19th Int. Conf. Fast Software Encryp-
tion, Mar. 2012, pp.127-145.

[53] Aoki K, Sasaki Y. Preimage attacks on one-block MD4, 63-
step MD5 and more. In Proc. the 15th Int. Workshop. Se-
lected Area in Cryptology, Aug. 2008, pp.103-119.

[54] Diffie W, Hellman M E. Exhaustive cryptanalysis of the NBS
data encryption standard. Computer, 1977, 10(6): 74-84.

[55] Li J, Isobe T, Shibutani K. Converting meet-in-the-middle
preimage attack into pseudo collision attack: Application to
SHA-2. In Proc. the 19th Int. Conf. Fast Software Encryp-
tion, Mar. 2012, pp.264-286.

[56] Wang L, Sasaki Y, Komatsubara W, Ohta K,
Sakiyama K. (Second) preimage attacks on step-reduced
RIPEMD/RIPEMD-128 with a new local-collision approach.
In Proc. the 11th Int. Conf. Topics in Cryptology, Feb.
2011, pp.197-212.

Gao-Li Wang is currently an
associate professor in School of
Computer Science and Technology,
Donghua University, Shanghai. She
got her B.S. degree in fundamental
mathematics in 2003, and Ph.D. de-
gree in cryptography in 2008, both
from Shandong University of China,
Jinan. Her research interests in-
clude cryptanalysis and design of

hash functions and block ciphers.


