# A Secure Scalar Product Protocol Against Malicious Adversaries 

Bo Yang ${ }^{1}$（杨 波），Yong Yu ${ }^{2}$（禹 勇），and Chung－Huang Yang ${ }^{3}$（杨中皇）<br>${ }^{1}$ School of Computer Science，Shaanxi Normal University，Xi＇an 710062，China<br>${ }^{2}$ School of Computer Science and Engineering，University of Electronic Science and Technology of China Chengdu 610054，China<br>${ }^{3}$ Graduate Institute of Information and Computer Education，National Kaohsiung Normal University，Taiwan，China<br>E－mail：byang＠snnu．edu．cn；yuyong＠uestc．edu．cn；chyang＠nknucc．nknu．edu．tw<br>Received October 11，2011；revised April 5， 2012.


#### Abstract

A secure scalar product protocol is a type of specific secure multi－party computation problem．Using this kind of protocol，two involved parties are able to jointly compute the scalar product of their private vectors，but no party will reveal any information about his／her private vector to another one．The secure scalar product protocol is of great importance in many privacy－preserving applications such as privacy－preserving data mining，privacy－preserving cooperative statistical analysis，and privacy－preserving geometry computation．In this paper，we give an efficient and secure scalar product protocol in the presence of malicious adversaries based on two important tools：the proof of knowledge of a discrete logarithm and the verifiable encryption．The security of the new protocol is proved under the standard simulation－based definitions．Compared with the existing schemes，our scheme offers higher efficiency because of avoiding inefficient cut－and－choose proofs．


Keywords secure multi－party computation，secure scalar product protocol，verifiable encryption

## 1 Introduction

A secure multi－party computation（SMC）is a type of protocol where two or more involved parties com－ pute a commonly agreed function，with the restriction that none of the participants can learn anything more than their own inputs and the public outputs．A secure scalar product protocol is a specific SMC problem，and its goal is that two parties jointly compute the scalar product of their private vectors and no party will reveal any information about his／her private vector to another party．As a building block，the secure scalar product protocol has found broad applications in many areas such as privacy－preserving data mining ${ }^{[1-3]}$ ，privacy－ preserving cooperative statistical analysis ${ }^{[4]}$ ，privacy－ preserving geometry computation ${ }^{[5-8]}$ ．

The secure scalar product protocol deals with the following problem：Let Alice has a private vector $\boldsymbol{X}=\left(x_{1}, \ldots, x_{N}\right)$ and Bob has another private vec－ tor $\boldsymbol{Y}=\left(y_{1}, \ldots, y_{N}\right)$ ．They compute corporately $u=\boldsymbol{X} \cdot \boldsymbol{Y}+v=\sum_{i=1}^{N} x_{i} y_{i}+v$ ，where $u$ is a uni－ formly distributed random number known by Alice and $v$ is a dependent uniformly distributed random number known by Bob．The purpose of Bob＇s random $v$ is to prevent Alice from knowing the final result of $\boldsymbol{X} \cdot \boldsymbol{Y}$ ，
and to ensure the fairness for Bob．
Many efforts to solving this problem have been done ［2－5，9－10］and Goethals et al．gave a state－of－the－art overview of the problem and the properties of some so－ lutions in［2］．

Goethals et al．${ }^{[2]}$ demonstrated that if a vector has a low support（the support of a vector is defined by the number of non－zero elements in this vector），an－ other party will learn half elements of this vector and further learn the whole vector with a high probability． Then they proposed a new secure scalar product pro－ tocol based on homomorphic encryption with plaintext space $Z_{m}$ for some large $m$ ．The protocol is secure in the semi－honest model，assuming that $\boldsymbol{X}, \boldsymbol{Y} \in Z_{\mu}^{N}$ ， in which $\mu=\lfloor\sqrt{m / N}\rfloor$ ．However，all of the proto－ cols mentioned above assume participants to be semi－ honest．

Artak ${ }^{[10]}$ gave a secure scalar product protocol based on homomorphic encryption and permutation on vec－ tors．However，the protocol only considers a special case $v=0$ ，in which the first party is able to get the final result of $u=\boldsymbol{X} \cdot \boldsymbol{Y}$ ，which is unfair for the second party．

All the other protocols in $[3-5,9]$ also consider par－ ticipants to be semi－honest．

[^0]Hazay ${ }^{[11]}$ presented an oblivious polynomial evaluation protocol (OPE) against malicious adversaries, where there are two parties, Alice and Bob, and Alice has a polynomial $p()$ and Bob has an input $x$. They would like to collaborate in a way for Bob to compute $p(x)$ such that Alice learns nothing about $x$ and Bob learns only $p(x)$ and nothing more. The author claimed the protocol can be modified to compute the secure scalar product functionality. However, the performance of the scheme is not satisfying since inefficient cut-and-choose proofs are employed. In this paper, we will give a secure scalar product protocol against malicious adversaries by incorporating proof of knowledge and the verifiable encryption, which is more efficient in performance.

## 2 Fundamental Concepts and Building Blocks

### 2.1 Concepts in Computational Complexity

Negligible Function. A function $\mu \mapsto(0,1)$ is called negligible if for every positive polynomial $p(x)$, and all sufficiently large $n$ 's, $\mu(n)<1 / p(n)$.

Probability Ensembles. A probability ensemble indexed by $S \subseteq\{0,1\}^{*}$ is a family $\left\{E_{w}\right\}_{w \in S}$, so that each $E_{w}$ is a random variable (or distribution) which ranges over (a subset of) $\{0,1\}^{\text {poly }(|w|)}$. Typically, we consider $S=\{0,1\}^{*}$ and $S=\left\{1^{n}: n\right.$ is a natural number $\}$.

Identically Distributed. We say that two ensembles, $E \stackrel{\text { def }}{=}\left\{E_{w}\right\}_{w \in S}$ and $F \stackrel{\text { def }}{=}\left\{F_{w}\right\}_{w \in S}$, are identically distributed, and write as $E \equiv F$, if for every $w \in S$ and every $\alpha$

$$
\begin{equation*}
\operatorname{Pr}\left(E_{w}=\alpha\right)=\operatorname{Pr}\left(F_{w}=\alpha\right) \tag{1}
\end{equation*}
$$

where $\operatorname{Pr}$ means probability.
Computationally Indistinguishable. Two ensembles, $E=\left\{E_{w}\right\}_{w \in S}$ and $F=\left\{F_{w}\right\}_{w \in S}$, are computationally indistinguishable, and denote as $X \xlongequal{\underline{C}} Y$, if for every non-uniform distinguisher $D$ there exists a negligible function $\mu(\cdot)$ such that for every $a \in\{0,1\}^{*}$,

$$
\begin{equation*}
\left|\operatorname{Pr}\left(D\left(E_{w}(a, n)\right)=1\right)-\operatorname{Pr}\left(D\left(F_{w}(a, n)\right)=1\right)\right|<\mu(n) \tag{2}
\end{equation*}
$$

### 2.2 Secure Computation

In this subsection we review the definition of the secure 2-party computation, which follows [12].

A 2-party protocol problem is cast by specifying a random process that maps pairs of inputs to pairs of outputs (one for each party). Let $f:\{0,1\}^{*} \times\{0,1\}^{*} \mapsto$ $\{0,1\}^{*} \times\{0,1\}^{*}, f=\left(f_{1}, f_{2}\right)$ be a functionality, where $f_{1}(x, y)$ (resp., $f_{2}(x, y)$ ) denotes the first (resp., second) element of $f(x, y)$, and $\Pi$ be a 2-party protocol in which the first party (with input $x$ ) wishes to obtain $f_{1}(x, y)$
and the second party (with input $y$ ) wishes to obtain $f_{2}(x, y)$.

In a 2-party protocol, all parties can be classified into two categories, semi-honest and malicious. Roughly speaking, a semi-honest party is one who follows the protocol properly with the exception that it keeps a record of all its intermediate computations and might derive the other parties' inputs from the record. A malicious adversary may arbitrarily deviate from the specified protocol. When considering malicious adversaries, there are certain undesirable actions that cannot be prevented. Specifically, a party may refuse to participate in the protocol, substitute its local input (and enter with a different input), or abort the protocol prematurely. The security of a protocol is analyzed by comparing what an adversary can do in the protocol with what it can do in an ideal scenario that is secure. This is formalized by considering an ideal computation involving an incorruptible trusted third party to whom the parties send their inputs. The trusted party computes the functionality on the inputs and returns each party its respective output. Concretely, an execution in the ideal model proceeds as follows:

- Inputs. Each party obtains an input, denoted by $u$.
- Sending inputs to trusted party. An honest party always sends $u$ to the trusted party. A malicious party may, depending on $u$ (as well as on an auxiliary input and its coin tosses), either abort or send some $u^{\prime} \in\{0,1\}^{|u|}$ to the trusted party.
- The trusted party answers the first party. After receiving an input pair $(x, y)$, the trusted party computes $\left(f_{1}(x, y), f_{2}(x, y)\right)$ and replies to the first party with $f_{1}(x, y)$. Otherwise, if it receives only one input, it replies to both parties with a special symbol, denoted by $\perp$.
- The trusted party answers the second party. If the first party is malicious, it may, depending on its input and the trusted party's answer, decide to stop the trusted party. In this case the trusted party sends $\perp$ to the second party. Otherwise, the trusted party sends $f_{2}(x, y)$ to the second party.
- Output. The honest party always outputs the message it has obtained from the trusted party. The malicious party may output an arbitrary (polynomial-time computable) function of its initial input and the message it has obtained from the trusted party.

A real model is a real (2-party) protocol, where there exits no trusted third party, and the malicious party may follow an arbitrary feasible strategy. In particular, the malicious party may abort the execution at any point in time, and when this happens prematurely, the other party is left with no output.

Having defined the ideal and real models, we can now define the security of the protocol. Loosely speaking, the definition asserts that a secure 2-party protocol (in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying that admissible pairs in the ideal model are able to simulate admissible pairs in an execution of a secure real-model protocol.

Formally, let $f=\left(f_{1}, f_{2}\right)$ be a probabilistic polynomial-time functionality and $\Pi$ be a 2 -party protocol for computing $f . \bar{A}=\left(A_{1}, A_{2}\right)$ be two parties in the real model (represented as non-uniform probabilistic expected polynomial-time machines). Such a pair is admissible if for at least one $i \in\{1,2\}, A_{i}$ is honest (i.e., follows the strategy specified by $\Pi$ ). Then, the joint execution of $\Pi$ under $\bar{A}$ in the real model (on input pair $(x, y))$, denoted by $R E A L_{\Pi, \bar{A}}$, is defined as the output pair of $A_{1}$ and $A_{2}$ resulting from the protocol interaction. Again, let $\bar{B}=\left(B_{1}, B_{2}\right)$ be two parties in the ideal model (represented as non-uniform probabilistic expected polynomial-time machines), which is also admissible. Then, the joint execution of $\Pi$ under $\bar{B}$ in the ideal model (on input pair $(x, y)$ ), denoted by $\operatorname{IDEA} L_{f, \bar{B}}$, is defined as the output pair of $B_{1}$ and $B_{2}$ from the ideal execution.

Definition 1 (Security in the Malicious Model). Let $f$ and $\Pi$ be as above. Protocol $\Pi$ is said to securely compute $f$ (in the malicious model) if for every pair of admissible non-uniform probabilistic expected polynomialtime machines $\bar{A}=\left(A_{1}, A_{2}\right)$ for the real model, there exists a pair of admissible non-uniform probabilistic expected polynomial time machines $\bar{B}=\left(B_{1}, B_{2}\right)$ for the ideal model, such that

$$
\begin{aligned}
& \left\{\operatorname{IDEA} L_{f, \bar{B}}(x, y)\right\}_{x, y \text { s.t. }|x|=|y|} \stackrel{C}{\equiv} \\
& \left\{R E A L_{\Pi, \bar{A}}(x, y)\right\}_{x, y \text { s.t. }|x|=|y|} .
\end{aligned}
$$

### 2.3 Building Blocks

In order to obtain the security against malicious adversaries, participants are required to prove the correctness of each protocol step. We use $\operatorname{Po} K\{a \mid \Phi(a)\}$ to denote a zero-knowledge proof of value $a$ that satisfies a publicly computable relation $\Phi$. We will make use of the following proof system.

Proof of Knowledge of a Discrete Logarithm. Let two participants, Alice and Bob, know $g$ and $y$, but only Alice has the knowledge of $x$ such that $y=g^{x}$. This relation is denoted by

$$
\mathcal{R}_{\mathrm{DH}}=\left\{(g, y,(x)) \mid y=g^{x}\right\}
$$

The zero-knowledge proof of knowledge for $\mathcal{R}_{\mathrm{DH}}$, denoted by $\pi_{\mathrm{DH}}$, is given in [13].

Verifiable Encryption. A verifiable encryption ${ }^{[14]}$ is a protocol that allows a prover to convince a verifier that a ciphertext encrypts a plaintext satisfying a certain binary relation $\mathcal{R}=M \times \Delta$.

For $\delta \in \Delta$, an element $m \in M$ such that $(m, \delta) \in \mathcal{R}$ is called a witness for $\delta$. In the scheme, the encryptor is given a value $\delta$, a witness $m$ for $\delta$, and then encrypts $m$ to yield a ciphertext $\psi$ and proves to another party that $\psi$ can be decrypted to a witness for $\delta$.

The discrete logarithm relation $\mathcal{R}$ is defined as follows.

Definition 2. Let $\Gamma$ be a cyclic group of order $\rho$ generated by $\gamma$, assume that $\gamma$ and $\rho$ are publicly known, and that $\rho$ is prime. Let $M=[\rho], \Delta=\Gamma$. The discrete logarithm relation is $\mathcal{R}=\left\{(m, \delta) \in M \times \Delta: \gamma^{m}=\delta\right\}$.

The proof of a discrete logarithm relation means, given $\gamma, \delta$ and a ciphertext $\psi$, the encryptor is able to prove to the decryptor that $\psi$ is an encryption $\log _{\gamma} \delta$ under some public key $p k$.

In [14], a practical verifiable encryption protocol for discrete logarithms in conjunction with an encryption algorithm, depicted in the following, is given.

Encryption Algorithm.

- Setup. Let $n=p q$ be the RSA-modulo with $p=2 p^{\prime}+1, q=2 q^{\prime}+1$, where $p, q, p^{\prime}, q^{\prime}$ are primes. Choose $g^{\prime} \in_{R} Z_{n^{2}}^{*}$, compute $g=\left(g^{\prime}\right)^{2 n} \quad\left(\bmod n^{2}\right)$, and publish $(n, g)$ as system parameters.
- Key Generation. Choose a random $x \in_{R}\left[n^{2} / 4\right]$ as the secret key, and compute $y=g^{x}\left(\bmod n^{2}\right)$ as the public key, where $[a]$ denotes the set $\{0, \ldots,\lfloor a-1\rfloor\}$ for real number $a$.
- Encryption. For $m \in[n]$, choose a random $r \in_{R}[n / 4]$ and compute

$$
u=g^{r} \quad\left(\bmod n^{2}\right), \quad e=y^{r} h^{m} \quad\left(\bmod n^{2}\right)
$$

where $h=(1+n) \quad\left(\bmod n^{2}\right) \in Z_{n^{2}}^{*}$.
The ciphertext is $(u, e)$.

- Decryption. For a ciphertext $c=(u, e) \in Z_{n^{2}}^{*} \times$ $Z_{n^{2}}^{*}$, let $t=2^{-1} \quad(\bmod n)$, and compute $\widehat{m}=\left(e / u^{x}\right)^{2 t}$. If $\widehat{m}$ is of the form $h^{m}$ for some $m \in[n]$, then output $m$; otherwise, output reject.

The algorithm is semantic secure under the Composite Residuesity Assumption ${ }^{[15]}$ on $Z_{n^{2}}^{*}$.

In the following, we will denote the encryption process by $E_{p k}(m)$, or $E_{p k}(m ; r)$ when no misunderstanding is possible, and the decryption process by $D_{s k}(c)$.

The scheme is additive homomorphic since

$$
\begin{aligned}
E_{p k}\left(m_{1} ; r_{1}\right) \odot E_{p k}\left(m_{2} ; r_{2}\right) & =\left(g^{r_{1}}, y^{r_{1}} h^{m_{1}}\right) \odot\left(g^{r_{2}}, y^{r_{2}} h^{m_{2}}\right) \\
& =\left(g^{r_{1}+r_{2}}, y^{r_{1}+r_{2}} h^{m_{1}+m_{2}}\right) \\
& =E_{p k}\left(m_{1}+m_{2} ; r_{1}+r_{2}\right) .
\end{aligned}
$$

The verifiable encryption scheme was used in the
construction of an oblivious pseudorandom function in [16]. In the following, we will use it to construct a secure scalar product protocol. For notational simplicity, we will denote the protocol of a verifiable encryption non-interactively by

$$
\operatorname{PoK}\left\{m \mid \psi \in E n c_{p k}(m) \wedge \delta=\gamma^{m}\right\}
$$

where $E n c_{p k}$ means an encrypton algorithm.

## 3 Secure Scalar Product Protocol

In the following, we build a secure scalar product protocol against malicious adversaries based on the solution in [2], where $\gamma$ is the public base in the discrete logarithm relation.

### 3.1 Scheme Description

Protocol 1 ( $\pi_{s p}$-Secure Scalar Product Protocol).
Inputs. $A_{1}$ has a private vector $\boldsymbol{X}=\left(x_{1}, \ldots, x_{N}\right)$ and $A_{2}$ has another private vector $\boldsymbol{Y}=\left(y_{1}, \ldots, y_{N}\right)$, $x_{i}, y_{i} \in[n]$ for $i=1, \ldots, N$.

Outputs. $A_{1}$ gets $u$, and $A_{2}$ gets $v$, satisfying $u, v \in[n]$ and $u=\sum_{i=1}^{N} x_{i} y_{i}+v$.

1) Key generation: $A_{1}$ chooses a random $s k \in_{R}$ [ $\left.n^{2} / 4\right]$ as the secret key, and computes $p k=g^{s k}$ as the public key. $A_{1}$ sends $p k$ to $A_{2}$, and engages in a zeroknowledge proof of knowledge $\pi_{\mathrm{DH}}$ with $A_{2}$, in which $A_{1}$ proves that $(g, p k,(s k)) \in \mathcal{R}_{\mathrm{DH}}$. This step is denoted by $(p k, s k) \leftarrow{ }_{R}$ KGen.
2) $A_{1}$ computes $\left(c_{i}, \delta_{i}^{\left(A_{1}\right)}\right)=\left(E_{p k}\left(x_{i}\right), \gamma^{x_{i}}\right), \pi_{i}^{\left(A_{1}\right)}=$ $\operatorname{PoK}\left\{x_{i} \mid c_{i}=E_{p k}\left(x_{i}\right) \wedge \delta_{i}^{\left(A_{1}\right)}=\gamma^{x_{i}}\right\}$, and sends $\left\{\left(c_{i}, \delta_{i}^{\left(A_{1}\right)}\right), \pi_{i}^{A_{1}}\right\}(i=1, \ldots, N)$ to $A_{2}$.
3) $A_{2}$ verifies $\pi_{i}^{\left(A_{1}\right)}(i=1, \ldots, N)$. If there exists an $i \in\{1, \ldots, N\}$ such that the verification of $\pi_{i}^{\left(A_{1}\right)}$ fails, $A_{2}$ aborts with output $\perp$. Otherwise, $A_{2}$ chooses $v_{i} \in[n]$ and computes $\left(C_{i}, \delta_{i}^{\left(A_{2}\right)}\right)=$ $\left(c_{i}^{y_{i}} E_{p k}\left(v_{i}\right), \gamma^{v_{i}}\left(\delta_{i}^{\left(A_{1}\right)}\right)^{y_{i}}\right), \pi_{i}^{\left(A_{2}\right)}=\operatorname{PoK}\left\{y_{i} \mid c_{i}^{y_{i}} E_{p k}\left(v_{i}\right) \wedge\right.$ $\left.\gamma^{v_{i}}\left(\delta_{i}^{\left(A_{1}\right)}\right)^{y_{i}}\right\}$, and sends $\left\{\left(C_{i}, \delta_{i}^{\left(A_{2}\right)}\right), \pi_{i}^{A_{2}}\right\} \quad(i=$ $1, \ldots, N)$ to $A_{1}$.
4) $A_{1}$ verifies $\pi_{i}^{\left(A_{2}\right)}(i=1, \ldots, N)$. If there exists an $i \in\{1, \ldots, N\}$ such that the verification of $\pi_{i}^{\left(A_{2}\right)}$ fails, $A_{1}$ aborts with output $\perp$. Otherwise, $A_{1}$ computes $u=D_{s k}\left(\prod_{i=1}^{N} C_{i}\right)$.
5) $A_{1}$ outputs $u$, and $A_{2}$ outputs $v=\sum_{i=1}^{N} v_{i}$.

In step 3 ,

$$
\begin{aligned}
\left(C_{i}, \delta_{i}^{\left(A_{2}\right)}\right) & =\left(c_{i}^{y_{i}} E_{p k}\left(v_{i}\right), \gamma^{v_{i}}\left(\delta_{i}^{\left(A_{1}\right)}\right)^{y_{i}}\right) \\
& =\left(E_{p k}\left(x_{i} y_{i}+v_{i}\right), \gamma^{x_{i} y_{i}+v_{i}}\right)
\end{aligned}
$$

It is straightforward to verify that

$$
u=\sum_{i=1}^{N} x_{i} y_{i}+v
$$

### 3.2 Security

Theorem 1. In the protocol $\pi_{s p}$, assume that the encryption scheme is additively homomorphic semantically secure, and each proof system is zero-knowledge and simulation-sound, the protocol $\pi_{s p}$ securely computes the scalar product functionality, denoted by $\mathcal{F}_{s p}$, in the presence of malicious adversaries.

Proof. To prove the theorem, we need to construct parties $\bar{B}=\left(B_{1}, B_{2}\right)$ in the ideal model from parties $\bar{A}=\left(A_{1}, A_{2}\right)$ in the real-model such that

$$
\begin{equation*}
\left\{\operatorname{IDEAL}_{\mathcal{F}_{s p}, \bar{B}}(x, y)\right\} \stackrel{C}{\equiv}\left\{\operatorname{REAL}_{\pi_{s p}, \bar{A}}(x, y)\right\} \tag{3}
\end{equation*}
$$

We will consider the case that $A_{1}$ is malicious and the case that $A_{2}$ is malicious separately.

In the case that $A_{1}$ is malicious, because $A_{2}$ is honest, $B_{2}$ is taken as the same with $A_{2}$. We need to construct $B_{1}$ from a malicious real model $A_{1}$. The construction is made by having $B_{1}$ emulate an execution of $A_{1}$, while playing $A_{2}$ 's role. $B_{1}$ does this when interacting with the trusted third party, denoted by $\mathcal{F}_{s p}$, and its aim is to obtain an execution with $A_{1}$ that is consistent with the output received from $\mathcal{F}_{s p} . B_{1}$ works as follows.

1) $B_{1}$ receives from $A_{1}$ a public key $p k$ and plays the verifier in $\pi_{\mathrm{DH}}$ with $A_{1}$ as the prover. If it does not accept the proof, it sends $\perp$ to the trusted third party and outputs whatever $A_{1}$ outputs. If it accepts the proof, then it runs the knowledge extractor for $\pi_{\mathrm{DH}}$ in order to obtain the witness $s k$ used by $A_{1}$. If $B_{1}$ does not succeed in extracting, it outputs fail.
2) $B_{1}$ receives $\left(c_{i}, \delta_{i}^{\left(A_{1}\right)}, \pi_{i}^{\left(A_{1}\right)}\right)$ from $A_{1}$, and verifies $\pi_{i}^{\left(A_{1}\right)}(i=1, \ldots, N)$. If there exists an $i \in\{1, \ldots, N\}$ such that the verification of $\pi_{i}^{\left(A_{1}\right)}$ fails, $B_{1}$ aborts with output $\perp$. Otherwise, it decrypts $c_{i}(i=1, \ldots, N)$ to obtain $x_{1}, \ldots, x_{N}$.
3) $B_{1}$ picks $y_{1}^{\prime \prime}, \ldots, y_{N}^{\prime \prime}, v_{1}^{\prime \prime}, \ldots, v_{N}^{\prime \prime} \in_{R} \quad[n]$, sends $\left(\overline{C_{i}}=E_{p k}\left(y_{i}^{\prime \prime}\right), \bar{\delta}_{i}^{\left(B_{1}\right)}=\gamma^{v_{i}^{\prime \prime}}\right)$ to $A_{1}$, and simulates the proof $\pi_{i}^{\left(A_{2}\right)}(i=1, \ldots, N)$.
4) If all $\pi_{i}^{\left(A_{2}\right)}(i=1, \ldots, N)$ pass the verification, $B_{1}$ sends $x_{1}, \ldots, x_{N}$ to $\mathcal{F}_{s p} . \mathcal{F}_{s p}$ receives $y_{1}, \ldots, y_{N}$ and $v$ from the the ideal model $B_{2}$, computes $u=$ $\sum_{i=1}^{N} x_{i} y_{i}+v$, and sends $u$ to $A_{1}$.
5) $B_{1}$ outputs whatever $A_{1}$ does.

We need to show that (3) can be satisfied.
This can be proven by constructing a series of games $G a m e_{l}$, in which $B_{1}^{(l)}$ is a simulator constructed in the $l$-th hybrid game, $H_{B_{1}^{(l)}(z), B_{2}}(x, y)$ is the joint output distribution of $B_{1}^{(l)}$ and $B_{2}, z$ is the auxiliary input of $B_{1}^{(l)}$, the last game $G a m e_{4}$ runs the protocol among $B_{1}$, $B_{2}$ and $\mathcal{F}_{s p}$.

Game $_{1}$. In the first game, we define a simulator $B_{1}^{(1)}$ who works exactly like $A_{2}$ in the protocol $\pi_{s p}$ except that instead of acting as the verifier in the proof of $\pi_{\mathrm{DH}}$ in step $1, B_{1}^{(1)}$ runs the extractor algorithm for $\mathcal{R}_{\mathrm{DH}}$ with $A_{1}$ to extract $s k$. $B_{1}^{(1)}$ outputs $A_{1}$ 's output.

We have $\left\{H_{B_{1}^{(1)}(z), B_{2}}(x, y)\right\} \equiv\left\{\operatorname{REAL}_{\pi_{s p}, \bar{A}}(x, y)\right\}$.
$G_{a m e}^{2}$. In this game, we define a simulator $B_{1}^{(2)}$ who works exactly like $B_{1}^{(1)}$ in $G a m e_{1}$ except that instead of acting as the verifier in the proof of $\pi_{i}^{\left(A_{1}\right)}$ in step $2, B_{1}^{(2)}$ decrypts $c_{i}$ to obtain $x_{i}(i=1, \ldots, N)$. $B_{1}^{(2)}$ outputs $B_{1}^{(1)}$ 's output.

We have $\left\{H_{B_{1}^{(2)}(z), B_{2}}(x, y)\right\} \equiv\left\{H_{B_{1}^{(1)}(z), B_{2}}(x, y)\right\}$.
Game $_{3}$. In this game, we define a simulator $B_{1}^{(3)}$ who works exactly like $B_{1}^{(2)}$ in $G a m e_{2}$ except that in step $3, B_{1}^{(3)}$ picks $y_{1}^{\prime}, \ldots, y_{N}^{\prime}, v_{1}^{\prime}, \ldots, v_{N}^{\prime} \in_{R}$ $[n]$, computes $\left(\overline{C_{i}}, \bar{\delta}_{i}^{\left(B_{1}\right)}\right)=\left(c_{i}^{y_{i}^{\prime}} E_{p k}\left(v_{i}^{\prime}\right), \gamma^{v_{i}^{\prime}}\left(\delta_{i}^{\left(A_{1}\right)}\right)^{y_{i}^{\prime}}\right)$, $\bar{\pi}^{\left(A_{2}\right)}=\operatorname{PoK}\left\{y_{i}^{\prime} \mid c_{i}^{y_{i}^{\prime}} E_{p k}\left(v_{i}^{\prime}\right) \wedge \gamma^{v_{i}^{\prime}}\left(\delta_{i}^{\left(A_{1}\right)}\right)^{y_{i}^{\prime}}\right\}$, and sends $\left(\left(\overline{C_{i}}, \bar{\delta}_{i}^{\left(B_{1}\right)}\right), \bar{\pi}^{\left(A_{2}\right)}\right)$ to $A_{1}$.

By the indistinguishability of encryption, we have

$$
\left\{H_{B_{1}^{(3)}(z), B_{2}}(x, y)\right\} \stackrel{C}{=}\left\{H_{B_{1}^{(2)}(z), B_{2}}(x, y)\right\} .
$$

$G a m e_{4}$ : In this game, we define a simulator $B_{1}^{(4)}$ who works exactly like $B_{1}^{(3)}$ in $G a m e_{3}$ except that instead of proving $\bar{\pi}^{\left(A_{2}\right)}, B_{1}^{(4)}$ simulates the proof $\bar{\pi}_{i}^{\left(A_{2}\right)}$.

By zero-knowledge of $\pi_{i}^{\left(A_{2}\right)}(i=1, \ldots, N)$, we have

$$
\left\{H_{B_{1}^{(4)}(z), B_{2}}(x, y)\right\} \stackrel{C}{\equiv}\left\{H_{B_{1}^{(3)}(z), B_{2}}(x, y)\right\}
$$

Game $_{5}$ : In this game, we define a simulator $B_{1}^{(5)}$ who works exactly like $B_{1}^{(4)}$ in $G a m e_{4}$ except that instead of computing $\left(\overline{C_{i}}, \bar{\delta}_{i}^{\left(B_{1}\right)}\right), B_{1}^{(5)}$ picks $y_{1}^{\prime \prime}, \ldots, y_{N}^{\prime \prime}, v_{1}^{\prime \prime}, \ldots, v_{N}^{\prime \prime} \in_{R} \quad[n]$, sends $\left(\overline{C_{i}}=\right.$ $\left.E_{p k}\left(y_{i}^{\prime \prime}\right), \bar{\delta}_{i}^{\left(B_{1}\right)}=\gamma^{v_{i}^{\prime \prime}}\right)$ to $A_{1}$, and simulates the proof $\bar{\pi}_{i}{ }^{\left(A_{2}\right)}(i=1, \ldots, N)$.

By the indistinguishability of encryption, we have

$$
\left\{H_{B_{1}^{(5)}(z), B_{2}}(x, y)\right\} \stackrel{C}{=}\left\{H_{B_{1}^{(4)}(z), B_{2}}(x, y)\right\}
$$

Game $_{6}$. Game $_{6}$ is the ideal model game among $B_{1}$ (with access to $A_{1}$ ), $\mathcal{F}_{s p}$ and $B_{2}$. Instead of computing $u=D_{s k}\left(\prod_{i=1}^{N} C_{i}\right)$ by $A_{1}$ as the last step of Game $_{5}, B_{1}$ sends $\left(x_{1}, \ldots, x_{N}\right)$ to $\mathcal{F}_{s p} . \mathcal{F}_{s p}$ computes $u=\sum_{i=1}^{N} x_{i} y_{i}+\sum_{i=1}^{N} v_{i}$ on $\left(x_{1}, \ldots, x_{N}\right)$ given by $B_{1}$ and $\left(y_{1}, \ldots, y_{N}, v_{1}, \ldots, v_{N}\right)$ given by $B_{2}$, and sends $u$ to $A_{1}$.

It is obvious that

$$
\left\{\operatorname{IDEAL}_{\mathcal{F}_{s p}, \bar{B}}(x, y)\right\} \equiv\left\{H_{B_{1}^{(5)}(z), B_{2}}(x, y)\right\}
$$

From Game $_{1}$ to Game $_{6}$, two joint output distributions $\left\{H_{B_{1}^{(l-1)}(z), B_{2}}(x, y)\right\}$ and $\left\{H_{B_{1}^{(l)}(z), B_{2}}(x, y)\right\}, l=$ $2, \ldots, 6$, are either identical or computationally indistinguishable. So we have

$$
\left\{\operatorname{IDEAL}_{\mathcal{F}_{s p}, \bar{B}}(x, y)\right\} \stackrel{C}{\equiv}\left\{\operatorname{REAL}_{\pi_{s p}, \bar{A}}(x, y)\right\}
$$

In the case that $A_{2}$ is malicious, because $A_{1}$ is honest, $B_{1}$ is viewed as the same with $A_{1}$. We need to construct $B_{2}$ from a malicious real model $A_{2}$. The construction is made by having $B_{2}$ emulate an execution of $A_{2}$, while playing $A_{1}$ 's role. $B_{2}$ works as follows.

1) $B_{2}$ runs $\left(p k^{\prime}, s k^{\prime}\right) \leftarrow_{R}$ KGen, sends $p k^{\prime}$ to $A_{2}$, and simulates the proof $\pi_{\mathrm{DH}}$.
2) $B_{2}$ picks $x_{i}^{\prime} \quad \in_{R} \quad[n]$, sets $\left(\bar{c}_{i}, \bar{\delta}_{i}^{\left(A_{1}\right)}\right)=$ $\left(E_{p k^{\prime}}\left(x_{i}^{\prime}\right), \gamma^{x_{i}^{\prime}}\right)$, sends $\left(\bar{c}_{i}, \bar{\delta}_{i}^{\left(A_{1}\right)}\right)$ to $A_{2}$ and simulates the proof $\pi_{i}^{\left(A_{1}\right)}$ for $i=1, \ldots, N$.
3) If all proofs $\pi_{i}^{\left(A_{1}\right)}$ pass the verification, $A_{2}$ sends $\left\{\left(C_{i}, \delta_{i}^{\left(A_{2}\right)}\right), \pi_{i}^{\left(A_{2}\right)}\right\}(i=1, \ldots, N)$ to $B_{2}$.
4) $B_{2}$ verifies $\pi_{i}^{\left(A_{2}\right)}(i=1, \ldots, N)$. If there exists an $i \in\{1, \ldots, N\}$ such that the verification of $\pi_{i}^{\left(A_{2}\right)}$ fails, $B_{2}$ aborts with output $\perp$. Otherwise, $B_{2}$ extracts $y_{1}, \ldots, y_{N}, v_{1}, \ldots, v_{N}$, and sends them to $\mathcal{F}_{s p}$.
5) $\mathcal{F}_{s p}$ computes $u=\sum_{i=1}^{N} x_{i} y_{i}+\sum_{i=1}^{N} v_{i}$ on $B_{2}$ 's input and $B_{1}$ 's input $x_{1}, \ldots, x_{N}$, and outputs $u$ to $B_{1}$.
6) $B_{2}$ outputs whatever $A_{2}$ does.

Below, we show that

$$
\left\{\operatorname{IDEAL}_{\mathcal{F}_{s p}, \bar{B}}(x, y)\right\} \stackrel{C}{=}\left\{\operatorname{REAL}_{\pi_{s p}, \bar{A}}(x, y)\right\}
$$

Similarly, we construct a series of games where $B_{2}^{(l)}$ is a simulator constructed in the $l$-th hybrid game, $H_{B_{1}, B_{2}^{(l)}(z)}(x, y)$ is the joint output distribution of $B_{1}$ and $B_{2}^{(l)}$, and $z$ is the auxiliary input of $B_{2}^{(l)}$.
$G a m e_{1}$. In the first game, we define a simulator $B_{2}^{(1)}$ who works exactly like $A_{1}$ in the protocol $\pi_{s p}$ except that instead of acting as the real prover in the proof of $\pi_{\mathrm{DH}}$ in step $1, B_{2}^{(1)}$ picks $\left(p k^{\prime}, s k^{\prime}\right) \leftarrow_{R}$ KGen, sends $p k^{\prime}$ to $A_{2}$, and simulates the proof $\pi_{\mathrm{DH}} . B_{2}^{(1)}$ outputs $A_{1}$ 's output.

We have $\left\{H_{B_{1}, B_{2}^{(1)}(z)}(x, y)\right\} \equiv\left\{\operatorname{REAL}_{\pi_{s p}, \bar{A}}(x, y)\right\}$.
$G a m e_{2}$. In this game, we define a simulator $B_{2}^{(2)}$ who works exactly like $B_{2}^{(1)}$ in $G a m e_{1}$ except that instead of acting as the real prover in the proof of $\pi_{i}^{\left(A_{1}\right)}(i=1, \ldots, N)$ in step $2, B_{2}^{(2)}$ picks $x_{i}^{\prime} \in_{R}$ $[n]$, computes $\left(\bar{c}_{i}, \bar{\delta}_{i}^{\left(B_{2}^{(2)}\right)}\right)=\left(E_{p k^{\prime}}\left(x_{i}^{\prime}\right), \gamma^{x_{i}^{\prime}}\right), \bar{\pi}_{i}^{\left(B_{2}^{(2)}\right)}=$ $\operatorname{PoK}\left\{x_{i}^{\prime} \mid \overline{c_{i}}=E_{p k}\left(x_{i}^{\prime}\right) \wedge \bar{\delta}_{i}^{\left(B_{2}^{(2)}\right)}=\gamma^{x_{i}^{\prime}}\right\}$, and sends $\left\{\left(\overline{c_{i}}, \bar{\delta}_{i}^{\left(B_{2}^{(2)}\right)}\right), \bar{\pi}_{i}^{\left(B_{2}^{(2)}\right)}\right\}(i=1, \ldots, N)$ to $A_{2} . B_{2}^{(2)}$ outputs $B_{2}^{(1)}$ 's output.

By the indistinguishability of encryption, we have

$$
\left\{H_{B_{1}, B_{2}^{(2)}(z)}(x, y)\right\} \stackrel{C}{=}\left\{H_{B_{1}, B_{2}^{(1)}(z)}(x, y)\right\}
$$

$G a m e_{3}$. In this game, we define a simulator $B_{2}^{(3)}$ who works exactly like $B_{2}^{(2)}$ in $G a m e_{2}$ except that instead of proving $\bar{\pi}_{i}^{\left(B_{2}^{(2)}\right)}$, it simulates the proof $\bar{\pi}_{i}^{\left(B_{2}^{(2)}\right)}$ for $i=1, \ldots, N$.

By zero-knowledge of $\bar{\pi}_{i}^{\left(B_{2}^{(2)}\right)}$ for $i=1, \ldots, N$, we have $\left\{H_{B_{1}, B_{2}^{(3)}(z)}(x, y)\right\} \stackrel{C}{=}\left\{H_{B_{1}, B_{2}^{(2)}(z)}(x, y)\right\}$.

Game $_{4}$ : In this game, we define a simulator $B_{2}^{(4)}$ who works exactly like $B_{2}^{(3)}$ in $G a m e_{3}$ except that instead of playing the verifier in the proof of $\pi_{i}^{\left(A_{2}\right)}$, in step 4 , after receiving $\left\{\left(C_{i}, \delta_{i}^{\left(A_{2}\right)}\right), \pi_{i}^{\left(A_{2}\right)}\right\}(i=1, \ldots, N), B_{2}^{(4)}$ extracts $y_{1}, \ldots, y_{N}, v_{1}, \ldots, v_{N}$, and sends them to $\mathcal{F}_{s p}$. $\mathcal{F}_{s p}$ computes $u=\sum_{i=1}^{N} x_{i} y_{i}+\sum_{i=1}^{N} v_{i}$ on $x_{1}, \ldots, x_{N}$ given by $B_{1}$, and $y_{1}, \ldots, y_{N}, v_{1}, \ldots, v_{N}$ given by $B_{2}^{(4)}$, and sends $u$ to $B_{1}$. In this game, $B_{2}^{(4)}$ works exactly like $B$ in ideal model.

It is obvious that

$$
\left\{H_{B_{1}, B_{2}^{(4)}(z)}(x, y)\right\} \equiv\left\{H_{B_{1}, B_{2}^{(3)}(z)}(x, y)\right\}
$$

So, in this case, also we have

$$
\left\{\operatorname{IDEAL}_{\mathcal{F}_{s p}, \bar{B}}(x, y)\right\} \stackrel{C}{=}\left\{\operatorname{REAL}_{\pi_{s p}, \bar{A}}(x, y)\right\}
$$

### 3.3 Resource Analysis

Computational Cost. In the verifiable encryption protocol, the modulo $n$ in the encryption algorithm can be set $|n|=1024$ bits, the order $\rho$ of the cyclic group $\Gamma$ can be taken smaller than $n$. In the encryption algorithm, the encryptor and the decryptor require $3 \log N$ modular multiplications $\left(\bmod n^{2}\right)$, respectively, where $N$ is the dimension of vectors. In the proof of the binary relation $(m, \delta) \in \mathcal{R}$, the prover and the verifier require $3 \log \rho$ modular multiplications $\left(\bmod \rho^{2}\right)$, respectively. In the proof of $\pi_{\mathrm{DH}}$, the prover requires $\log n$ modular multiplications $(\bmod n)$, the verifier requires $2 \log n$ modular multiplications $(\bmod n)$. Therefore, in our protocol, two participants' computational costs, measured in the number of modular multiplications, are $6 N \log n\left(\bmod n^{2}\right)+$ $6 N \log \rho\left(\bmod \rho^{2}\right)+\log n \quad(\bmod n)$ and $6 N \log n$
$\left(\bmod n^{2}\right)+6 N \log \rho \quad\left(\bmod \rho^{2}\right)+2 \log n \quad(\bmod n)$, respectively.

Communication Cost. In the encryption algorithm, $4 \log n$ bits are exchanged, while in the proof of the binary relation $(m, \delta) \in \mathcal{R}, 4 \log \rho$ bits are exchanged. In the proof of $\pi_{\mathrm{DH}}, 2 \log n$ bits are exchanged, therefore, the communication cost is $8 N \log n+8 N \log \rho+2 \log n$ bits.

In [2], the protocol, where the proof of knowledge and the verifiable encryption are not employed, was given in the semi-honest model, and cannot prevent the involved participants' malicious actions. Two participants' computational costs are both $6 N \log n$ $\left(\bmod n^{2}\right)$. The communication cost is $8 N \log n$.

Similarly, in [10], the proof of knowledge and the verifiable encryption is not employed. The protocol was given in the semi-honest model, and cannot avoid the malicious actions of the involved participants. Furthermore, the protocol considers a special case $v=0$, in which the first party can get the final result $u=\boldsymbol{X} \cdot \boldsymbol{Y}$, thus, it is unfair for the second party.

The computational costs of two participants are $6 N \log n\left(\bmod n^{2}\right)+2 N(\bmod n)$ and $3 N \log n$ $\left(\bmod n^{2}\right)+2 N \quad(\bmod n)$, respectively. The communication cost is $8 N \log n+2$.

In [11], inefficient cut-and-choose proofs are used to prove that $A_{1}$ behaves correctly. $A_{2}$ sends a commitment to a challenge $\tau=\tau_{1} \ldots \tau_{s}$, where $s$ is the statistical security parameter. $A_{1}$ then chooses $s$ random polynomials $\left\{q_{1}, \ldots, q_{s}\right\}$ of degree $N$ and sends all encryption of coefficients of $q_{i}$ and $p-q_{i}(i=1, \ldots, s)$ for checking $A_{1}$. So the cost (including computational cost and communication cost) is at least $2 s$ times of that of ours.

We define $A=3 N \log n\left(\bmod n^{2}\right), B=6 N \log \rho$ $\left(\bmod \rho^{2}\right), C=\log n \quad(\bmod n)$ and $D=2 N \quad(\bmod n)$, the numbers of modular multiplications are $\left(\left(\bmod n^{2}\right)\right.$, $\left(\bmod \rho^{2}\right), \quad(\bmod n)$ and $\left.(\bmod n)\right)$, respectively, and the numbers of bits exchanged between the involved participants are $E=8 N \log n, F=8 N \log \rho$, $G=2 \log n$, respectively, and obtain the comparisons of our protocol with those in [2, 10] and in [11] about the computational costs (Comp.) and the communication costs (Comm.) in Table 1.

The first column is the names of the three protocols, the second column is the model of the involved participants, and the third and the fourth columns are

Table 1. Comparison of Four Protocols

| Protocol | Model | Comp. of $A_{1}$ | Comp. of $A_{2}$ | Comm. |
| :--- | :--- | :--- | :--- | :--- |
| Ours | Malicious | $2 A+B+C$ | $2 A+B+2 C$ | $E+F+G$ |
| $[2]$ | Semi-honest | $2 A$ | $2 A$ | $E$ |
| $[10]$ | Semi-honest | $2 A+D$ | $A+D$ | $E+2$ |
| $[11]$ | Malicious | $2 s(2 A+B+C)$ | $2 s(2 A+B+2 C)$ | $2 s(E+F+G)$ |

the computational costs of the first party $A_{1}$ and the second party $A_{2}$ respectively, and the last column is the communication cost.

## 4 Conclusions

Based on two building blocks, namely the proof of knowledge of a discrete logarithm and the verifiable encryption, we have given a scalar product protocol in the presence of malicious adversaries. Under the standard simulation-based definitions, the protocol is proven secure. Compared with the existing schemes, our scheme offers higher efficiency because of avoiding inefficient cut-and-choose proofs.

## References

[1] Tran D H, Ng W K, Lim H W et al. An efficient cacheable secure scalar product protocol for privacy-preserving data mining. In Proc. the 13th Int. Conf. Data Warehousing and Knowledge Discovery, Aug. 29-Sept. 2, 2011, pp.354-366.
[2] Goethals B, Laur S, Lipmaa H, Mielikainen T. On private scalar product computation for privacy-preserving data mining. In Proc. the 7th Int. Conf. Information Security and Cryptology, Dec. 2004, pp.104-120.
[3] Vaidya J, Clifton C. Privacy preserving association rule mining in vertically partitioned data. In Proc. the 8th SIGKDD Int. Conf. Knowledge Discovery and Data Mining, July 2002, pp.639-644.
[4] Du W, Atallah M. Privacy-preserving cooperative statistical analysis. In Proc. the 17th Annual Computer Security Applications Conference, Dec. 2001, pp.102-110.
[5] Atallah M J, Du W. Secure multiparty computational geometry. In Proc. the 7th International Workshop on Algorithms and Data Structures, Aug. 2011, pp.165-179.
[6] Thomas T. Secure Two-party protocols for point inclusion problem. Int. J. Network Security, 2009, 9(1): 1-7.
[7] Yang B, Sun A D, Zhang W Z. Secure two-party protocols on planar circles. Journal of Information \& Computational Science, 2011, 8(1): 29-40.
[8] Yang B, Shao Z Y, Zhang W Z. Secure two-party protocols on planar convex hulls. Journal of Information \& Computational Science, 2012, 9(4): 915-929.
[9] Du W, Zhan Z. Building decision tree classifier on private data. In Proc. IEEE ICDM Workshop on Privacy, Security, and Data Mining, Dec. 2002, Vol.14, pp.1-8.
[10] Amirbekyan A, Estivill-Castro V E C. A new efficient privacypreserving scalar product protocol. In Proc. the 6th Australasian Data Mining Conference, Dec. 2007, pp.209-214.
[11] Hazay C. Efficient two-party computation with simulation based security [Ph.D. Thesis]. Senate of Bar-Ilan University, Israel, 2009.
[12] Goldreich O. Foundations of Cryptography (Vol.2): Basic Applications. London, UK: Cambridge University Press, 2004.
[13] Schnorr C P. Efficient signature generation by smart cards. Journal of Cryptology, 1991, 4(3): 161-174.
[14] Camenisch J, Shoup V. Practical verifiable encryption and decryption of discrete logarithms. In Proc. CRYPTO 2003,

Aug. 2003, pp.126-144.
[15] Paillier P. Public-key cryptosystems based on composite degree residue classes. In Proc. the 17th Theory and Application of Cryptographic Techniques, May 1999, pp.223-238.
[16] Jarecki S, Liu X. Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In Proc. the 6th Theory of Cryptography Conference, March 2009, pp.577-594.


Bo Yang received the B.S. degree from Peking University in 1986, and the M.S. and Ph.D. degrees from Xidian University in 1993 and 1999, respectively. From July 1986 to July 2005, he had been at Xidian University. From 2002, he had been a professor of National Key Lab. of ISN in Xidian University. He has served as a program chair for the fourth China Conference on Information and Communications Security in 2005, the vice-chair for ChinaCrypt 2009, and the general chair for the 5th Joint Workshop on Information Security. He is currently a professor and supervisor of Ph.D. candidates at the School of Computer Science, Shaanxi Normal University and a special-term professor of Shaanxi Province. His research interests include information theory and cryptography.


Yong Yu received the Ph.D. degree in cryptography from Xidian University in 2008. He is currently an associate professor at the School of Computer Science and Engineering, University of Electronic Science and Technology of China. His research focuses on cryptography and its applications, especially public encryption and digital signature.


Chung-Huang Yang received the B.S. degree from National ChengKung University, Taiwan, China, in 1981 and the M.S. and Ph.D. degrees from University of Louisiana at Lafayette, USA, in 1986 and 1990, respectively. He is currently a professor at Graduate Institute of Information and Computer Education, National Kaohsiung Normal University, China, and a member of the Board of Executive Directors of (Taiwan) Chinese Cryptology and Information Security Association. His research interests include the implementation of cryptographic algorithms, computer forensics and mobile phone forensics.


[^0]:    Short Paper
    This work was supported by the National Natural Science Foundation of China under Grant Nos．60973134，61173164，61003232， and the Natural Science Foundation of Guangdong Province of China under Grant No． 10351806001000000.
    （C） 2012 Springer Science＋Business Media，LLC \＆Science Press，China

