
Yang B, Yu Y, Yang CH. A secure scalar product protocol against malicious adversaries. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 28(1): 152–158 Jan. 2013. DOI 10.1007/s11390-013-1319-3

A Secure Scalar Product Protocol Against Malicious Adversaries

Bo Yang1 (� �), Yong Yu2 (� �), and Chung-Huang Yang3 (���)

1School of Computer Science, Shaanxi Normal University, Xi’an 710062, China
2School of Computer Science and Engineering, University of Electronic Science and Technology of China

Chengdu 610054, China
3Graduate Institute of Information and Computer Education, National Kaohsiung Normal University, Taiwan, China

E-mail: byang@snnu.edu.cn; yuyong@uestc.edu.cn; chyang@nknucc.nknu.edu.tw

Received October 11, 2011; revised April 5, 2012.

Abstract A secure scalar product protocol is a type of specific secure multi-party computation problem. Using this kind

of protocol, two involved parties are able to jointly compute the scalar product of their private vectors, but no party will
reveal any information about his/her private vector to another one. The secure scalar product protocol is of great importance
in many privacy-preserving applications such as privacy-preserving data mining, privacy-preserving cooperative statistical
analysis, and privacy-preserving geometry computation. In this paper, we give an efficient and secure scalar product protocol
in the presence of malicious adversaries based on two important tools: the proof of knowledge of a discrete logarithm and the
verifiable encryption. The security of the new protocol is proved under the standard simulation-based definitions. Compared

with the existing schemes, our scheme offers higher efficiency because of avoiding inefficient cut-and-choose proofs.
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1 Introduction

A secure multi-party computation (SMC) is a type
of protocol where two or more involved parties com-
pute a commonly agreed function, with the restriction
that none of the participants can learn anything more
than their own inputs and the public outputs. A secure
scalar product protocol is a specific SMC problem, and
its goal is that two parties jointly compute the scalar
product of their private vectors and no party will reveal
any information about his/her private vector to another
party. As a building block, the secure scalar product
protocol has found broad applications in many areas
such as privacy-preserving data mining[1-3], privacy-
preserving cooperative statistical analysis[4], privacy-
preserving geometry computation[5-8].

The secure scalar product protocol deals with the
following problem: Let Alice has a private vector
X = (x1, . . . , xN ) and Bob has another private vec-
tor Y = (y1, . . . , yN). They compute corporately
u = X · Y + v =

∑N
i=1 xiyi + v, where u is a uni-

formly distributed random number known by Alice and
v is a dependent uniformly distributed random number
known by Bob. The purpose of Bob’s random v is to
prevent Alice from knowing the final result of X · Y ,

and to ensure the fairness for Bob.
Many efforts to solving this problem have been done

[2-5,9-10] and Goethals et al. gave a state-of-the-art
overview of the problem and the properties of some so-
lutions in [2].

Goethals et al.[2] demonstrated that if a vector has
a low support (the support of a vector is defined by
the number of non-zero elements in this vector), an-
other party will learn half elements of this vector and
further learn the whole vector with a high probability.
Then they proposed a new secure scalar product pro-
tocol based on homomorphic encryption with plaintext
space Zm for some large m. The protocol is secure
in the semi-honest model, assuming that X,Y ∈ ZN

μ ,
in which μ = �√m/N�. However, all of the proto-
cols mentioned above assume participants to be semi-
honest.

Artak[10] gave a secure scalar product protocol based
on homomorphic encryption and permutation on vec-
tors. However, the protocol only considers a special
case v = 0, in which the first party is able to get the
final result of u = X ·Y , which is unfair for the second
party.

All the other protocols in [3-5, 9] also consider par-
ticipants to be semi-honest.
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Hazay[11] presented an oblivious polynomial eva-
luation protocol (OPE) against malicious adversaries,
where there are two parties, Alice and Bob, and Alice
has a polynomial p() and Bob has an input x. They
would like to collaborate in a way for Bob to com-
pute p(x) such that Alice learns nothing about x and
Bob learns only p(x) and nothing more. The author
claimed the protocol can be modified to compute the
secure scalar product functionality. However, the per-
formance of the scheme is not satisfying since inefficient
cut-and-choose proofs are employed. In this paper, we
will give a secure scalar product protocol against ma-
licious adversaries by incorporating proof of knowledge
and the verifiable encryption, which is more efficient in
performance.

2 Fundamental Concepts and Building Blocks

2.1 Concepts in Computational Complexity

Negligible Function. A function μ �→ (0, 1) is called
negligible if for every positive polynomial p(x), and all
sufficiently large n’s, μ(n) < 1/p(n).

Probability Ensembles. A probability ensemble in-
dexed by S ⊆ {0, 1}∗ is a family {Ew}w∈S, so that each
Ew is a random variable (or distribution) which ranges
over (a subset of) {0, 1}poly(|w|). Typically, we consider
S = {0, 1}∗ and S = {1n : n is a natural number}.

Identically Distributed. We say that two ensembles,
E

def= {Ew}w∈S and F
def= {Fw}w∈S, are identically dis-

tributed, and write as E ≡ F , if for every w ∈ S and
every α

Pr(Ew = α) = Pr(Fw = α), (1)

where Pr means probability.
Computationally Indistinguishable. Two ensembles,

E = {Ew}w∈S and F = {Fw}w∈S, are computation-

ally indistinguishable, and denote as X
C≡Y , if for every

non-uniform distinguisher D there exists a negligible
function μ(·) such that for every a ∈ {0, 1}∗,

|Pr (D(Ew(a, n)) = 1)− Pr(D(Fw(a, n)) = 1)| < μ(n).
(2)

2.2 Secure Computation

In this subsection we review the definition of the se-
cure 2-party computation, which follows [12].

A 2-party protocol problem is cast by specifying a
random process that maps pairs of inputs to pairs of
outputs (one for each party). Let f : {0, 1}∗×{0, 1}∗ �→
{0, 1}∗ × {0, 1}∗, f = (f1, f2) be a functionality, where
f1(x, y) (resp., f2(x, y)) denotes the first (resp., second)
element of f(x, y), and Π be a 2-party protocol in which
the first party (with input x) wishes to obtain f1(x, y)

and the second party (with input y) wishes to obtain
f2(x, y).

In a 2-party protocol, all parties can be classified into
two categories, semi-honest and malicious. Roughly
speaking, a semi-honest party is one who follows the
protocol properly with the exception that it keeps a
record of all its intermediate computations and might
derive the other parties’ inputs from the record. A
malicious adversary may arbitrarily deviate from the
specified protocol. When considering malicious adver-
saries, there are certain undesirable actions that cannot
be prevented. Specifically, a party may refuse to par-
ticipate in the protocol, substitute its local input (and
enter with a different input), or abort the protocol pre-
maturely. The security of a protocol is analyzed by
comparing what an adversary can do in the protocol
with what it can do in an ideal scenario that is secure.
This is formalized by considering an ideal computation
involving an incorruptible trusted third party to whom
the parties send their inputs. The trusted party com-
putes the functionality on the inputs and returns each
party its respective output. Concretely, an execution
in the ideal model proceeds as follows:
• Inputs. Each party obtains an input, denoted by

u.
• Sending inputs to trusted party. An honest party

always sends u to the trusted party. A malicious party
may, depending on u (as well as on an auxiliary in-
put and its coin tosses), either abort or send some
u′ ∈ {0, 1}|u| to the trusted party.
• The trusted party answers the first party. After

receiving an input pair (x, y), the trusted party com-
putes (f1(x, y), f2(x, y)) and replies to the first party
with f1(x, y). Otherwise, if it receives only one input,
it replies to both parties with a special symbol, denoted
by ⊥.
• The trusted party answers the second party. If the

first party is malicious, it may, depending on its in-
put and the trusted party’s answer, decide to stop the
trusted party. In this case the trusted party sends ⊥ to
the second party. Otherwise, the trusted party sends
f2(x, y) to the second party.
• Output. The honest party always outputs the mes-

sage it has obtained from the trusted party. The mali-
cious party may output an arbitrary (polynomial-time
computable) function of its initial input and the mes-
sage it has obtained from the trusted party.

A real model is a real (2-party) protocol, where there
exits no trusted third party, and the malicious party
may follow an arbitrary feasible strategy. In particular,
the malicious party may abort the execution at any
point in time, and when this happens prematurely, the
other party is left with no output.
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Having defined the ideal and real models, we can now
define the security of the protocol. Loosely speaking,
the definition asserts that a secure 2-party protocol (in
the real model) emulates the ideal model (in which a
trusted party exists). This is formulated by saying that
admissible pairs in the ideal model are able to simulate
admissible pairs in an execution of a secure real-model
protocol.

Formally, let f = (f1, f2) be a probabilistic
polynomial-time functionality and Π be a 2-party pro-
tocol for computing f . A = (A1, A2) be two parties in
the real model (represented as non-uniform probabilis-
tic expected polynomial-time machines). Such a pair
is admissible if for at least one i ∈ {1, 2}, Ai is honest
(i.e., follows the strategy specified by Π). Then, the
joint execution of Π under A in the real model (on in-
put pair (x, y)), denoted by REALΠ,A, is defined as the
output pair of A1 and A2 resulting from the protocol
interaction. Again, let B = (B1, B2) be two parties
in the ideal model (represented as non-uniform proba-
bilistic expected polynomial-time machines), which is
also admissible. Then, the joint execution of Π under
B in the ideal model (on input pair (x, y)), denoted by
IDEALf,B, is defined as the output pair of B1 and B2

from the ideal execution.
Definition 1 (Security in the Malicious Model). Let

f and Π be as above. Protocol Π is said to securely com-
pute f (in the malicious model) if for every pair of ad-
missible non-uniform probabilistic expected polynomial-
time machines A = (A1, A2) for the real model, there
exists a pair of admissible non-uniform probabilistic ex-
pected polynomial time machines B = (B1, B2) for the
ideal model, such that

{IDEALf,B(x, y)}x,y s.t. |x|=|y|
C≡

{REALΠ,A(x, y)}x,y s.t. |x|=|y|.

2.3 Building Blocks

In order to obtain the security against malicious ad-
versaries, participants are required to prove the cor-
rectness of each protocol step. We use PoK {a|Φ(a)} to
denote a zero-knowledge proof of value a that satisfies
a publicly computable relation Φ. We will make use of
the following proof system.

Proof of Knowledge of a Discrete Logarithm. Let
two participants, Alice and Bob, know g and y, but
only Alice has the knowledge of x such that y = gx.
This relation is denoted by

RDH = {(g, y, (x))|y = gx}.

The zero-knowledge proof of knowledge forRDH, de-
noted by πDH, is given in [13].

Verifiable Encryption. A verifiable encryption[14] is
a protocol that allows a prover to convince a verifier
that a ciphertext encrypts a plaintext satisfying a cer-
tain binary relation R = M ×Δ.

For δ ∈ Δ, an element m ∈M such that (m, δ) ∈ R
is called a witness for δ. In the scheme, the encryptor
is given a value δ, a witness m for δ, and then encrypts
m to yield a ciphertext ψ and proves to another party
that ψ can be decrypted to a witness for δ.

The discrete logarithm relation R is defined as fol-
lows.

Definition 2. Let Γ be a cyclic group of order ρ
generated by γ, assume that γ and ρ are publicly known,
and that ρ is prime. Let M = [ρ],Δ = Γ. The discrete
logarithm relation is R = {(m, δ) ∈M ×Δ : γm = δ}.

The proof of a discrete logarithm relation means,
given γ, δ and a ciphertext ψ, the encryptor is able to
prove to the decryptor that ψ is an encryption logγ δ
under some public key pk.

In [14], a practical verifiable encryption protocol for
discrete logarithms in conjunction with an encryption
algorithm, depicted in the following, is given.

Encryption Algorithm.
• Setup. Let n = pq be the RSA-modulo with

p = 2p′ + 1, q = 2q′ + 1, where p, q, p′, q′ are primes.
Choose g′ ∈R Z∗

n2 , compute g = (g′)2n (mod n2), and
publish (n, g) as system parameters.
• Key Generation. Choose a random x ∈R [n2/4] as

the secret key, and compute y = gx (mod n2) as the
public key, where [a] denotes the set {0, . . . , �a−1�} for
real number a.
• Encryption. For m ∈ [n], choose a random

r ∈R [n/4] and compute

u = gr (mod n2), e = yrhm (mod n2),

where h = (1 + n) (mod n2) ∈ Z∗
n2 .

The ciphertext is (u, e).
• Decryption. For a ciphertext c = (u, e) ∈ Z∗

n2 ×
Z∗

n2 , let t = 2−1 (mod n), and compute m̂ = (e/ux)2t.
If m̂ is of the form hm for some m ∈ [n], then output
m; otherwise, output reject.

The algorithm is semantic secure under the Compos-
ite Residuesity Assumption[15] on Z∗

n2 .
In the following, we will denote the encryption pro-

cess by Epk (m), or Epk (m; r) when no misunderstand-
ing is possible, and the decryption process by Dsk (c).

The scheme is additive homomorphic since

Epk (m1; r1)
Epk (m2; r2) = (gr1 , yr1hm1)
(gr2 , yr2hm2)

= (gr1+r2 , yr1+r2hm1+m2)
=Epk (m1 +m2; r1 + r2).

The verifiable encryption scheme was used in the
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construction of an oblivious pseudorandom function in
[16]. In the following, we will use it to construct a se-
cure scalar product protocol. For notational simplicity,
we will denote the protocol of a verifiable encryption
non-interactively by

PoK {m|ψ ∈ Encpk (m) ∧ δ = γm},

where Encpk means an encrypton algorithm.

3 Secure Scalar Product Protocol

In the following, we build a secure scalar product
protocol against malicious adversaries based on the so-
lution in [2], where γ is the public base in the discrete
logarithm relation.

3.1 Scheme Description

Protocol 1 (πsp–Secure Scalar Product Protocol).
Inputs. A1 has a private vector X = (x1, . . . , xN )

and A2 has another private vector Y = (y1, . . . , yN ),
xi, yi ∈ [n] for i = 1, . . . , N .

Outputs. A1 gets u, and A2 gets v, satisfying
u, v ∈ [n] and u =

∑N
i=1 xiyi + v.

1) Key generation: A1 chooses a random sk ∈R

[n2/4] as the secret key, and computes pk = gsk as the
public key. A1 sends pk to A2, and engages in a zero-
knowledge proof of knowledge πDH with A2, in which
A1 proves that (g, pk, (sk)) ∈ RDH. This step is de-
noted by (pk, sk)←R KGen.

2) A1 computes (ci, δ
(A1)
i ) = (Epk (xi), γxi), π(A1)

i =
PoK{xi|ci = Epk (xi) ∧ δ

(A1)
i = γxi}, and sends

{(ci, δ(A1)
i ), πA1

i } (i = 1, . . . , N) to A2.
3) A2 verifies π(A1)

i (i = 1, . . . , N). If there exi-
sts an i ∈ {1, . . . , N} such that the verification of
π

(A1)
i fails, A2 aborts with output ⊥. Otherwise,
A2 chooses vi ∈ [n] and computes (Ci, δ

(A2)
i ) =

(cyi

i Epk (vi), γvi(δ(A1)
i )yi), π(A2)

i = PoK {yi|cyi

i Epk (vi)∧
γvi(δ(A1)

i )yi}, and sends {(Ci, δ
(A2)
i ), πA2

i } (i =
1, . . . , N) to A1.

4) A1 verifies π(A2)
i (i = 1, . . . , N). If there exists

an i ∈ {1, . . . , N} such that the verification of π(A2)
i

fails, A1 aborts with output ⊥. Otherwise, A1 com-
putes u = Dsk (

∏N
i=1 Ci).

5) A1 outputs u, and A2 outputs v =
∑N

i=1 vi.
In step 3,

(Ci, δ
(A2)
i ) = (cyi

i Epk (vi), γvi(δ(A1)
i )yi)

= (Epk (xiyi + vi), γxiyi+vi).

It is straightforward to verify that
u =

∑N
i=1 xiyi + v.

3.2 Security

Theorem 1. In the protocol πsp , assume that the
encryption scheme is additively homomorphic seman-
tically secure, and each proof system is zero-knowledge
and simulation-sound, the protocol πsp securely com-
putes the scalar product functionality, denoted by Fsp,
in the presence of malicious adversaries.

Proof. To prove the theorem, we need to construct
parties B = (B1, B2) in the ideal model from parties
A = (A1, A2) in the real-model such that

{IDEALFsp ,B(x, y)} C≡{REALπsp ,A(x, y)}. (3)

We will consider the case that A1 is malicious and
the case that A2 is malicious separately.

In the case that A1 is malicious, because A2 is hon-
est, B2 is taken as the same with A2. We need to
construct B1 from a malicious real model A1. The con-
struction is made by having B1 emulate an execution of
A1, while playing A2’s role. B1 does this when intera-
cting with the trusted third party, denoted by Fsp , and
its aim is to obtain an execution with A1 that is con-
sistent with the output received from Fsp . B1 works as
follows.

1) B1 receives from A1 a public key pk and plays the
verifier in πDH with A1 as the prover. If it does not ac-
cept the proof, it sends ⊥ to the trusted third party and
outputs whatever A1 outputs. If it accepts the proof,
then it runs the knowledge extractor for πDH in order
to obtain the witness sk used by A1. If B1 does not
succeed in extracting, it outputs fail.

2) B1 receives (ci, δ
(A1)
i , π

(A1)
i ) from A1, and verifies

π
(A1)
i (i = 1, . . . , N). If there exists an i ∈ {1, . . . , N}

such that the verification of π(A1)
i fails, B1 aborts with

output ⊥. Otherwise, it decrypts ci (i = 1, . . . , N) to
obtain x1, . . . , xN .

3) B1 picks y′′1 , . . . , y
′′
N , v

′′
1 , . . . , v

′′
N ∈R [n], sends

(Ci = Epk (y′′i ), δ
(B1)

i = γv′′
i ) to A1, and simulates the

proof π(A2)
i (i = 1, . . . , N).

4) If all π(A2)
i (i = 1, . . . , N) pass the verification,

B1 sends x1, . . . , xN to Fsp . Fsp receives y1, . . . , yN

and v from the the ideal model B2, computes u =∑N
i=1 xiyi + v, and sends u to A1.
5) B1 outputs whatever A1 does.
We need to show that (3) can be satisfied.
This can be proven by constructing a series of games

Game l, in which B(l)
1 is a simulator constructed in the

l-th hybrid game, H
B

(l)
1 (z),B2

(x, y) is the joint output

distribution of B(l)
1 and B2, z is the auxiliary input of

B
(l)
1 , the last game Game4 runs the protocol among B1,

B2 and Fsp .
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Game1. In the first game, we define a simulator
B

(1)
1 who works exactly like A2 in the protocol πsp ex-

cept that instead of acting as the verifier in the proof
of πDH in step 1, B(1)

1 runs the extractor algorithm for
RDH with A1 to extract sk. B(1)

1 outputs A1’s output.
We have {H

B
(1)
1 (z),B2

(x, y)} ≡ {REALπsp ,A(x, y)}.
Game2. In this game, we define a simulator B(2)

1

who works exactly like B(1)
1 in Game1 except that in-

stead of acting as the verifier in the proof of π(A1)
i in

step 2, B(2)
1 decrypts ci to obtain xi (i = 1, . . . , N).

B
(2)
1 outputs B(1)

1 ’s output.
We have {H

B
(2)
1 (z),B2

(x, y)} ≡ {H
B

(1)
1 (z),B2

(x, y)}.
Game3. In this game, we define a simulator

B
(3)
1 who works exactly like B

(2)
1 in Game2 except

that in step 3, B(3)
1 picks y′1, . . . , y

′
N , v

′
1, . . . , v

′
N ∈R

[n], computes (Ci, δ
(B1)

i ) = (cy
′
i

i Epk (v′i), γ
v′

i(δ(A1)
i )y′

i),
πi

(A2) = PoK {y′i|cy
′
i

i Epk (v′i) ∧ γv′
i(δ(A1)

i )y′
i}, and sends

((Ci, δ
(B1)

i ), πi
(A2)) to A1.

By the indistinguishability of encryption, we have

{H
B

(3)
1 (z),B2

(x, y)} C≡{H
B

(2)
1 (z),B2

(x, y)}.

Game4: In this game, we define a simulatorB(4)
1 who

works exactly like B(3)
1 in Game3 except that instead

of proving πi
(A2), B(4)

1 simulates the proof πi
(A2).

By zero-knowledge of π(A2)
i (i = 1, . . . , N), we have

{H
B

(4)
1 (z),B2

(x, y)} C≡{H
B

(3)
1 (z),B2

(x, y)}.

Game5: In this game, we define a simulator
B

(5)
1 who works exactly like B

(4)
1 in Game4 ex-

cept that instead of computing (Ci, δ
(B1)

i ), B
(5)
1

picks y′′1 , . . . , y
′′
N , v

′′
1 , . . . , v

′′
N ∈R [n], sends (Ci =

Epk (y′′i ), δ
(B1)

i = γv′′
i ) to A1, and simulates the proof

πi
(A2) (i = 1, . . . , N).
By the indistinguishability of encryption, we have

{H
B

(5)
1 (z),B2

(x, y)} C≡{H
B

(4)
1 (z),B2

(x, y)}.

Game6. Game6 is the ideal model game among B1

(with access to A1), Fsp and B2. Instead of com-
puting u = Dsk (

∏N
i=1 Ci) by A1 as the last step of

Game5, B1 sends (x1, . . . , xN ) to Fsp . Fsp computes
u =

∑N
i=1 xiyi +

∑N
i=1 vi on (x1, . . . , xN ) given by B1

and (y1, . . . , yN , v1, . . . , vN ) given by B2, and sends u
to A1.

It is obvious that

{IDEALFsp ,B(x, y)} ≡ {H
B

(5)
1 (z),B2

(x, y)}.

From Game1 to Game6, two joint output distribu-
tions {H

B
(l−1)
1 (z),B2

(x, y)} and {H
B

(l)
1 (z),B2

(x, y)}, l =
2, . . . , 6, are either identical or computationally indis-
tinguishable. So we have

{IDEALFsp ,B(x, y)} C≡{REALπsp ,A(x, y)}.

In the case that A2 is malicious, because A1 is hon-
est, B1 is viewed as the same with A1. We need to
construct B2 from a malicious real model A2. The con-
struction is made by having B2 emulate an execution
of A2, while playing A1’s role. B2 works as follows.

1) B2 runs (pk′, sk′)←R KGen, sends pk′ to A2, and
simulates the proof πDH.

2) B2 picks x′i ∈R [n], sets (ci, δ
(A1)

i ) =

(Epk ′ (x′i), γ
x′

i), sends (ci, δ
(A1)

i ) to A2 and simulates the
proof π(A1)

i for i = 1, . . . , N .
3) If all proofs π(A1)

i pass the verification, A2 sends
{(Ci, δ

(A2)
i ), π(A2)

i } (i = 1, . . . , N) to B2.
4) B2 verifies π(A2)

i (i = 1, . . . , N). If there exists
an i ∈ {1, . . . , N} such that the verification of π(A2)

i

fails, B2 aborts with output ⊥. Otherwise, B2 extracts
y1, . . . , yN , v1, . . . , vN , and sends them to Fsp .

5) Fsp computes u =
∑N

i=1 xiyi +
∑N

i=1 vi on B2’s
input and B1’s input x1, . . . , xN , and outputs u to B1.

6) B2 outputs whatever A2 does.
Below, we show that

{IDEALFsp ,B(x, y)} C≡{REALπsp ,A(x, y)}.

Similarly, we construct a series of games where B(l)
2

is a simulator constructed in the l-th hybrid game,
H

B1,B
(l)
2 (z)

(x, y) is the joint output distribution of B1

and B(l)
2 , and z is the auxiliary input of B(l)

2 .
Game1. In the first game, we define a simulator B(1)

2

who works exactly like A1 in the protocol πsp except
that instead of acting as the real prover in the proof
of πDH in step 1, B(1)

2 picks (pk′, sk′)←R KGen, sends
pk′ to A2, and simulates the proof πDH. B(1)

2 outputs
A1’s output.

We have {H
B1,B

(1)
2 (z)

(x, y)} ≡ {REALπsp ,A(x, y)}.
Game2. In this game, we define a simulator B(2)

2

who works exactly like B
(1)
2 in Game1 except that

instead of acting as the real prover in the proof of
π

(A1)
i (i = 1, . . . , N) in step 2, B

(2)
2 picks x′i ∈R

[n], computes (ci, δ
(B

(2)
2 )

i ) = (Epk ′(x′i), γ
x′

i), πi
(B

(2)
2 ) =

PoK{x′i|ci = Epk (x′i) ∧ δ
(B

(2)
2 )

i = γx′
i}, and sends

{(ci, δ(B
(2)
2 )

i ), π(B
(2)
2 )

i }(i = 1, . . . , N) to A2. B
(2)
2 outputs

B
(1)
2 ’s output.
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By the indistinguishability of encryption, we have

{H
B1,B

(2)
2 (z)

(x, y)} C≡{H
B1,B

(1)
2 (z)

(x, y)}.

Game3. In this game, we define a simulator B(3)
2

who works exactly like B(2)
2 in Game2 except that in-

stead of proving π(B
(2)
2 )

i , it simulates the proof π(B
(2)
2 )

i

for i = 1, . . . , N .

By zero-knowledge of π(B
(2)
2 )

i for i = 1, . . . , N , we

have {H
B1,B

(3)
2 (z)

(x, y)} C≡{H
B1,B

(2)
2 (z)

(x, y)}.
Game4: In this game, we define a simulatorB(4)

2 who
works exactly like B(3)

2 in Game3 except that instead
of playing the verifier in the proof of π(A2)

i , in step 4,
after receiving {(Ci, δ

(A2)
i ), π(A2)

i } (i = 1, . . . , N), B(4)
2

extracts y1, . . . , yN , v1, . . . , vN , and sends them to Fsp .
Fsp computes u =

∑N
i=1 xiyi +

∑N
i=1 vi on x1, . . . , xN

given by B1, and y1, . . . , yN , v1, . . . , vN given by B(4)
2 ,

and sends u to B1. In this game, B(4)
2 works exactly

like B in ideal model.
It is obvious that

{H
B1,B

(4)
2 (z)

(x, y)} ≡ {H
B1,B

(3)
2 (z)

(x, y)}.

So, in this case, also we have

{IDEALFsp ,B(x, y)} C≡{REALπsp ,A(x, y)}. �

3.3 Resource Analysis

Computational Cost. In the verifiable encryption
protocol, the modulo n in the encryption algorithm
can be set |n| = 1 024 bits, the order ρ of the cyclic
group Γ can be taken smaller than n. In the encryp-
tion algorithm, the encryptor and the decryptor re-
quire 3 logN modular multiplications (mod n2), re-
spectively, where N is the dimension of vectors. In
the proof of the binary relation (m, δ) ∈ R, the
prover and the verifier require 3 log ρ modular multi-
plications (mod ρ2), respectively. In the proof of
πDH, the prover requires logn modular multiplications
(mod n), the verifier requires 2 logn modular multipli-
cations (mod n). Therefore, in our protocol, two par-
ticipants’ computational costs, measured in the number
of modular multiplications, are 6N logn (mod n2) +
6N log ρ (mod ρ2) + logn (mod n) and 6N logn

(mod n2)+6N log ρ (mod ρ2)+2 logn (mod n), re-
spectively.

Communication Cost. In the encryption algorithm,
4 logn bits are exchanged, while in the proof of the bi-
nary relation (m, δ) ∈ R, 4 log ρ bits are exchanged. In
the proof of πDH, 2 logn bits are exchanged, therefore,
the communication cost is 8N logn+ 8N log ρ+ 2 logn
bits.

In [2], the protocol, where the proof of knowl-
edge and the verifiable encryption are not employed,
was given in the semi-honest model, and cannot pre-
vent the involved participants’ malicious actions. Two
participants’ computational costs are both 6N logn
(mod n2). The communication cost is 8N logn.

Similarly, in [10], the proof of knowledge and the
verifiable encryption is not employed. The protocol was
given in the semi-honest model, and cannot avoid the
malicious actions of the involved participants. Further-
more, the protocol considers a special case v = 0, in
which the first party can get the final result u = X ·Y ,
thus, it is unfair for the second party.

The computational costs of two participants are
6N logn (mod n2) + 2N (mod n) and 3N logn
(mod n2) + 2N (mod n), respectively. The commu-
nication cost is 8N log n+ 2.

In [11], inefficient cut-and-choose proofs are used to
prove that A1 behaves correctly. A2 sends a commit-
ment to a challenge τ = τ1 . . . τs, where s is the sta-
tistical security parameter. A1 then chooses s random
polynomials {q1, . . . , qs} of degree N and sends all en-
cryption of coefficients of qi and p− qi (i = 1, . . . , s) for
checking A1. So the cost (including computational cost
and communication cost) is at least 2s times of that of
ours.

We define A = 3N logn (mod n2), B = 6N log ρ
(mod ρ2), C = logn (mod n) andD = 2N (mod n),
the numbers of modular multiplications are ((modn2),
(mod ρ2), (mod n) and (mod n)), respectively,
and the numbers of bits exchanged between the in-
volved participants are E = 8N log n, F = 8N log ρ,
G = 2 logn, respectively, and obtain the comparisons
of our protocol with those in [2, 10] and in [11] about
the computational costs (Comp.) and the communica-
tion costs (Comm.) in Table 1.

The first column is the names of the three proto-
cols, the second column is the model of the involved
participants, and the third and the fourth columns are

Table 1. Comparison of Four Protocols

Protocol Model Comp. of A1 Comp. of A2 Comm.

Ours Malicious 2A + B + C 2A + B + 2C E + F + G

[2] Semi-honest 2A 2A E

[10] Semi-honest 2A + D A + D E + 2

[11] Malicious 2s(2A + B + C) 2s(2A + B + 2C) 2s(E + F + G)
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the computational costs of the first party A1 and the
second party A2 respectively, and the last column is the
communication cost.

4 Conclusions

Based on two building blocks, namely the proof of
knowledge of a discrete logarithm and the verifiable en-
cryption, we have given a scalar product protocol in the
presence of malicious adversaries. Under the standard
simulation-based definitions, the protocol is proven se-
cure. Compared with the existing schemes, our scheme
offers higher efficiency because of avoiding inefficient
cut-and-choose proofs.
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