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Abstract Large-scale MIMO (multiple-input multiple-output) systems with numerous low-power antennas can provide
better performance in terms of spectrum efficiency, power saving and link reliability than conventional MIMO. For large-scale
MIMO, there are several technical issues that need to be practically addressed (e.g., pilot pattern design and low-power
transmission design) and theoretically addressed (e.g., capacity bound, channel estimation, and power allocation strategies).
In this paper, we analyze the sum rate upper bound of large-scale MIMO, investigate its key technologies including channel
estimation, downlink precoding, and uplink detection. We also present some perspectives concerning new channel modeling
approaches, advanced user scheduling algorithms, etc.
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1 Introduction

The explosive growth of wireless data service calls
for more new spectrum resources, while the available
spectrum for further wireless communication systems
is expensive and limited. As we all know, MIMO
(multiple-input multiple-output) systems with multi-
ple antennas at the transmitter and receiver promise
high capacity and link reliability by spatial multiplexing
and diversity[1]. MIMO technology is becoming mature,
and has been applied to 4 G and Beyond 4 G systems
combining with orthogonal frequency division multi-
plexing (OFDM)[2] or orthogonal frequency and code
division multiplexing (OFCDM)[3-4] technology. Since
the capacity of an MIMO system greatly increases with
the minimum number of antennas at the transmitter
and receiver sides under rich scattering environments[5],
the large-scale MIMO[6] shown in Fig.1 is one of the
most important techniques to address the issue of ex-
ponential growth in wireless data service by using spa-
tial multiplexing and interference mitigating. In terms
of power efficiency, the large-scale MIMO system can
transmit concentrated beams of signals selectively to
particular users at once utilizing channel state informa-

tion (CSI), improving the signal to noise ratio (SNR)
and reducing the power any antenna needed to send a
given amount of information. Large-scale MIMO also
credibly addresses the sweet spot where the amount of
data transmitted increases while the energy required for
that transmission is reduced. Hence, the total transmis-
sion power can be reduced sharply, which is a valuable
feature since energy efficiency is becoming more and
more important in wireless communication. Due to the
low power consumption and high spectrum efficiency,
large-scale MIMO systems can offer excellent economic
benefits.

Fig.1. Large-scale MIMO system schematic.

Regular Paper
This work was supported by the National Basic Research 973 Program of China under Grant No. 2012CB31600, the Beijing

Natural Science Foundation under Grant No. 4110001, the National Science and Technology Major Project of China under Grant No.
2013ZX03003003, and Samsung Funded Project (The Research of Large-Scale MIMO).

The preliminary version of the paper was published in the Proceedings of CHINACOM 2012.
∗Corresponding Author
©2013 Springer Science +Business Media, LLC & Science Press, China



Xin Su et al.: Investigation on Key Technologies in Large-Scale MIMO 413

Large-scale MIMO can provide a huge increase in
capacity along with obvious energy saving, but requires
tremendous changes in the way networks are provided
since something particular appears when additional nu-
merous antennas are installed[7]. Firstly, random things
(e.g., channel characteristics) tend to be determinis-
tic, and the high-dimensional matrices whose spatial
dimensions enlarge by using a large number of trans-
mit/receive antennas tend to be well conditioned as
the antenna array grows large. Some matrix opera-
tions (e.g., inversions) become simple and can be com-
pleted fast by using a series of extension techniques[8].
Secondly, the bigger the aperture of the antenna ar-
ray, the more resolutions of the antenna array. When
the antenna array grows large, the communication per-
formance of the array depends on the actual statistics
of the propagation channel rather than the aggregated
properties of the propagation such as asymptotic or-
thogonality. Finally, several conclusions of large-scale
MIMO systems were drawn in [9]. Theoretically, the ef-
fects of fast fading and uncorrelated noise in multi-cell
multi-user MIMO systems with an infinite number of
base station (BS) antennas vanish. The number of users
and throughput per cell would have no relation with the
size of the cell. The system performance is only limited
by inter-cell interference caused by the reuse of the pilot
sequences in adjacent cells (pilot contamination)[10-11].
Moreover, the required transmitted energy per bit be-
comes arbitrarily small, and the simplest forms of pre-
coders/detectors become optimal[12].

The advantages and features above have motivated
entirely new theoretical research of large-scale MIMO.
The first advocacy of the use of pretty large antenna
arrays is in [9], and then caused widespread concern
and great research interest[13-14]. Especially, the large
antenna array has mostly attracted pure academic in-
terest when the number of receive and transmit an-
tennas grows without bound. Some asymptotic capa-
city scaling laws were obtained under ideal situations.
Recently, the research of large-scale MIMO gradually
turns to practical system aspects from pure theoreti-
cal study. Paper [9] displays a system with unlimi-
ted number of transmit antennas but under realistic
assumptions. A time division multiplexing (TDM) cel-
lular system with the bandwidth of 20 MHz but with-
out cooperation among the BSs may contain more than
40 single-antenna users. The net average throughput
of users is 17Mbps both on the uplink and downlink.
The system exploits the CSI acquired by uplink pilot
measurements to achieve a throughput of 3.6Mbps with
95% probability. Besides, the problem that how many
antennas are needed by large-scale MIMO systems at-
tracts extensive concern and is fully investigated in [8].

In this paper, we focus on the analysis of the sum
rate upper bound, the research status of key technolo-
gies, and the discussion of research hotspots of large-
scale MIMO. The rest of the paper is organized as fol-
lows. In Section 2 we start with the overall system
to analyze the sum rate upper bound of a large-scale
MIMO system. In Section 3, the key technologies to
approach this upper bound, including channel estima-
tion, downlink precoding, and uplink detection, are in-
troduced. We focus on their technical features and re-
search status. Based on our investigation and analysis,
some future research hotspots are listed in Section 4.
Section 5 concludes this paper.

2 Sum Rate Upper Bound

It is known that the capacity of an MIMO system
increases linearly with the minimum number of anten-
nas at the transmitter and receiver sides. In essence,
the more antennas the transmitter/receiver is equipped
with, and the more degrees of freedom the propagation
channel can provide, the better system performance in
terms of link reliability or data rate the system can ob-
tain. However, the number of antennas in a physical
and practical system cannot be arbitrarily large sub-
jected to physical constraints, energy consumption for
the signal processing, increasing complexity of hard-
ware and computation[15]. Besides, if the number of
receive and transmit antennas tends to be infinite, the
mathematical models for the physical reality will col-
lapse. For example, the aggregated received power at
some points would surpass the transmitted power, and
then without any physical significance. There is even
a great amount of engineering difficulties that do not
appear until the physical models break down. Thus,
the problem that how many BS antennas are needed
in a large-scale MIMO system is urgent to be solved.
Some theory analysis considers the large-scale MIMO
systems installed antenna arrays with an order of mag-
nitude more elements than that in the existing systems,
say a hundred antennas or even more. Paper [6] consid-
ers large-scale MIMO systems with at least a hundred
but perhaps less than a thousand of BS antennas. In
addition, many studies of large-scale MIMO consider
the systems whose number of transmit and receive an-
tennas with the order of tens to hundreds[16-17].

More intuitively, [14] analyzes the sum rate of a
system comprised of four cells, with 10 single-antenna
users each. It shows that at low SNR, the achievable
rate is significantly improved by installing numerous
additional BS antennas. The sum rate tends to be sta-
ble when the number of BS antennas is more than one
hundred, approaches the lower bound on the achievable
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uplink rate with an unlimited number of BS antennas,
and becomes independent on the SNR. The sum rate
basically keeps constant when the number of BS anten-
nas continues to grow.

For the systems with different antenna arrays, we
give some simulation results of sum rate performance in
Fig.2. It is shown that the sum rate first improves as the
number of BS antennas M increases for a given number
of multiplexing layers K (which is equal to the number
of single-antenna users severed simultaneously), and
then tends to be stable when the number of BS anten-
nas grows up to a certain value. When K is larger than
8, the sum rate does not slow the growth rate down
until the number of BS antennas grows greater than
128. While if K is small (e.g., K = 1, 2, 4), when the
number of BS antennas grows approximately to 64, the
sum rate improves slowly and even tends to be stable.
It means that it makes no sense to keep huge additional
BS antennas to improve the system capacity.

Fig.2. Capacity analysis (independent and identically dis-

tributed, CN (0, 1), λ = 0.1), SNR = 15dB.

In summary, the number of BS antennas needed in
a large-scale MIMO system depends on the precise cir-
cumstances. It may be set to 64 when the number of
multiplexing layers is no larger than 4, and be set to
128 when that of multiplexing layers is larger than 8.

3 Key Technologies

3.1 Channel Estimation

Accurate CSI at the transmitters/receivers is re-
quired for uplink detection and downlink precoding.
Hence, accurate channel estimation is of great impor-
tance. Meanwhile, channel estimation is a challenge in
wireless system due to the inherent and highly dynamic
feature of the radio channel. The MIMO broadcast
channel based on user scheduling and precoding which

uses the CSI acquired by channel estimation is shown
in Fig.3.

Fig.3. MIMO broadcast channel.

Several channel estimation techniques, includ-
ing blind[18], semi-blind[19], and pilot-based channel
estimation[13,20], are adopted to exploit radio channel
statistics. Considering the computational complexity
and convergence, large-scale MIMO prefers to adopt
the pilot-based channel estimation. In LTE Rel-10, the
reference signals are specified for the channel quality
indicator (CQI) measurement of frequency division du-
plex (FDD) systems with up to 8 antennas. However,
the number of BS antennas in a large-scale MIMO sys-
tem is far more than 8. Since the number of refer-
ence signals increases linearly with the number of BS
antennas, there will be no resource elements for data
transmission when the number of BS antennas grows
large. Thus, we may achieve data transmission at the
cost of the accuracy of channel estimation by reduc-
ing the overhead of reference signals in FDD systems.
And more efficient pilot pattern should be designed.
While for a time division duplex (TDD) system, the
different phases in a coherence interval are shown in
Fig.4. Channel reciprocity can be adopted to train on
the uplink and estimate channels to obtain an accurate
CSI at the transmitters (CSIT)[21]. However, the pilot
contamination should be addressed. So far, the study
of channel estimation through TDD pilots relying on
channel reciprocity has just started, and the detailed
investigation of it is still a question for future research.

Fig.4. Different phases in a coherence interval.
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Besides, varieties of criteria have been proposed for
channel estimation. Without any knowledge of chan-
nel statistics, least squares (LS) is simple and adequate
at high SNR, but suffers from high mean square error
(MSE). Minimum mean square error (MMSE) can em-
ploy the second order statistics of the channel condition
to minimize the MSE, but with high complexity, which
grows exponentially with the observation samples and
makes the system even more complex. Paper [22] pro-
posed new scaled LS (SLS) and relaxed MMSE tech-
niques which require less knowledge of the channel sec-
ond order statistics and/or obtain better performance
than the conventional LS and MMSE. Besides, a new
method was proposed by using evolutionary program-
ming (EP) to combine LS and MMSE channel estima-
tors in [23], and achieved a good performance over the
existing methods.

3.2 Downlink Precoding

On the MIMO downlink[24], the best performance
will be achieved in an interference free (IF)[25] system
without any inter-user interference. For the practical
systems, we can adopt precoding at transmitters to
mitigate the inter-user interference and reduce the bur-
den of the receivers by signal processing.

We focus on the TDD system with channel reci-
procity here. Considering a single-cell large-scale
MIMO system consisting of M BS antennas and K
single-antenna users, M and K are assumed to be large,
but with a fixed ratio α =M/K. When M is not much
larger than K, that is, α is small, the nonlinear precod-
ing methods, such as the Tomlinson-Harashima precod-
ing (THP)[26] and vector perturbation (VP)[27-28], are
important techniques, which can well approximate to
the capacity limit in a multi-antenna broadcast chan-
nel. Paper [6] discusses different precoding methods
and gives their SNR and SINR expressions shown in
Table 1.

Table 1. SNR and SINR Expressions

Precoding Perfect CSI Imperfect CSI

IF ρf α —

VP
ρf απ

6
(1− 1

α
)(1−α) N/A

MF
ρf α

ρf +1

ε2ρf α

ρf +1

ZF ρf (α− 1)
ε2ρf (α−1)

(1−ε2)ρf +1

It shows that the performance gap of zero forcing
(ZF) precoding to IF is significant, and there is room
for improvement by VP (as a representative of nonlinear
methods) when M ≈ K. When M is twice as many as
K, the gap of ZF precoding to an IF system is only 3 dB.
VP will close to IF when α ≈ 1.79, but cannot surpass
it, which makes the expression meaningless. Since the

number of users served simultaneously is limited, the
number of BS antennas is generally much larger than
that of user antennas in a practical large-scale MIMO
system. Thus, there is not much gain by using nonlin-
ear methods, while linear methods are virtually optimal
and available in large-scale MIMO systems.

Let G denote the channel matrix, the precoding ma-
trixes of different linear methods, including matched fil-
tering (MF)[29], ZF[30], and regularized-ZF (RZF)[31],
are given in Table 2. Paper [6] shows that MF is opti-
mal when M →∞. But with finite transmit antennas,
MF needs at least two orders of magnitude more BS an-
tennas than ZF to gain the same capacity. ZF inverts
the channel by means of the pseudo-inverse to assure its
performance close to that of the IF system, but with a
disadvantage that processing cannot be done distribut-
edly by at each antenna separately. As a compromise
between MF and ZF, RZF can achieve the performance
of MF with the number of antennas reduced by one
order of magnitude. Besides, the same conclusion in
[31] shows that RZF can attain the same performance
as that of beamforming (BF) with one order of magni-
tude fewer antennas in both uncorrected and correlated
fading channels.

Table 2. Precoding Matrixes of Different Linear

Precoding Methods

Precoding Method Precoding Matrix

MF (GT)H = G†

ZF (GT)† = GH(GTGH)−1

RZF GH(GTGH + ηIK)−1

According to the different values of regularization
factor η (seen in Table 2), we term the precoding
methods in the cases with η = 0, η = K

ρf
, and

η = K
ρf

+ K
ρr+1 as ZF, RZF-MMSE (RZF with MMSE

criterion), and RZF-MMSE-C, respectively. Consider
a large-scale MIMO system with 128 BS antennas and
different numbers of single-antenna users. The indepen-
dent and identically distributed (i.i.d.) Rayleigh flat
fading channels are assumed, QPSK modulation is ap-
plied, and channel coding is not employed. The noise is
AWGN ∼ CN (0, σ2). The downlink data transmitted
power pf is 5 dB higher than the uplink pilot transmit-
ted power pr. The simulation result in Fig.5 illustrates
the relationship between the sum rate and the num-
ber of multiplexing users for ZF and RZF. It is obvious
that as the number of users increases, the sum rate
of ZF precoding grows at first, achieves the maximum
points when the number of multiplexing single-antenna
users reaches a certain value (we term it as the opti-
mum number of multiplexing users for a given number
of BS antennas), and decreases to zero. But for the RZF
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precoding, the sum rate grows as the number of multi-
plexing users increases at first, and keeps stable when
the number of multiplexing users approximates to the
optimum number of multiplexing users. It means that
when the number of users is not so large, we should
adopt ZF for the simplicity to achieve a good perfor-
mance. But when the number of users grows large,
RZF outperforms ZF due to its ability to inter-user in-
terference mitigation and strong robustness to channel
estimation error. Therefore, the threshold of the num-
ber of users served simultaneously for a given number
of BS antennas is still a question for further research.
We may combine the precoding methods with the user
scheduling schemes.

Fig.5. Relationship between sum rate and number of users.

M = 128, P/σ2 = 15 dB, P/σ2 = 10dB.

3.3 Uplink Detection

Detectors at the receivers must consequently recover
the desired received signal from multiple transmit an-
tennas simultaneously on the MIMO uplink. The de-
sign of receivers with reduced power consumption and
low computational complexity is complicated but of
great practical significance, especially when the num-
ber of antennas grows large. Hence, low-complexity de-
tection algorithms with near-optimal performance have
attracted a lot of attention recently.

For large-scale MIMO systems, two more advanced
categories of detection algorithms, which include itera-
tive linear filtering (which works by resolving the detec-
tion of the signaling vector by iterative linear filtering)
and random step method[6], have been proposed. As
an example of iterative linear filtering schemes, MMSE
with successive interference cancelation (MMSE-SIC)
has better performance but high complexity which is
the third power of the number of BS antennas. Even
though optimized, it is still too difficult to be achieved
in large-scale MIMO systems. For the random step

schemes, some algorithms derived from computational
intelligence are shown to be pretty capable of achiev-
ing near optimum detection performance in large-scale
MIMO systems with practical affordable complexities
recently. In [32-33], the likelihood ascent search (LAS)
algorithm based on local neighborhood search for large-
scale MIMO detection was presented. LAS, which only
permits transmissions to states with lower MSE and
converges monotonically to a local minima in this way,
can achieve a good performance close to maximum like-
lihood detection (MLD). Paper [34] presents an upper
bound of bit error rate and a lower bound on asymp-
tomatic multiuser efficiency. In order to improve the
performance of the basic LAS, a more general version
of LAS, termed as multistage LAS algorithm was pro-
posed in [35]. When it encounters local minima, the
multistage LAS algorithm carries out an escape mecha-
nism by changing the definition of neighborhood. As
opposed to the basic LAS with only coordinate in the
basic neighborhood definition, the multistage LAS algo-
rithm considers vectors which differ in two or more coor-
dinates. Afterwards another local neighborhood search
based algorithm, namely reactive tabu search (RTS),
which outperformed the LAS algorithm by using a lo-
cal minima exit strategy was proposed in [36-37]. It
permits transmissions to the states with larger MSE
to avoid local minima. More recently, in [38], belief
propagation (BP) algorithm based on factor graph in
large-scale MIMO systems was proposed. Paper [39]
discusses these three low-complexity algorithms suit-
able for large-scale MIMO, and provides a comparison
of them. Let m denote the order of the set of modu-
lation constellation points, Nt and Nr be the number
of transmit and receive antennas, respectively. Table
3 presents the complexity per-symbol of different de-
tection algorithms. It is obvious that LAS, RTS and
BP detection algorithms have lower complexities than
maximum likelihood detection (MLD), and have the
potential to be applied in the large-scale MIMO sys-
tems. To further improve the performance and reduce
the computational complexity, more efficient and rea-
sonable escape strategies from local minima should be
adopted to design low-complexity detection algorithms.

Table 3. Computational Complexity

Detection Algorithm Complexity

MLD O(mNt )

LAS O(NtNr)

RTS O(NtNr)

BP O(Nt)

4 Future Research Issues

In addition to the above researches, several hot issues
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of large-scale MIMO systems still need to be studied in
depth.

Capacity Analysis in Practical Systems. So far, the
capacity analysis focuses on the asymptotic capacity for
ideal systems with an infinite number of antennas[9,40].
However, in a practical system, the number of anten-
nas cannot grow without limit. The research on capa-
city bound of ideal situation has little significance for
the practical application. Therefore, we should further
study the capacity in practical systems with a finite
number of antennas and/or under more realistic as-
sumptions.

Channel Model. Any wireless communication sys-
tem needs to specify a channel model as a basis for
performance evaluation and comparison. The existing
classical channel models, such as 3GPP/3GPP2 spatial
channel model (SCM)①, SCM-Extension (SCME)[41],
WINNER I models②, and WINNER II models③∼④,
should be modified to meet the need of the large-scale
MIMO systems due to the different antenna deploy-
ments. Considering the constrained array aperture
and aesthetic factor, the uniform linear array (ULA)
adopted in conventional MIMO systems is not suitable
for a large antenna array. Therefore, a two-dimensional
or even three-dimensional array structure may be devel-
oped for large-scale MIMO. For the channel models of
two-dimensional or even three-dimensional array struc-
ture, the elevation angle to paths generated by SCM
should be associated, the elevation statistics with other
large-scale fading parameters, and the old statistics and
procedure in SCM should be reused.

Scheduling Schemes for Much More Users Pairing.
Currently, the existing scheduling schemes concentrate
on the pairing of two or four single-antenna users. To
take the advantage of the freedom of the large-scale
MIMO channel, much more users should be scheduled
and served simultaneously to form a high-order vir-
tual MIMO array for better system performance (e.g.,
higher capacity). A probabilistic scheduling scheme
proposed in [40] offers a novel direction.

Large-Scale MIMO Systems with TDD Model. The
interest in TDD systems has grown in recent years.
Some operations (e.g., channel estimation) in large-
scale MIMO systems would be completed simply based
on the TDD reciprocity[42]. Although TDD and FDD
seem like inter-changeable architectures for cellular sys-

tems, there are some fundamental differences and issues
that need to be studied in detail, for example, the pi-
lot contamination and the in-depth study of precoding
performance with channel estimation.

5 Conclusions

In this paper, we focused on several technical issues
of large-scale MIMO. Study results show that sum rate
improves as the number of BS antennas grows initially,
and tends to be stable or decreases when the number of
BS antennas continues to grow. We then introduced the
key technologies. In terms of channel estimation, more
efficient pilot pattern needs to be designed and the pi-
lot overhead should be considered for FDD large-scale
MIMO systems. And for TDD systems, we prefer to
adopt the channel reciprocity to train on the uplink and
estimate channels for CSIT. Linear precoding methods
are effective and adequate, but the pilot contamination
should be addressed. And the practical feasibility of
low-complexity detectors (e.g., LAS, TRS) with more
efficient escape strategies could be a potential trigger to
create wider interest in the theory and implementation
of large-scale MIMO systems. Finally, some research
hotspot issues were discussed for the in-depth study in
the future.
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