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Abstract In wireless monitoring networks, wireless sniffers are distributed in a region to monitor the activities of users. It
can be used for fault diagnosis, resource management and critical path analysis. Due to hardware limitations, wireless sniffers
typically can only collect information on one channel at a time. Therefore, it is a key topic to optimize the channel selection
for sniffers to maximize the information collected, so as to maximize the quality of monitoring (QoM) of the network. In
this paper, a particle swarm optimization (PSO)-based solution is proposed to achieve the optimal channel selection. A 2D
mapping particle coding and its moving scheme are devised. Monte Carlo method is incorporated to revise the solution
and significantly improve the convergence of the algorithm. The extensive simulations demonstrate that the Monte Carlo
enhanced PSO (MC-PSO) algorithm outperforms the related algorithms evidently with higher monitoring quality, lower
computation complexity, and faster convergence. The practical experiment also shows the feasibility of this algorithm.

Keywords multi-channel wireless network, channel selection, quality of monitoring, Monte Carlo, particle swarm opti-

mization

1 Introduction

With the growing applications of wireless networks
(e.g., WLAN, WiFi, WiMax, Mesh), high quality mana-
gement of wireless users and networks is becoming more
and more important[1−3]. It has been a key point to
monitor the network status and performance accurately
and in real time, so as to implement the effective mana-
gement.

In wireless monitoring networks, special monitoring
equipments are used to collect the information trans-
mitted by wireless users in the monitoring area, and the
frame or physical layer information (PHY) is saved for
distributed or centralized analysis. Wireless monitoring
is usually realized using Simple Network Management
Protocol (SNMP) and base station logs. Since they re-
veal the detailed PHY (e.g., signal strength and spec-
trum density) and MAC behaviors (e.g., collision and
retransmission), as well as timing information, they are

essential for network diagnosis and management.
The wireless monitoring equipment (sniffer) is usua-

lly a single-radio multi-channel device[4-5]. That is to
say, it has multi optional channels①. So, it is a key
topic to allocate channels and other resources for snif-
fers to optimize the monitoring quality of the entire
network. In literature [6], it has turned out to be an
NP-hard problem in user-center mode, and an effective
solution for the problem will be with great significance
to the performance improvement of all kinds of wireless
application networks.

In the paper, we investigate the channel allocation of
the sniffers and propose an optimization algorithm for
the problem. The rest of paper is organized as follows.
In Section 2, we provide a brief review of the exist-
ing multi-channel techniques about wireless networks.
The channel selection problem is formulated in Section
3. The Monte Carlo Enhanced Particle Swarm Opti-
mization algorithm (MC-PSO) is detailed in Section 4
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followed by simulation experiments in Section 5. Fi-
nally, we conclude this paper with some future work in
Section 6.

2 Related Work

Existing multi-channel researches about wireless
networks fall into two categories: the multi-channel al-
location of wireless network itself and the multi-channel
selection for wireless monitoring network. The men-
tioned two kinds of networks are shown in Fig.1.

Fig.1. Wireless network and wireless monitoring network.

2.1 Multi-Channel Allocation of Wireless
Network Itself

As the extension of cable network, wireless network
technology develops rapidly, and has been widely ap-
plied in many industry and living fields. In these ap-
plications, to eliminate the collision and interference,
and improve the communication capability, the multi-
channel technology has been introduced in wireless net-
work successfully. According to the different numbers
of the interfaces, the multi-channel technology includes
“single-radio multi-channel” and “multi-radio multi-
channel”. For the consideration of cost and efficiency,
the number of radios is less than that of channels.
Therefore, it has been a research emphasis to allocate
the channels for radios to achieve the optimal package
transmission efficiency.

From [7-14], we can get an overview of much excel-
lent work in multi-channel allocation of wireless net-
work. In 2000, Wu et al.[7] proposed an on-demand
Dynamic Channel Assignment protocol (DCA). Each
host maintains one dedicated channel for control mes-
sages and other channels for data. In this protocol, the
multi-channel hidden terminal problem does not occur,
and the time synchronization is released. But when the
number of channels is small, one channel dedicated for
control messages will be costly. In 2004, Bahl et al.[8]

presented a link-layer protocol called Slotted Seeded
Channel Hopping (SSCH). Two nodes use a pseudo-
random sequence, driven by a set of seeds, to decide
which channel to switch. It does not need dedicated
channel for control, which improves channel utiliza-
tion. But it needs synchronization, which is difficult
to achieve. In 2004, So et al.[9] proposed a MAC solu-
tion for multi-channel (MMAC). In the solution, time
is divided into beacon intervals. At the start of each
interval, every node uses prefer channel list (PCL) to
negotiate with the channel for data communication. It
greatly improves the efficiency of the data transmis-
sion, but requires tight synchronization. In addition,
the switching of intervals will affect the efficiency of
the system. In 2010, Hou et al.[10] studied the chan-
nel selection problem in cognitive radio networks, de-
scribed it as a binary integer nonlinear optimization
problem, and proposed an algorithm based on prior-
ity order to maximize the total channel utilization for
all secondary nodes. In 2011, an interface-clustered
channel assignment (ICCA) scheme was presented by
Du et al.[11] It can eliminate the collision and interfe-
rence to some extent, enhance the network throughput,
and reduce the transmission delay. In 2012, Chaudhry
et al.[12] proposed a Topology-Controlled Interference-
Aware Channel-Assignment algorithm (TICA). This al-
gorithm uses topology control to assign channels for
multi-radio mesh routers, so that the interference is re-
duced, the network throughput is improved, and the
connectivity is guaranteed.

2.2 Multi-Channel Selection for Wireless
Monitoring Network

In recent years, wireless networks monitoring has be-
come a hot topic. The research mainly contains moni-
toring device, system design, fault diagnosis, etc.[15-20]

In 2004, “passive monitoring” based on multi wireless
sniffers was first introduced by Yeo et al.[15-16] They an-
alyzed the advantages and challenges of wireless passive
monitoring, and preliminarily set up an application sys-
tem, which fulfills the network fault diagnosis based on
the time synchronization and data fusion of the multi
sniffers. In 2005, Rodrig et al.[17] used sniffers to cap-
ture wireless communication data and analyze the per-
formance characteristics of 802.11 WiFi network. In
2006, Cheng et al.[18] investigated a large-scale moni-
toring network composed of 150 sniffers, and discussed
the time synchronization method for the distributed
sniffers. In 2007, Yang et al.[19] studied the lifetime
model of wireless monitoring networks, and proposed
to adjust the sensing and communication radius of snif-
fers in real time to maximize the lifetime of networks.
In 2010, Liu et al.[20] investigated the relationship be-
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tween the number of monitoring sniffers and false alarm
rate, and put forward an algorithm based on poller-
pollee structure, which can limit the false alarm rate
and minimize the number of sniffers.

Due to the multi-channel characteristic of the wire-
less network (monitored object), the wireless moni-
toring network must be equipped with the same channel
resource. Consequently, it has become an important
subject to optimize the channel selection of the snif-
fers to improve the performance of the wireless moni-
toring network. In 2009, Shin et al.[21] studied the
channel selection of sniffers in wireless Mesh network
to maximize the coverage of users. They described it
as a maximum coverage problem based on group budget
constraints[22-23], and solved it using Greedy and Linear
Programming (LP) algorithms, which achieved good
performance. Based on the researches above, Chhetri
et al.[6] formulated the problem of channel selection of
sniffers, and proved it to be NP-hard to maximize the
quality of monitoring (QoM) of the network under the
universal network model. Greedy and LP algorithms
were employed to solve the problem. Greedy algorithm
always seeks the solution with maximal current benefit
during the process of resolution, and misses the global
optimal solution or the approximate of it. Although LP
algorithm can achieve better solution than others, its
complexity is too high to meet the real-time require-
ment in the dynamic wireless networks. In 2011, we
applied Gibbs sampler theory to address the problem,
and proposed a distributed channel selection algorithm
for sniffers to maximize the QoM of the wireless moni-
toring network[24]. This method utilizes the local in-
formation to select the channel with low Gibbs energy,
but cannot achieve the global optima in most cases.

In this paper, we introduce particle swarm opti-
mization (PSO) for the channel selection of sniffers to
maximize the QoM of the wireless monitoring networks.
Monte Carlo method is incorporated to revise and opti-
mize the solution. Extensive simulations and practical
experiments demonstrate that the proposed algorithm
outperforms other algorithms not only in the quality of
solution, but also in efficiency.

3 Problem Description

3.1 Network Model

Consider a wireless monitoring network with m
monitoring sniffers, n users, and k optional chan-
nels. S = {s1, s2, . . . , sm} is the set of sniffers,
U = {u1, u2, . . . , un} is the set of users, and C =
{c1, c2, . . . , ck} is the set of channels. In homogeneous
network, sniffers have the same transmission characteri-
stics. They can read the frame information and analyze
the information from users or other sniffers, but they

can only work on one channel at a time. During a pe-
riod of time, user uj (j = 1, 2, . . . , n) works on channel
c(uj) ∈ C, and transmits data with probability puj

.
These users can be wireless routers, access points or
mobile phones, etc. If a user sends data through a
channel at time t, it will be called an “active user” at
time t.

In wireless monitoring network, the relationship be-
tween sniffers and users can be described by an undi-
rected bi-partite graph G = (S,U,E) shown in Fig.2. If
uj is in the monitoring area of si, there will be an edge
between them, denoted by e = (si, uj). When si and
uj work on the same channel, si can capture the data
from uj , then we say uj is covered by si. E represents
the set of all connecting edges. If a user is outside of
all sniffers’ monitoring area, it is excluded from G. The
vertex v of G is a sniffer or user, namely v ∈ S ∪ U .
N(v) denotes the neighbors of vertex v. If the vertex is
a sniffer si, N(si) is the set of neighbor users of si; if
the vertex is a user uj , N(uj) means its neighbor snif-
fers. If a sniffer is inside of the communication range of
another sniffer, they are called adjacent sniffers. W (si)
denotes the set of adjacent sniffers of si, and Bsi is
the set of subscript of sniffers in W (si). In this paper,
we assume that the communication radius of sniffer is
twice as its monitoring radius.

Fig.2. Undirected bi-partite graph G.

3.2 Problem Formulation

Let a: S → C represent a channel selection scheme
for wireless monitoring networks, and A is the set of
all possible schemes. Scheme a can be expressed in the
form of vector as follows: a = (a(s1), a(s2), . . . , a(sm)),
where a(si) ∈ C is the channel selected by si. When si

selects the channel a(si), it can communicate with the
neighbor users, who also work on a(si). Given a channel
selection scheme a, then S = ∪k

q=1Scq
, U = ∪k

q=1Ucq
,

where Scq
denotes the set of sniffers assigned to channel

cq, and Ucq denotes the set of users working on channel
cq. Now it is able to show the relationship between all
the sniffers and users working on channel cq in the form
of undirected bi-partite graph Gcq = (Scq , Ucq , Ecq ).
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Definition 1 (Quality of Monitoring of Sniffer
(QoM-S)). When wireless monitoring network works
on channel a ∈ A, the quality of monitoring of sniffer
si can be defined as follows:

Qsi
(a) =

∑

u∈N(si)

pu×

1(c(u) = a(si))
1 +

∑
t∈Bsi

1(c(u) = a(st), st ∈ N(u))
,

where 1(·) is an indicator function. It equals 1 when the
condition is true, and 0 otherwise. It is clear that the
more neighbor users working on the same channel as
si, and the higher transmission probability these users
have, meanwhile, the less other sniffers covering these
users, the higher monitoring quality si has. QoM-S re-
flects the number of active users available to si under
the channel selection scheme a. Active users are in the
state of sending data.

Definition 2 (Quality of Monitoring of Network
(QoM-N)). Given a channel selection scheme a, the
quality of monitoring of the wireless monitoring net-
work can be defined as follows:

Q(a) =
∑

si∈S

Qsi(a). (1)

So, the higher QoM-N is, the more active users can
be monitored in the network, and the higher quality of
service the wireless monitoring network provides.

The problem of maximizing QoM-N can be described
as follows: with limited users and sniffers in a wireless
monitoring network, to search for a channel selection
scheme for sniffers to maximize the QoM of the wire-
less monitoring network, so that the sniffers will collect
the maximal information transmitted by active users.

The channel selection scheme will be changed ac-
cording to probability during different time slots. So
the maximal information collected by the monitoring
network in a certain period can be expressed as:

max
∑

a∈A

Q(a)× π(a)

s.t. π(a) ∈ [0, 1],
∑

a∈A

π(a) = 1, (2)

where, π(a) is the probability for the wireless moni-
toring network to work on the channel scheme a.

From (2), the optimal channel selection scheme is as
follows:

a∗ = arg maxQ(a). (3)

We introduce PSO to solve this complicated combi-
nation optimization problem.

4 Channel Selection Algorithm

4.1 Particle Swarm Optimization

PSO is a population-based stochastic optimization
technique developed by Eberhart and Kennedy[25-26],
inspired by the social behavior of bird flocking and fish
schooling. PSO shares many similarities with evolution-
ary computation techniques. The system is initialized
with a population of random solutions and searches for
the optima by updating generations.

In PSO, the potential solutions are called particles.
All the particles have fitness values which are evaluated
by the fitness function to be optimized, and have the
velocities which direct the moving of the particles. The
particles fly through the problem space by following the
current optimum particles.

PSO is initialized with a group of random particles
(solutions) and then searches for the optima by updat-
ing generations. In every iteration, each particle is up-
dated by following two “best” values. One is the best
solution that has been achieved so far (its fitness value
is stored). This value is called “pbest”. The other
“best” value tracked by the particle swarm optimizer is
the best value, obtained so far by any particle in the
population. This best value is a global best and called
“gbest”.

In the past several years, PSO and DPSO (Discrete
Particle Swarm Optimization)[27-29] have been success-
fully applied in many research and application areas.
It is demonstrated that they can get better results in a
faster and cheaper way, and with fewer parameters to
adjust than most other methods.

The key technique to solve the practical problems by
using DPSO is to seek the suitable coding expression
of particle for the problem space as well as the fitness
function. The problem-specific domain knowledge and
constraints should be incorporated into the algorithm
to obtain the optimal solution and improve the conver-
gence rate of the algorithm.

4.2 2D Mapping Particle Encoding

In this subsection, we introduce a novel particle
coding for the channels selection resolution, termed
“2D mapping particle coding”. As illustrated in Fig.3,
each particle is a two-dimension (2D) binary matrix
O = (oij)k×m. It corresponds to the searching space
of the channels selection problem as shown in Fig.4.
oij = 1 expresses the j-th sniffer working on channel ci.
Because the number of elements “1” in a column should
be 1, we have the following constraint, which need to
be satisfied through the particle moving:

Column Singularity : the number of “1” in each col-
umn of legitimate particle should be 1.
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The coding method of 2D mapping particle is ad-
vantageous over other types of encoding because it is
suitable for the 2D attribute of the channels selection
problem. As will be demonstrated in later subsection,
it facilitates great flexibility in incorporating domain
knowledge to the algorithm.

Fig.3. Particle coding.

Fig.4. Searching space of the channel selection problem.

4.3 Initialization of Particles

Randomly generate k × m binary numbers, which
construct a 2D particle coding O = (oij)k×m. How-
ever, this particle coding may violate the column sin-
gularity. In fact, the number of elements “1” in the
columns may be larger or smaller than 1 as shown in
Fig.5(a). To satisfy the singularity, we revise the initial
particles by the following steps:

Given the particle O, with the elements oij :
Step 1. Randomly choose one column j from O

which is not processed. If the number of elements “1”
in this column is 1, transfer to step 4;

Step 2. If
∑k

i=1 oij > 1, execute Monte Carlo opti-
mized selection:

for each i (oij = 1), compute:

Qsj (i) =
∑

u∈N(sj)

pu · 1(c(u) = ci),

ε(i) = max
oij=1

{Qsj
(i)} −Qsj

(i),

πT (i) =
1

ZT
e−

1
T ε(i),

where, T > 0 denotes the temperature, energy function
ε(i) represents the energy of channel i, 0 < ε(i) < +∞.

ZT =
∑

oij=1 e−
1
T ε(i), then πT (i) ∈ [0, 1]. Then se-

lect a bit to be 1 using roulette rule according to the
probability πT (i) (Fig.5(b));

Fig.5. Revision of initial particle. (1) represents the number of

elements “1” in the columns is larger than 1; (2) represents the

number is zero. (a) Illegitimate particle. (b) Partially revised

particle. (c) Legitimate particle. The bits underlined are the bits

that have been removed or added.

Step 3. If
∑k

i=1 oij = 0, compute πT (i) =
1

ZT
e−

1
T ε(i), i = 1, . . . , k, and select a bit to be 1 us-

ing roulette rule according to πT (i) (Fig.5(c));
Step 4. Repeat step 1, until

∑k
i=1 oij = 1 (j =

1, . . . , m).
Monte Carlo method is a class of computational al-

gorithm that relies on repeated random sampling to
compute the probability result. It is very suitable to
be used when it is infeasible to compute an exact result
using a deterministic algorithm. Furthermore, it has
been proved that while the iteration number t → ∞,
the algorithm will converge to the state with the global
lowest energy, which is the optimal solution[30-31].

In step 2, the redundant elements “1” are removed to
construct a legitimate particle. Instead of randomly de-
ciding which one to be removed, we find the element o∗j
that can maximize the monitoring quality of sniffer sj ,
reserve it, and remove the other elements “1”, because
o∗j is most likely to be better than other solutions. In
step 3, an element “1” is added in the column. We
compute the election probability of each bit in this col-
umn, and decide which one to be “1” according to the
probability. A bit which can maximize the monitoring
quality of sniffer sj will have more chance to be elected.
This revision process incorporates domain knowledge to
form better initial particles than the random method.
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By the end of the procedure, a legitimate initial particle
is generated satisfying the column singularity.

In this manner, multi particle codings are generated
as the initial swarm.

4.4 Moving of Particles

In each iteration, all the particles move in the search-
ing space to find the global optima. The velocity and
position of each particle are updated by the following
formulas:

vid(t + 1) =w × vid(t) + c1 × r1 × (Pid − xid(t))+

c2 × r2 × (Pgd − xid(t)), (4)

xid(t + 1) =
{

1, if ρid(t + 1) < sigmoid (vid(t + 1)),

0, otherwise,

where the variable i denotes the i-th particle in the
swarm, d is the d-th dimensional value of the vector,
1 6 d 6 k ×m, t represents the current iteration num-
ber, vi is the velocity vector of the i-th particle, xi is
the position vector of the i-th particle, Pi is the indi-
vidual best position that the i-th particle has reached,
Pg is the global best position that all the particles have
reached, w is called inertia weight, c1 and c2 are two
parameters which are called cognitive confidence coef-
ficients, r1 and r2 are random values between 0 and 1,
ρi is a quasi-random value selected from a uniform dis-
tribution in [0.0, 1.0]. sigmoid(v) = 1/(1 + exp(−v)).
Furthermore, the largest moving velocity is restricted
by vmax , that is | vid(t + 1) |6 vmax, which limits the
ultimate probability that bit xid(t+1) will take on a bi-
nary value. A smaller vmax will allow a higher mutation
rate.

However, the updated particles may also violate the
column singularity. The number of elements “1” in the
resulting columns may be larger or smaller than 1 as
shown in Fig.6(b) and Fig.7(b). To satisfy the singu-
larity, we revise the updated particles using the former

Fig.6. Revision of the updated particle. (a) Former particle. (b)

Updated particle. (c) Revised particle.

Fig.7. Revision of the updated particle. (a) Former particle. (b)

Updated particle. (c) Revised particle.

steps to form legitimate particles as shown in Fig.6(c)
and Fig.7(c).

4.5 Adjustment of Inertia Weight and
Learning Factors

Suitable selection of inertia weight w, c1 and c2 in (4)
provides a balance between global and local exploration
and exploitation, and results in less iterations required
to find a sufficient optimal solution. The inertia weight
w can be set according to the following formula:

w = wmax − wmax − wmin

tmax
× t,

where tmax is the maximum iteration number, wmax is
the maximum inertia weight, wmin is the minimum in-
ertia weight. So, w decreases linearly during a run.

The learning factors c1 and c2 can be adjusted as
follows:

c1 = c1i +
c1f − c1i

tmax
× t,

c2 = c2i +
c2f − c2i

tmax
× t,

where c1i, c1f , c2i, c2f are the initial values and the
final values of c1 and c2 separately. Then, c1 decreases
linearly during a run; while c2 increases linearly at the
same time. The asynchronously varying learning fac-
tors and inertia weight have been proved to be benefi-
cial to the convergence of the algorithm[27].

4.6 Sketch of Channel Selection Resolution
Algorithm

Based on the discussion, we present the Monte Carlo
enhanced PSO (MC-PSO) channel selection algorithm
as Algorithm 1:
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Algorithm 1. MC-PSO Channel Selection Algorithm

Input: Sniffer set S = {s1, s2, . . . , sm},
user set U = {u1, u2, . . . , un},
c(uj) and puj (j = 1, 2, . . . , n),

the maximum iteration number tmax;

Output: Channel selection vector a;

xi(t) ← Generate the initial particles, 1 6 i 6 N ; t = 0;

Set Vi(t) = 0;

Revise the initial particles to satisfy singularity;

Qi(t) ← function(xi(t));

/* compute the target function value of each

particle according to (1)*/;

Q∗ = max(Qi(t)); /*choose the maximum value*/;

Set the pbest Pi = xi(t) and Qi = Qi(t);

Set the gbest Pg = x∗(t) with Q∗;

do

xi(t + 1) ← All particles move to new positions;

Revise the updated particles to satisfy singularity;

Qi(t + 1) ← function(xi(t + 1));

if (Qi(t + 1) > Qi) then

Pi = xi(t + 1); /*update the pbest*/;

Qi = Qi(t + 1);

end

if (Qi(t + 1) > Q∗) then

Pg = xi(t + 1); /* update the gbest */;

Q∗ = Qi(t + 1);

end

t = t + 1;

While (t > tmax);

5 Experimental Results

5.1 Simulations

In this section, we evaluate the performance of MC-
PSO algorithm, comparing with three baseline algo-
rithms:

Greedy: select channel for each sniffer to maximize
the sum of transmission probability of its neighbor
users.

Linear Programming (LP): solve the integer pro-
gramming problem from (3).

Gibbs Sampler : a sniffer computes the local energy
of the optional channels and their selection probability,
then chooses one channel according to the probability.

In this paper, we conduct extensive comparing ex-
periments. The program is run on a PC with Intelr

CoreTM2 CPU @2.40GHz, 2 GB memory. The software
platform is Windows XP.

We conduct three sets of experiments, and the num-
ber of the optional channels is 3, 6, and 9 respectively.

In each experiment, the four algorithms are compared
on different aspects of performance. MC-PSO and
Gibbs Sampler both run 20 times to get the average
result for evaluation. Table 1 lists the parameters of
MC-PSO, where N is the number of particles. Large
N can promote the searching ability of the algorithm,
meanwhile extend the running time of program. The
other parameters are all set as the experience values
for DPSO applications, and the experiments results also
show the validity in this case.

Table 1. Parameters Setting of MC-PSO Simulation

N vmax wmax wmin c1i c1f c2i c2f tmax

20 6 0.9 0.4 2.5 0.5 0.5 2.5 100

In the first set of experiments, 1 000 users are dis-
tributed in 500× 500m2 square field as shown in Fig.8,
and transmission probability pu ∈ [0, 0.06]. The field
is partitioned in several regular hexagon units to con-
struct the cellular framework. Each unit center is
equipped with a base station (BS) working on a certain
channel, and users in the unit work on the same chan-
nel as BS. Every two adjacent units are on different
channels. Twenty-five sniffers are deployed uniformly
in the field to form a monitoring network to collect the
communication activities of the users in this field. Moni-
toring radius of sniffer is 120 meters, and the sniffer has
3 optional channels②.

Fig.8. Wireless network topology. Hexagonal layout with users

(purple “+”), sniffers (solid dots), and base-stations (isosceles

triangles) in each cell (different colors representing working on

different channels).

②In IEEE 802.11.b/g WLAN, there are three orthogonal channels, the 1st, 6th, and 11th, with center frequency 2 412MHz,
2 437MHz and 2 462MHz, respectively.
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MC-PSO, LP, Greedy, and Gibbs Sampler are applied
respectively to solve the channel selection scheme for
sniffers. The quality of solution (QoM) of the four al-
gorithms are shown in Fig.9.

Fig.9. Performance comparison of the four algorithms in the first

set of experiments (3 optional channels).

As depicted in Fig.9(a), after 700 iterations, the pro-
posed MC-PSO algorithm converges to the extremely
optimal solution (QoM = 27.338). LP algorithm takes
the second place with QoM up to 27.105, while Gibbs
Sampler and Greedy algorithm achieve the QoM of
26.052 and 22.872 respectively (shown in Fig.9(b)). It
is shown that the Monte Carlo based solution revision
improves the convergence of PSO algorithm effectively,
and enhances its global searching ability.

Table 2 demonstrates the statistical results of the
three sets of experiments. Among the four algorithms,
MC-PSO and Gibbs Sampler both run 20 times in each
set of experiments to get the average optimal solution
and their QoM value. As deterministic methods, LP
and Greedy just run once. From Table 2, we can see
that MC-PSO outperforms LP in three sets of experi-
ments, and is evidently better than Gibbs Sampler and
Greedy. Furthermore, MC-PSO converges fast, with
shorter running time than Gibbs Sampler.

In this paper, Monte Carlo method is incorporated
to revise the solution of algorithm. We conduct the ex-

tended experiments to test its effect on the performance
of algorithm. We compare the convergence performance
of PSO using Monte Carlo revision (MC-PSO) with
PSO using random revision (R-PSO). Fig.10 shows the
magnitude distribution of MC-PSO and R-PSO. Each
row represents the results obtained by different algo-
rithms; each column represents the results obtained in
different sets of experiments. The histograms of con-
vergence iteration are plotted with a 50-iteration in-
crement. The histograms can be regarded as an ap-
proximation of the probability density function of the
convergence iteration. It is shown that, in the first set
of experiments, more than 75% convergences are during
500∼700 iterations for MC-PSO algorithm; meanwhile,
most of convergences are from 700 to 800 iterations for
R-PSO algorithm. The other two sets of experiments
present the similar experimental results. (In this paper,
the convergence iteration of algorithm is defined as the
iteration while the MC-PSO/R-PSO program running
achieves better solution than LP, and the solution does
not evolve during more than 20 iterations.)

Fig.10. Magnitude distribution of convergence iteration. (a)

k = 3. (b) k = 6. (c) k = 9. (d) k = 3. (e) k = 6. (f)

k = 9.

Table 2. Statistical Results of Three Sets of Experiments

No. Experiment MC-PSO Gibbs Sampler LP Greedy

Average Running time (s) Average Running time (s) QoM Running QoM Running

Optimal QoM (1 000 Iterations) Optimal QoM (1 000 Iterations) time (s) time (s)

1 (3 channels) 27.338 10.616 26.052 28.938 27.105 0.562 22.872 0.093

2 (6 channels) 26.760 11.695 26.261 30.953 26.484 0.812 23.363 0.109

3 (9 channels) 26.263 11.759 26.140 35.031 26.088 0.934 23.481 0.119
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From the experimental results above, we can see that
based on Discrete Particle Swarm Optimization the-
ory, utilizing the collaborative searching of the parti-
cle swarm in the multi-dimension solution space, the
proposed MC-PSO algorithm can achieve the optimal
position (the optimal channel selection scheme), so as
to maximize the QoM of wireless monitoring network.
Monte Carlo method is incorporated to revise the il-
legitimate particle (solution) to legitimate one during
the evolution of particle swarms. This operation signif-
icantly improves the quality of solution and the conver-
gence of algorithm.

5.2 Practical Network Experiment

In this subsection, we evaluate the proposed MC-
PSO algorithm by practical network experiment based
on campus wireless network (IEEE 802.11.b WLAN).
Twenty-one WiFi sniffers are deployed in a building to
collect the user information from 1pm to 6 pm (over
5 hours). Each sniffer captures approximately 320 000
MAC frames. Totally 622 users are monitored work-
ing on three orthogonal channels. The number of users
on the three channels is 349, 118, and 155 respectively.
The activity probabilities③ of these users are recorded
in Table 3. It is shown that the activity probabilities
of most users are less than 1%. The average activity
probability is 0.002 6.

Table 3. Parameters Setting of Practical Network Experiment

Active Probability Number of users

0.00∼0.01 578

0.01∼0.02 15

0.02∼0.04 29

Fig.11. QoM over campus wireless network with different number

of sniffers.

Fig.11 depicts the QoM of network with different
number of sniffers. It is clear that the QoM (the num-
ber of monitored active users) is growing up with the in-
crease of sniffers (from 5 to 21). Except the experiment
with 21 sniffers, the other sets of experiments are con-
ducted repeatedly with different sniffers selected ran-
domly from the 21 sniffers, and the statistical average
values of QoM are recorded and shown in Fig.11. Since
the average activity probability is 0.002 6, the largest
number of active users is less than 1.7 during every time
slot. Compared with LP, Gibbs Sampler, and Greedy,
the proposed MC-PSO exhibits its superiority and fea-
sibility in the practical network environment.

6 Conclusions

In this paper, we investigated the channel selection
for sniffers to maximize the QoM of the wireless moni-
toring network, which was proved to be NP-hard. A
particle swarm optimization (PSO)-based solution was
proposed to address the problem. A 2D mapping parti-
cle coding and its moving scheme were devised. Mean-
while, Monte Carlo method was incorporated to revise
the solution and improve the convergence of the algo-
rithm. Through extensive simulations and practical ex-
periment, we demonstrated that the Monte Carlo en-
hanced PSO (MC-PSO) algorithm can solve the chan-
nel selection problem effectively, and outperforms the
related algorithms evidently with fast convergence. As
an ongoing work, we are reducing the computation com-
plexity and proving the convergence performance of the
algorithm in theory.
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