
Yan J, Tan GM, Sun NH. Optimizing parallel Sn sweeps on unstructured grids for multi-core clusters. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 28(4): 657–670 July 2013. DOI 10.1007/s11390-013-1366-9

Optimizing Parallel Sn Sweeps on Unstructured Grids for Multi-Core

Clusters

Jie Yan1,2 (闫 洁), Student Member, IEEE, Guang-Ming Tan1 (谭光明), Member, CCF, ACM, IEEE
and Ning-Hui Sun1 (孙凝晖), Fellow, CCF, Member, ACM, IEEE

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: {yanjie, tgm, snh}@ict.ac.cn

Received May 10, 2012; revised February 7, 2013.

Abstract In particle transport simulations, radiation effects are often described by the discrete ordinates (Sn) form
of Boltzmann equation. In each ordinate direction, the solution is computed by sweeping the radiation flux across the
grid. Parallel Sn sweep on an unstructured grid can be explicitly modeled as topological traversal through an equivalent
directed acyclic graph (DAG), which is a data-driven algorithm. Its traditional design using MPI model results in irregular
communication of massive short messages which cannot be efficiently handled by MPI runtime. Meanwhile, in high-end HPC
cluster systems, multicore has become the standard processor configuration of a single node. The traditional data-driven
algorithm of Sn sweeps has not exploited potential advantages of multi-threading of multicore on shared memory. These
advantages, however, as we shall demonstrate, could provide an elegant solution resolving problems in the previous MPI-only
design. In this paper, we give a new design of data-driven parallel Sn sweeps using hybrid MPI and Pthread programming,
namely Sweep-H, to exploit hierarchical parallelism of processes and threads. With special multi-threading techniques and
vertex schedule policy, Sweep-H gets more efficient communication and better load balance. We further present an analytical
performance model for Sweep-H to reveal why and when it is advantageous over former MPI counterpart. On a 64-node
multicore cluster system with 12 cores per node, 768 cores in total, Sweep-H achieves nearly linear scalability for moderate
problem sizes, and better absolute performance than the previous MPI algorithm on more than 16 nodes (by up to two
times speedup on 64 nodes).

Keywords parallel Sn sweep, unstructured grid, data-driven algorithm

1 Introduction

Grid-based computational pattern is widely used
in scientific computing applications. In a grid-based
numeric algorithm, the computational domain is dis-
cretized into grids, and computation is conducted on
grid cells.

Numerical simulation of radiation transport in high
energy density plasma physics is an exemplary appli-
cation. Statistics[1] show that time devoted to particle
transport problem in multi-physics simulations costs
50%∼80% of total runtime on Department of Energy
(DOE) systems.

Radiation effects are often modeled by the discrete
ordinates (Sn) form of Boltzmann transport equation.
The standard solving method is source iteration, in
which the solution is computed by iteratively repea-

ting two phases. First, compute local scattering source.
Second, for each ordinate direction, sweep the radiation
flux from the source across the grid in the downstream
direction. In the second phase, sweeps from all ordinate
directions usually can be carried out in parallel. The
second phase is also the most time-consuming portion,
which is simply denoted as Sweep(s).

This paper focuses on the parallelization of Sweeps,
particularly on unstructured grids. During Sweep in
any given ordinate direction, there exists strict data de-
pendency between neighboring grid cells, i.e., one cell
has to wait for its upwind neighbors’ newest data and
thus cannot start computing until all its upwind neigh-
bors have been computed.

For structured grids, data dependencies are regular
and can be decided by simple mathematical calcula-
tion. Thus, a domain-based grid partitioning and wave-

Regular Paper
This work is supported by the National Natural Science Foundation of China under Grant Nos. 60925009, 61003062, 61033009,

61272134, and the National Basic 973 Program of China under Grant Nos. 2011CB302502 and 2012CB316502.
©2013 Springer Science +Business Media, LLC & Science Press, China

658 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

front parallelization approach could effectively pipeline
the computation, as shown by the success of KBA
algorithm[2-3] and Sweep3D① benchmark. It is usually
implemented in the classic Bulk Synchronization Para-
llel model[4].

Nevertheless, the above approach generally does not
work for the unstructured grid because of its irregu-
lar data dependency. Instead, Plimpton et al.[5-6] and
Mo et al.[7] introduced a graph-based data driven ap-
proach to address this problem. In their approach, for
each sweep direction (or angle), the grid is explicitly
transformed into a directed acyclic graph (DAG) ac-
cording to data dependencies among cells, and then at
each time step Sweep on the grid is equivalent to a
topological traverse across the resulted DAG. For ex-
ample, Fig.1 illustrates the correspondence between a
grid and its associated DAG under a given sweep direc-
tion. This approach essentially uses the asynchronous
Actors dataflow model[8], i.e., a vertex can compute
as soon as its dependent data from upwind vertices is
available. Conceptually, it has no explicit synchroniza-
tion and can expose all potential parallelism. How-
ever, it requires massive immediate messages passing
through edges among vertices of the DAG, which, as
shown later, cannot be supported well in current dis-
tributed memory systems. Thus, in practice, compared
with the great success on structured grids, Sweeps on
unstructured grids still suffer problems in performance
and scalability.

Fig.1. Illustration of an unstructured grid and its associated DAG

under a given sweep direction. The DAG is partitioned into 8

subgraphs (G0 ∼ G7).

Meanwhile, the multi-core processor has become the
standard computing engine on commodity clusters and
high-end supercomputers, which means the system has
a physically hybrid memory model (i.e., distributed
among computing nodes and shared by cores within a
single node). The local shared memory architecture of
multi-core is able to effectively support fine parallelism
in thread level. Compared with MPI multi-process
model, multi-thread model on multi-core eliminates the
need of explicit intra-node communication which is re-

placed by shared memory access with higher bandwidth
and lower latency. Besides, as shown in later sections,
load balance among shared memory threads is easier
to maintain, and local performance is less sensitive to
the latency of messages from remote machines. There-
fore, to introduce multi-threading parallelism within
the MPI process is of great importance to the perfor-
mance and scalability of Sn Sweeps on modern multi-
core cluster systems.

In this paper, we target at Sn Sweeps on unstruc-
tured grids, and redesign the data-driven parallel Sn

Sweeps algorithm[6-7] to exploit to advantage of con-
temporary multi-core clusters (up to 12 or more cores
in a single node). Specifically, we make three main con-
tributions.

First, we propose a new parallel Sn Sweeps algo-
rithm, namely Sweep-H, which adopts a hybrid pro-
gramming model of MPI/Pthreads. In Sweep-H, each
computing node is assigned only one MPI process that
runs multiple threads. By multi-threading, Sweep-H
replaces MPI communication within a node with di-
rect accesses to shared memory, while significantly re-
duces the number of processes and increases the sub-
graph size, which leads to more intra-node parallelism.
Sweep-H employs the master-workers multi-threading
mode, which decouples computation (done by the work-
ers) from both DAG control and communication (done
by master). With this strategy, Sweep-H provides bet-
ter supports to instant and asynchronous communica-
tion, and thus enables more inter-node runtime para-
llelism. Besides, we introduce dedicated task queues
and a specific load balance policy with which Sweep-H
works efficiently.

Second, we present a performance model for Sweep-H
and its MPI-only counterpart Sweep-MPI. The model
depicts Sweep-H’s speculated scalability over problem
size and system scale, using parameters of system con-
figuration and problem characteristics.

Third, we implement parallel programs of both
Sweep-H and Sweep-MPI and conduct experiments on
a 64-node multi-core cluster with 12 cores per node.
Results show that Sweep-H obtains high computation
efficiency (85.6% ∼ 90.2%) and nearly linear scalabi-
lity on up to 64 nodes. Analysis of the profiling data
reveals that Sweep-H reduces communication overhead
while gets much better load balance.

In the rest of this paper, we first retrospect the pre-
vious pure MPI implementation of data-driven paral-
lel Sweeps algorithm and introduce our motivations in
Section 2. In Section 3 we describe our new algorithm
Sweep-H. We give the performance model of Sweep-H
and its MPI alternative in Section 4. Section 5 reports

①Los Alamos National Laboratory. The ASCI Sweep3D Benchmark. http://www.c3.lanl.gov/pal/software/sweep3d/, Jan 2013.

Jie Yan et al.: Hybrid Parallel Sn Sweeps 659

our experimental results of Sweep-H with comparison to
its MPI alternative, as well as profiling and analysis in
detail. Related work is presented in Section 6. Finally,
we discuss missed issues of this paper and conclude the
paper in Section 7.

2 Background and Motivation

Fig.2 is the complete workflow of data-driven
Sn Sweeps for static grids, including three main
procedures. First, it eliminates cycles in the unstruc-
tured grid, and then transforms the grid into a com-
putable DAG②. Plimpton et al.[6] proposed an algo-
rithm to detect and eliminate the cycles. Second, it par-
titions the DAG into multiple subgraphs that are then
distributed to processes (processors). The graph parti-
tioning has a direct impact on load balance and further
parallel efficiency. Fortunately, previous studies[9-11] on
graph theory and parallel computing have already pro-
vided solutions to this problem. Third, it iteratively
carries out Sweeps computation for required time steps.
Each processor performs sweep computation on its local
DAG, and communicates with other processors if there
are cutting edges between their subgraphs. As a matter
of fact, while the former two procedures can be consid-
ered as pre-processing steps, the third one — Sweeps, is
the main computation part in the Sn Sweeps algorithm
and thus is our redesigning target in this paper.

Fig.2. Workflow of graph-based approach for parallel Sn Sweeps.

In this paper, we only consider the most time-consuming part –

Sweeps in the 3rd procedure.

Besides, note that Sweeps for all ordinate directions
(angles) are carried out in parallel, and for most prob-
lems they are independent. In the DAG-based data-
driven approach, sweep from different angles induces
different graphs. In this paper, we treat all these
subgraphs as a whole and implicitly leverage parallel
Sweeps from all angles.

2.1 Parallel Sn Sweeps Algorithm

On the old generations of distributed memory sys-
tems, a parallel Sn Sweeps algorithm (referred as

Sweep-MPI in this paper) was presented in [6-7, 12] and
implemented using MPI.

Fig.3 is the pseudo-code of a basic Sweep-MPI algo-
rithm. Each process holds a subgraph as well as cells’
data of the associated piece of grid.

Data Structures:

DAG: subgraph (V, E), where V = {(vi)}, E = {(vi, vj)}
N [|DAG.V |]: array of counters for every vertex to record its
unfinished upwind vertices

Cn: counter of local unfinished vertices

RQ: ready queue

Algorithm:

Procedure Sweep-MPI(DAG)

1: RQ ← ∅, Cn ← |DAG.V |
//Initialization

2: for each vi ∈ DAG.V do

3: N [vi] ← Indegree(vi)

4: if N [vi] = 0 then

5: Enqueue vi to RQ

//Main loop

6: while Cn > 0 do

7: //1: Receive

8: Receive messages

9: for each message ∈ messages do

10: (vi, vj , data[vi]) ← message

11: N [vj] ← N [vj]− 1

12: if N [vj] = 0 then

13: Enqueue vj to RQ

14: //2: Compute

15: Dequeue vk from RQ

16: Compute(vk, data[. . .])

17: Cn ← Cn− 1

18: //3: Send

19: for each (vk, vk′) ∈ DAG.E do

20: message ← (vk, vk′ , data[vk])

21: Send message to owner (vk′)

Fig.3. Sweep-MPI algorithm.

For every vertex vi, one counter N [vi] is used to
record the number of its unfinished upwind vertices.
The counter value is initialized to vi’s in-degree, and
once the counter becomes zero, vi is set ready for com-
puting. Another counter Cn records the total number of
unfinished vertices in local subgraph. The termination
condition of one iteration is that all vertices are calcu-
lated (swept), that is, Cn counts down to 0. Besides,
a queue RQ (ready queue) is used to record ready ver-
tices during runtime. In the main loop (lines 6 ∼ 21),
for a process p, it repeats the following work:
• Receive: Process p polls other processes, and re-

ceives incoming messages which contain edge informa-
tion (vi, vj) and vertex data data[vi] used for compu-
tation. The received edge (vi, vj) means vj ’s upwind

②In this paper, as explained later, we treat DAGs induced by sweeping from all angles as a whole.

660 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

vertex vi has been computed remotely, and thus we
decrement the counter N [vj] by one. If N [vj] equals
zero, that is, all upwind vertices of vj are swept, vj is
appended into RQ.
• Compute: Process p fetches a vertex vk from its

ready queue RQ, and performs computation on vk with
its dependent data. Accordingly, after vk finishes com-
putation, the counter Cn is decremented by one.
• Send: For each vk’s outgoing edge (vk, vk′) , the

edge information and data of vk are packed and sent
to the process that owns vk′ . A communication opti-
mization may be applied if the owner of vk′ is the same
as vk’s, where we can directly decrement the counter
N [vk′] without an extra remote communication.

For simplicity, the pseudo-code of Sweep-MPI in
Fig.3 omits most of implementation details. In fact,
there are two practical optimizations that are critical
to performance.

First, the priority strategy should be added to ready
queue RQ. In parallel Sweeps, ordering of ready vertex
affects available runtime parallelism, which is critical
to whole performance. In this paper, we use the prio-
rity of “length of shortest path away from processor
boundary”[7,12], where the priority of vertices can be
statically calculated in advance. The priority policy is
implemented by adding sort operation in Enqueue func-
tion, while Dequeue still simply pop the item in the head
of RQ.

Second, conceptually, communication in Sweep-MPI
is asynchronous, instant and always in short messages.
However, in practice MPI has much overhead to sup-
port this. For this reason, previous implementations of
Plimpton et al.[6] and Mo et al.[7] adopt buffer mecha-
nism as well as asynchronous MPI primitives, in which
multiple short messages are aggregated into a larger one
before real communication.

2.2 Motivation

Sweep-MPI, as stressed later, still suffers several per-
formance problems due to the MPI model itself and its
imposed restrictions on programming.

We first argue that the message buffering policy hin-
ders available runtime parallelism and further leads to
load imbalance. Although buffer policy makes over-
all data transferring more efficient, it is at the cost of
potentially more delay for some messages. These de-
layed messages would lead to unnecessary remote star-
vation. We take the simple DAG in Fig.1 as an example
in which the graph is partitioned into eight subgraphs
(G0 ∼ G7). Subgraph G4 with vertices v7 and v8 is
assigned to process p4, and subgraph G6 with vertices
v11 and v12 is assigned to process p6. According to the
data dependency, process p6 needs to receive messages

from process p4. With the buffer policy process p4 ag-
gregates results of computation on both v7 and v8, and
then sends them together as a whole to p6. As a result,
process p6 is idle while p4 is computing on v7 and v8.
Obviously, this strategy is not aware that the computa-
tion on v11 does not depend on the results of v8. If v7’s
result could be transferred to process p6 as soon as pos-
sible, process p6 would immediately compute v11 while
process p4 is computing on v8, and thus the runtime
parallelism would increase.

Another performance issue of Sweep-MPI is raised
by the mixture of computation and communication.
In the data-driven Sweeps algorithm, the communica-
tion pattern is irregular and asynchronous, such that
one process has to periodically poll other processes to
check messages. In single thread mode, timely polling
for communication would be impeded by computation,
while polling operations disrupt computation too. For
communication of massive short messages, as revealed
by our profiling data for Sweep-MPI, this polling mecha-
nism is not efficient enough.

In the next section, we propose a new parallel Sn

Sweeps algorithm that leverages the multi-core archi-
tecture to address the above two issues.

3 New Algorithm on Multi-Core Clusters

In this section we present our new parallel Sn Sweeps
algorithm, Sweep-H, that is dedicated to multi-core
clusters. We first give the design principles, and then
describe our algorithm in details with emphasis on how
it addresses critical performance issues in parallelizing
Sn Sweeps.

3.1 Design Principles

Our target platform is a commodity multicore clus-
ter system. Each node of the cluster is composed of
multiple multi-core processors sharing memory physi-
cally. All nodes are connected by high speed intercon-
nect devices like Infiniband. Data exchanges between
two nodes are supported by message passing interface
(MPI). We make a key point that hardware support for
shared memory multi-threading on multicore could give
rise to an elegant solution to the aforementioned prob-
lems in Sweep-MPI. We present our design principles as
follows.

Use Conserved Cores to Achieve Asynchrony: For
the nature of asynchronous and fine-grained parallelism
in data-driven approach, Sweeps through DAG require
instant communication to enable parallelism. With
MPI communication primitives, as illustrated earlier,
each process has to frequently poll incoming messages
to make communication as instant as possible. Never-
theless, the frequent polling leads to significant over-

Jie Yan et al.: Hybrid Parallel Sn Sweeps 661

head as in Sweep-MPI. Our strategy is to enable multi-
threading within the MPI process, and assign a specific
thread for communicating while others are dedicated
to computing. Potentially this configuration decouples
communication from computation and thus provides
more advantage in asynchronous and instant communi-
cation. Besides, given the importance of instant com-
munication, we conserve an exclusive core for the com-
municating thread (See Subsection 3.2).

Transform MPI Communication to Shared Memory
Access. Communication in data-driven Sweeps is la-
tency sensitive rather than bandwidth sensitive, be-
cause 1) only boundary vertices of subgraphs need to
communicate and thus generally the volume of com-
municating data is limited, and 2) data-driven Sweeps
require fast message delivery to enable future vertex
computing. For this situation, MPI communication is
much more expensive than shared memory access even
if most of current MPI libraries are specifically opti-
mized for shared memory. Looking at lines 20 ∼ 21
in Fig.3, one send operation involves actions of packing
messages and transferring them through network (or
local memory copy). As noted in Subsection 2.1, only
a decrement of counter N(v) is involved if the down-
wind vertex is local. Therefore, in our situation, shared
memory accesses have obvious advantage over MPI ope-
rations.

Share a Larger Subgraph to Gain Better Load Bal-
ance. On each node, we should deploy only one process
of multiple threads as well as data of its assigned sub-
graph, which benefits load balance from two aspects.
On one hand, the larger local subgraph means that
more potential runtime parallelism is decided by local
vertices and thus is less sensitive to communication la-
tency. On the other hand, within a node, load balance
is easier to maintain among a group of shared memory
threads than among a group of processes in logically
distributed memory. (See Subsection 3.4)

Fig.4 conceptually demonstrates the above design
principles, comparing Sweep-H and Sweep-MPI in terms
of the way mapping subgraphs to processors, proces-
sor usage and communication. In Sweep-MPI, all data
flows among subgraphs (both within the same node and
across different nodes) go through MPI communications
(red lines), and every processing core performs both
computation and communication. Sweep-H conserves
one processing core (labeled with M) per node for com-
munication and messages processing, while other pro-
cessing cores (labeled with W) perform computations
on vertices of the shared subgraph. In Sweep-H, we can
see that most of red lines are replaced with gray dash
lines that represent shared memory accesses. Then a
concern on Sweep-H is the potential conflicts of shared

memory access, which incur extra overhead. In prac-
tice, we address this issue by two techniques, that 1)
dividing the data space (see Subsection 3.2) and 2)
bringing in dedicated shared queues as data channels
among different kinds of threads (see Subsection 3.3).

Fig.4. Conceptual demonstration of difference between (a)

Sweep-MPI and (b) Sweep-H.

3.2 Hybrid Parallel Algorithm

We introduce multi-threads within a process to
redesign the data-driven parallel Sweeps algorithm.
Particularly, Sweep-H adopts master-workers multi-
threading mode. Fig.5 illustrates the algorithmic
framework of Sweep-H.

Fig.5. Illustration of Sweep-H algorithm.

First, we decouple computation from both commu-
nication and DAG operations. The master performs all
MPI communication as well as DAG operations, while
workers, which are instantiated of Pthreads, perform
only numerical computation on the ready vertices.

662 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

Second, we divide the data space of Sweep-H into two
disjoint parts, say graph data and computation data.
Graph data is the DAG structure which is only used
to schedule computation. Computation data, coupled
with grid cells, is the data for solving numerical equa-
tions. Thus, the master operates only on graph data
while workers compute only with computation data of
assigned cells, which perfectly eliminates data race.

Extra dedicated data structures, ReadyQueue and
CommitQueue, are designed to connect the master and
workers. ReadyQueue is the queue of vertices that are
ready for computing, where items are produced by the
master and consumed by workers. CommitQueue is the
queue of vertices that have been computed but yet not
committed results, where items are produced by work-
ers and consumed by the master.

The master loops the following steps:
1) receive messages and update states of local ver-

tices; for any updated vertex v, if all its upwind
neighbors (predecessors) are computed, insert v into
ReadyQueue;

while CommitQueue is not empty, repeat steps 2∼3:
2) get a vertex u from CommitQueue;
3) for any u’s outgoing edge (u, v)
a) if v is local, update v’s state; if all of v’s up-

wind neighbors (predecessors) are done, insert v into
ReadyQueue;

b) if v is remote, send a message to its owner;
4) if all vertices are swept, exit; else goto step 1.

Worker threads repeatedly do the following work:
1) get a ready vertex u from ReadyQueue;
2) compute on u;
3) commit u to CommitQueue.

3.3 Shared Queues

Fig.6 illustrates our practical implementation of the
framework shown in Fig.5.

Fig.6. Framework of real Sweep-H implementation.

In Sweep-H, queue data structures play a critical role
in vertex schedule and organization. ReadyQueue and
CommitQueue are channels for vertex relay that drives
the execution of workers and the master, while Prio-
rityQueue is the worker’s private vertex queue. During

its lifetime, a vertex travels through ReadyQueue, Prio-
rityQueue and CommitQueue in order.

ReadyQueue and CommitQueue are built with array-
based circular queue (simply RingArray, as shown in
Fig.7). When working as FIFO queue, RingArray is
simple, fast to index, and with good locality in batch
operation.

Date Structure:

struct RingArray{
int64 t size;

int64 t head;

int64 t tail;

lock t lock tail;

data t data[∗];
}
#define IsFull (head − tail > size)

#define IsEmpty (head 6 tail)

#define NumVertex (head − tail)

Operations:

Procedure Enqueue SP(src, n)

1: data[head%size..(head + n− 1)%size]

← src[0..n− 1]

2: head ← head + n

Procedure Dequeue SC(dest , n)

1: tail ← tail + n

2: dest [0..n− 1]

← data[tail%size..(tail + n− 1)%size]

Function Dequeue MC(dest , n)

1: if Lock Try(lock tail) = False then

2: return Failure

3: tail ← tail + n

4: dest [0..n− 1]

← data[tail%size..(tail + n− 1)%size]

5: Unlock(lock tail)

Fig.7. RingArray: data structure and operations for building

SPSC and SPMC queues.

ReadyQueue, conceptually, is an SPMC (single pro-
ducer multiple consumer) priority queue. However, we
design it as a simple FIFO queue in RingArray, leav-
ing priority policy to workers’ private PriorityQueues.
ReadyQueue is shared by all native workers, and ev-
ery worker periodically fetches a batch of vertices from
ReadyQueue and inserts them into its private Priori-
tyQueue according to vertex priority.

The design of ReadyQueue is a trade-off of the fol-
lowing three aspects. First, it is shared and frequently
accessed by both the master and workers, which means
it should be non-blocking. In our design, Enqueue ope-
ration by the master is lock-free and fence-free, while
Dequeue operation by workers uses one lock for seria-
lization. In our situation, however, this lock has almost
no blocking overhead. This is because 1) Dequeue is op-
timized to fetch data in batch, and 2) unless its own Pri-
orityQueue is empty a worker just returns from the fail-

Jie Yan et al.: Hybrid Parallel Sn Sweeps 663

ure of getting lock and defers its fetch operation to next
time. Second, ReadyQueue should be convenient to
support implementation of load balance policy among
workers. We adopt a central design, i.e., ReadyQueue
is shared by all native workers, so that workers them-
selves can maintain load balance by controlling how
many items to be fetched from ReadyQueue. Third,
ReadyQueue, as indicated by Sweep-MPI, essentially
should be a priority queue for maximizing runtime para-
llelism. However, sort on a shared queue risks serious
data access blocking. Instead, we make ReadyQueue
an FIFO queue, and defer the priority policy to be
done later independently by workers. This is a partial
priority policy which however is demonstrated effective
enough in our experiments.

PriorityQueue is introduced as a worker’s private
data structure to keep prioritized ready vertices. It
is implemented as an ordinary priority queue in single-
linked list, owned privately by each worker thread, and
invisible to the master and other workers. Every worker
gets a batch of items periodically from ReadyQueue and
inserts them into its PriorityQueue in vertex priority
order. When compute, the worker just picks the ver-
tex with the highest priority in its PriorityQueue. In
our design, the value of each vertex’s priority has been
computed statically in advance.

CommitQueue, conceptually, is an MPSC (multi-
ple producer single consumer) queue without priority
among its items. It buffers the vertices that have been
computed by workers and wait for the master to com-
mit. As shown in Fig.6, the MPSC queue is equivalently
transformed into a series of SPSC FIFO queues. For
each SPSC FIFO queue, there is only one worker being
its producer, and the master goes around all the queues
to consume vertices in batch. Because the RingArray-
based SPSC FIFO queue is lock-free and fence-free for
both the producer and consumer, so is the resulted
MPSC queue.

3.4 Schedule Policy and Load Balancing

Scheduling concerns vertices distribution and order-
ing among processors, and it is a key factor deciding
parallel performance[13]. As explained earlier, graph
partitioning, distribution of subgraphs among cluster
nodes, and calculation of vertex priority are done in-
dependently as preprocessing steps. As in Sweep-MPI,
Sweep-H adopts the priority of “length of shortest path
away from processor boundary”[7,12], while it is free to
use other priority strategies. In rest of this subsection,
we only need to consider the case within a process.

In Sweep-H, we adopt a partial priority policy,
where vertex reordering by priority is executed by each
worker on its local PriorityQueue rather than the global

ReadyQueue. This means that, from the view of a pro-
cess, vertices are swept in a partial priority order. Theo-
retically, the potential priority inversion could happen
among workers, which leads to non-optimal parallelism
and thus unnecessary starvation of remote machines.
In this paper, we have not yet developed a theoreti-
cal model to estimate the price of priority inversion.
However, in Sweep-H, the price of priority inversion is
expectedly very low, because 1) multi-threading makes
priority inversion distance shorter, and 2) dynamic ver-
tex fetching from ReadyQueue introduces enough ran-
domness to lower probability of serious inversion. In
practice, our method works effective enough while keeps
runtime overhead of vertex reordering low.

The final issue is the load balance among work-
ers within a process. Once a ready vertex enters a
worker’s PriorityQueue, it becomes invisible to both
the master and other workers. Thus, policy like work-
stealing does not work here. Instead, we propose a new
one that is more effective in our specific situation. In
our scheme, the master simply inserts ready vertices
into ReadyQueue. Meanwhile, the worker periodically
fetches items from ReadyQueue to fill its PriorityQueue
according to a rule that is simply called Load Balance
principle.

Definition 1 (Load Balance Principle). Every time,
the number of items a worker fetches from ReadyQueue
is at most (Rn+Cn)/Wn−Pn, where Rn is the num-
ber of vertices in ReadyQueue, Cn is the total number of
vertices in all workers’ PriorityQueue, Wn is the num-
ber of workers in the process, and Pn is the number of
vertices in the worker’s PriorityQueue.

The idea behind Load Balance principle is that: at
any time point when a worker tries to fetch items from
ReadyQueue, it adaptively adjusts its workload to the
approximately average level. Omitting noise in exe-
cution and given fixed vertex computation grain, this
dynamic policy is theoretically ideal for keeping load
balance among workers. In our experiments, as will be
as shown in Subsection 5.3, its effect is close to the ideal
case.

4 Performance Model

In this section, we present the performance model
of Sweep-H, along with Sweep-MPI as a comparison.
Based on the model, we further reveal why and when
Sweep-H performs better than Sweep-MPI, and gives
performance tuning guidelines for Sweep-H. Note that
focus of our model is the method of parallelization
rather than numerical characteristics of Sn Sweeps. By
a set of assumptions, we actually separate complexity
of unstructured grids and numerical solvers.

In the following analysis, we assume 1) the cluster

664 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

is uniform that all nodes have the same configuration,
2) computation on a vertex is uniform that computing
time on a vertex can be reduced to a constant value.
Besides, it has to be emphasized that except numerical
computation on vertex, all the other costs are treated
as overhead. For convenience, Table 1 defines several
notations used in our performance model.

Table 1. Notations of Variables in Performance Model

Variable Description

P Number of cluster nodes

C Number of cores per node

U Computation granularity on one vertex

V Number of vertices in DAG

Og Overhead of operations on DAG

Oc Communication overhead between any two nodes

First, given a DAG denoted as G, in the ideal case
where all overhead is omitted, we have the following
equations:

T1 = Work(G) = U × V,

Tn=c×p > Work(G)
C × P

, (1)

T∞ = U ×D, (2)

where Tn is the execution time with n cores and D is the
diameter of DAG. Formula (2) describes the theoretic
optimal performance, where the computing resources
are infinite and run time is only determined by the criti-
cal path.

Lemma 1. The necessary condition of an optimal
parallel Sweeps algorithm is (3).

V/D > C × P. (3)

Proof. In an optimal parallel algorithm, there is no
idle processor time, and thus the equality in (1) fol-
lows. Meanwhile, Tn > T∞ always holds. Hence, by
direct mathematical substitution with (1) and (2), we
get (3) from the inequality. ¤

The above analysis gives the upper bound of bene-
fits gained from increasing computing resource for the
given problem size. In Sweeps, compared with prob-
lem size, computing resource is always scarce and thus
we assume (3) usually holds. In the following analysis,
we further assume that there keeps enough parallelism
over the whole lifetime of critical path③.

Now, we take the overhead of DAG updates and MPI
communication into account, and do a further analysis
under the assumption of load balance of both inter- and
intra-node. For Sweep-H, the execution time is decided

by the maximum running time of the master and work-
ers, which is described by (4). In (4), we assume the
DAG is partitioned by vertex and mapped evenly to
machine nodes, which is also the fact in our practice.
Besides, we treat the communication overhead, includ-
ing time of both polling and actual message process-
ing, as being proportional to the number of subgraphs
(equal to the number of processes, P) with unit cost
Oc.

TSweep-H = max{Tworker, Tmaster}
= max

{ U × V

(C − 1)× P
,
Og

P
+ P ×Oc

}
. (4)

For Sweep-MPI, the expected execution time can be
estimated by (5) under the same assumptions with (4).

TSweep-MPI = (Tcomputation + TDAG) + Tcommunication

=
U × V + Og

C × P
+ C × P ×Oc. (5)

As shown in (4) and (5), the difference between
Sweep-H and Sweep-MPI is as follows. In Sweep-H
the master performs DAG operations and communi-
cation while workers do numerical computation. In
Sweep-MPI, however, one process alternates to do all
work.

Ideally, the optimal value of TSweep-H is Tworker, and
in this situation all physical cores running workers are
fully utilized. Also, for given system scale and problem
size, Tworker is a constant value and thus the destination
of a perfect Sweep-H design. Therefore, the sufficient
and necessary condition on which Sweep-H gains opti-
mal performance is that Tworker > Tmaster or equiva-
lently that the worker rather than the master decides
the critical path.

If Sweep-H has been optimal (i.e., TSweep-H =
Tworker), in order to beat Sweep-MPI, Tworker <
Tcomputation +TDAG +Tcommunication is necessary. Com-
pared with Sweep-MPI, Sweep-H allocates a specific core
for each process to run the master thread, which means
the number of cores doing computation is reduced. In
other words, Sweep-H pursuits more efficiency in com-
munication and DAG schedule at the cost of reduced
resources on vertex computation.

As Sweep-H adopts master-workers mode to decou-
ple the computation from DAG-related control, the op-
timization of Tmaster and Tworker are independent. The
optimization to vertex computation (the variable U) is
specific to applications, and is the duty of users. Here,
we presume that the computation time U has been op-
timal and treat it as being constant. Equation (4) gives

③Strictly speaking, in the beginning and end of a Sweeps iteration, some processors have no ready vertices to compute.

Jie Yan et al.: Hybrid Parallel Sn Sweeps 665

some implications to tune performance in Sweep-H, as
follows.
• If Tworker is dominant, then actually we have got-

ten the optimal result. In this situation, if the per-
formance cannot meet the needs, the only way is to
increase computing resources (say, number of nodes),
which is always effective until Tworker is no longer dom-
inant.
• If Tmaster is dominant, we have to tune Sweep-H

in two aspects. First, we can reduce Og and Oc in
order to make Tmaster lower than or at least close
to Tworker, which is always effective. Second, in the
sense of mathematics, given fixed Og and Oc, Tmaster

is a P ’s non-monotonic function which reaches its
lower bound 2

√
Og ×Oc at P =

√
Og ×Oc. Thus,

if Tworker < 2
√

Og ×Oc, we increase P ; and else,
we should decrease P until Tmaster = 2

√
Og ∗Oc or

Tmaster = Tworker.
• As long as the inequality Tworker > Tmaster holds,

both weak and strong scalability of Sweep-H are theo-
retically linear, which is also demonstrated in our ex-
periments. For the situation that TSweep-H is dominated
by Tmaster, according to (4), the weak scalability (over
increasing problem sizes, or U × V) is linear, while the
strong scalability would cross an inflection point.

5 Experimental Evaluation

In this section, we experimentally evaluate the per-
formance and scalability of Sweep-H, with a compari-
son to Sweep-MPI. Further, we give a detailed analysis
based on profiling data, and conclude why Sweep-H out-
performs Sweep-MPI on scalability.

5.1 Experimental Setup

Our multicore cluster consists of 8 cabinets with 10
nodes per cabinet. All 10 nodes in a cabinet are fully
connected with infiniband network, and each pair of
cabinets are connected by one infiniband channel. In
our experiments, we use at most 64 nodes of the clus-
ter. The configuration of one single node is shown in
Table 2.

The operating system on each node is CentOS 5.5
Linux. Besides, all reference codes are implemented in
C, compiled by GCC 4.1.2 with default options, and
linked with libraries of Pthread and OpenMPI 1.5.1.

Without loss of generality, we consider an example
adapted from a realistic application for single-group ra-
diation transport equation with stencil S4 (12 direc-
tions) on the rectangular Cartesian grid. The grid con-
sists of X × Y zones, equivalent to 12×X × Y vertices
of DAG. The experimental grid is nonconforming and
can simulate the irregular data dependency in general
unstructured grids. As in Mo[7], we use a horizontal

Table 2. Experimental Platform Configuration

Node SMP

Number of processors 2

Memory size 24GB

Processor Intel Xeon X5650

Number of cores 6

Frequency 2.67GHz

L1 cache size 384K

L2 cache size 1 536K

L3 cache size 12M

Memory type DDR3-1333

QPI speed 6.4GB/s

Interconnection Infiniband

Rate 40GB/s

stripe decomposition for the super underlying graph,
which actually behaves better than any other block
decomposition policies in our experiments. In both
Sweep-MPI and Sweep-H, Sweeps from all angles are
carried out concurrently. Besides, we set the granula-
rity of computation on any vertex as a fixed value (de-
noted as U). For convenience, we use a triple (X, Y, U)
to denote problem size in this section.

5.2 Performance and Scalability

In all charts of this subsection, the default horizon-
tal axis is the number of nodes (P). One node means
12 processes for Sweep-MPI and 12 threads (1 master
plus 11 workers) for Sweep-H. Also, for simplicity of
comparison, we use problem size (X = 1 K, Y = 8 K,
U = 10 K) as the baseline, and the performance is rep-
resented as 1 000/T , where T is the execution time in
seconds.

Fig.8 shows the performance comparison of Sweep-H
and Sweep-MPI on different problem sizes. As shown in
Fig.8(a), in small system scale (less than 16 nodes),
Sweep-MPI performs better. However, with the num-
ber of nodes increasing, Sweep-H catches up and finally
outperforms with considerable advantage. We then in-
crease the problem size by doubling mesh size, and as
shown in Fig.8(b), the result is similar except that the
performance of Sweep-MPI has an obvious drop on 32
nodes. Again, we continue to increase the problem size
by doubling the computation unit, and the result in
Fig.8(c) shows almost the same performance trend with
Fig.8(b), for both Sweep-H and Sweep-MPI.

Obviously, advantage of Sweep-H over Sweep-MPI is
due to its better scalability, which is demonstrated in
Fig.9. In small system scale (1 ∼ 8 nodes), both are
improved with nearly linear speedup. However, when
the system scales to 16 nodes and up, while Sweep-H
still maintains linear speedup, speedup of Sweep-MPI
becomes smooth.

666 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

Fig.8. Performance comparison of Sweep-H and Sweep-MPI. Problem size (X, Y, U) means the mesh size is X×Y , and vertex computation

grain is U . Performance is represented by the reciprocal of execution time, multiplying 1 000. Higher is better. (a) Problem size (1K,

8K, 10K). (b) Problem size (2K, 8 K, 10K). (c) Problem size (2K, 8 K, 20K).

Fig.9. Scalability comparison of Sweep-H and Sweep-MPI. Problem size (X, Y, U) means the mesh size is X×Y , and vertex computation

grain is U . (a) Problem size (1K, 8K, 10K). (b) Problem size (2 K, 8 K, 10K). (c) Problem size (1K, 8K, 10 K).

In another view, we investigate the computation ef-
ficiency (ratio of total vertex computation time to total
CPU time). Take the baseline experiment as an exam-
ple. Efficiency of Sweep-H is 90.2% ∼ 85.6%, which
is stable and close to its theoretical upper bound (i.e.,
11/12 ≈ 91.6%, as 11 of 12 cores are workers doing nu-
merical computation). As a comparison, Sweep-MPI’s
actual efficiency ranges from 96.6% to 54.1% with a de-
creasing trend over incremental cluster nodes, while the
theoretical upper bound is 1.

In summary, 1) Sweep-H shows nearly linear scala-
bility over system scale from 1 to 64 nodes, and ac-
cording to our performance model it can continue to
scale until Tworker is no longer dominant; 2) under the
same graph partitioning method and priority strategy,
Sweep-H outperforms Sweep-MPI when the system scale
is moderate or larger.

Additionally, we observe that in our experiments,
while the performance of Sweep-H is very stable be-
tween different tests of the same problem size and be-
tween tests of different problem sizes, Sweep-MPI has
obvious fluctuation even for the same problem size es-
pecially when the number of processes is large (e.g., no
less than 16 × 12). Actually, the performance results
of Sweep-MPI shown in the charts of this paper are the
best values of all runs.

5.3 Detailed Profiling and Analysis

We take the baseline case of (X = 1 K, Y = 8 K, U =
10K) to do profiling in details and analyze the reasons
why Sweep-H has better scalability than Sweep-MPI.
Note that data given in the charts of this subsection are
the average values of all involved processes or threads.

First of all, we take overheads in real implemen-
tations into consideration, and rewrite performance
formulas of Sweep-H and Sweep-MPI. For Sweep-H,
TSweep-H is dominated by Tworker in practice, so we
rewrite (4) as (6), where Tcomputation is the time of
numerical computation on vertices, Tschedule is the
overhead of operating ReadyQueue, CommitQueue and
PriorityQueue, and Tstarvation is the average idle time
that a worker has no ready vertex to compute. Simi-
larly, rewrite (5) as (7), where Tcomputation is the time
of numerical computation, Tcommunication is the time of
all communication related overheads including request
polling (Tcheck) and real processing (Tmpi), and Tother

is time spent on operating DAG and scheduling ready
vertices.

TSweep-H = Tworker

= Tcomputation + Tschedule + Tstarvation, (6)

Jie Yan et al.: Hybrid Parallel Sn Sweeps 667

TSweep-MPI = Tcomputation + Tcommunication + Tother.
(7)

We dissect (6) and (7) to analyze factors that af-
fect the scalability of Sweep-H and Sweep-MPI. Obvi-
ously, increasing computing nodes means proportion-
ally decreasing subgraph size, and thus good scalabi-
lity means executing time decreases in the same pro-
portion. In (6), Tcomputation and Tschedule are propor-
tional to subgraph size, and thus Tstarvation decides the
scalability of Sweep-H. In (7), Tcomputation is exactly
and Tother is approximately proportional to subgraph
size, so the scalability of Sweep-MPI is determined by
Tcommunication. Therefore, in order to get linear scal-
ability, Tstarvation for Sweep-H and Tcommunication for
Sweep-MPI should be either decreased proportionally
over increasing nodes or kept in a very low level.

Now, we analyze the detailed profiling data for
Sweep-H and Sweep-MPI. Fig.10 shows the percentage
distribution of different parts of execution time defined
in (6) and (7). Sweep-H, as shown in Fig.10(a), un-
surprisingly keeps a very low percentage of Tstarvation,
which exactly explains why Sweep-H is linearly scal-
able in our experiments. In contrast, as shown in
Fig.10(b), Sweep-MPI has an ever-increasing percentage
of Tcommunication (aggregate of TComm1 and TComm2, be-
ing explained later). Scrutiny to Fig.10(b) reveals that
scalability of Sweep-MPI drops exactly when percentage
of communication-related overhead becomes significant.
For example, on the system scale of 64 nodes, commu-
nication overhead takes more than 40% of run time,
which makes performance of Sweep-MPI as lower as al-
most half of Sweep-H.

We investigate Tcommunication to analyze the rea-
sons of its dramatic rise. By triggering sources,
communication-related overhead can be divided into
two parts, say TComm1 and TComm2. In the real im-
plementation of Sweep-MPI, computation and commu-
nication are overlapped. Between successive computa-
tion of two ready vertices, Sweep-MPI routinely uses the
time slot to check and do communication, which costs
TComm1. Besides, when the sweeping procedure is not
over but there is no local ready vertex, i.e., the pro-
cess is trapped in starvation, Sweep-MPI just repeats
to check the coming messages and flush all buffered
sending messages, which costs TComm2. Thus, TComm2

includes the effect of starvation.
Table 3 gives the data of TComm1 and TComm2 on dif-

ferent number of nodes, as well as real communication
time Tmpi. As shown, TComm1 is nearly constant over
any number of nodes, while TComm2 is variable but
keeps in a high level. Both of them are significant and
do not decrease with increasing nodes, which limits the

Table 3. Communication Time (s) of Sweep-MPI for

Mesh 1K × 8K and Computation Grain 10K

Number of Nodes TComm1 TComm2 Tmpi

1 0.580 33 6.157 36 0.018 58

2 0.519 94 4.000 38 0.016 16

4 0.491 77 4.705 03 0.014 96

8 0.482 72 2.775 85 0.014 55

16 0.489 39 1.444 10 0.014 08

32 0.521 47 1.532 31 0.013 89

64 0.537 29 3.590 72 0.014 83

Note: Tcommunication consists of TComm1 and TComm2,

with Tmpi included.

Fig.10. (a) Sweep-H: worker’s execution time distribution. (b) Sweep-MPI: execution time distribution, where communication overhead

is divided into Comm1 and Comm2. The profiling results were collected on mesh 1 K × 8K and computation unit 10K.

668 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

scalability or speedup over system scale. Besides, from
the fact that TComm2 is far higher than TComm1, we can
see that the overhead introduced by starvation is more
serious than routine communication.

Table 3 also reveals that Tmpi is trivial and approxi-
mately constant, which indicates that the time of com-
munication check rather than data transfer is domi-
nant in both TComm1 and TComm2. In fact, in order
to realize instant communication and further avoid re-
mote starvation, Sweep-MPI adopts asynchronous MPI
primitives and checks the need of communication as fre-
quent as possible, which results in significant TComm1

and however still could not get expected load balance
(low TComm2).

Obviously, the unnatural starvation is due to the
latency of message delivery from upwind vertices to
downwind vertices. We here experimentally demon-
strate that this latency is brought in primarily by MPI
itself rather than network latency. In our experiments,
we measure the performance of Sweep-MPI on two con-
figurations with the same total number of processes.
The first configuration runs 12 processes per node while
the second runs one process per node, which means the
latter uses more network in data transferring. Results
in Fig.11 show that for our experimental grids the net-
work has no negative impact on performance.

Fig.11. Effect of network to Sweep-MPI on mesh 1K × 8K and

computation grain 10K.

So far, we can conclude that 1) Sweep-MPI’s scala-
bility is limited by communication overhead and load
imbalance, and 2) the communication overhead is due
to the MPI’s own inefficiency to support instant deli-
very of massive short messages.

As a comparison, Sweep-H is successful in overcom-
ing the above problems of Sweep-MPI.
• Sweep-H significantly reduces communication

costs. Table 4 is the profiling data of communication
time for Sweep-H. Tmpi is the time of MPI functions,
which can approximately represent the cost of real com-
munication. In Sweep-H, only the core running master
thread is involved in communication, thus the amor-
tized cost of each core is Tmpi/C (C is number of cores
per node, here it is 12). Comparison between Table 3

and Table 4 shows that Tmpi/12 in Sweep-H is less
than Tmpi in Sweep-MPI by at least one order of mag-
nitude. (Note that because of the different policies of
communication check, Tcommunication in Table 4 is not
comparable with TComm1 or TComm2 in Table 3.)

Table 4. Communication Time (s) of Master in

Sweep-H for Mesh 1 K × 8K and Computation Grain 10K

Nodes Tcommunication Tmpi

1 0.000 24 0.000 00

2 0.004 92 0.004 42

4 0.040 27 0.007 93

8 0.057 85 0.010 58

16 0.056 11 0.012 02

32 0.058 80 0.012 35

64 0.056 50 0.012 15

Note: Tcommunication itself includes Tmpi.

• Sweep-H is less sensitive to communication la-
tency. The data-driven parallel algorithms require in-
stant communication, otherwise if there are no more
ready vertices in remote nodes the lagged messages will
lead to unnecessary starvation. In Sweep-H, the size
of one process’s subgraph is C times as big as that
in Sweep-MPI. The bigger subgraph means more na-
tive runtime parallelism, which can tolerate more com-
munication latency. This fact is indirectly confirmed
by the profiling results shown in Table 3 and Table
4 where Tmpi in Sweep-H is always less than that in
Sweep-MPI. In our implementations of both Sweep-MPI
and Sweep-H, once a process has no ready vertices, it
flushes sending message buffers and checks coming mes-
sages repeatedly. Thus higher Tmpi usually means more
communication of short messages.
• Sweep-H has nearly optimal load balance, as il-

lustrated by the low percentage of worker’s starvation
time in Fig.10(a). This verifies our initial design prin-
ciple that load balance among shared memory workers
is kept by Load Balance principle while load balance
among nodes is maintained by more local parallelism
and better instant communication. Actually, as the
number of nodes increases, load balance among work-
ers becomes more important. As shown in Fig.12, com-
pared with the simple RoundRobin policy in which each
worker tries to fetch a fixed number of ready vertices
from ReadyQueue, Load Balance principle has no ob-
vious effect when the number of nodes is less than 32,
but on 64 nodes it shows about 39% performance im-
provement.

6 Related Work

As the most important deterministic method solving
Boltzmann transport equation, parallel Sn Sweeps has
been widely investigated. Most of previous algorithmic

Jie Yan et al.: Hybrid Parallel Sn Sweeps 669

Fig.12. Effect of load balance policies of Sweep-H on mesh 2 K

× 8K and computation unit 10K. Performance is represented

by the reciprocal of execution time, multiplying 1 000. Higher is

better.

work is for 3-D structured grids, among which the
KBA algorithm[2-3] is very successful in parallelizing
sweep operations. KBA decomposes 3-D grids in a
2-D columnar fashion and pipelines computation by
angles in a way of wavefront, which synchronizes the
inter-processor communication. The MPI implemen-
tations based on KBA on Cray-T3D and CM-200
in Lawrence Livermore National Laboratory demon-
strated good scalability over hundreds to thousands of
processors. Later, ASCI Sweep3D benchmark④ and
Ardra⑤ further achieved nearly perfect scalability on
thousands of processors, with parallel efficiency higher
than 90%.

For unstructured grids, however, progress of par-
allel Sn Sweeps is not so optimistic because of the
irregular data dependency of computation on cells.
Plimpton[6] gave a survey of the earlier work [13-14].
Also, Plimpton et al.[5] first presented a graph-based
parallel pipeline algorithm of Sn Sweeps for 3-D un-
structured grids. In the algorithm, geometric depen-
dencies in the mesh are modeled as a DAG, and the
full boltzmann problem is to simultaneously perform
M sweeps on the DAG, where M is the number of or-
dinate directions. Later, Mo et al.[7] in fact gave a gen-
eral framework and formal model for Plimpton et al.’s
method. Implementations of this method on hundreds
to one thousand of processor cores[12] show moderate
scalability of parallel efficiency.

Most known implementations of above algorithms
are MPI-based and originally designed for distributed
memory system. Recently, some efforts (e.g., [15-17])
have made to leverage the Cell or GPU architectures to
accelerate the Sweep3D. Particularly, some of them[17]

explored the potential benefits of accelerating the wave-
front computation on multi-GPU clusters.

However, multicore clusters have been the main-
stream of today’s HPC systems. Previous pure MPI-
based algorithms fail to take advantage of multi-
threading on shared memory within the multicore node.
For structured grid, the MPI-based algorithms are ef-
ficient enough, while for unstructured girds the existed
methods still suffer from problems as stated in this pa-
per. To the best of our knowledge, our work is the first
trial to leverage the intra-node multicore architecture
to realize problems in MPI implementations of Plimp-
ton and Mo et al.’s data-driven algorithm.

7 Discussion and Conclusions

7.1 Apply Sweep-H in Real-World

The focus of this paper is the Sweep-H method it-
self as well as its comparison to Sweep-MPI. In order to
identify behaviors of the Sweep methods, we made two
key simplifications to the real-world cases, such that 1)
the schedule unit is a cell (vertex), and 2) the computa-
tion grain of any cell (vertex) is fixed. Now we discuss
the above two issues.

First, in today’s particle transportation simulations,
generally the computation and schedule unit is often
a patch (i.e., a cluster of adjacent cells) rather than a
single cell. On one hand, for most applications compu-
tation on a single cell is too little to amortize the cost of
scheduling it. On the other hand, clustering a group of
neighboring cells into a patch can significantly improve
the cache locality and partly eliminate the NUMA ef-
fect in machines of multi-socket processors.

Sweep-H and Sweep-MPI can easily handle patches
by treating and scheduling one patch as a “super-
vertex” consisting of multiple vertices/cells, while with
patches the graph partitioning phase needs much extra
work to handle the data dependency between super-
vertices.

Second, grain of vertex computation would vary for
different cells in the same time step or the same cell in
different time steps. This is because particles in cells
are moving during different time steps and thus the
real data dependency between cells is evolving. The
direct effect of varied grain of vertex computation is
load balance. Compared with Sweep-MPI, Swep-H has
demonstrated better load balance within machine node.

7.2 Conclusions

As the kernel of radiation transport simulation,
Sweeps is critical to the overall performance. In this
paper, we proposed Sweep-H, a new parallel data-driven

④Los Alamos National Laboratory. The ASCI Sweep3D Benchmark. http://wwwc3.lanl.gov/pal/software/sweep3d, Jan. 2013.
⑤Lawrence Livermore National Laboratory. Ardra: Scalable parallel code system to perform neutron and radiation transport

calculations. http://www.llnl.gov/casc/Ardra/, Jan. 2013.

670 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

algorithm of Sweeps on unstructured grids. It adopts
a hybrid parallel model of both MPI and Pthreads,
taking advantage of hybrid memory model and multi-
threading on contemporary multicore clusters. Com-
pared with previous Sweep-MPI, Sweep-H improves
communication efficiency on message volume and de-
livery latency, as well as load balance among processes.
Our performance model and experiments on up to 64
nodes (768 cores) both demonstrated the nearly linear
scalability of Sweep-H under practical problem parame-
ters.

Results of Sweep-H are promising. In the future,
we shall deploy and investigate Sweep-H in real situa-
tions, with more practical 3D grids on larger system
scales. Besides, ideas and technologies we developed in
Sweep-H can be generalized to other data-driven paral-
lel applications.

References

[1] Downar T, Siegel A, Unal C. Science based nuclear energy
systems enabled by advanced modeling and simulation at the
extreme scale. Report of Workshop on Nuclear Energy, May
2009, http://science.energy.gov/∼/media/ascr/pdf/program-
documents/docs/Sc nework shop report.pdf.

[2] Baker R S, Alcouffe R E. Parallel 3-D Sn performance for
MPI on cray-T3D. In Proc. Joint Int. Conf. Math. Meth-
ods and Supercomputing for Nuclear Applicat., Oct. 1997,
pp.377-393.

[3] Baker R S, Koch K R. An Sn algorithm for the massively
parallel CM-200 computer. Nuclear Science and Engineer-
ing, 1998, 28: 312-320.

[4] Valiant L G. A bridging model for parallel computation.
Communications of the ACM, 1990, 33(8): 103-111.

[5] Plimpton S, Hendrickson B, Burns S et al. Parallel algo-
rithms for radiation transport on unstructured grids. In Proc.
ACM/IEEE Conf. Super Computing, Nov. 2000, Article
No.25.

[6] Plimpton S, Hendrickson B, Burns S et al. Parallel Sn sweeps
on unstructured grids: Algorithms for prioritization, grid par-
titioning, and cycle detection. J. American Nuclear Science
and Engineering, 2005, 150(3): 267-283.

[7] Mo Z Y, Zhang A Q, Cao X L. Towards a parallel framework
of grid-based numerical algorithms on DAGs. In Proc. the
20th IPDPS, Apr. 2006, p.310.

[8] Hewitt C, Bishop P, Steiger R. A universal modular actor
formalism for artificial intelligence. In Proc. the 3rd IJCAI,
Aug. 1973, pp.235-245.

[9] Schloegel K, Karypis G, Kumar V. Parallel static and dy-
namic multi-constraint graph partitioning. Concurrency and
Computation: Practice and Experience, 2002, 14(3): 219-240.

[10] Karypis G, Kumar V. Multi-level graph partitioning schemes.
In Proc. ICPP, Aug. 1995, pp.113-122.

[11] Hendrickson B, Leland R. A multilevel algorithm for parti-
tioning graph. In Proc. ACM/IEEE Conf. Super Computing,
Dec. 1995, Article No.28.

[12] Zhang A Q. Research on scalable parallel data driven algo-
rithms and applications [Ph.D. Thesis]. China Academy of
Engineering Physics, 2009.

[13] Pautz S D. An algorithm for parallel Sn sweeps on un-
structured meshes. Nuclear Science and Engineering, 2002,

140(2): 111-136.
[14] Nowak P, Nemanic M K. Radiation transport calculations on

unstructured grids using a spatially decomposed and threaded
algorithm. In Proc. Int. Conf. Mathematics and Computa-
tion, Reactor Physics and Environmental Analysis in Nuclear
Applications, Sept. 1999, pp.379-390.

[15] Gong C Y, Liu J, Chi L H, Huang H W, Fang J Y, Gong
Z H. GPU accelerated simulations of 3D deterministic par-
ticle transport using discrete ordinates method. Journal of
Computational Physics, 2011, 230(15): 6010-6022.

[16] Lubeck O, Lang M, Srinivasan R, Johnson G. Implementation
and performance modeling of deterministic particle transport
(Sweep3D) on the IBM Cell/BE. Scientific Programming,
2009, 17(1/2): 199-208.

[17] Pennycook S J, Hammond S D, Mudalige G R, Wright S A,
Jarvis S A. On the acceleration of wavefront applications us-
ing distributed many-core architectures. The Computer Jour-
nal, 2012, 55(2): 138-153.

Jie Yan is a Ph.D. candidate
of Institute of Computing Technol-
ogy (ICT), Chinese Academy of Sci-
ences (CAS), Beijing. Previously, he
obtained the M.S. degree from Uni-
versity of Science and Technology of
China, Hefei, in 2010 and B.S degree
from Beijing University of Posts and
Telecommunications in 2007, both in
computer science. His current re-

search interests focus on parallel algorithms and computa-
tional model for large-scale graph analysis.

Guang-Ming Tan received the
Ph.D. degree in computer science
from CAS. He is an associate profes-
sor in the State Key Laboratory of
Computer System and Architecture,
ICT, CAS, Beijing. From 2006 to
2007, he was a visiting researcher in
the Computer Architecture and Par-
allel Systems Laboratory, University
of Delaware, USA. His research in-

terests include parallel algorithm and programming, perfor-
mance modeling and evaluation, and computer architecture.
He is a member of CCF, ACM, and IEEE.

Ning-Hui Sun received his B.S.
degree from Peking University in
1989 and M.S. and Ph.D. degrees
both in computer science from the
CAS in 1992 and 1999, respectively.
He is a professor in ICT, CAS.
He is the architect and main de-
signer of the Dawning series high
performance computers, from Dawn-
ing2000 to Dawning Nebulae. His re-

search interests include computer architecture, operating
system, and parallel algorithm. He is a fellow of CCF and
member of ACM and IEEE.

