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Abstract With the development of cloud computing, more and more data-intensive workflows have been deployed on
virtualized datacenters. As a result, the energy spent on massive data accessing grows rapidly. In this paper, an energy-
aware scheduling algorithm is proposed, which introduces a novel heuristic called Minimal Data-Accessing Energy Path
for scheduling data-intensive workflows aiming to reduce the energy consumption of intensive data accessing. Extensive
experiments based on both synthetical and real workloads are conducted to investigate the effectiveness and performance of
the proposed scheduling approach. The experimental results show that the proposed heuristic scheduling can significantly
reduce the energy consumption of storing/retrieving intermediate data generated during the execution of data-intensive
workflow. In addition, it exhibits better robustness than existing algorithms when cloud systems are in presence of I/O-
intensive workloads.
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1 Introduction

Cloud computing is emerging as a promising
distributed computing paradigm providing a highly
available, scalable, and flexible computing platform for
a variety of applications[1-2]. In cloud environments,
high-performance datacenters play an important role
in resource management and service provision, and
their performance and reliability directly affect the QoS
(Quality of Service) satisfaction of cloud users[3]. To
maintain desirable QoS, many datacenters tend to
equip with advanced IT devices and keep them avai-
lable in 24 hours[4]. Consequently, the energy consu-
mption of datacenters grows rapidly significantly
increasing the operational cost of infrastructure provi-
ders[5-6]. Furthermore, the increasing energy consump-
tion in datacenters also raises many other issues, such as
reliability[7], security[8], and CO2 emission problems[9].
Therefore, energy-efficiency management has become a
major concern in the design of modern datacenters.

Recently, energy-aware scheduling for workflow ap-
plications attracts plenty of attentions[10-12]. Typi-
cally, workflow applications can be categorized as
computation-intensive and data-intensive. Cloud in-
frastructures have several advantages over traditional
high-performance computing (HPC) systems for exe-
cuting data-intensive workflows, such as configurable
virtual execution environment[13], on-demand resource
provision[14], and elastic service capability[15]. How-
ever, these advantages also raise many challenging is-
sues when implementing energy-aware scheduling for
data-intensive workflows, which are briefly summa-
rized as: 1) Improper intermediate data transferring
and moving will result in degraded execution perfor-
mance as well as high energy consumption[10-11]; 2) VM
schedulers often adapt proportional fairness strategy
for vCPU allocation[16]. However, high-frequent I/O
requests will significantly increase the context-switch
overheads and make the proportional fairness strategy
inefficient and unpredictable[17-19]; 3) Data-intensive
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workflows are usually interwoven with computing tasks
and data accessing tasks. As the energy consumption
models of two classes of tasks are quiet different, it is
difficult to reduce both two kinds of energy consump-
tion at the same time[20-21].

To address the above issues, in this work we pro-
pose a novel scheduling algorithm, which applies a new
heuristic called Minimal Data-Accessing Energy Path
(MDEP) for scheduling data-intensive workflows. The
proposed scheduling algorithm consists of two phases:
firstly, it uses MDEP heuristic for deploying and con-
figuring virtual machine (VM) instances; secondly, it
schedules workflow activities to VM instances according
to a novel priority, which is calculated by combining the
execution-dependency and the per-VM power model to-
gether. In this way, both the execution performance
and energy-efficiency are fully taken into consideration
in the proposed algorithm. The main contributions of
this work are as follows: 1) We present a general energy
model for data-intensive workflow applications, which
fully takes the energy consumption of data transferring
into account. 2) Based on the general energy model, we
implement an energy-aware algorithm and present some
properties of the proposed algorithm theoretically. 3)
By comparing the results with four existing heuristic
algorithms, we are convinced that the proposed algo-
rithm is effective to conserve the energy consumption
for data-intensive workflows.

The rest of this paper is organized as follows. In Sec-
tion 2, we summarize the related work. In Section 3, we
present the formal definitions on workflow scheduling
and the problem description. In Section 4, energy mod-
els for both VM instance and workflow scheduling are
presented. In Section 5, we analyze the energy-aware
scheduling model and present the implementation of
our heuristic. In Section 6, extensive experiments are
conducted and the results are carefully investigated and
evaluated. Finally, Section 7 concludes the paper with
a brief discussion of our future work.

2 Related Work

Generally speaking, the problem of workflow
scheduling is NP-hard, but some of them still can be
solved in polynomial time under certain conditions. For
example, Benoit et al. proposed an algorithm with
polynomial complexity for scheduling pipeline workflow
under energy constraint[22]. Although they only theo-
retically proved that one-to-one or interval-mapping
strategy for scheduling pipeline workflows are polyno-
mial time-complexity if the objective function is sin-
gleton, their work pointed out a valuable methodology,
that is, the structural features of a workflow have sig-

nificant effects on the complexity of the scheduling al-
gorithm.

In the past few years, many efforts have been taken
into designing energy-aware scheduling algorithm for
computation-intensive applications[23-26]. As the pro-
cessors contribute to the major part of the overall en-
ergy consumption, most of the scheduling algorithms
are based on DVFS (Dynamical Voltage and Frequency
Scaling) mechanism[27]. For example, in [24], Rizvandi
et al. combined the traditional Max-Min algorithm
with DVFS mechanism and designed an MMF-DVFS
heuristic for precedence-constrained applications. In
[25], Lee and Zomaya proposed two energy-conscious
scheduling heuristics, in which the scheduling scheme is
repeatedly modified until the energy consumption can-
not be reduced any longer. In [26], Mezmaza et al. de-
signed a bi-objective hybrid scheduling framework, in
which makespan and energy consumption are defined as
the objective functions, and the underlying scheduling
mechanism is based on a genetic algorithm. As most of
the existing algorithms assume that the energy spent
on data accessing is ignorable, it makes them unsuit-
able for scheduling data-intensive applications.

Traditionally, studies on conserving the data-
accessing related energy consumption mainly concen-
trate on storage architecture. For example, in [28],
Zong et al. proposed a buffer-based framework, in
which a buffer controller component is responsible for
accumulating small-writing operations together and
then sends these accumulated data to physical disks.
In this way, the data-center can keep a large number
of idle disks in sleeping modes as long as possible. In
[29], Manzanares et al. proposed a pre-fetching buffer-
ing technique, which uses the block accessing frequency
as a heuristic to configure the corresponding buffer set-
tings. The above studies are effective for saving the
energy consumption of storage systems at the physical
level. However they are not application-oriented, which
means that they are only suitable for coarse-grained en-
ergy consumption management instead of fine-grained
energy consumption optimization. As noted in [30],
more and more cloud providers wish to charge their cus-
tomers for applications’ energy consumption. There-
fore, fine-grained energy consumption optimization and
control seems to be the mainstream in the future.

Recently, many researchers have taken their efforts
into studying the co-relation between energy consump-
tion and application’s characteristics. For example,
Cho and Melhem presented an excellent theoretical
work on the interplay between energy consumption and
application structure[31]. In [18], Kang et al. studied
the performance and energy costs of scheduling MapRe-
duce applications, and proposed an I/O group schedu-
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ler, which collectively delegates the I/O requests to the
privileged VM instance (dom-0) so as to reduce the ex-
tra costs spent on VM context-switches.

Based on the existing studies, our work takes
both the application’s structural feature and energy
consumption model into account when designing the
heuristic. Unlike those heuristic schedulings for
computation-intensive applications, we do not rely on
DVFS mechanism, since the major part of energy con-
sumption of running data-intensive workflows is spent
on storing/retrieving a large volume of intermediate
data.

3 Problem Description and Definitions

To run workflow applications in a cloud system,
many services and middleware are involved as shown
in Fig.1. At first, users submit their workflow descrip-
tion files through the submission portal service. Then,
a workflow management engine is responsible for trans-
lating the abstract workflow into the concrete workflow
and mapping their activities onto a set of VM instances
which are provided by certain VM hypervisor. The VM
hypervisor is responsible for scheduling active VMs on
physical resources in coordinated manners.

Fig.1. Framework of executing workflow applications in a virtu-

alized environment.

In this work, we mainly concentrate on data-
intensive workflows, which have some significant differ-

ences from computation-intensive workflows. For exam-
ple, the intermediate date generated by a computation-
intensive workflow is relatively small and can be eas-
ily stored in computing nodes’ memory or local disks.
While a data-intensive workflow will generate a large
volume of intermediate data, which requires being
stored in independent storage nodes. To illustrate the
execution procedure, Fig.2 shows an example of map-
ping scheme for a data-intensive workflow.

Fig.2. Example of mapping scheme for data-intensive workflow.

Typically, a workflow is represented by a DAG (di-
rected acyclic graph). When running a data-intensive
workflow, input data of an activity node is transferred
from an independent storage node to the execution
node, and output data is transferred back to the origi-
nal storage node or others. It is clear that not only the
computing activities (v1 ∼ v8) should be mapped onto
computing resources (c1 ∼ cn), but also the communi-
cation edges should be properly mapped onto storage
nodes (s1 ∼ sm). Such an interweaving of comput-
ing and data-accessing tasks makes it more complex for
scheduling data-intensive workflows.

For the convenience of representation in the follow-
ing sections, we firstly give the related definitions in
this section.

Definition 1. A workflow is noted as a directed
acyclic graph G = (V, W ), where V = {v1, v2, . . . , vn}
is the set of activities representing computing tasks,
W = {wi,j |if 〈vi, vj〉 ∈ W} is the set of edges and each
wi,j indicates that vj depends on vi in terms of data-
flow or execution-dependence.

Definition 2. Each activity vi is represented as a
3-triple 〈ai, d

in
i , dout

i 〉, where ai is the size of computing
task, din

i is the size of input data required by vi, d
out
i is

the size of output data generated by vi.
Definition 3. A VM instance is noted as VM i =

〈Fv, Mv, Sv〉, where Fv is the working frequency of
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virtual processor allocated to VM i, Mv is the size of
virtual memory, Sv is the size of virtual disk configured
for VM i.

In many commercial cloud systems (i.e., Amazon
EC2①), VM instances are pre-defined by the cloud
provider and waiting for users’ selection. In this work,
we ignore some detailed parameters of VM instances
such as OS type and price, since they are irrelevant
with our topic. Before scheduling a workflow onto a
cloud platform, a set of VM instances should be created
and deployed at first. This phase is often called as VM
provision or VM deployment[32]. A VM deployment
scheme can be considered as a mapping from physical
resources to virtual resources defined as follows.

Definition 4. A VM deployment scheme is noted as
D : C × S → 〈Fv,Mv, Sv〉, where C = {c1, c2, . . . , cn}
is the set of computing nodes, S = {s1, s2, . . . , sm} is
the set of storage nodes.

For a given VM deployment scheme, its output is a
set of VM instances that will be deployed on the cloud
platform for executing the target workflow. So, we can
formalize the workflow scheduling scheme and its cor-
responding energy consumption as follows.

Definition 5. A workflow scheduling scheme is
noted as M : V × C × S → {0, 1}, in which each ele-
ment Mi,i′,i′′ indicates that activity vi is scheduled on a
VM instance whose virtual processor is allocated from
computing node ci′ and its virtual disk is from si′′ .

Definition 6. For a given scheduling scheme M ,
the total energy consumption of completing the target
workflow G is noted as E(G,M).

Based on the above definitions, the problem of
scheduling data-intensive workflow for optimal energy
consumption can be formulized as:

minE(G,M)

s.t. M : V × C × S → {0, 1}, V = {v1, v2, . . . , vn},
C = {c1, c2, . . . , cm}, S = {s1, s2, . . . , sk}.

It is clear that the above programming problem is
NP-complete since the solution space of M is 2n+m+k.
Therefore, a heuristic algorithm seems to be necessary
for obtaining a suboptimal solution. Before proposing
any heuristics, we firstly need to figure out the approach
to modeling the energy consumption of a data-intensive
workflow under a given scheduling scheme, that is the
formulation for calculating E(G,M).

4 Energy Consumption Model of
Data-Intensive Workflows

According to the previous analysis, it can be known
that a final scheduling scheme consists of two phases:

VM deployment and DAG scheduling. In the phase of
VM deployment, physical resources are mapped into a
number of VM instances. So, the original power model
of a physical machine should be translated into the VM-
oriented power model. In the phase of DAG schedul-
ing, activities in the workflow is assigned onto a set of
VM instances, therefore the total energy consumption is
dependent on the VM power models and the execution
time of each VM. So, we first present the per-VM power
model, and then give the energy consumption model of
a workflow under a given DAG scheduling scheme.

4.1 VM Power Model

The power consumption of machine consists of static
part Pstatic and dynamic part Pdynamic. Pstatic is the
fixed power consumption for keeping the machine in
working state even there is no workload on it, while
Pdynamic is related with the dynamic utilization of
power-consuming components. Typically, the power
model of a physical machine is formulated as

P (t) = Pstatic +
∑

j∈Ω

Pj(t),

where Pj(t) is the dynamic power consumption of com-
ponent j, Ω is the set of power-consuming components,
which often consists of CPU, GPU, memory, disk, etc.
When a machine is virtualized, its power model can be
rewritten as

P (t) = Pstatic +
m∑

i=1

P vm
i (t),

where P vm
i (t) is the power model of individual VM in-

stances, m is number of active VM instances on this
machine. As the capability of a physical machine is
multiplexed by the VM hypervisor among multiple VM
instances, the power model of a VM can be formulated
as

P vm
i (t) =

Pstatic

m
+

∑

j∈Ω

[ri
j × Pj(t)], (1)

where ri
j is the allocation ratio of component j config-

ured to VM i.
It is noteworthy that the physical components in

a VM instance may come from different physical ma-
chines. For example, a number of processors from dif-
ferent machines may be consolidated together for run-
ning a computation-intensive application[33]. As our
work focuses on data-intensive workflows, without loss
of generality, we assume that the computing task of in-
dividual activities is relatively small. So, both virtual
processors and memory allocated from a same physical

①Amazon EC2, http://aws.amazon.com/ec2, Apr. 2013.
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machine are sufficient to finish the computing tasks.
On the contrary, the virtual disk must be allocated
from external storage systems (i.e., Amazon S3② and
XtreemFS[34]), which are especially designed for mas-
sive and large volume data-accessing.

4.2 Energy Model Under Scheduling Scheme

After the deployment of VM instances, a workflow
will be assigned onto these VMs. Given a scheduling
scheme M , according to Definition 4, M can be noted as
{Mi,i′,i′′ |i ∈ (1, . . . , n), i′ ∈ (1, . . . , m), i′′ ∈ (1, . . . , k)},
where i is the index of activities in the workflow, i′ is the
index of computing nodes, and i′′ is the index of storage
nodes. Therefore, we can note the energy consumption
of completing the activity vi as E(vi,Mi,i′,i′′).

As shown in Fig.2, part of E(vi,Mi,i′,i′′) is spent on
virtual processor and virtual memory, and the other
part is spent on virtual disk. In the following, we
note them as Ec(vi,Mi,i′,i′′) and Ed(vi,Mi,i′,i′′), re-
spectively. When an activity vi = 〈ai, d

in
i , dout

i 〉 is as-
signed onto VM j , its execution time of computing task
can be noted as

Texec =
ai

rj
cpu × Fv

, (2)

where rj
cpu is the allocation ratio of CPU configured

to vi. Combining (1) and (2), Ec(vi,Mi,i′,i′′) can be
measured as

Ec(vi,Mi,i′,i′′) = P vm
j (t)× ai

rj
cpu × Fv

. (3)

As the virtual disk is allocated from an external sto-
rage system, the disk component in (1) will be auto-
matically ignored. To calculate the energy consumption
spent on data accessing, we must take into account the
location of the storage node as well as the structure of
the workflow. Based on the illustration in Fig.2, we can
have the formulation of Ed(vi,Mi,i′,i′′) as below.

Ed(vi,Mi,i′,i′′) =
∑

j∈Pred(vi)

(
P j′′

disk(t)
din

j→i

Bi′,j′′

)
+

∑

k∈Succ(vi)

(
P i′′

disk(t)
dout

i→k

Bi′,i′′

)
, (4)

where P k
disk(t) is the power model of storage node k,

Bi,j is the bandwidth between storage node i and com-
puting node j, din

j→i is the input data from vj to vi, dout
i→k

is the output data from vi to vk, Pred(vi) and Succ(vi)
are the predecessors and successors of vi respectively.

It is clear that the first part of (4) is the energy con-
sumption spent on obtaining input data before running

vi, and the second part is the energy consumption spent
on storing output data after finishing vi. Combining (3)
and (4), we can obtain the total energy consumption
under a given scheduling scheme shown as

E(G,M) =
∑n

i=1
[Ec(vi,Mi,i′,i′′) + Ed(vi,Mi,i′,i′′)].

(5)

5 Scheduling Model and Algorithm

5.1 Scheduling Model

When scheduling a DAG application in conventional
HPC systems, the earliest start time (EST) is the key
metric for many scheduling algorithms. It is defined as
the earliest start time of activity vi if it is scheduled on
processor pj , which is calculated by

EST (vi) =

{
0, if vi = vinit,

max
vk∈Pred(vi)

{EFT (vk) + wk,i}, otherwise,

(6)
where wk,i is the cost of data transferring from vk to
vi, EFT (vk) is the earliest finishing time of vk. There-
fore, a scheduling algorithm that aims to obtain optimal
makespan is to minimize EST (vexit) + Texec(vexit, pj),
where Texec(vi, pj) is the execution time of vi on pro-
cessor pj .

Various kinds of algorithms have proposed their own
heuristics. For instance, HEFT[35] assigns each ac-
tivity with an upward rank called ranku(vi), which
is defined as the longest distance from vi to vexit in-
cluding the computation cost of vi. Then, it sorts
all activities in decreasing order of ranku(vi) and as-
signs each activity with a processor which can minimize
EST (vi, pj) + Texec(vi, pj).

In virtualized cloud systems, we can still adapt met-
ric EST for workflow scheduling. However, some mod-
ifications of (6) should be made if the data-intensive
feature is taken into account, which is shown as:

EFT (Mi,i′,i′′) =





0, if vi = vinit,

max
vj∈Pred(vi)

{
EFT (Mi,i′,i′′)+

dout
j′→j′′

Bj′,j′′
+

din
j′′→i′

Bj′′,i′

}
, otherwise,

(7)
where dout

j′→j′′/Bj′,j′′ is the cost of output data trans-
ferring from the computing node of vj (one of the
predecessors of vi) to its intermediate storage node,
din

j′′→i′/Bj′′,i′ is the cost of input data transferring from
vj ’s intermediate storage node to the computing node
allocated to vi.

Clearly, the key difference between (6) and (7) is that
the intermediate data generated by a data-intensive

②Amazon S3, http://aws.amazon.com/s3, Apr. 2013.
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workflow should be accessed through independent sto-
rage nodes instead of being directly transferred between
computing nodes. Although such a difference seems
slight, it will have significant effects on the final per-
formance of a scheduling scheme, including makespan
and energy consumption. For example, considering a
system with three computing nodes (c1, c2 and c3) and
two storage nodes (s1 and s2). Assuming s1 is con-
nected with the computing nodes through 100M net-
work, while s2 uses 1G network. To schedule a data-
intensive workflow (shown in Fig.3), three VM instances
(VM 1 ∼ VM 3) are created by two different VM de-
ployment schemes (DS 1 and DS 2), which are shown in
Table 1. The only difference between the two schemes
is that the first scheme VM 1 uses s1 as its underlying
storage node, while all VM instances use s2 as their
underlying storage node in the second scheme.

Fig.3. Example of data-intensive workflow.

Table 1. Two VM Deployment Schemes

VM Deploying Scheme VM 1 VM 2 VM 3

DS1 〈c1, s1〉 〈c2, s2〉 〈c3, s2〉
DS2 〈c1, s2〉 〈c2, s2〉 〈c3, s2〉

When using HEFT algorithm scheduling this work-
flow under the two deployment schemes, we can have
two different execution flowcharts as shown in Fig.4. It
is clear that when a VM instance uses s1 as its underly-
ing storage node, then all activities assigned to this VM
instance will suffer from longer data transferring time
than other activities using s2. It is noteworthy that
both v5 and v6 require additional input data transfer-
ring when using DS 1 deployment scheme, while using
DS 2 they do not. It is because that their predecessor
v3 is assigned to VM 1 whose storage node is s1 under
DS 1, while under DS 2 all VM instances use s2 as their
underlying storage nodes. More importantly, this will
result in significant difference in energy consumption.

Motivated by the above observations, in this work
we propose a novel heuristic, namely Minimized
Energy Consumption in Deployment and Scheduling
(MECDS), for data-intensive workflows in virtualized
cloud systems. The MECDS mainly consists of two
phases: VM deployment and workflow scheduling.

Fig.4. Workflow execution flowcharts under (a) DS1. (b) DS2.

In the phase of VM deployment, we select a storage
node which can be allocated to a VM instance aiming
to obtain minimal data accessing energy consumption
for the current activities. To do this, we introduce a
novel conception, called Minimal Data-Accessing En-
ergy Path (MDEP), which is defined as the minimal
total energy consumption from vinit to the current ac-
tivity shown as:

MDEP(vi) =





Ed(vi,Mi,i′,i′′), if vi = vinit,

Ed(vi,Mi,i′,i′′)+

min
vj∈Pred(vi)

{MDEP(vj)}, otherwise.

(8)
According to the definition of MDEP, if a storage

node si′′ can satisfy min{MDEP(vi)} among all sto-
rage nodes, then the activity vi should use it as the
storage node. If a VM instance that uses si′′ as the
underlying storage node has already been created and
deployed, then we can go on; otherwise a new VM in-
stance should be created and deployed, which uses si′′

as the underlying storage node. By repeating the above,
we can complete the deployment of VM instances.

In the phase of workflow scheduling, we define the
priorities of VM instances as:

rank(VM i) = MDEP(vexit) + Ec(vexit,VM i). (9)
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So, the rank of VM i indicates the minimal data-
accessing energy consumption of vexit if it is assigned to
VM i. Here, we take into account the computing energy
consumption Ec(vexit,VM i) in case two VM instances
are configured with the same storage node and different
computing nodes. All VMs are sorted in the ascendant
order of rank(VM i). As for the activity priority of ac-
tivities, we directly use the classic b-level rank for the
convenience of implementation, which is defined as

rank(vi) = max
vj∈Pred(vi)

{rank(vj)}+
ai

ri
cpuFv

. (10)

Based on the above scheduling model, the detailed
implementation of the heuristic algorithm is shown as
Algorithm 1.

Algorithm 1. MECDS

Input: original DAG: G = (V, W ), bandwidth matrix: B,

power model of all physical nodes.

Begin

1. vset := {};
2. k := 0;

3. for each vi do

4. Find an sj that satisfies minimized MDEP(vi);

5. if exists a VM that uses si then

6. continue;

7. end if

8. k := k + 1;

9. Create VM k and add it to vset;

10. end for

11. Sort all VMs in vset in the ascendant order of
rank(VMi);

12. Compute rank(vi) for all activities by traversing G
from vexit to vinit;

13. Sort the activities in a scheduling list by non-
increasing order of rank(vi);

14. while there are unscheduled activities do

15. Select the first task vi from the list for scheduling;

16. for each VM j in {VM 1, . . . ,VM k} do

17. Compute EST (Mi,i′,i′′) + Texec(vi);

18. end for

19. Assign vi to VM i′′ that minimizes

EST (Mi,i′,i′′) + Texec(vi) by insert scheduling;

20. if sv < dout
i then

21. Reconfigure the virtual disk of VM i′′ to meet

the requirement of vi;

22. end if

23. end while

End

In the MECDS implementation, step 3 ∼ step 10 are
to create and development VM instances for the target

workflow; step 11 ∼ step 23 are to schedule workflow
onto the set of VM instances. In step 21, a VM reconfig-
uration operation is performed because we cannot know
the exact virtual disk size at the time of VM creation
(in step 9).

5.2 Analysis of MECDS Algorithm

We first analyze the time complexity of the MECDS
algorithm. Then, the major properties of MECDS will
be presented theoretically.

Theorem 1. The time complexity of MECDS is
O(n× s+n× log(n)+n× log(s)), where n is the num-
ber of activities, s is the number of storage nodes.

Proof. There are two main phases in the implemen-
tation of MECDS. The first phase is VM configuration
and deployment (as shown in step 3 ∼ step 10). In
this phase, MECDS traverses all activities in the target
workflow. In each loop, a storage node si that satis-
fies min{MDEP(vi)} should be selected out as a can-
didate. As shown in (8) that MDEP(vi) is not a linear
function of any parameter of a storage node, binary-
searching algorithm is not applicable here. So, it takes
O(s) time to do this work in the worst case, and the
average time-complexity is O((s− 1)/2), where s is the
number of storage nodes. Therefore, the total average
time-complexity of the first phase is O(n × (s − 1)/2),
where n is the number of activities in the workflow.

In the second phase, according to (9) MECDS
first sorts all VM instances in the ascendant order
of rank(VM i) (step 11), which will take O(log |vset |)
time to do this, where |vset | is the number of VM in-
stances. In steps 12 ∼ 13, the ranks of all activities
should be calculated according to (10) and sorted in
non-increasing order, which will take O(n+n× log(n))
time to do this. In the following while-loop, the algo-
rithm traverses the unscheduled list and assigns them
to suitable VM instances. It takes O(n×log |vset |) time
to do this.

Summarizing the above analysis, we can know that
the total time-complexity of MECDS is O(n × s +
log |vset | + n + n × log(n) + n × log |vset |). As 1 6
|vset | 6 s, it means O(1) 6 O(log |vset |) 6 O(log(s)).
Therefore, we can simply note the time complexity of
MECDS as O(n× s + n× log(n) + n× log(s)). ¤

Theorem 2. If ∀vi ∈ V satisfying the following
condition

Ec(vi,Mi,i′,i′′) ¿ Ed(vi,Mi,i′,i′′),

then, the MECDS algorithm can obtain the scheduling
scheme M with minimized E(G,M).

Proof. The condition means that for all activities
the energy spent on computing tasks is ignorable. By
(5) we can have
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E(G,M) ≈
n∑

i=1

Ed(vi,Mi,i′,i′′).

According to (4), Ed(vi,Mi,i′,i′′) only depends on
the selection of its underlying storage node for a given
DAG. Meanwhile, step 4 in the MECDS algorithm
will select those storage nodes that satisfy minimized
MDEP(vi) for the following VM configuration. By
the definition of MDEP(vi), we can know that for
∀vi ∈ V there exists at least one VM instance that
can minimize Ed(vi,Mi,i′,i′′). Taken vinit as an exam-
ple, the definitions of MDEP(vinit) and Ed(vi,Mi,i′,i′′)
are identical, so the VM instance that can satisfy
min{Ed(vi,Mi,i′,i′′)} is the one selected out in step 4. If
there are several VMs satisfying min{Ed(vi,Mi,i′,i′′)),
we only need to select one that satisfies the precedent-
constraint of the DAG. This is done by step 16 ∼ step
19 in MECDS, which uses inserting strategy to schedule
the current activity. ¤

Theorem 2 indicates that the MECDS algorithm is
effective to reduce the energy consumption of data-
intensive workflow, whose data-accessing energy con-
sumption contributes most to the total energy con-
sumption.

Theorem 3. If all the storage nodes have the identi-
cal power model, and the condition in Theorem 2 is still
satisfied, the MECDS algorithm can obtain the schedul-
ing scheme M with minimized makespan.

Proof. By (4), we can know that Ed(vi,Mi,i′,i′′) is
dependent on the storage node’s power model P i

disk(t).
If all the storage nodes have the identical power model,
for ∀vi ∈ V , Ed(vi,Mi,i′,i′′) will be strictly linear to
the intermediate data transferring time (din

j→i/Bi′,j′′ +
din

i→k/Bi′,j′′). According to the analysis and conclusion
of Theorem 2, the MECDS can minimize Ed(vi,Mi,i′,i′′)
for all activities. Therefore, it can minimize the inter-
mediate data transferring time, which in turn minimizes
the makespan. ¤

Theorem 3 indicates that the MECDS algorithm can
improve the execution performance for data-intensive
workflows. It is noteworthy that the conditions as-
sumed in Theorem 3 are sufficient instead of necessary.

6 Experiments and Evaluation

We conduct two groups of experiments to investi-
gate the performance of the proposed algorithm. The
first group of experiments is performed on an extended
version of CloudSim[36] by using synthetical DAG work-
loads. The second group of experiments is conducted
on a real cloud testbed and uses a real world workflow
as workload. To compare the performance of MECDS
algorithm with others, we adapt four other exis-

ting scheduling algorithms including HEFT[35], MMF-
DVFS[24], ECS+idle[25], and EADAGS[23].

6.1 Simulative Experiments

In simulative experiments, we mainly focus on the ef-
fects of data-intensive characteristic on workflow energy
consumption and execution performance (makespan).
The flowchart of the target workflow is shown in Fig.5,
which has two features: firstly, it has massive parallel-
ing subtasks which generate a large volume of interme-
diate data; secondly, its level-structure is quiet distin-
guishing, which enables us to exploit the potential of a
cloud system. Such a workflow paradigm can be seen in
many data-intensive applications, such as MapReduce
applications[37] and parameter sweep applications[38].

Fig.5. Flowchart of simulative workflow.

For the convenience of conducting experiments, we
set all the computing nodes and the storage nodes
fully connected with various bandwidths randomly dis-
tributed from 10 MB to 1GB. We use the communica-
tion computation ratio (CCR) metric as the indicator
of data-intensive degree. A higher CCR value means
that the workflow is more data-intensive. The experi-
ment is conducted six times, each with a different CCR
value ranging from 0.1 to 10.0 gradually. To distin-
guish the energy spent by different components (i.e.,
vCPU, vMem, vDisk), we separately record them in
all cases, and the experimental results are shown in
Fig.6(a)∼Fig.6(f).

As shown in Fig.6(a), when CCR is in low level,
we notice that processors contribute most to the to-
tal energy consumption regardless of the used schedul-
ing algorithm. In this case, HEFT performs the worst
among all the five algorithms, while ECS+idle ob-
tains about 47% energy saving compared with the for-
mer. The reason is that ECS+idle is specially designed
for computation-intensive applications, which applies
DVFS mechanism to reduce the processor energy con-
sumption. As mentioned in Section 2, both MMF-
DVFS and EADAGS use DVFS for scheduling DAG ap-
plications, so we can see that their processor related en-
ergy consumptions are also very low just like ECS+idle.
The difference between those three DVFS-based algo-
rithms is that MMF-DVFS seems more unstable than
the other two, since the deviation of its vCPU energy



956 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Fig.6. Energy consumption and distribution for different CCRs. (a) CCR = 0.1. (b) CCR = 0.5. (c) CCR = 1.0. (d) CCR = 2.0. (e)

CCR = 5.0. (f) CCR = 10.0.

consumption is very high. The reason is that MMF-
DVFS uses coarse-grained DVFS adjusting strategy
which considers energy consumption minimization as
the only objective, while ECS+idle and EADAGS use
fine-grained DVFS adjusting strategy which tries to
make a tradeoff between makespan and energy con-
sumption. For example, ECS+idle algorithm recur-
sively adjusts the working frequency according to a rela-
tive superiority (RS) metric. As to the MECDS, its
vCPU energy consumption is slightly lower (about 9%)
than that of HEFT, but significantly higher than other
three algorithms. It is because that MECDS does not
use DVFS mechanism to reduce the processor energy
consumption.

When CCR value is in moderate level (as shown
in Fig.6(b)∼Fig.6(d)), the vCPU energy consumptions
of all algorithms are reduced at first and then are in-
creased. Taking ECS+idle algorithm as an example,
its vCPU energy consumption is reduced by about 33%
when CCR increases from 0.1 to 1.0, and then is in-
creased by about 24% when we further increases CCR
to 2.0. To explain this, we show the mean makespan of
all experiments in Fig.7.

It is clear that the mean makespan has the same
trend just like energy consumption. The main reason
is that the total energy consumption of an application

Fig.7. Mean makespan for different CCR values.

is linearly proportional to its execution time. There-
fore, longer makespan often results in higher energy
consumption. So, the important point is that how the
CCR metric affects the execution time. In the simula-
tive experiments, when adjusting CCR in low level, we
reduce the size of computing tasks so as to increase the
CCR value. While the CCR is in moderate level, we
increase the size of input/output data to increase the
CCR value. Therefore, we can see that the makespan
is reduced at first and then is increased, which in turn
results in corresponding change of energy consumption.
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According to the results shown in Fig.6 and Fig.7,
CCR=2.0 seems to be the turning point for both
makespan and energy consumption. When CCR
value is bigger than 2.0, vDisk energy consumption is
dramatically increased (as shown in Fig.6(e)∼Fig.6(f)).
Therefore, we can know that the efficiency of storage
nodes has become the performance bottleneck when
CCR increases to a high level, not only for the en-
ergy consumption but also for the makespan. In this
situation, MECDS significantly outperforms other al-
gorithms in terms of both metrics. As shown in the
implementation of MECDS, the phase of VM deploy-
ment plays an important role in saving data accessing
energy. In this phase, we use MDEP as the heuristic for
VM configuration. It is noteworthy that we try to cre-
ate VM instances as less as possible, and let each VM
instance be configured with a different storage node. In
this way, several parallel tasks can be mapped onto the
same VM instance so as to maximize the utilization of
high-performance storage nodes.

Although DVFS mechanism is effective for saving
processor energy consumption, its energy savings still
cannot compensate the energy wastage caused by pro-
longed execution time. More specifically, many proces-
sors still consume a lot of energy when they are wait-
ing for the completion of massive data accessing, even
their working frequency has been switched to the low-
est level. For example, the vCPU energy consumption
of ECS+idle increases about 74% when the CCR is in-
creased from 2.0 to 10.0. We can easily guess that a
great deal of vCPU energy is wasted on I/O waiting.
Unfortunately, CloudSim does not provide any facili-
ties for differentiating the wasted energy from the total
energy. So, we have to evaluate that in the real plat-

form experiment, which will be presented in the next
subsection.

6.2 Experiments on Practical Workflow

The real world experiments are conducted on the
cloud platform deployed in our HP high-performance
network center. The platform consists of 20 comput-
ing nodes (c1 ∼ c20) and 7 storage nodes (s1 ∼ s7) as
underlying physical resources, which are virtualized by
using XCP③. To take into account the heterogeneity,
we adopt various kinds of equipments made by differ-
ent vendors, and the detailed parameters of these nodes
are shown in Table 2 and Table 3. During the experi-
ments, we use the Oprofile toolkit④ to log the energy
consumption related events, and adopt the VM power
model proposed in [39] to measure the per-VM energy
consumption.

The target application we select is the well-known
INVMOD workflow[40], which is designed to study the
effects of climatic changes on the water balance. The
basic framework of INVMOD workflow is shown in
Fig.8, which mainly consists of two parallel process-
ing levels. Each task in the two-level parallel process-
ing (iWasimRunA and iWasimRunB) will transfer its
input data from storage nodes, and the intermediate
data should be stored temporarily.

Unlike the simulative experiment, we cannot figure
out the CCR value of the INVMOD workflow before its
execution, because the size of transferred data is dy-
namically changed. To solve this problem, we use the
pre-defined iteration counter (noted as n) to represent
the size of the INVMOD, which is gradually increased
from 10 to 50. According to our estimation after experi-

Table 2. Hardware Parameters of Computing Nodes

Node ID Processor Architecture CPU Speed (GHz) Core Voltage (V) Power Consumption (W) Memory (GB)

c1 ∼ c8 Intel Xeon E5606 4× 2.13 0.75 ∼ 1.35 Idle: > 280 16

Quad-core Peak: 450

c9 ∼ c20 AMD A4-3400 2× 2.7 0.91 ∼ 1.41 Idle: > 120 2

Dual-core Peak: 200

Table 3. Hardware Parameters of Storage Nodes

Node ID Storage Total Capacity Total Power Interface Speed Disk Cache

Framework (GB) Consumption (W) (MB) (MB)

s1 ∼ s2 IBM Ultrastar 5 400 Idle: > 550 800 ∼ 1 200 32

RAID Peak: 1280

s3 ∼ s7 WDC iSCSI 250 Idle: > 180 200 ∼ 350 8

Sever Peak: 250

③XCP, http://www.xen.org/download/xcp/index 1.1.0.html, Apr. 2013.
④Oprofile toolkit, http://oprofile.sourceforge.net, Apr. 2013.
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Fig.8. Framework of INVMOD application.

ments, the CCR value is about 5.0 ∼ 7.0 when iteration
counter n = 10, and it is increased to about 43 ∼ 60
when n = 50. As a result, we can see from Fig.9 that
vDisk energy consumption is significantly higher than
other kinds of energy consumption.

When n = 10 and n = 20, HEFT and MMF-DVFS
seem to perform worst in all the five algorithms in term
of total energy consumption. The difference between
them is the energy consumption distribution. More
specifically, HEFT costs more energy on vCPU, while
MMF-DVFS costs more energy on vDisk. The reason

is the same as mentioned in the simulative experiments.
However, we find that the vDisk energy consumption of
MMF-DVFS and ECS+idle increase more quickly than
HEFT and EADAGS when n > 20. This is different
from our simulative results.

To find out the reason, we investigate the logs of
scheduling procedure during our experiments. The logs
indicate that HEFT algorithm tends to assign tasks
onto those VM instances configured with higher com-
puting capability (i.e., c1 ∼ c8), while MMF-DVFS and
ECS+idle tend to map tasks onto the VMs configured
with more power-efficient computing nodes. In com-
mon sense, MMF-DVFS and ECS+idle should perform
more energy-efficiently. However, the structural cha-
racteristic plays a more important role in this case. As
shown in Fig.8, when n = 10 it means that the loop
will be executed 10 times at most. So, increasing n
value will significantly prolong the execution time of
solving sub-problems. More importantly, each loop has
another parallel branch, in which all the tasks require
transferring data. Simply speaking, the performance
bottleneck of running INVMOD is the execution of this
inside loop. When n is increasing, this bottleneck be-
comes more and more significant. As HEFT always
tends to use powerful computing resources, which en-
ables it to reduce the overall makespan of INVMOD
and in turn reduces the energy consumption. On the
contrary, MMF-DVFS and ECS+idle do not notice this
application-specific feature. Although they can reduce

Fig.9. Comparison of energy consumption and distribution with different scheduling algorithms. (a) HEFT. (b) MMF-DVFS. (c)

ECS+idle. (d) EADAGS. (e) MECDS.



Peng Xiao et al.: Energy-Aware Scheduling for Data Workflows 959

the vCPU energy consumption, it still cannot compen-
sate the energy wastage spent by idle storage nodes.

Like HEFT, our MECDS also is effective to improve
the execution efficiency of the inside loop. However, its
strategy is to improve the data transferring efficiency of
the parallel branch, which is quite different from HEFT.
More importantly, this strategy seems more robust than
HEFT. As shown in Fig.9(a), when n = 50 HEFT and
MMF-DVFS perform the worst in term of vDisk energy
consumption. As mentioned in Subsection 6.1, the over-
all energy consumption metric may be confusing, since
we cannot tell how much energy is effectively used and
how much is wasted. To further investigate the energy-
efficiency, we introduce three metrics here:
• Effective Computing Energy Consumption

(ECEC): total energy spent on processor and mem-
ory, subtracting the energy spent at idle state.
• Effective Data Accessing Energy Consumption

(EDAEC): total energy spent by all storage nodes, sub-
tracting the energy spent at idle state.
• Ineffective Energy Consumption (IEEC): subtract-

ing both ECEC and EDAEC from the total energy con-
sumption.

In this experiment, we record all the three metrics in
all cases. For the limitation of space, we only present
the experiment results when n = 50, since it is most
representative for the data-intensive topic. The results
are shown in Fig.10, and all the metrics are converted
into percentage form for clear representation.

Fig.10. Energy-efficiency metrics for different scheduling algo-

rithms (n = 50).

We can see that all the IEEC measurements of the
other four algorithms are more than 48%, which means
that about half of the energy is wasted when running
INVMOD application on our cloud platform. It is clear
that MECDS outperforms other algorithms because of
its high effective energy consumption for both comput-

ing nodes and storage nodes. It is noteworthy that
MECDS is not aiming at optimizing the computing re-
lated energy consumption. So, its high ECEC measure-
ment comes from the reduced execution time, which in
turn reduces the total computing related energy con-
sumption. Among the other four algorithms, HEFT
has the lowest ECEC and the highest EDAEC. It is be-
cause the high-performance computing nodes tend to
waste more energy if they are kept in low utilization
for a long time. Relatively, its EDAEC measurement is
increased as a result.

Among the five algorithms, only EADAGS and
MECDS are designed for data-intensive workflows.
When n = 10, 20 and 30, the performance difference
between the two algorithms is not very distinguishing.
When n is bigger than 30, the vDisk energy consump-
tion of EADAGS increases significantly. As noted in
[23], EADAGS also uses DVFS mechanism for energy
conservation. However, it does not directly aim at re-
ducing the processor related energy consumption. On
the contrary, it uses metric CCR as its objective func-
tion which is dynamically adjusted through using DVFS
mechanism. This strategy is difficult to analyze theo-
retically. So, we record its summing power of all sto-
rage nodes in real-time fashion, and compare it with
MECDS.

As shown in Fig.11, the first peak of data access-
ing incurs at the beginning of transferring input data
for the tasks (iWasimRunB). In this phase, the two al-
gorithms perform very likely. The significant difference
incurs when some of the sub-problems have been solved
and the intermediate data should be stored. When us-
ing MECDS, we find that only a few storage nodes are
power-active in this phase. More important, they are
connected with computing nodes through high-speed
bandwidth. So MECDS can complete the intermediate

Fig.11. Real-time summing power of all storage nodes (sample

interval = 10 seconds). (a) EADAGS. (b) MECDS.
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data transferring in shorter period and less energy con-
sumption. When using EADAGS, many low-bandwidth
storage nodes are used for those data-intensive tasks.
This strategy leads the storage power to frequently
reach a peak whether for intermediate data transferring
or for the final results collection, as shown at the right-
hand of Fig.11(a). In fact, the makespan of MECDS is
shorter than that of the EADAGS by about 21%.

7 Conclusions and Future Work

To address the issue of energy-aware scheduling for
data-intensive workflow applications in virtualized plat-
forms, this work presented a novel heuristic for VM
deployment and task scheduling. Experimental results
based on both synthetic and real world workloads show
that the proposed algorithm is more robust than other
DVFS-based algorithms, especially when the system
is in the presence of intensive data-accessing requests.
In the future, we plan to incorporate some adaptive
mechanisms into MECDS, such as workload-aware and
load-balance mechanism, configurable strategy for VM
deployment, and energy-aware VM migration mecha-
nism. Furthermore, we are planning to design a more
energy-efficient VM scheduler in VM hypervisor level.
In this way, we hope to further reduce the overheads
caused by intensive I/O requests when scheduling data-
intensive workflows in cloud systems.
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