
Shi YJ, Meng XF, Wang F et al. HEDC++: An extended histogram estimator for data in the cloud. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 28(6): 973–988 Nov. 2013. DOI 10.1007/s11390-013-1392-7

HEDC++: An Extended Histogram Estimator for Data in the Cloud

Ying-Jie Shi1 (史英杰), Xiao-Feng Meng1 (孟小峰), Senior Member, CCF, Member, ACM, IEEE
Fusheng Wang2,3, and Yan-Tao Gan1 (干艳桃)

1School of Information, Renmin University of China, Beijing 100872, China
2Department of Biomedical Informatics, Emory University, Atlanta 30322, U.S.A.
3Department of Mathematics and Computer Science, Emory University, Atlanta 30322, U.S.A.

E-mail: {shiyingjie, xfmeng}@ruc.edu.cn; fusheng.wang@emory.edu; ganyantao19901018@163.com

Received December 2, 2012; revised May 3, 2013.

Abstract With increasing popularity of cloud-based data management, improving the performance of queries in the
cloud is an urgent issue to solve. Summary of data distribution and statistical information has been commonly used in
traditional databases to support query optimization, and histograms are of particular interest. Naturally, histograms could
be used to support query optimization and efficient utilization of computing resources in the cloud. Histograms could provide
helpful reference information for generating optimal query plans, and generate basic statistics useful for guaranteeing the
load balance of query processing in the cloud. Since it is too expensive to construct an exact histogram on massive data,
building an approximate histogram is a more feasible solution. This problem, however, is challenging to solve in the cloud
environment because of the special data organization and processing mode in the cloud. In this paper, we present HEDC++,
an extended histogram estimator for data in the cloud, which provides efficient approximation approaches for both equi-width
and equi-depth histograms. We design the histogram estimate workflow based on an extended MapReduce framework, and
propose novel sampling mechanisms to leverage the sampling efficiency and estimate accuracy. We experimentally validate
our techniques on Hadoop and the results demonstrate that HEDC++ can provide promising histogram estimate for massive
data in the cloud.

Keywords histogram estimate, sampling, cloud computing, MapReduce

1 Introduction

The cloud data management system provides a scal-
able and highly cost-effective solution for large-scale
data management, and it is gaining much popular-
ity these days. Most of the open-source cloud data
management systems, such as HBase①, Hive[1], Pig[2],
Cassandra② and others now attract considerable enthu-
siasm from both the industry and academia. Compared
with the relational DBMS (RDBMS) with sophisticated
optimization techniques, the cloud data management
system is newly emerging and there is ample room for
performance improvement of complex queries[3]. As
the efficient summarization of data distribution and
statistical information, histograms are of paramount
importance for the performance improvement of data
accessing in the cloud. First of all, histograms provide

reference information for selecting the most efficient
query execution plan. A large fraction of queries in the
cloud are implemented in MapReduce[4], which inte-
grates parallelism, scalability, fault tolerance and load
balance into a simple framework. For a given query,
there are always different execution plans in MapRe-
duce. For example, in order to conduct log processing
which joins the reference table and log table, four dif-
ferent MapReduce execution plans are proposed in [5]
for different data distributions. However, how to se-
lect the most efficient execution plan adaptively is not
addressed, which could be guided by histogram estima-
tion. Secondly, histograms contain basic statistics use-
ful for load balancing. Load balance is crucial to the
performance of query in the cloud, which is normally
processed in parallel. In the processing framework of
MapReduce, output results of the mappers are parti-

Regular Paper
This research was partially supported by the National Natural Science Foundation of China under Grant Nos. 61070055, 91024032,

91124001, the Fundamental Research Funds for the Central Universities of China, the Research Funds of Renmin University of China
under Grant No. 11XNL010, and the National High Technology Research and Development 863 Program of China under Grant Nos.
2012AA010701, 2013AA013204.

①http://hbase.apache.org/, October 2012.
②http://cassandra.apache.org/, October 2012.
©2013 Springer Science +Business Media, LLC & Science Press, China

974 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

tioned to different reducers by hashing their keys. If
data skew on the key is obvious, then load imbalance is
brought into the reducers and consequently results in
degraded query performance. Histograms constructed
on the partition key can help to design the hash func-
tion to guarantee load balance. Thirdly, in the pro-
cessing of joins, summarizing the data distribution in
histograms is useful for reducing the data transmission
cost, which is among the scarce resources in the cloud.
Utilizing the histogram constructed on a join key can
help prevent sending the tuples that do not satisfy the
join predicate to the same node[6]. In addition, his-
tograms are also useful in providing various estimates
in the cloud, such as query progress estimate, query
size estimate and results estimate. Such estimates play
an important role in pre-execution user-level feedback,
task scheduling and resource allocation. However, it
can be too expensive and impractical to construct a
precise histogram before the queries due to the massive
data volume. In this paper, we propose a histogram es-
timator to approximate the data distribution with de-
sired accuracy.

Constructing approximate histograms is extensively
studied in the field of single-node RDBMS. However,
this problem has received limited attention in the cloud.
Estimating the approximate histogram of data in the
cloud is a challenging problem, and a simple extension
to the traditional work will not suffice. The cloud is
typically a distributed environment, which brings para-
llel processing, data distribution, data transmission cost
and other problems that must be accounted for during
the histogram estimate. In addition, data in the cloud
is organized based on blocks, which could be a thousand
times larger than that of traditional file systems③. The
block is the transmission and processing unit in the
cloud, and block-based data organization can signifi-
cantly increase the cost of tuple-level random sampling.
Retrieving a tuple randomly from the whole dataset
may cause the transmission and processing of one block.
A natural alternative is to adopt all the tuples in the
block as the sampling data. However, correlation of
tuples in one block may affect the estimate accuracy.
To effectively build statistical estimators with blocked
data, a major challenge is to guarantee the accuracy of
the estimators while utilizing the sampling data as effi-
ciently as possible. Last but not least, the typical batch
processing mode of tasks in the cloud does not match
the requirements of histogram estimate, where “early
returns” are generated before all the data is processed.

In this paper, we propose an extended histogram
estimator called HEDC++, which is significantly ex-
tended from our previous work called HEDC[7]. Ac-

cording to the rule in which the tuples are partitioned
into buckets, histograms can be classified into several
types, such as the equi-width histogram, equi-depth
histogram, and spline-based histogram[8]. HEDC pro-
vides approximation method only for equi-width his-
togram, which is easy to maintain because its bucket
boundary is fixed. Actually when summarizing the dis-
tribution for skewed data, equi-depth histogram pro-
vides more accurate approximation[8]. The main issue
of equi-depth histogram approximation is to estimate
the bucket boundary, which cannot be transformed into
the estimate of functions of means just like the equi-
width histogram. HEDC++ develops corresponding
techniques for equi-depth histogram estimate, which in-
clude the sampling unit design, the error bounding and
sampling size bounding algorithm, and the implementa-
tion methods over MapReduce. HEDC++ supports the
equi-width and equi-depth histogram approximation for
data in the cloud through an extended MapReduce
framework. It adopts a two-phase sampling mechanism
to leverage the sampling efficiency and estimate accu-
racy, and constructs the approximate histogram with
desired accuracy. The main contributions include:

1) We extend the original MapReduce framework by
adding a sampling phase and a statistical computing
phase, and design the processing workflow for the ap-
proximate histogram construction of data in the cloud
based on this framework.

2) We model the construction of equi-width and
equi-depth histograms into different statistical prob-
lems, and propose efficient approximation approaches
for their estimates in the cloud.

3) We adopt the block as the sampling level to make
full use of data generated in the sampling phase, and
we prove the efficiency of block-level sampling for esti-
mating histograms in the cloud.

4) We derive the relationship of required sample size
and the desired error of the estimated histogram, and
design the sampling mechanisms to investigate the sam-
ple size adaptive to different data layouts, which leve-
rage the sampling efficiency and estimate accuracy.

5) We implement HEDC++ on Hadoop and con-
duct comprehensive experiments. The results show
HEDC++’s efficiency in histogram estimating, and ve-
rify its scalability as both data volume and cluster scale
increase.

The rest of the paper is organized as follows. In
Section 2 we summarize related work. In Section 3
we introduce the main workflow and architecture of
HEDC++. Section 4 discusses the problem model-
ing and statistical issues, which include the sampling
mechanisms and histogram estimate algorithms. The

③http://hadoop.apache.org/docs/r1.0.4/hdfs design.html, November 2012.

Ying-Jie Shi et al.: HEDC++: An Extended Histogram Estimator for Data in the Cloud 975

implementing details of HEDC++ are described in Sec-
tion 5, and we also discuss how to make the processing
incremental by utilizing the existing results. The per-
formance evaluation is given in Section 6, followed by
the conclusions and future work in Section 7.

2 Related Work

Histogram plays an important role in cost-based
query optimization, approximate query and load bala-
ncing, etc. Ioannidis[9] surveyed the history of his-
togram and its comprehensive applications in the data
management systems. There are different kinds of his-
tograms based on the constructing way. Poosala et al.[8]

conducted a systematic study of various histograms and
their properties. Constructing the approximate his-
togram based on sampled data is an efficient way to re-
flect the data distribution and summarize the contents
of large tables, which is proposed in [10] and studied ex-
tensively in the field of single-node data management
systems. The key problem has to be solved when con-
structing approximate histogram is to determine the
required sample size based on the desired estimation er-
ror. We can classify the work into two categories by the
sampling mechanisms. Approaches in the first category
adopt uniform random sampling[11-13], which samples
the data with tuple level. Gibbons et al.[11] focused on
sampling-based approach for incremental maintenance
of approximate histograms, and they also computed the
bound of required sample size based on a uniform ran-
dom sample of the tuples in a relation. Surajit et al.[12]

further discussed the relationship of sample size and
desired error in equi-depth histogram, and proposed a
stronger bound which lends to ease of use. [13] discusses
how to adapt the analysis of [12] to other kinds of his-
tograms. The above approaches assume uniform ran-
dom sampling. Approaches of the second category con-
struct histograms through block-level sampling[12,14].
[12] adopts an iterative cross-validation based approach
to estimate the histogram with specified error, and the
sample size is doubled once the estimate result does
not arrive at the desired accuracy. [14] proposes a two-
phase sampling method based on cross-validation, in
which the sample size required is determined based on
the initial statistical information of the first phase. This
approach reduces the number of iterations to compute
the final sample size, and consequently processing over-
head. However, the tuples it samples is much bigger
than the required sample size because cross-validation
requires additional data to compute the error. All the
above techniques focus on histogram estimating in the
single-node DBMS, and adapting them to the cloud en-
vironment requires sophisticated considerations.

There is less work on constructing the histogram in

the cloud. Authors of [6] focused on processing theta-
joins in the MapReduce framework, and they adopted
the histogram built on join key to find the “empty”
regions in the matrix of the cartesian product. The
histogram on the join key is built by scanning the
whole table, which is expensive for big data. Jestes
et al.[15] proposed a method for constructing approxi-
mate wavelet histograms over the MapReduce frame-
work, their approach retrieves tuples from every block
randomly and sends the outputs of mappers at certain
probability, which aims to provide unbiased estimate
for wavelet histograms and reduce the communication
cost. The number of map tasks is not reduced because
all the blocks have to be processed, and the sum of start
time of all the map tasks cannot be ignored. Though
block locality is considered during the task scheduling
of MapReduce framework, there exist blocks that have
to be transferred from remote nodes to the mapper pro-
cessing node. So we believe there is room to reduce this
data transmission cost. In the previous work, we pro-
posed a histogram estimator for data in the cloud called
HEDC[7], which only focuses on estimating the equi-
width histograms. The equi-depth histogram is another
type of histograms widely used in data summarizing for
query optimization, and its estimation technique is very
different from that of the equi-width histogram. In this
paper, we extend HEDC to HEDC++, and propose
novel method for equi-depth histogram estimate in the
cloud.

3 Overview of HEDC++

Constructing the exact histogram of data involves
one original Map-Reduce job, which is shown in the
solid rectangles of Fig.1. To construct the equi-width
histogram, the mappers scan data blocks and generate
a bucket ID for every tuple. Then the bucket ID is
used as the key of the output key-value pairs, and all
the pairs belonging to the same bucket are sent to the
same reducer. At last, the reducers combine the pairs
in each bucket of the histogram. For the equi-depth
histogram, the mappers and combiners compute the
number of items of every column value, and the col-
umn value is set to be the output key of pairs sent to
the reducers. All the pairs are sorted by the key in
the reducers, and the separators of the buckets are de-
termined. Generating the exact histogram requires full
scan of the whole table, which is expensive and costs
long time to complete in the cloud.

HEDC++ constructs the approximate histogram
with desired accuracy to significantly reduce the time
it takes to get efficient data summarization over large
datasets. However, providing approximate results with
statistical significance in the cloud requires to solve

976 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Fig.1. Architecture of HEDC++.

two challenging problems. First, data distributed in
the cluster should be randomly sampled to guarantee
the accuracy of estimated results. For reasonably large
datasets, sampling at the tuple level is expensive, while
sampling at the block level brings in data correlation.
We design a block-level sampling algorithm that adapts
to the correlations of tuples during one block. Secondly,
the amount of samples should be determined according
to the given estimate accuracy. We compute a bound
on the sampling size without any assumptions on the
data layout.

In order to satisfy the above requirements of his-
togram estimating in the cloud, we make novel exten-
sions to the original MapReduce framework. Fig.1 il-
lustrates the main workflow of HEDC++, and our ex-
tensions are identified in the dotted rectangles. The
data files are organized into blocks and distributed in
the cloud, and the block IDs are put into a scheduling
queue to be arranged to map tasks. We add a sampling
module on this scheduling queue, and a specified num-
ber of blocks are retrieved randomly from this queue as
the MapReduce job’s input. These sample blocks are
processed by the following MapReduce jobs, which con-
duct different functions for equi-width and equi-depth
histograms. However, the output result of the MapRe-
duce job is just the histogram computed directly on the
sampled data. So we add a statistical computing mod-
ule after the reducers. During this module, we estimate
the histogram of the whole data, and compute the er-
ror of the estimated histogram. If the error is less than
the predefined error, then the estimated histogram is
returned to the user. Otherwise, we compute a bound
of the sample size required to meet the predefined ac-

curacy based on the data layout. Then additional sam-
ple data required is retrieved by the sampling module
and processed by the following MapReduce job. In the
statistical computing module, the outputs are merged
with the previous job’s results, and the final estimated
histogram is returned. Also we make the computing
incremental and avoid the replicated computing at this
phase. The details of sampling and statistical comput-
ing are discussed in the following sections.

4 Statistical Issues

In this section we model the estimate of equi-
width and equi-depth histograms into different statis-
tical problems, and discuss the statistical issues based
on the characteristics of data storage and processing
in the cloud. First we give the problem definition and
notations.

4.1 Preliminaries

Consider a table T with t tuples, the data are or-
ganized into N blocks in the cloud, with block size B.
The attribute of interest X is distributed over domain
D. Then the problem is defined as follows:

Definition 1. Set V to represent the value set of
T on attribute X(V ⊆ D), given a value sequence
s1, s2, . . . , sk+1 ∈ V , then the histogram contains k
buckets B1, B2, . . . , Bk, where Bi = {v|si 6 v < si+1}.
The histogram estimate is to compute the bucket size
|Bi| based on sampled data from T .

According to the rules in which the separators are
determined, the histograms can be classified into differ-
ent categories. The separators of the equi-width histo-

Ying-Jie Shi et al.: HEDC++: An Extended Histogram Estimator for Data in the Cloud 977

gram divide the value domain into buckets with equal
width, set Pi to represent the proportion of tuples be-
longing to Bi, and we can get |Bi| = N × B × Pi.
Consider the tuples of one bucket as a category, then
estimating the equi-width histogram can be modeled
as estimating the proportion of the different categories
in the table. In the equi-depth histograms, the sepa-
rators divide the value domain into buckets with equal
height, so the proportion of every bucket is the same.
The separators s1 and sk+1 represent the boundaries of
the value domain, and the remaining separators can be
considered as the quantiles. Estimating the equi-depth
histogram can be modeled as estimating the quantiles
of the dataset.

In order to measure the difference between the ap-
proximation histogram constructed on the samples and
the histogram constructed on the whole data, various
error metrics are proposed in the literature. Set hi to
represent the exact size of bucket Bi, and set h̃i to rep-
resent the estimated size of Bi. The height-variance
error[12] is defined as:

err height =
k

NB

√√√√1
k

k∑

i=1

(h̃i − hi)2. (1)

It is the standard deviation of the estimated bucket
size from the actual number of elements in each bucket,
normalized with respect to the average width of buck-
ets. This error metric is used for both the equi-width
and equi-depth histograms. For equi-depth histograms,
h̃i represents the size of the bucket determined by the
estimated separators on the real dataset. And hi is
equal to the perfect bucket size NB/k. The max-
boundary error[16] is special for the equi-depth his-
togram, which is defined as:

err boundary = max
i

{ k

domain width
|s̃i − si|

}
, (2)

where s̃i is the estimated separator for si, the max-
boundary error measure the maximum error across all
the separators, normalized with respect to the aver-
age of the bucket width. The exact error of an ap-
proximate histogram should be computed based on the
precise histogram, which is gotten after the processing
of the whole data. This error metric provides impor-
tant reference information for evaluating the approxi-
mate results and determining the required sample size
during the estimation processing. However, the exact
histogram cannot be gotten at the time when the pro-
cessing is far from completion. We propose algorithms
to bound the error based on the sampled data for both
equi-width and equi-depth histograms, and the details
are described in Subsection 4.3.

4.2 Sampling Unit

Sampling is a standard technique for constructing
approximate summaries of data, and most of the stud-
ies adopt the uniform random sampling. However, the
tuple-level true random sampling can be very inefficient
in the cloud. Recall that data in the cloud is organized
into blocks and the block is the unit of data transmit-
ting in the network. Picking tuple-level random sam-
pling from data in such an organization is very expen-
sive. In the worst case, retrieving n tuples may cause
a full scan of n blocks. Secondly, the block is also the
processing unit of the MapReduce framework, and one
block is processed by a map task. The startup time of
map tasks cannot be ignored when the number of tasks
is big. One alternative approach for solving these prob-
lems is to sample using block as the unit. We prove in
Theorem 1 that with the same data transmission cost,
block-level sampling will provide more accurate esti-
mated equi-width histogram than tuple-level sampling
in the cloud.

Theorem 1. Set P̃ib to represent the proportion
of Bi obtained from a simple random sample of n
blocks, and P̃it to represent the proportion of Bi ob-
tained from a simple random sample of n tuples. Fur-
ther let the estimated bucket size h̃ib = N × B × P̃ib,
and h̃it = N × B × P̃it. Then both h̃ib and h̃it are
unbiased estimates of the bucket size for the equi-width
histogram, and the variance of h̃ib is equal to or less
than that of h̃it: VAR(h̃ib) 6 VAR(h̃it).

Proof. The block-level random sampling has the
same spirit with cluster sampling in the statistical
terms[17], with the cluster size equal to the block size.
Set Pij to represent the proportion of elements belong-
ing to Bi in the j-th block, then the proportion of Bi

is: Pi = 1
N × ∑N

j=1 Pij . According to the properties
of proportion estimate on cluster sampling, we can get
P̃ib = 1

n × ∑n
j=1 Pij is the unbiased estimate of Pi,

consequently h̃ib is the unbiased estimate of the bucket
size. The variance of P̃ib is:

VAR(P̃ib) =
N − n

N2n

N∑

j=1

(Pij − Pi)2. (3)

The tuple-level sampling is a final uniform sampling.
According to the characteristic of proportion estimate,
the sample proportion P̃it is the unbiased estimate of
the population proportion, and the variance of P̃it is:

VAR(P̃it) =
NB − n

NB − 1
× Pi(1− Pi)

n
. (4)

Consequently, the design effect deff is:

978 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

VAR(h̃ib)
VAR(h̃it)

=
N2B2VAR(˜Pib)

N2B2VAR(˜Pit)

=
NB − nB
NB − n

×
∑N

j=1
(Pij − Pi)2

NP i(1− Pi)
. (5)

While B > 1, then we can get:

NB − nB 6 NB − n. (6)

The numerator of the right part in (5) can be derived
as:

N∑

j=1

(Pij − Pi)2 =
N∑

j=1

(P 2
ij − 2PiPij + P 2

i)

=
N∑

j=1

P 2
ij − 2NP 2

i + NP 2
i

=
N∑

j=1

P 2
ij −NP 2

i . (7)

Pij is the proportion of tuples belonging to bucket Bi

in the j-th block, so 0 6 Pij 6 1, then according to (7)
we can get:

N∑

j=1

(Pij − Pi)2 6
N∑

j=1

Pij −NP 2
i = NPi −NP 2

i . (8)

According to (6) and (8), we can conclude that:

VAR(h̃ib)
VAR(h̃it)

6 1. (9)

¤
Theorem 1 reflects the efficiency of block-level sam-

pling for equi-width histograms. However, estimating
the equi-depth histogram is different from the prob-
lem of estimating the proportion. The height of every
bucket is almost the same in the equi-depth histogram,
and the main problem is to estimate the boundary of
every bucket, which can be considered as the quantiles
of the population. We prove in Theorem 2 that with
the same transmission cost, the block-level sampling
will also provide more accurate estimated results for
the equi-depth histogram.

Theorem 2. Set var2
b to represent the height-

variance error of the estimated equi-depth histogram ob-
tained from a simple random sample of n blocks, and
var2

t to represent the height-variance error of the esti-
mate results over the simple random sample of n tuples.
Then the mean value of var2

b is equal to or less than that
of var2

t : E(var2
b) 6 E(var2

t).
Proof. The boundary of bucket Bi is determined by

two p-quantiles: Yi and Yi+1. We set αij to represent

the proportion of records in the j-th block that belongs
to Bi according to its boundary, and set σ2

i to represent
the variance of αij of every block. Then the mean value
of the variance error is:

E(var2
b) =

k

N2B2

k∑

i=1

E[(h̃i − hi)2]

=
k

N2B2

k∑

i=1

σ2
h̃i

=
k

N2B2

k∑

i=1

n×B2σ2
i

=
nk

N2

k∑

i=1

σ2
i . (10)

The tuple-level sampling can be considered as the
special case of block-level sampling with block size of
1, so the variance error of estimate obtained from the
tuple-level sampling with n tuples can also be computed
through the above equation:

E(var2
t) =

nk

N2

k∑

i=1

σ2
it. (11)

However, the variance σ2
it in the tuple-level sampling

of n tuples is equal to or greater than that of the block-
level sampling of n blocks, so we can get the conclusion
that E(var2

b) 6 E(var2
t). ¤

In order to efficiently utilize the data gotten during
the course of the sampling, we adopt the block-level
random sampling to estimate both the equi-width and
equi-depth histograms in HEDC++. However, the es-
timate accuracy based on block-level sampling is influ-
enced by the data layout during one block. If data
during every block is randomly stored, then retrieving
one block randomly from the data files is equal to re-
trieving B tuples randomly. On the other hand, if data
in a block has correlation associated with attribute X,
the sample size required to get the estimate result with
given accuracy will be bigger than that of sampling on
data with random layout. In the following subsection,
we bound the error of the estimated histogram, and
compute the relationship of required sample size and
data correlation under a given error.

4.3 Bounding the Error and Sample Size

The main problem of equi-width histogram estima-
tion is different from that of equi-depth histogram: the
former focuses on estimating the histogram height of
every bucket with fixed bucket boundary, while the
latter focuses on estimating the boundary of every

Ying-Jie Shi et al.: HEDC++: An Extended Histogram Estimator for Data in the Cloud 979

bucket with fixed height. We propose different bound-
ing methodologies for these two kinds of histograms.

4.3.1 Bounding Method for Equi-Width Histogram

In the previous subsection, we have modeled the
equi-width histogram estimation as estimating the pro-
portions of different buckets in the table. Given a
bucket Bi, we construct a random variable Xij , where
Xij = Pij . The data blocks are of the same size, then
the average of random variables in the population µi is
the exact bucket proportion: Pi = µi = 1

N

∑N
j=1 Xij .

Consequently the problem can be transformed into es-
timating the average value of Xij over all the blocks
in the table. We use σ2

i to represent the variance of
random variable Xij : σ2

i = 1
N

∑N
j=1 (Xij − µi)2. σ2

i

reflects how evenly the elements of bucket Bi are dis-
tributed over the blocks, and it can also reflect the cor-
relation of data during one block to some extent. If the
tuples are fairly distributed among the blocks, then the
correlations of tuples during one block are small, and
σ2

i will be small. And the opposite is also true.
During the sampling phase of HEDC++, blocks are

randomly drawn from the data file without bias. Given
bucket Bi, every block corresponds to a proportion
value Xij . So after the sampling phase we get a sample
set S = {Xi1, Xi2, . . . , Xin} of size n, during which the
random observations are independently and identically
distributed (i.i.d.). According to the Central Limit
Theorem (CLT) for averages of i.i.d. random variables,
for large n the estimated proportion P̃i approximately
obeys a normal distribution with mean value µi and
variance σ2

i /n. We construct a random variable Z by
standardizing P̃i: Z = P̃i−Pi

σi/
√

n
. Then according to the

property of normal distribution, Z approximately obeys
a standard normal distribution. Given a confidence
level p, denote by zp the p-quantile of the standard nor-
mal distribution, we have: P{|Z| 6 zp} ≈ p. It means
that with probability p, we have:

|P̃i − Pi| 6 σizp/
√

n. (12)

Recall the relationship of bucket size and the bucket’s
proportion, we can get:

|h̃i − hi| 6 NBσizp/
√

n. (13)

According to the height-variance error metric definition
in (1), the bound of the error can be computed through:

errbound = zpk

√
1
kn

∑k

i=1
σ2

i . (14)

From (14), we can observe the elements that influ-
ence the estimate error of histogram. The error is di-
rectly proportional to the square root of

∑k
i=1 σ2

i , which

reflects the data correlation for constructing the his-
togram. Also it is inversely proportional to the square
root of sample size. In most cases, the variance of the
population σ2

i is not available, we adopt the variance
of the sampled data σ̃i

2 to compute errbound, where
σ̃i

2 = 1
n

∑n
j=1 (Xij − µ̃i)2. According to the property

of simple random sampling, σ̃i
2 is a consistent estimate

of σ2
i
[17]. If errbound computed based on the existing

sampling data is bigger than the required error err req,
we will have to retrieve more blocks. The extra sample
size required for the desired error err req is computed
in a conservative way by assigning err req to the error
bound. According to the relationship between error
bound and the sample size, we can compute the extra
sample size:

b =
err2 − err2

req

err2
n, (15)

where err reflects the height-variance error of the es-
timated histogram over the initial sample data and is
computed based on the data layout.

4.3.2 Bounding Method for Equi-Depth Histogram

As mentioned in the previous subsection, the esti-
mate of equi-depth histogram can be modeled as quan-
tile estimate. The estimate of quantiles is different from
the estimation of functions of means, which is similar
to the equi-width histogram estimate. In order to ana-
lyze and discuss the bounding method more clearly, we
adopt the max-boundary error for the equi-depth his-
togram, which can reflect the quality of the estimate
result more directly. Our bounding method can also be
extended to the height-variance error with manageable
modifications. The separator si is the pi-quantile Ypi

of
the whole dataset, where pi = i−1

k . The first separator
s1 is set to be a fixed value small enough to contain the
minimum value of the domain in the first bucket, and
the last separator sk+1 is set in the similar way.

After the sampling phase, HEDC++ retrieves n
blocks randomly from the data file. According to the
analysis of [18], the pi-quantile of the sample data Ỹpi

is the unbiased estimate for Ypi
. In order to bound

the error, we have to estimate the confidence inter-
val for the quantile. However, developing the confi-
dence interval for quantiles directly is very difficult,
Woodruff inverted the usual confidence interval for the
distribution function[19], and we adopt the method.
Set [YL, YH] to represent the confidence interval for
Ypi

, and set p′i to represent the percentage of items
in the sample data less than Ypi , then we can get:
P (YL < Ypi

< YH) = P (L < p′i < H). L is the
percentage of items in the sample data less than YL,
and H has the similar meaning. So we first compute
the interval of [L,H], and then transfer it to [YL, YH].

980 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Let αij be the percentage of items less than Ypi
in the

j-th block, and σi be the variance of αij . Though σi

has different meaning from the variance defined in the
equi-width histogram of the previous subsection, it can
also quantify the effect of data layout during one block
to the estimation. Woodruff gave the interval of [Li,Hi]
based on cluster sampling as [pi − δ, pi + δ][19], where

δ2 =
B2n(N − n)

N
σ2

i . (16)

Actually, the pi-quantile Ypi
is not known, so the es-

timated quantile Ỹpi
is used to compute the variance

σ2
i . According to the max-boundary error metric defi-

nition for the equi-depth histogram in (2), we propose
the estimate form of error bound:

errbound = max
i

{ k

domain width
(YHi − YLi)

}
. (17)

If errbound computed based on the existing sampling
data is bigger than the required error err req, we will
have to retrieve more blocks for the estimate. The
computation of extra sample size b of the equi-depth
histogram is more difficult than that of the equi-width
histogram, because relationship of error bound and the
sampling size cannot be computed directly. Deciding
the exact extra sample size requires estimating the den-
sity function of Ypi, which is a notoriously difficult sta-
tistical problem. In this paper, we assume that the sam-
pling can reflect enough details of the density function,
and adopt a conservative method to compute the extra
sample size. We first compute the required confidence
interval of p′i based on err req. The required left bound

of the quantile is YreqL = Ỹpi − err req × NB
k × Ỹpi

−YL

YH−YL
,

and the percentage of tuples smaller than YreqL is set
to δL. We compute δH in the similar way, and choose
δreq = max{δL, δH} as the required interval of the per-
centage. Based on (16), we can compute the extra sam-
ple size:

b =
δ2 − δ2

req

δ2
req

n. (18)

4.4 Adaptive Sampling Method

HEDC++ adopts a sampling mechanism adaptive to
the data correlation, which is illustrated in Algorithm
1. The input of Algorithm 1 includes two variables: the
desired error err req and the initial sample size r. We
assume that the desired error is specified in terms of
the height-variance error metric and the max-boundary
metric for equi-width and equi-depth histograms re-
spectively. The initial sample size is the theoretical
size required to obtain estimate result with error err req

assuming uniform random sampling, which can be com-
puted before the processing based on the analysis in

[13]. We can conclude from (14) and (16) that in order
to get the estimate result of the same accuracy, it re-
quires more sampling blocks from data with correlated
layout during one block than the random layout. After
picking d r

B e blocks, HEDC++ estimates the histogram
based on the sampled data (lines 1 and 2). The esti-
mation is implemented through one or two MapReduce
jobs, and the details will be described in the next sec-
tion. Then the error bound err is computed based on
the analysis in the previous subsection (line 3), which
is executed in the “Statistical Computing” module of
HEDC++. If err is equal to or less than the desired
error, it means that the estimate results satisfy the re-
quirements and they are returned (lines 4 and 5). Oth-
erwise, the extra required sample size b is computed
based on the data layout in the initial samples (line 7).
Then b blocks are retrieved from the data files and they
are combined with the sampled blocks in the first phase
(line 8). At last the final estimated histogram is com-
puted on the combined sample set and returned (lines
9 and 10).

Algorithm 1. Adaptive Sampling Algorithm

Input: desired error in the estimated histogram: err req;

required sample size on the random layout: r

1 S = d r
B
e blocks randomly retrieved from the data

file;

2 H̃ = HistogramEstimate(S);

3 err = ErrorBound(S);

4 if err 6 err req then

5 return H̃;

6 else

7 b = SamsizeBound(S);

8 S = S ∪ b blocks retrieved randomly from data

file;

9 H̃ = HistogramEstimate(S);

10 return H̃;

11 end

During the adaptive sampling method, the extra
sample size required for the desired error err req is com-
puted in a conservative way by assigning err req to the
error bound. Both the error bounds of equi-width and
equi-depth histograms are computed based on the data
layout. When the correlation of data grouped into one
block is bigger, the error we bound will be larger and
it requires more extra sample data. HEDC++ deter-
mines the required sample size adaptively according to
the data layout.

5 Implementing over MapReduce

In this section we describe the implementing details
of HEDC++ over the Hadoop MapReduce framework.

Ying-Jie Shi et al.: HEDC++: An Extended Histogram Estimator for Data in the Cloud 981

Hadoop④ is one of the most popular open source plat-
forms that support cloud computing. A Hadoop in-
stallation consists of one master node and many slave
nodes. The master node, called JobTracker, is responsi-
ble for assigning tasks to the slave nodes and detecting
the execution status of tasks. The slave node, called
TaskTracker, executes tasks actually and reports sta-
tus information to the JobTracker through heartbeat.
In order to construct approximate histogram on big
data, we make some necessary extensions to the origi-
nal MapReduce framework. Though demonstrated on
Hadoop, HEDC++ can also be implemented to other
MapReduce platforms with straightforward modifica-
tions.

5.1 Extensions to the Original MapReduce

Building the exact histogram can be implemented
through one original MapReduce job, however, con-
structing the approximate histogram has to meet two
special requirements. The first requirement is to ac-
cess the data blocks in a random way. During the
original MapReduce framework, the data file are di-
vided into a lot of splits, which are put into a schedul-
ing queue. The size of a split is the same as the size
of one block by default, and in this paper we assume
adopting this default configuration to describe our so-
lutions more clearly. However, our announcements and
methods still work when the split size is not equal to
the block size. The task scheduler on the JobTracker
schedules every split in the queue to a task tracker. The
scheduling is executed sequentially from the head of the
queue, which is averse to the random sampling require-
ment of histogram estimate. In this paper, we make
some extensions to the task scheduler by adding a shuf-
fle module just before the scheduling. After the splits
are put into the scheduling queue, we shuffle the splits
and provide a random permutation of all the elements
in the queue. Then all the splits are organized in a ran-
dom way, and scheduling the first n splits sequentially
is equal to sampling n blocks randomly from the data
files (without replacement).

The second requirement is that after the sampled
data is processed by the MapReduce job, a statistical
computing module is needed, which estimates the data
size of every bucket and computes the extra sample size
required based on the outputs of all reducers. However,
during the original MapReduce framework, the outputs
of every reducer are written into a separate file at the
end of a MapReduce job. Then these output files can be
processed by the following MapReduce jobs in parallel.

We add a merge module after the reduce tasks, which
conducts the statistical computing by merging all the
output files.

The approximation of the equi-width histogram fo-
cuses on estimating the bucket height with fixed bound-
aries, while the approximation of the equi-depth his-
togram focuses on estimating the separators of buck-
ets with equal bucket height. The implementation of
estimating these two histograms are described in the
following subsections.

5.2 Function Design of Equi-Width Histogram

In this subsection, we describe the functions of the
MapReduce jobs to construct the approximate equi-
width histogram. When designing the functions, we
take the following rules into consideration. First, net-
work bandwidth is a kind of scarce resource when run-
ning MapReduce jobs[4], so we design the functions
to decrease the quantity of intermediate results. We
add combine functions after the mappers, which pre-
aggregate the key-value pairs sent to the reducers.
Secondly, during the MapReduce processing of estimat-
ing histograms, the number of map tasks is much larger
than that of reducer tasks. So arranging more work to
the map tasks helps increase the parallelism degree and
reduce the execution time. During the statistical com-
puting module, the estimation and sample size bound-
ing require several statistical parameters, and we try to
compute these parameters as early as possible by ar-
ranging more computing in the map function.

Approximating the equi-width histogram with speci-
fied error in HEDC++ involves one or two MapReduce
jobs depending on the data layouts. The processings of
the two jobs are the same except the reduce function.
The first job processes the initial sampling data. If the
error satisfies the specified requirement, then the es-
timated results are returned, else extra sampling data
is needed and the extra data is processed in the sec-
ond job. The map function is depicted in Algorithm
2. In this paper we assume the existence of a getBuck-
etID() function, which computes the bucket ID based on
the value of the column associated with the histogram
(line 1). For every tuple in the block, the bucket ID is
specified as the output key (line 2). The output value
is a data structure called Twodouble, which contains
two numbers of double type. The first double is used
to compute the variable’s mean value, and the second
double is used to compute the variance in the reduce
function. During the map function, the first double is
set to 1 for every tuple, and the second double is set to
zero (lines 3 and 4).

④http://hadoop.apache.org/, October 2012.

982 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Algorithm 2: Map Function

Input: tuple t

Output: text key, twodouble value

1 bucketID = getBucketID (t);

2 key.set(bucketID);

3 value.set(1, 0);

4 output.collect(key, value);

In order to reduce the cost of intermediate data
transmission in the shuffle phase, we define a combine
function, which is shown in Algorithm 3. The values
belonging to the same bucket in the block are accumu-
lated (lines 1∼4) and the proportion of every bucket in
the block is computed (line 5). The first double of the
output value is specified as the proportion of the bucket
in this block, and the second double is specified as the
square of the proportion (line 6). After the combine
function, all the values belonging to the same bucket
are sent to the same reducer. During the reduce func-
tion described in Algorithm 4, the two doubles sum and
quadraricsum of the same bucket in the value list are
accumulated respectively (lines 4∼8). If the reducer be-
longs to the second MapReduce job, it means that data
processed in the first job is not enough to construct an
approximate histogram with the specified error. In or-
der to save the compute resource and estimation time,
we make the processing incremental by utilizing the
output results of the reducers in the first job. Sup-
pose the data size of the first job is n1, and the data
size needed to estimate the histogram with the specified
error is n. HEDC++ samples n2 = n−n1 blocks in the
second job, and processes them through the map func-
tion. The sum of all the proportions for bucket i of the
blocks is:

∑n
j=1 Xij =

∑n1
j=1 Xij +

∑n1+n2
j=n1+1 Xij . Also

the accumulation of the square sum is:
∑n

j=1 X2
ij =∑n1

j=1 X2
ij +

∑n1+n2
j=n1+1 X2

ij . The incremental computing
is implemented through lines 9∼12. Then the estimated
histogram size and variance are computed (lines 13 and
14).

Algorithm 3: Combine Function

Input: text key, iterator (twodouble) values

Output: (text key, twodouble value′)

1 while values.hasNext() do

2 twodouble it = values.getNext();

3 sum+ = it .get first();

4 end

5 prop = sum/B ;

6 value′.set(prop, prop ∗ prop);

7 output.collect(key, value′);

After all the reducers of the first job complete, the
merge module collects all the output results of the re-
ducers and conducts the statistical computing to bound

the error and sample size. The error bound is computed
through equation (line 14) based on the sum of variance
of all the buckets. If the error is bigger than the speci-
fied error, then the number of extra sampling blocks is
computed through (15).

Algorithm 4: Reduce Function

Input: text key, iterator (twodouble) values

Output: size estimate of bucket hi, proportion variance

σ2
i

1 //n: number of blocks processed

2 //sum ′: sum of the variables in the last job

3 //quadraticsum ′: quadratic sum of the variables in
the last job

4 while values.hasNext() do

5 twodouble it = values.getNext();

6 sum+ = it .get first();

7 quadraticsum+ = it .get second();

8 end

9 if the second job then

10 sum = sum + sum ′;

11 quadraticsum = quadraticsum + quadraticsum ′;

12 end

13 hi = N ∗B ∗ sum/n;

14 σi = quadraticsum/n− sum ∗ sum/n ∗ n;

5.3 Function Design of Equi-Depth Histogram

Different from the implementation of the equi-width
histogram, the approximation of the equi-depth his-
togram over MapReduce is much more difficult. It re-
quires two or three MapReduce jobs according to the
data layout: the first job and the second job process
the initial sampling data, and the third job processes
extra sampling data if required. These three jobs can
be classified into two kinds: the separator estimate job
(sepJob) and the variance estimate job (varJob). The
first job and the third job are sepJobs that compute the
percentage of items less than every column value and
then estimate the separators. The second job is varJob,
which computes the variance of percentages of separa-
tors among the blocks. It is used to bound the error
and compute the extra sample size.

The map function of sepJob scans all the sampled
blocks. The value of the column of interest is set to be
the output key, and the output value is set to be 1 for
every key-value pair. In order to reduce the data trans-
mission cost and the burden of the reducers, a com-
biner is designed to accumulate the number of items
equal to a given column value. After the shuffle phase,
all the pairs of the same column value are sent to the
same reducer. The sepJob reduce function is depicted
in Algorithm 5. For a given column value, the number

Ying-Jie Shi et al.: HEDC++: An Extended Histogram Estimator for Data in the Cloud 983

of items owning the same column value are computed
(lines 3∼6). In order to estimate the separators, we
have to compute the percentage of items with the col-
umn value less than the given value. So we accumulate
the number of items with column value less than the
column value being processed (line 7). If the executing
job is the third job, then we accumulate the number of
items with the results of the first job, which makes the
processing and computing incremental (lines 8∼13). If
the processing column value appeared in the first job,
then we accumulate the stored results. Otherwise, it
means that the processing column value is new, and
there is no corresponding result for it in the first job.
We adopt the result of the first column value in the first
job which is less than the new column value (line 10).
The column value is arranged as the output key. The
output value is the accumulative number of items which
is less than the key (lines 14 and 15). During the merge
module of sepJob, the percentage of items less than ev-
ery column value is computed, and the separators are
estimated based on the percentages.

Algorithm 5: Reduce Function(SepJob)

Input: text key, iterator (long) values

Output: (text key, long value′)

1 //sum ′: sum of the variables in the last job

2 //sum acc: sum of the variables in the last itera-
tion

3 while values.hasNext() do

4 it = values.getNext();

5 sum+ = it ;

6 end

7 sum acc = sum + sum acc;

8 if the third job then

9 if sum ′==0 then

10 sum ′ = getAdjSum();

11 end

12 sum acc = sum acc + sum ′;

13 end

14 value ′.set(sum acc);

15 output.collect(key, value ′);

After the first job, the initial separators are esti-
mated, and the next job is to compute the necessary
statistical parameters to bound the error based on the
separators. The map function of varJob scans the sam-
pled blocks, and determines the bucket for every item
based on the separators. The output key is set to be the
right separator of the bucket, and the value is set to 1.
Actually in the implementation of HEDC++, we make
some extensions to the original file input mechanism
of MapReduce, and adopt the output results of every
combine function of sepJob as the mapper’s input. The

extensions are aimed to reduce the computation and
I/O cost, and then reduce the running time of the esti-
mate.

A combiner is also designed after the mapper to com-
pute the percentage of items less than every separator
for each block, which is depicted in Algorithm 6. The
number of items during the bucket with the given sepa-
rator as the right boundary is accumulated (lines 2∼5).
In order to compute the number of items less than the
separator, we also have to accumulate the results from
the last iteration (line 6). The separator is arranged as
the output key. The output value is a structure con-
taining two numbers of doubles, which includes the per-
centage of items less than the given separator and the
square of the percentage (lines 7∼9). Then the reduce
function described in Algorithm 7 computes the per-
centage variance among all the blocks for every separa-
tor. Given a separator value, the sum of props and their
squares are accumulated (lines 2∼6). The variance is
computed through the mean values of the percentage
and its square (line 7).

Algorithm 6: Combine Function(varJob)

Input: text key, iterator (long) values

Output: (text key, twodouble value ′)

1 //sum acc: sum of the variables in the last itera-
tion

2 while values.hasNext() do

3 it = values.getNext();

4 sum+ = it ;

5 end

6 sumacc = sumacc + sum;

7 prop = sumacc/B;

8 value ′.set(prop, prop ∗ prop);

9 output.collect(key, value ′);

Algorithm 7: Reduce Function (varJob)

Input: text key, iterator (twodouble) values

Output: proportion variance σ2
i

1 //n: number of blocks processed

2 while values.hasNext() do

3 twodouble it = values.getNext();

4 sum+ = it .get first();

5 quadraticsum+ = it .get second();

6 end

7 σi = quadraticsum/n− sum ∗ sum/n ∗ n;

After the reduce function of varJob, all the sepa-
rators are decided, and the output results are put to-
gether to the statistical computing module. We bound
the error of the estimate results based on the methods
described in Subsection 4.3.2. If the error is bigger than
the required error, then we decide the extra sample size

984 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

in a conservative way, and the third job is triggered.
After the third job, the separator estimate is improved
with the extra sample data and used as the estimate of
the equi-depth histogram.

6 Performance Evaluation

In this section, we evaluate the performance of
HEDC++ in terms of sample size required and the run-
ning time to get an estimate with specified error. We
compare our adaptive sampling approach in HEDC++
against two other sampling methods by evaluating their
performances on datasets with different data correla-
tions and block sizes. We also evaluate the scalability
of HEDC++ from two aspects: the data size and cluster
scale. All the experiments are implemented on Hadoop
0.20.2.

6.1 Experiment Overview

Our experiment platform is a cluster of 11 nodes con-
nected by a 1 gigabit Ethernet switch. One node serves
as the namenode of HDFS and jobtracker of MapRe-
duce, and the remaining 10 nodes act as the slaves.
Every node has a 2.33G quad-core CPU and 7 GB of
RAM, and the disk size of every node is 1.8T. We set
the block size of HDFS to 64 M, and configure Hadoop
to run two mappers and one reducer per node.

We adopt two metrics to evaluate the performance:
sample size and running time. Sample size is com-
puted by the histogram estimate algorithm, which rep-
resents the number of tuples needed to be sampled to
get the histogram estimate with a specified error. Run-
ning time is the time cost to get the final estimate.
We compare the performance of HEDC++ with two
histogram estimate methods called TUPLE and DOU-
BLE, which adopt different sampling mechanisms. TU-
PLE conducts a tuple-level random sampling, which
is similar to the sampling method in [15]. It accesses
all the blocks in the data file and retrieves tuples ran-
domly from every block. DOUBLE adopts a block-level
sampling method. Its difference from HEDC++ is the
sample size computing method, which is an iterative
approach originates from [12]. If the existing sampled
data is not enough to complete the estimate, DOUBLE
repeatedly doubles the sample size and executes the es-
timation.

The dataset we adopt in the experiment is the page
traffic statistics of Wikipedia hits log. It contains seven
months of hourly pageview statistics for all articles in
Wikipedia, and includes 320 GB of compressed data
(1TB uncompressed)⑤. Every tuple in the dataset con-
tains four columns: language, page name, page views

and page size. During the experiment of estimating the
equi-width histogram, we choose language as the key
column to construct histogram to reflect the data dis-
tribution on 10 languages. So the number of buckets of
the histogram is k = 10. We set the confidence level of
bounding the error to 95%, and set the specified error
to 0.05. During the experiment of the equi-depth his-
togram estimate, we choose page size as the key column,
which provides reference information for the result size
estimate of the range query on the page size column.
The number of buckets k is also set to 10, and its re-
quired error is also set to 0.05.

6.2 Effect of Data Correlation

In this subsection, we evaluate the performances of
three approaches on datasets with different correlations.
We change the data layout of the real dataset to make
different degrees of correlations. We adopt a metric C
to measure the data correlation, which has the similar
spirit of the cluster degree in [14]. According to the
analysis of (14) and (16), var sum =

∑k
i=1 σ2

i reflects
the data correlation in blocks. var sum is maximized
when the tuples are fully ordered by the column of inter-
est, and is minimized when the data layout is random.
We normalize the metric with respect to var sum for
C = 1 when the correlation is the biggest, and C = 0
when tuples are laid randomly.

Fig.2 illustrates the sample size and running time
of three approaches on different data correlations for
EWH (equi-width histogram), and Fig.3 depicts the
corresponding results for EDH (equi-depth histogram).
The effect of data correlation for these two kinds of his-
tograms has similar trends. For the approaches with
block-level sampling, the sample size computed is al-
ways the number of blocks. In order to compare these
three approaches conveniently, we show the number of
tuples in the experimental results. We can see that
the data correlation does not affect the required sample
size of TUPLE. This is because that TUPLE conducts a
random sampling on every block in the data files, which
is equal to conduct a tuple-level random sampling on
the whole data. Though the sample size of TUPLE is
the smallest, its running time is longer than HEDC++
and DOUBLE. Two reasons may explain the results.
First, TUPLE has to access all the blocks during the
sampling phase. For blocks that are not in the local
disk of the TaskTracker, data transmission is needed,
and this transmission cost of TUPLE is the same as
that of processing all the data. Secondly, the number
of mapper tasks in TUPLE is also the same as that of
processing all the data, and the sum of map tasks’ start

⑤http://aws.amazon.com/datasets/2596, November 2012.

Ying-Jie Shi et al.: HEDC++: An Extended Histogram Estimator for Data in the Cloud 985

Fig.2. Effect of data correlation for EWH. (a) Sampling size. (b) Running time.

Fig.3. Effect of data correlation for EDH. (a) Sampling size. (b) Running time.

time is not reduced. When the degree of correlation is
equal to zero, the three approaches retrieve almost the
same sample size, and HEDC++ and DOUBLE pick
a little more tuples because their sampling unit is the
block. As the degree of correlation increases, the sam-
ple size of DOUBLE is larger than that of HEDC++.
For C = 0.5 of the equi-width histogram, DOUBLE re-
quires the sample size twice larger than HEDC++, and
this is the worst case for DOUBLE. In addition, DOU-
BLE has to increase the sample size and process the ex-
tra sampled data iteratively, so the time it costs is more
than HEDC++. HEDC++ can determine the sample
size adaptively according to the data layout and com-
pletes the histogram estimate within acceptable time.

6.3 Effect of Block Size

The default block size of Hadoop is 64 M. During the
practical applications, the block size can be changed
to adapt to different data sizes. In this subsection, we

evaluate the effect of different block sizes on the estima-
tor’s performance. We adopt the real Wikipedia hit log
data directly in this experiment without any changes.
For the real dataset, log records within the same hour
are ordered by the language, so the data correlation is
between the random layout and the fully ordered lay-
out. The results are shown in Fig.4 and Fig.5, we run
the three approaches with five block sizes: 16 M, 32M,
64M, 128 M and 256 M. The block size does not affect
the sample size of TUPLE because of its sampling level.
Given the data file size, bigger block size results in less
blocks, then less map tasks, and the sum of the start
time of all the map tasks will be shorter. However, the
processing time of every map task gets longer because
of bigger blocks. So there is a tradeoff between the
running time of TUPLE and the block size. In our real
dataset, logs during one hour are stored in a data file,
and the data size of every hour is about 65 M. So the
correlation degrees of block size 16M and 32 M are

986 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Fig.4. Effect of block size for EWH. (a) Sampling size. (b) Running time.

Fig.5. Effect of block size for EDH. (a) Sampling size. (b) Running time.

much bigger than the other three block sizes, and more
sample blocks are required for HEDC++ and DOU-
BLE. When the block size is bigger than 32 M, the data
correlation decreases gradually, so the required sam-
ple blocks of HEDC++ and DOUBLE decrease cor-
respondingly. However, the sample tuples increase as
the block size increases, and the processing time of ev-
ery map task gets longer. So there is also a tradeoff
between the block size and the running time of the es-
timator with block-level sampling. We can see that in
this experiment, when the block size is 64 M, the run-
ning time of HEDC++ and DOUBLE gets shortest. In
general, it costs less running time for HEDC++ to con-
struct the approximate histograms than TUPLE and
DOUBLE.

6.4 Scalability Evaluation

We evaluate the scalability by varying the data scale

and node number of the testbed cluster for both the
equi-width and equi-depth histogram estimate. We pro-
vide the results of either equi-width or equi-depth his-
togram for one experiment, since the results are similar
for them. Fig.6 shows the required sample size and run-
ning time of the estimators on a 10-node cluster with
different data sizes. For HEDC++ and DOUBLE, the
sample size does not increase directly proportional to
the data size. According to (14), the error bound is
not effected directly by the data size. It is associated
with the variance sum of all the buckets. The variance
sum does not change a lot as the data size increases
in our dataset, so the data size needed to be sampled
does not grow significantly as the data size increases.
The running time increases a little because the sam-
pling time gets a little longer as the data size increases.
For TUPLE, though the sample size maintains almost
constant, the running time still increases because more
blocks have to be accessed as the data size increases.

Ying-Jie Shi et al.: HEDC++: An Extended Histogram Estimator for Data in the Cloud 987

Fig.6. Scale-up with data size for EWH. (a) Sampling size. (b) Running time.

Given the dataset to be processed, the required sam-
ple size does not change as the cluster scale changes, so
we only show the running time when varying the num-
ber of nodes in the cluster. The experimental results
of the equi-depth histogram are illustrated in Fig.7.
We can see that as the number of nodes increases, the
running time of these three approaches decreases, and
the speedup originates from the speedup of MapRe-
duce processing. We can conclude from the results that
HEDC++ has scalability for both data size and cluster
scale.

Fig.7. Scale-up with cluster scale for EDH.

7 Conclusions and Future Work

In this paper, we proposed an extended histogram
estimator called HEDC++, which focuses on estimat-
ing the equi-width and equi-depth histograms for data
in the cloud. This problem is challenging to solve in
the cloud for two reasons: 1) Data in the cloud is al-

ways organized into blocks, which makes it inefficient
to conduct uniform random sampling, so the estima-
tor should leverage the sampling efficiency and estima-
tion accuracy; 2) The typical processing mode of the
cloud is batch processing, which is adverse to the re-
quirements of estimator to return “early results”. We
designed the processing framework of HEDC++ on ex-
tended MapReduce, and proposed efficient sampling
mechanisms which include designing the sampling unit
and determining the sampling size adaptive to the data
layout. The experimental results of our techniques on
Hadoop show that HEDC++ can provide efficient his-
togram estimate for data of various layouts in the cloud.

For future work, we will research on the histogram
estimate for dynamic data and real-time data in the
cloud. As tuples in the dataset are changing continu-
ously, the precomputed approximate histograms be-
come outdated and should be updated correspondingly.
We will explore techniques to propagate the updates to
histograms to make the summarization effective with-
out affecting the performance of cloud databases.

References

[1] Thusoo A, Sarma J, Jain N et al. Hive: A warehousing solu-
tion over a Map-Reduce framework. In Proc. the 35th Con-
ference of Very Large Databases (VLDB2009), August 2009,
pp.1626-1629.

[2] Olston C, Reed B, Srivastava U et al. Pig latin: A not-
so-foreign language for data processing. In Proc. the ACM
Int. Conf. Management of Data (SIGMOD2008), June 2008,
pp.1099-1110.

[3] Abadi D J. Data management in the cloud: Limitations and
opportunities. Bulletin of the IEEE Computer Society Tech-
nical Committee on Data Engineering, 2009, 32(1): 3-12.

[4] Dean J, Ghemawat S. MapReduce: Simplified data processing
on large clusters. In Proc. the 6th Symposium on Opearting
Systems Design and Implementation (OSDI2004), December
2004, pp.137-150.

988 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

[5] Blanas S, Patel J, Ercegovac V et al. A comparison of join al-
gorithms for log processing in MapReduce. In Proc. the ACM
Int. Conf. Management of Data (SIGMOD2010), June 2010,
pp.975-986.

[6] Okcan A, Riedewald M. Processing theta-joins using MapRe-
duce. In Proc. the ACM International Conference on Man-
agement of Data (SIGMOD2011), June 2011, pp.949-960.

[7] Shi Y J, Meng X F, Wang F S et al. HEDC: A histogram es-
timator for data in the cloud. In Proc. the 4th Int. Workshop
on Cloud Data Management (CloudDB2012), Oct. 29-Nov. 2,
2012, pp.51-58.

[8] Poosala V, Ioannidis Y E, Haas P J, Shekita E J. Improved
histograms for selectivity estimation of range predicates. In
Proc. the ACM International Conference on Management of
Data (SIGMOD1996), June 1996, pp.294-305.

[9] Ioannidis Y E. The history of histograms (abridged). In Proc.
the 29th Conference of Very Large Databases (VLDB2003),
September 2003, pp.19-30.

[10] Piatetsky-Shapiro G, Connell C. Accurate estimation of the
number of tuples satisfying a condition. In Proc. the
ACM International Conference on Management of Data
(SIGMOD1984), June 1984, pp.256-276.

[11] Gibbons P B, Matias Y, Poosala V. Fast incremental main-
tenance of approximate histograms. ACM Transactions on
Database Systems, 2002, 27(3): 261-298.

[12] Chaudhuri S, Motwani R, Narasayya V. Random sampling
for histogram construction: How much is enough? In Proc.
ACM International Conference on Management of Data
(SIGMOD1998), June 1998, pp.436-447.

[13] Chaudhuri S, Motwani R, Narasayya V. Using random sam-
pling for histogram construction. Technical Report, Mi-
crosoft, http://citeseerx.ist.psu.edu/showciting?cid=467221,
1997.

[14] Chaudhuri S, Das G, Srivastava U. Effective use of block-level
sampling in statistics estimation. In Proc. ACM Interna-
tional Conference on Management of Data (SIGMOD2004),
June 2004, pp.287-298.

[15] Jestes J, Yi K, Li F F. Building wavelet histograms on large
data in MapReduce. In Proc. the 37th International Con-
ference of Very Large Databases (VLDB2011), August 29-
September 3, 2011, pp.109-120.

[16] Mousavi H, Zaniolo C. Fast and accurate computation of
equi-depth histograms over data streams. In Proc. the 14th
International Conference on Extending Database Technology
(EDBT2011), March 2011, pp.69-80.

[17] Cochran W G. Sampling Techniques. John Wiley and Sons,
1977.

[18] Francisco C A, Fuller W A. Quantile estimation with a com-
plex survey design. The Annals of Statistics, 1991, 19(1):
454-469.

[19] Woodruff R S. Confidence intervals for medians and other
position measures. Journal of the American Statistical Asso-
ciation, 1952, 47(260): 635-646.

Ying-Jie Shi received the B.S.
degree from Shandong University, Ji-
nan, in 2005, and M.S. degree from
Huazhong University of Science and
Technology, Wuhan, in 2007, both
in computer science and technology.
She is currently a Ph.D. candidate of
Renmin University of China, Beijing.
Her research interests include cloud
data management and online aggre-

gations of big data.

Xiao-Feng Meng is a full pro-
fessor at School of Information, Ren-
min University of China, Beijing. He
received a B.S. degree from Hebei
University, M.S. degree from Ren-
min University of China, Ph.D. de-
gree from the Institute of Computing
Technology, Chinese Academy of Sci-
ences, all in computer science. He is
currently the vice dean of School of

Information, Renmin University of China. He is the secre-
tary general of Database Technique Committee of the China
Computer Federation (CCF DBTC). His research interests
include Web data management, Cloud data management,
mobile data management, XML data management, flash-
aware DBMS, privacy protection in mobile Web, and social
computing. He has published over 100 papers in refereed
international journals and conference proceedings including
IEEE TKDE, VLDB, SIGMOD, ICDE, EDBT, etc. He
has served on the program committee of SIGMOD, ICDE,
CIKM, MDM, DASFAA, etc., and the editorial board of
Journal of Computer Science and Technology (JCST) and
Frontiers of Computer Science (FCS).

Fusheng Wang is an assis-
tant professor in the Department of
Biomedical Informatics, adjunct as-
sistant professor in the Department
of Mathematics and Computer Sci-
ence, and a senior research scientist
at the Center for Comprehensive In-
formatics, Emory University, U.S.A.
Prior to joining Emory University, he
was a research scientist at Siemens

Corporate Research from 2004 to 2009. He received his
Ph.D. in computer science from University of California,
Los Angeles, in 2004. His research interests include big data
management, biomedical imaging informatics, data integra-
tion, spatial and temporal data management, sensor data
management and processing, natural language processing,
and data standardization. He has published over 70 research
papers in international conferences, journals and book chap-
ters. He received the best paper award at ICDCS 2011.
He has served as program committee for nearly 20 inter-
national conferences and workshops. He was the program
chair of the first Extremely Large Databases Conference
at Asia, Beijing, 2012, program co-chair of the 4th Inter-
national Workshop on Cloud Data Management (CloudDB
2012), and co-chair of CloudDB 2013.

Yan-Tao Gan received the B.S.
degree in computer science and tech-
nology from Renmin University of
China in 2012. She is currently a
master candidate of Renmin Univer-
sity of China. Her research interests
include cloud data management and
online aggregations of big data.

