
Fu YJ, Xiao N, Liao XK et al. Application-aware client-side data reduction and encryption of personal data in cloud

backup services. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 28(6): 1012–1024 Nov. 2013. DOI

10.1007/s11390-013-1394-5

Application-Aware Client-Side Data Reduction and Encryption of

Personal Data in Cloud Backup Services

Yin-Jin Fu1 (付印金), Nong Xiao1,∗ (肖 侬), Member, IEEE, Xiang-Ke Liao2 (廖湘科), Member, IEEE
and Fang Liu1 (刘 芳), Member, CCF

1State Key Laboratory of High Performance Computing, National University of Defense Technology
Changsha 410073, China

2School of Computer, National University of Defense Technology, Changsha 410073, China

E-mail: yinjinfu@gmail.com; {nongxiao, xkliao, liufang}@nudt.edu.cn

Received December 10, 2012; revised May 6, 2013.

Abstract Cloud backup has been an important issue ever since large quantities of valuable data have been stored on
the personal computing devices. Data reduction techniques, such as deduplication, delta encoding, and Lempel-Ziv (LZ)
compression, performed at the client side before data transfer can help ease cloud backup by saving network bandwidth
and reducing cloud storage space. However, client-side data reduction in cloud backup services faces efficiency and privacy
challenges. In this paper, we present Pangolin, a secure and efficient cloud backup service for personal data storage by
exploiting application awareness. It can speedup backup operations by application-aware client-side data reduction technique,
and mitigate data security risks by integrating selective encryption into data reduction for sensitive applications. Our
experimental evaluation, based on a prototype implementation, shows that our scheme can improve data reduction efficiency
over the state-of-the-art methods by shortening the backup window size to 33%∼75%, and its security mechanism for sensitive
applications has negligible impact on backup window size.

Keywords cloud backup, data reduction, application awareness, selective encryption

1 Introduction

Personal computing systems, such as desktops, lap-
tops, tablets, smartphones and personal digital assis-
tants (PDAs), have become primary platforms for many
users, increasing the importance of data on these de-
vices. To avoid data loss due to hardware failure, acci-
dental deletion of data, or device theft/loss, individuals
have increased their use of data protection and reco-
very tools in the personal computing devices. Due to
the virtually infinite storage resources that are available
on demand and charged according to usage, the cloud
storage services (e.g., Amazon S3, Microsoft’s Azure
Storage and Google Storage) bring considerable eco-
nomic advantages to both cloud providers and cloud
users[1]. As shown in Fig.1, data backup for personal
storage has emerged to be a particularly attractive ap-
plication for outsourcing to cloud storage providers be-
cause users can manage data much more easily without

having to worry about maintaining the backup infras-
tructure. This is possible because the centralized cloud
management has created an efficiency and cost infle-

Fig.1. Cloud backup platform for personal computing devices.

Regular Paper
This work was supported in part by the National High Technology Research and Development 863 Program of China under Grant

No. 2013AA013201, the National Natural Science Foundation of China under Grant Nos. 61025009, 61232003, 61120106005, 61170288,
and 61379146.

∗Corresponding Author
©2013 Springer Science +Business Media, LLC & Science Press, China

Yin-Jin Fu et al.: Application-Aware Client-Side Data Reduction and Encryption 1013

ction point, and the cloud offers simple offsite storage
for disaster recovery, which is always a critical concern
for data backup.

Data reduction techniques, like deduplication, delta
encoding, and Lempel-Ziv (LZ) compression, can
significantly improve communication and storage effi-
ciency by exploiting data redundancy and similarity.
ESG (Enterprise Strategy Group) data shows that over
90% data is duplicated in backup datasets[2]. Since
data backup for personal storage in the cloud stor-
age environment implies a geographic separation be-
tween the client and the service provider that is usu-
ally bridged by wide area networks (WANs), client-side
data reduction is obviously preferred to cloud-side data
reduction due to the former’s ability to significantly re-
duce the amount of data transferred over WAN with
low communication bandwidth. It has been adopted
by many cloud backup services including Dropbox①,
SpiderOak②, MozyHome③ and Wuala④. However,
data reduction techniques are resource intensive pro-
cesses, which entail the CPU-intensive calculations for
hashing and compression and the I/O-intensive ope-
rations for identifying and eliminating duplicate data.
Unfortunately, such resources are limited in a typical
personal computing device. Therefore, it is desirable
to achieve high efficiency in data reduction by taking
a good balance between the data reduction ratio (i.e.,
the ratio of the amounts of data before and after data
reduction) and backup window size.

Furthermore, data privacy protection is a necessary
consideration for sensitive applications to mitigate data
security risks in cloud storage. A recent study con-
ducted by Ponemon Institute indicates that, the ave-
rage cost of a data breach in lost, unprotected laptops
is nearly US$40 000[3]. Traditional data encryption is
incompatible with cross-user data reduction since two
identical data blocks, encrypted with different keys,
will yield different encrypted data blocks which can no
longer be shared. Convergent encryption can produce
identical ciphertexts from identical plaintext files, even
if the files are encrypted by different users[4]. It was
once used in popular cloud backup services, like Drop-
box and Wuala. However, it leads to the leakage of pri-
vate users’ files to outside attackers in client-side dedu-
plication by identifying files or learning the contents of
files[5-6]. Hence, it is expected to take a good trade-
off between data privacy protection and cloud storage
capacity saving.

In this paper, we propose Pangolin, a fast and se-
cure cloud backup service for personal storage by ex-
ploiting application awareness. Firstly, we provide an
application-aware data reduction scheme based on a sig-
nificant difference of various data reduction techniques
in terms of data reduction ratio and processing speed
among different types of applications, to achieve high
data reduction efficiency with high data reduction ratio
and shorten the backup window by leveraging both limi-
ted local resources on personal computing clients and
abundant remote resources of cloud computing. Sec-
ondly, due to our independent data reduction design
for each application, we adopt selective data encryption
for sensitive applications in cloud storage to balance the
data privacy protection and cloud storage cost saving.

The main contributions of our paper include:
• According to our deep analysis of data reduction

techniques on various application datasets, we first dis-
cover that the data overlapping among different appli-
cations is negligible small.
• We design an application-aware data reduction

scheme to reduce cloud storage capacity and shorten
backup window based on our observations on the
application-oriented data reduction process.
• To protect the data privacy of sensitive applica-

tions in cloud storage, we adaptively select convergent
encryption or private-key encryption to integrate into
client-side data reduction for secure cloud backup ser-
vices.
• Our prototype implementation of Pangolin and its

real-data driven evaluation show that it outperforms
the existing state-of-the-art client-side data reduction
schemes in terms of data reduction efficiency and data
privacy in cloud backup services.

The remainder of this paper is organized as follows.
Section 2 presents the necessary background in data
reduction techniques and their data leakage risks, and
then conducts a preliminary quantitative study on data
reduction among application datasets to motivate our
research. Section 3 describes the system architecture
of Pangolin, and details the design of how to integrate
adaptive encryption into the application-aware data re-
duction design. Section 4 shows our evaluation results
for Pangolin based on its prototype implementation
with real datasets, by comparing it with the existing
state-of-the-art schemes in terms of data reduction ef-
ficiency and encryption overheads. Section 5 presents
some conclusions.

①https://www.dropbox.com/, Mar. 2010.
②https://spideroak.com/, Nov. 2011.
③http://mozy.com/home/, Feb. 2011.
④http://www.wuala.com/, Dec. 2010.

1014 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

2 Background and Motivation

In this section, we provide the necessary background
on technologies related to our research and present key
observations drawn from our preliminary study to moti-
vate our study in the application-aware client-side data
reduction and encryption for cloud backup services in
personal storage.

2.1 Data Reduction Techniques

Data reduction techniques are the most effective
ways to promote data storage efficiency by deleting data
redundancy. It includes data compression, delta encod-
ing and deduplication.

Data compression eliminates redundancies within
data objects to represent original information using
fewer bits[7]. It can be either lossy or lossless. Lossless
compression reduces bits by identifying and eliminat-
ing statistical redundancy. The LZ compression meth-
ods are among the most popular algorithms for lossless
storage, and it is widely applied in compression appli-
cations, like WinRAR, GZIP and GIF. Lossy compres-
sion reduces bits by identifying marginally important
information and removing it. It gives a corresponding
tradeoff between information loss and the size reduc-
tion. In some popular applications, including images,
audio and video, some loss of information is acceptable.
Data compression only achieves a limited data reduc-
tion ratio due to its intra-object data reduction nature.

Delta encoding can compress cross data objects by
exploiting data similarity[8]. It locates contents com-
mon to both the new version and the reference version
of data objects, and encodes the new version by indicat-
ing contents that can be located in the reference version
and contents that are added explicitly. A delta object
is the encoding of the output of a differencing algorithm
on the new version and the reference version of the
same data object. The new version can be compressed
into small patches after the reference version be trans-
ferred due to small or constant variation between the
two versions. Hence, it only stores and transmits data
efficiently in the form of differences between sequential
data objects rather than complete data objects. To
identify similar data objects, a sketch is calculated for
each object by selecting several weak hash values on its
shingles[8-9]. Here a shingle is a fixed length of bytes in
the object. The similarity between two data objects can
be defined by their sketch comparison. If two objects
have the same sketch, they are likely near-duplicates.
Delta encoding adds extra compression by inter-object
fine-grained resemblance detection at the cost of extra
computation to create sketches and lookup sketches in
a cache.

Data deduplication is a specialized data reduc-
tion technique that eliminates coarse-grained redun-
dant data by partitioning large data objects into smaller
parts, called chunks, and representing or replacing
these chunks by their fingerprints (i.e., generally a
cryptographic hash of the chunk data) for the pur-
pose of communication or storage efficiency[10]. It in-
cludes data chunking, hash fingerprinting, duplicate
detection and unique data store. Data deduplica-
tion is also a resource-intensive process, which entails
the CPU-intensive operations for chunking and fin-
gerprinting, and I/O intensive operations for identi-
fying and eliminating duplicate data. According to
the chunking granularity, we can divide it into file-
level and chunk-level deduplication, while the latter can
be further classified into static chunking deduplication
and content-defined chunking deduplication based on
whether its chunk size is fixed or variable. Dedupli-
cation can achieve high data reduction ratio by inter-
object duplicate detection in backup and archive stor-
age systems[11].

In the above description for the three data reduction
techniques, we know an optimal combination is needed
due to these techniques are orthogonal to each other
in achieving high storage efficiency. Recent studies[9,12]

show that efficiently adding delta encoding to similar
data objects in deduplicated data storage can find ex-
tra several times of capacity saving by compression. We
perform data reduction in an optimal combination of
the three techniques with our considerations on appli-
cation awareness; it is motivated by our observations
in Subsection 2.3. In our Pangolin design, we prefer to
eliminate data redundancy by client-side data reduc-
tion, rather than cloud-side data reduction, since it can
dramatically improve IT economy by minimizing stor-
age requirements and network bandwidth consumption
as the redundant data is eliminated prior to it trave-
ling across the network to the cloud server. Though
client-side local data reduction can achieve several to
dozens of times duplicate elimination ratio with low la-
tency, from an empirical estimation in NEC[13], server-
side global deduplication can outperform local dedupli-
cation at 20% to 50% greater in deduplication effec-
tiveness. While the latency is always the Achilles Heel
of cloud computing, and the average global duplicate
detection latency per chunk is dozens or hundreds of
the times the latency of local duplicate detection. To
balance the cloud storage cost saving and backup win-
dow shrinking in these two schemes, we choose both
local and global duplicate detection, which reduces the
backup window size by exploiting limited local personal
computing resource to reduce latency and save cloud
storage cost by leveraging abundant remote cloud com-
puting resource to improve data reduction effectiveness.

Yin-Jin Fu et al.: Application-Aware Client-Side Data Reduction and Encryption 1015

2.2 Data Leakage Risk in Cloud Storage

The cloud is a multi-tenant environment where reso-
urces are shared, and it is always managed by a third
party that has the potential to access a user’s data.
Whether accidental, or due to a malicious attack, data
leakage would be a major security violation in cloud
storage. Thus, all data and metadata should be en-
crypted at the edge before leaving the cloud client.
Data compression and delta encoding before encryp-
tion on client side can add entropy for sensitive infor-
mation, which is good for encryption. To save more
cloud storage capacity, our client-side deduplication
employs cross-user global duplicate detection. Unfor-
tunately, deduplication and encryption are, to a great
extent, diametrically opposed to each other, because
the ciphertexts of the same data object after encrypted
with two different keys are not identical any more. Con-
vergent encryption is an effective way to make encryp-
tion and deduplication compatible using the hash value
of a data object as the encryption key[4,14], but it has
serious privacy implications[5], such as identifying files,
learning the contents of files, and converting channel
attack. The existing solutions[5-6] try to mitigate these
data leakage risks with high system overhead or low
capacity saving.

In our Pangolin design, client-side data reduction
protects the data of sensitive applications from data
leakage by adaptive data encryption strategy. After
data reduction by deduplication, delta encoding or com-
pression, sensitive application data is encrypted before
it transfers from clients to the cloud datacenter via in-
secure WAN and is stored in incompletely trusted cloud
backup servers. Users first classify their personal data
into three categories by application awareness: com-
mon applications, low sensitive applications, and high
sensitive applications. Motivated by our observation
on application-aware data reduction in Subsection 2.3,
each type of application data can be processed inde-
pendently. We can selectively encrypt data in sensitive
applications: convergent encryption for low sensitive
applications to balance the cloud storage efficiency and
data leakage risk, and private-key encryption for high
sensitive applications to protect data privacy.

2.3 Motivational Observations for
Application-Aware Data Reduction

In this subsection, we will investigate how data re-
duction techniques affect each other in terms of space
efficiency and computation overhead in diverse applica-
tions, through our preliminary experimental study. In
what follows, we draw the following observations and

analysis from this study to motivate our research.
Observation 1. The best way to reduce data capa-

city is LZ compression for the delta-encoded data after
deduplication process. Compressed files have very low
data reduction ratios on delta encoding and deduplica-
tion.

Though the three popular data reduction techniques:
deduplication, delta encoding and LZ compression, are
widely applied in various storage systems, none of pre-
vious researches focuses on the discussion of the opti-
mal combination of the suppression of redundancy. We
test the data reduction ratios with various combina-
tions of the data reduction techniques on 120 GB Linux
source code, which is downloaded from the website⑤,
and 283GB virtual machine disk images, collected from
the desktops of our laboratory. In our experiment, delta
encoding always follows deduplication to make it easy
to implement. We employ content-defined-chunking
based deduplication with 4 KB average chunk size, simi-
lar to [15], and delta encoding approach of selecting
the four smallest Rabin fingerprints of 32 B shingles
as similarity features of data chunk for resemblance
detection, like [8]. As shown in Fig.2, deduplication
(Dedupe) performs better than LZ compression (LZ)
in the Linux kernel source code dataset, and LZ com-
pression for delta-encoded data chunks after dedupli-
cation (Dedupe-Delta-LZ) can achieve the highest data
reduction ratio. However, deduplication and delta en-
coding (Delta) on compressed data cannot improve the
data reduction ratio due to the extra entropy added
by compression. Furthermore, the additional metadata
overhead may reduce the data reduction ratio of com-
pressed data.

Fig.2. Data reduction techniques comparison on Linux source

code and virtual machine disk images.

Observation 2. A disproportionally large percentage
of storage space is occupied by a very small number of

⑤http://www.kernel.org/, Mar. 2012.

1016 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

large compressed files with very low sub-file level redun-
dancy in personal storage. File-level deduplication is
sufficient to eliminate data redundancy for compressed
files.

To reveal the relationship between file size and stor-
age capacity, we collect statistics on the distribution
of files and storage space occupied by files of differ-
ent sizes in five desktops and seven laptops of eight
users and show the results in Fig.3. We observe that
about 71% of all files are smaller than 32 KB, account-
ing for only 1.9% of the total storage capacity, and only
1.4% files are larger than 2MB but occupy 75.2% of
the storage capacity. These results are consistent with
previously published studies[16-17]. This suggests that
small files can be ignored during the data reduction
process to improve the efficiency, since it is the large
files in the tiny minority that dominate the data reduc-
tion efficiency. In the datasets of 12 PCs mentioned
above, there is a large number of application datasets
are compressed files, such as audio, video, photo and
some archive files, and those compressed files larger
than 2 MB occupy 55.8% storage space. To verify the
sub-file redundancy in the compressed application data,
we carry out delta encoding after chunk-level dedupli-
cation using static-chunking based deduplication (SCd-
edupe) of 4KB chunk size or content-defined chunk-
ing based deduplication (CDCdedupe) of 4 KB average
chunk size (minimal: 2 KB, maximal: 32 KB) after file-
level deduplication in about 430 GB data of typical PC
applications, respectively. From statistics in Table 1,
we observe that the data reduction ratios (DR) in all
application types using compression almost equal 1 due
to their low sub-file data redundancy while files in these
applications are of large average file sizes. For low
sub-file data redundancy, file-level deduplication can
achieve almost the same effectiveness of data reduction
as chunk-level deduplication plus delta encoding, and it
can enhance the search speed for redundant data by the
reduced metadata overhead. In the file-level deduplica-
tion process of compressed files, a weak hash function

Fig.3. Distribution of file capacity and count.

Table 1. Subfile-Level Data Redundancy After File-Level

Deduplication in Typical Compressed Applications

File Dataset Mean File SCdedup + CDCdedupe +

Type Size (GB) Size (MB) Delta DR Delta DR

AVI 85 165 1.008 1.009

MP3 83 5 1.012 1.013

DMG 41 105 1.014 1.014

JPG 48 2 1.010 1.010

GZ 70 43 1.005 1.007

RAR 103 21 1.011 1.012

is sufficient to avoid hash collision due to the coarse-
grain nature of compressed files and the very small num-
ber of large files in personal computing environments.

Observation 3. The amount of data shared
among different types of applications is negligible.
Application-aware data reduction has the potential to
improve the efficiency of data reduction by eliminating
redundancy in each application independently and in
parallel.

By classifying application data with file type, we
compare the intra-application data reduction with
global data reduction, which includes both intra-
application and inter-application data reduction, us-
ing chunk-level deduplication with 4KB chunk size and
delta encoding with four similarity features for each
chunk. In our preliminary study, we analyze the dif-
ference in a dataset about 750 GB with seven applica-
tions, including Linux kernel code, VM disk images,
web, mail, photo, audio and video files. We find
that total capacity of data overlapping among appli-
cations is 372.8MB, which is only about 0.5% of the
whole dataset size. As illustrated in Fig.4, the intra-
application data redundancy for all application types is
above 99.7% of total data redundancy in the dataset,
so the inter-application data overlap is negligible small
due to the difference in data content and format among
these applications. As the data sharing among different
applications is negligible, application-aware data reduc-
tion is poised to eliminate redundancy in each applica-
tion independently and in parallel without reducing the

Fig.4. Intra-application redundancy in various applications.

Yin-Jin Fu et al.: Application-Aware Client-Side Data Reduction and Encryption 1017

effectiveness of data reduction. As a result, both the full
fingerprint index of deduplication process and the simi-
larity feature index in delta encoding can be divided
into small independent indices according to the data
type information in different applications, enabling it
to greatly benefit from small indices to avoid on-disk in-
dex lookup bottlenecks[10,18] by leveraging application
locality while exposing higher index access parallelism
with low lock contention on independent indices.

3 Designs and Implementation of Pangolin

To achieve fast and secure cloud backup services,
cloud clients require significant processing to reduce
data before it is transferred over WAN, resulting in
performance and privacy challenges. Traditional ap-
proaches to meeting these challenges typically result in
a reduction in data reduction ratio or increased data
leakage risk. Pangolin, motivated in part by our ob-
servations made in Section 2, is designed to meet the
requirement of data reduction efficiency and data pri-
vacy. The main idea of Pangolin is to reduce the un-
necessary computational overhead by employing an in-
telligent data chunking scheme and the adaptive use
of hash functions based on application awareness, to
mitigate the chunk on-disk index lookup bottleneck by
dividing the full index into small independent and ap-
plication specific indices in an application-aware index
structure and to protect data privacy by selectively en-
crypting sensitive data with convergent encryption or
private-key encryption.

3.1 Architectural Overview

An architectural overview of Pangolin is illustrated
in Fig.5, where tiny files are first filtered out from
backup data stream in the file size filter for effi-

ciency reasons, and then non-tiny files are processed
in application-aware data reductor to eliminate data
redundancy. The application-aware data reductor per-
forms both local redundancy detection in clients for all
non-tiny files and remote global redundancy detection
in cloud for data chunks of low sensitive applications
by looking up application-aware fingerprint indices for
deduplication and application-aware sketch indices for
delta encoding. In client-side local redundancy detec-
tion, they are deduplicated with coarse granularity in
an intelligent deduplicator using an application-aware
deduplication strategy; compressed unique files are di-
rectly sent to selective encryption module after dedu-
plication, while uncompressed files need further delta
encoding and LZ compression before data encryption.
After application-aware local data reduction, the data
chunks of the sensitive applications are encrypted in
the selective encryption module. Since sensitive data
is typically stored in tiny files[5], tiny files and other
data in high sensitive (HS) applications are processed
in private-key encryption without further global redun-
dancy suppression. While data chunks in low sensi-
tive (LS) applications are encrypted with convergent
encryption after local data reduction, global data re-
duction is performed on them by sending fingerprints
and sketches of encrypted chunks for global redundancy
detection in cloud. We will now describe the design of
Pangolin in more details in the rest of this section.

3.2 File Size Filter

As shown in our statistical evidences in Section 2,
most of the files in the PC dataset are tiny files that
only occupy a negligibly small percentage of the storage
capacity. Similar to SAM[19], Pangolin filters out these
tiny files (i.e., less than 32 KB in file size) by the file

Fig.5. Architectural overview of Pangolin.

1018 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

size filter before the data reduction process to reduce
the metadata overhead in deduplication and delta en-
coding, and groups data from many smaller files to-
gether into larger units of about 1 MB each in the con-
tainer store, like Cumulus[20], to increase data transfer
efficiency over WAN.

3.3 Application-Aware Data Reductor

As we discovered in Section 2, the amount of data
shared among different types of application is negli-
gible small, and application-aware data reduction can
eliminate data redundancy in each application indepen-
dently and in parallel without reducing the effectiveness
of data reduction. In the application-aware data re-
ductor, we adopt whole file chunking (WFC) and MD5
hashing for compressed files to reduce the system over-
head since file-level deduplication is enough to eliminate
the redundancy for compressed files and their large file
size as we discussed in Section 2, and employ Rabin
fingerprinting based content-defined chunking (CDC)
with 4 KB average chunk size and SHA1 hashing for un-
compressed files to mitigate redundancy in chunk level
for high deduplication effectiveness. In the intelligent
deduplicator module, data chunks are deduplicated by
looking up their fingerprints (FPs) in application-aware
local FP index that is stored in the PC client and
application-aware global FP index in the cloud. If a
match is found in local FP index, the metadata for the
file containing that chunk is updated to point to the
location of the existing chunk; if there is no match in
local storage, then the chunk is a unique data chunk
for high sensitive applications, or the request is sent to
the cloud for further looking up fingerprint in global FP
index for data chunks in low sensitive applications. If
a match is found in global FP index, the corresponding
metadata is updated in application-aware global FP in-
dex in the cloud side; otherwise the chunk is a unique
data chunk, and the compressed chunk is sent to the
selective encryption module while the uncompressed
chunk is further processed by delta encoding and LZ
compression in the application-aware data reductor. In
the delta encoding module, the redundancy in uncom-
pressed unique chunks is further reduced to only trans-
fer deltas between sequential data by exploiting chunk
similarity using Broder’s approach[8]; we select the four
smallest Rabin fingerprints of 32B shingles as a sketch
to represent the similarity feature of data chunk for
resemblance detection in delta encoding. Like FP in-
dices, we build both application-aware local sketch in-
dex and global sketch index to find similar chunk for
delta encoding in low sensitive applications. If no simi-
lar chunk is found after local sketch index search, the
request is sent to the cloud for further global sketch in-

dex lookup. After resemblance detection, a candidate
chunk has been selected as the base used for delta en-
coding, and we use a technique based on Xdelta[21] to
optimize the compression of highly similar data regions.
Then, the unique uncompressed chunks and their deltas
are further compressed in the LZ compression module
before data transfer. After the chunk or sketch is stored
based on the container management in the cloud, the
metadata for the associated chunk or sketch is updated
to point to it and a new entry is added into both the
application-aware local FP & sketch index in the client
and the global FP & sketch index in cloud to index the
new chunk or sketch.

3.4 Selective Encryption

After application-aware data reduction, compressed
data chunks of sensitive applications are encrypted in
the selective encryption module for secure data out-
sourcing in the cloud. In traditional data encryption
schemes, encrypting data invalidates the deduplication
for no data sharing after identical data are encrypted by
two users with different keys. To protect data privacy
in client deduplication based cloud backup services, we
utilize convergent encryption to enable encryption while
still allowing deduplication on common chunks for low
sensitive applications. We define e as the encryption
function, Pchunk as the plaintext of a data chunk and
Cchunk as the ciphertext of the data chunk. Convergent
encryption can be defined as:

Cchunk = e(hash(Pchunk), Pchunk). (1)

It uses the hash value hash(Pchunk) as the encryption
key for Pchunk rather than a user specified key, so that
any client encrypting a given chunk will use the same
key to do so. The fingerprint of data chunk ChunkID
can be expressed as:

ChunkID = hash(Cchunk). (2)

This scheme makes it possible to protect data privacy
without compromising the data reduction efficiency,
while an adversary with no knowledge of the plain-
text cannot deduce the key from the encrypted chunk.
However, there are several kinds of data leakage risks in
convergent encryption as pointed out by Harnik et al.[5]

For high sensitive applications, we adopt the traditional
private-key encryption that encrypts data chunk with
a user specified key to avoid data leakage. To provide
a better security against the brute force attack than
other common encryption algorithms, we adopt 256 bit
AES[22] to encrypt data in our encryption implemen-
tation. All the metadata in the client file system, in-
cluding the map that associates chunks with a given

Yin-Jin Fu et al.: Application-Aware Client-Side Data Reduction and Encryption 1019

file and the application-aware FP & sketch indices, are
encrypted using a single private key as in [14] and [4] to
simplify the data management. As data reduction and
encryption occurs on the client and plaintext data is
never transmitted, our scheme strengthens the system
against both internal and external adversaries.

3.5 Application-Aware FP & Sketch Index
Structure

In our application-aware data reduction scheme,
data chunk fingerprint index and sketch index are key
data structures in our Pangolin design. According to
our discussion in Section 2, we build an application-
aware FP & sketch index structure to support indepen-
dent and parallel data reduction among multiple ap-
plications. As shown in Fig.6, the application-aware
FP & sketch index consists of an in-RAM application
index and a group of independent on-disk CDC/WFC
based FP indices and sketch indices. Application in-
dex maps each filename extension to the independent
FP index or sketch index of the corresponding appli-
cation type. Since our cloud storage management is
based on container[10], those on-disk FP/sketch indices
map a chunk fingerprint/sketch to the identifier of the
container (CID) that stores the chunk, and they are
all hash-table based index structures. According to
the accompanied file type information, the incoming
chunk can be directed to the chunk index with the same
file type. As the chunk locality exists in application
data streams, we also build an index cache in RAM to
buffer the small independent FP/sketch indices of the
recent accessed applications, and the cache replacement
policy is least-recently-used (LRU) on cached chunk

fingerprints and sketches. Compared with the single
full, unclassified index in traditional data reduction
mechanisms, Pangolin can achieve high data reduction
throughput by looking up chunk fingerprints in con-
currently small indices classified by applications with
high hit ratio in the index cache. Furthermore, a perio-
dical data synchronization scheme is also proposed in
Pangolin to backup the application-aware local FP &
sketch index structure in cloud storage to protect the
data integrity of the PC backup datasets.

3.6 Parallel Container Management

Pangolin will group data from smaller files and
chunks into larger units called containers before these
data are transferred over WAN. A container is a self-
describing data structure in which a metadata section
includes fingerprints, sketches, offsets and sizes for the
stored chunks. It is also adopted in the state-of-the-art
schemes such as DDFS[10] and Sparse Indexing[15] to
improve management and performance. In cloud stor-
age, to support parallel container management, an open
chunk container is maintained for each incoming backup
data stream, appending each new chunk or small file
to the open container corresponding to the stream it
is part of. When a container fills up with a predefined
fixed size (e.g., 4 MB), a new one is opened up. If a con-
tainer is not full but needs to be written to the disk, it
is padded out to its full size. This process uses chunk
locality[15] to group chunks likely to be retrieved to-
gether so that the data restoration performance will be
reasonably good. Supporting deletion of files requires
an additional process in the background to merge al-
most empty containers, collect garbage, and possibly

Fig.6. Application-aware FP & sketch index structure.

1020 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

defragment. Aggregation of data produces larger files
for cloud storage, which can be beneficial in avoiding
high overhead of lower layer protocols due to small
transfer sizes, and in reducing the cost of cloud stor-
age. Amazon S3, for example, has both per-request
and per-byte cost when storing a file, which encourages
using files greater than 100KB in size.

4 Evaluations

We have built a prototype of Pangolin in approxi-
mately 8000 lines of C++ code and fed the real-world
dataset to evaluate the use of cloud backup services in
personal computing environment. In the implementa-
tion of Pangolin, we choose an expected chunk size of
4KB with 1 KB minimum and 32 KB maximum for Ra-
bin fingerprint based CDC deduplication method using
48 bytes fixed sliding window size and 1 byte step size.
Based on these results in [9], the compression differ-
ences between multi-level and one-level delta encoding
is small. So we only implements one-level delta based
on Xdelta to balance compression and through-put, and
apply LZ compression for unique data chunks and their
deltas. Our goal is to answer the following high-level
questions:
• How effective is Pangolin in data reduction and

shrinking backup window with real world datasets?
• What are the monetary costs of Pangolin scheme

in our datasets using an online service like Amazon S3
for backup?
• What is about the performance overhead of the

selective encryption mechanism in Pangolin?
The following evaluation subsections answer these

questions, beginning with descriptions of experiment
platform and PC backup datasets we use as inputs of
the experiments.

4.1 Experiment Platform and Datasets

Our experiments are performed on a MacBook Pro
with 2.53 GHz Intelr Core 2 Duo processor, 4 GB
RAM, and 250 GB SATA disk, and it can reach about
8Mbps average upload speed and 17 Mbps average
download speed with AirPort Extreme 802.11g wireless
card. We use backup datasets in one of the authors’
PCs as workloads to drive our evaluations, and model
the use of remote backup. The backup process is per-
formed as depth-first search in the directory tree of file
systems, and the file load overhead can be mitigated
with prefetching by exploiting application locality in
our application-aware design. There are 10 consecutive

weekly full backups in the workloads with total 2 TB
data that consist of more than 16 million files in 12
applications as listed in Table 2. We backup the re-
duced data into Amazon S3, and use a campus LAN
server with 4-core 8-thread Intelr X3440 CPU running
at 2.53GHz and 16 GB RAM and a 2 TB RAID0 to
perform the parallel global redundancy detection with
reasonable remote latency added into the execution pro-
cess, and more than 1 TB backup dataset from other
two users in our research group is backed up before our
test.

Table 2. Dataset Characteristics of Our Experiment

Applications Size (GB) File Types

Document 138 .doc, .ppt, .pdf

Source code 210 .h, .c

Video 556 .flv, .mp4

Image 129 .jpg, .gif

Archive file 675 .rar, .zip

VM disk image 313 .vmdk

We compare a variety of existing cloud backup
techniques with Pangolin in data reduction efficiency,
backup window size and cloud storage cost. Such tech-
niques include file incremental cloud backup Jungle
Disk⑥, local file-level client-side deduplication based
cloud backup like BackupPC⑦, global chunk-level
client-side deduplication based cloud backup similar
to Avamar⑧, hybrid cloud backup scheme with lo-
cal file-level and global chunk-level client-side dedu-
plication described in SAM[19], and local client-side
application-aware deduplication based cloud backup
AA-Dedupe[23]. As some of these techniques do not
consider the security mechanism, we turn off the secu-
rity module in others to compare the data reduction
efficiency. Finally, we make a comparison for through-
put of Pangolin with and without security mechanism
to estimate the security cost.

4.2 Data Reduction Effectiveness

Data reduction effectiveness is very important for
both cloud backup providers and users. Providers ex-
pect less data stored in their datacenters to reduce
data storage and management cost, whereas users pre-
fer transferring less data for shorter backup time. Our
experimental results first include the data reduction ra-
tio in Table 3 as contributed by deduplication, delta
encoding, LZ compression and total data reduction.
We only choose the datasets of three major applica-
tions: source code (Code), audio files (Audio) and vir-
tual machine disk images (VM), in our personal backup

⑥http://www.jungledisk.com/, Jun. 2012.
⑦http://backuppc.sourceforge.net/, Mar. 2011.
⑧http://www.emc.com/avamar/, Oct. 2012.

Yin-Jin Fu et al.: Application-Aware Client-Side Data Reduction and Encryption 1021

datasets. The data reduction ratio is calculated as the
number of input bytes divided by the number of out-
put bytes for each stage, and the value greater than
1 indicates a data reduction improvement. Since au-
dio files are compressed, Pangolin only performs whole
file chunking based deduplication on them, so its data
reduction ratios are all 1 in delta and LZ columns.
For uncompressed Code and VM datasets, delta encod-
ing and LZ compression can achieve additional 4.3∼5.5
times data reduction. We also test the cumulative
cloud storage capacity for providers with various cloud
backup services using data reduction technique. Fig.7
compares the cumulative storage capacity of the five
cloud backup techniques. Three client-side deduplica-
tion based backup methods can perform better than
the incremental backup scheme that is implemented in
Jungle Disk. In the client-side deduplication meth-
ods, fine-grained Avamar and semantic-based SAM
can achieve higher data reduction ratio than coarse-
grained client-side deduplication scheme BackupPC by
eliminating more data redundancy. AA-Dedupe out-
performs the three application-oblivious deduplication
methods with its application-aware design. Pangolin
can get the highest space efficiency by exploiting both
semantic-directed application-aware global deduplica-
tion and fine-grained duplicate elimination improved by
delta encoding and compression. We observe that the
data reduction ratio in Pangolin is 3.4 times that of
Jungle Disk, 2.6 times that of BackupPC, about 1.7
times that of Avamar and SAM on average, and 1.4
times that of AA-Dedupe.

Table 3. Data Reduction Ratios of

Pangolin for Backup Datasets

Dataset Capacity (GB) Dedupe Delta LZ Total

Code 159.8 7.96 2.58 2.15 44.15

Audio 304.7 3.21 1.00 1.00 3.21

VM 312.9 3.99 2.32 1.86 17.22

Fig.7. Cloud storage capacity requirement.

4.3 Backup Window

Backup window represents the time spent on sending
backup dataset to cloud storage, which mainly depends
on the volume of the transferred dataset and available
network bandwidth. With regard to the four client-side
data reduction methods in this study, the backup win-
dow consists of two parts: data reduction time and data
transfer time. As we have a pipeline design for data
reduction processes and data transfer operations and
the data reduction throughput (10 s∼100 s MB/s) on
our platform is always 1∼2 orders of magnitude faster
than WAN throughput (1 s∼10 s Mb/s)[9], the backup
window size of each backup session mainly depends on
the data transfer process. In our experimental results
shown in Fig.8, Jungle Disk can significant reduce the
backup time by only transfering the incremental backup
files, but it still spends too much time and increases the
data management overhead. In data reduction based
schemes, the backup window size is less than incre-
mental backup for their small data volume is trans-
ferred over low bandwidth WAN after data reduction.
Though Avamar can save more cloud storage capacity
than SAM, it has longer backup window for its higher
global deduplication overhead. AA-Dedupe can signifi-
cantly shrink the backup window by its high effective
application-aware deduplication and low overhead local
design. Pangolin remains to perform the best in the six
cloud backup schemes owing to its high data reduction
effectiveness. Its backup window size can be shorten to
75% of AA-Dedupe, 33% of incremental backup Jungle
Disk, 42%∼56% of the other three conventional client-
side deduplication based cloud backup services.

Fig.8. Backup window size of backup sessions.

4.4 Cloud Cost

Cloud backup as a service comes at a price. In this
subsection, we calculate monetary cost for our work-
load models. To price cloud-based backup services at-
tractively requires minimizing the capital cost of data

1022 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

center storage and the operational bandwidth cost of
shipping the data there and back. We use the prices for
Amazon S3 as an initial point in the pricing space. As of
April 2012, these prices are (in US dollars): $0.125 per
GB per month for storage, free upload data transfer and
$0.01 per 1000 upload requests. Backing up the reduced
datasets directly to Amazon S3 can be very slow and
costly due to a large number of I/O operations and the
way Amazon S3 charges for the uploads. We investigate
the cloud cost of our test datasets in the last one month
as shown in Fig.9. The cost of cloud storage capacity
always dominates the total cloud cost. Compared with
more space efficient chunk level client-side deduplica-
tion technique Avamar, file/container granularity data
transfer in Jungle Disk, BackupPC, AA-Dedupe and
Pangolin can benefit more saving in request cost due to
a large number of large files in our datasets. Pangolin
can reduce the request cost significantly by 25%∼74%
of other methods by its high data reduction effective-
ness and packing several KB-size small files and chunks
into 1 MB containers in PCs before sending them to the
cloud.

Fig.9. Cost of cloud backup techniques.

4.5 Index Cache Utilization

Application-aware index structure is a key data
structure in our Pangolin. By leveraging the file type
information in file system, it can divide the whole hash-
table based chunk index into small hash-table based in-
dices based on application type classified, thus improv-
ing the RAM efficiency for the chunk FP & sketch index
by only loading the corresponding application’s hash in-
dex into the memory when receiving the application’s
data. Our application-aware index structure can signifi-
cantly improve utilization of index cache by exploit-
ing application locality, and keep high cache hit ratio
with low RAM overhead. Since the application-aware
sketch index has a structure similar to the application-
aware chunk fingerprint index, we only test the cache
utilization for the latter to evaluate the effectiveness
of our application-aware index structure. We test the

cache hit ratio of chunk fingerprint lookup operations
of application-aware chunk index (AACI) and tradi-
tional hash-table based full chunk index (Naive) as a
function of index cache size on a 98 GB dataset with
eight different applications. The results are shown in
Fig.10. Our application-aware chunk index scheme can
still gain high cache hit ratio above 75% even with small
index cache size, while the hit ratio on conventional full
chunk index drops linearly with the decrement of index
cache size.

Fig.10. Cache hit ratio of various index cache sizes.

4.6 Security Overhead

Our Pangolin scheme can provide not only high
data reduction ratio but also data privacy protection
by its security mechanism. In the deduplication pro-
cess of Pangolin, different from traditional deduplica-
tion schemes, two hash operations and one encryption
operation are needed for convergent encryption of each
data chunk, rather than only one hash operation and
one encryption operation for common private-key en-
cryption. This will increase the performance cost of
data reduction process in personal computing devices.
In our experiment, we evaluate the cost of Pangolin se-
curity mechanism by comparing the average data reduc-
tion throughput between Pangolin with security module
(Convergent or PrivateKey) and without security mod-
ule (Naive) as shown in Fig.11. The average throughput

Fig.11. Security overhead of Pangolin.

Yin-Jin Fu et al.: Application-Aware Client-Side Data Reduction and Encryption 1023

of Naive is reduced only 9%∼12% during the backup
process by encryption operations on reduced data. It
is a reasonable cost for Pangolin to provide security
cloud backup services in personal computing environ-
ment. Due to the network throughput bottleneck, this
small security overhead has only negligible impact on
backup window size in cloud backup process.

5 Conclusions and Future Work

Motivated by the key observations drawn from our
preliminary experimental study, we proposed Pangolin,
an application-aware client-side data reduction scheme
with client-end per-user encryption for cloud backup in
the personal computing environment to shorten data
backup window and protect data privacy. An intelligent
data reduction strategy in Pangolin was designed to ex-
ploit file semantics to minimize computational overhead
with negligible loss in data reduction effectiveness. The
novel data structure in Pangolin, application-aware FP
and sketch index structure, can significantly relieve the
disk index lookup bottleneck by dividing a central index
into many independent small indices to optimize lookup
performance with locality-based prefetching. The con-
vergent encryption is adopted in Pangolin to support
cross-user deduplication on encrypted data. In our pro-
totype, Pangolin was shown to improve the data reduc-
tion efficiency of the state-of-the-art client-side dedu-
plication approaches by shortening the backup window
size to 33%∼75%, and save 25%∼74% cloud cost for
the cloud backup service with high index cache utiliza-
tion. And it can support data privacy protection with
a reasonable cost of reduced data reduction throughput
by 9%∼12% and negligible impact on backup window
size.

In this paper, we only focused on how to design and
implement a fast and secure data backup process. We
will apply application awareness to the restore and dele-
tion operations in cloud backup services with data re-
duction techniques for high efficiency. What is more, we
will extend our data privacy protection strategies with
secure access control in the cloud storage environment.

References

[1] Armbrust M, Fox A, Griffith R, Joseph A D, Katz R, Konwin-
ski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M.
A view of cloud computing. Communications of the ACM,
2010, 53(4): 50-58.

[2] Biggar H. Experiencing data de-duplication: Improving effi-
ciency and reducing capacity requirements. White Paper, the
Enterprise Strategy Group, Feb. 2007. www.abtechsystems.
com/files/pdfs/WP001 04.pdf, Dec. 2012.

[3] Ponemon L. The cost of a lost laptop. White Paper, Ponemon
Institute, Apr. 2009. http://communities.intel.com/docs/
DOC-3076, Dec. 2012.

[4] Storer M W, Greenan K, Long D D, Miller E L. Secure data

deduplication. In Proc. the 4th StorageSS, Oct. 2008, pp.1-
10.

[5] Harnik D, Pinkas B, Shulman-Peleg A. Side channels in cloud
services: Deduplication in cloud storage. IEEE Security &
Privacy, 2010, 8(6): 40-47.

[6] Halevi S, Harnik D, Pinkas B, Shulman-Peleg A. Proofs of
ownership in remote storage systems. In Proc. the 18th CCS,
Oct. 2011, pp.491-500.

[7] Blelloch G E. Introduction to data compression. Technical
Report, Computer Science Department, Carnegie Mellon Uni-
versity, Oct. 2001. http://www.cs.cmu.edu/afs/cs/project/
pscico-guyb/realworld/www/compression.pdf, Oct. 2013.

[8] Douglis F, Iyengar A. Application-specific delta-encoding via
resemblance detection. In Proc. the USENIX ATC, Jun.
2003, pp.113-126.

[9] Shilane P, Huang M, Wallace G, Hsu W. WAN optimized
replication of backup datasets using stream-informed delta
compression. ACM Transactions on Storage, 2012, 8(4): Ar-
ticle No. 13.

[10] Zhu B, Li K, Patterson H. Avoiding the disk bottleneck in
the data domain deduplication file system. In Proc. the 6th
FAST, Feb. 2008, pp.269-282.

[11] Bois L D, Amatruda R. Backup and recovery: Accelerating
efficiency and driving down IT costs using data deduplication.
Technical Report, EMC Corporation, Feb. 2010.

[12] Shilane P, Wallace G, Huang M, Hsu W. Delta compressed
and deduplicated storage using stream-in- formed locality. In
Proc. the 4th HotStorage, June 2012, Article No. 10.

[13] Maximizing data efficiency: Benefits of global deduplica-
tion. White Paper, NEC, June 2009. http://www.knowledge-
storm.com/sol summary 5136573.asp, Dec. 2013.

[14] Anderson P, Zhang L. Fast and secure laptop backups with
encrypted de-duplication. In Proc. the 24th LISA, Dec. 2010,
Article No. 3.

[15] Lillibridge M, Eshghi K, Bhagwat D, Deolalikar V, Trezise G,
Camble P. Sparse indexing: Large scale, inline deduplication
using sampling and locality. In Proc. the 7th FAST, Feb.
2009, pp.111-123.

[16] Meister D, Brinkmann A. Multi-level comparison of data
deduplication in a backup scenario. In Proc. the SYSTOR,
May 2009, Article No. 8.

[17] Agrawal N, Bolosky W J, Douceur J R, Lorch J R. A five-year
study of file-system metadata. In Proc. the 5th FAST, Feb.
2007, pp.31-45.

[18] Bhagwat D, Eshghi K, Long D D, Lillibridge M. Extreme
binning: Scalable, parallel deduplication for chunk based file
backup. In Proc. the 17th MASCOTS, Sept. 2009, pp.1-9.

[19] Tan Y, Jiang H, Feng D, Tian L, Yan Z, Zhou G. SAM:
A semantic-aware multi-tiered source de-duplication frame-
work for cloud backup. In Proc. the 39th ICPP, Sept. 2010,
pp.614-623.

[20] Vrable M, Savage S, Voelker G M. Cumulus: Filesystem
backup to the cloud. In Proc. the 7th FAST, Feb. 2009,
pp.225-238.

[21] MacDonald J. File system support for delta compression
[Master’s Thesis]. Department of Electrical Engineering and
Computer Science, University of California at Berkeley, 2000.

[22] Asenjo J C. The advanced encryption standard — Implemen-
tation and transition to a new cryptographic benchmark. Net-
work Security, 2002, 2002(7): 7-9.

[23] Fu Y, Jiang H, Xiao N, Tian L, Liu F. AA-Dedupe: An
application-aware source deduplication approach for cloud
backup services in the personal computing environment. In
Proc. the IEEE CLUSTER, Sept. 2011, pp.112-120.

1024 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Yin-Jin Fu received his B.S.
degree in mathematics from Nan-
jing University, China, and M.S. de-
gree in computer science from Na-
tional University of Defense Technol-
ogy (NUDT), Changsha, in 2006 and
2008, respectively. Now he is a Ph.D.
candidate at the State Key Labora-
tory of High Performance Computing
in NUDT. His research areas are data

deduplication, cloud storage, and distributed file systems.

Nong Xiao received the B.S. and
Ph.D. degrees in computer science
from NUDT, Changsha, in 1990 and
1996, respectively. Now he is a pro-
fessor in the State Key Laboratory
of High Performance Computing in
NUDT. His current research inter-
ests include large-scale storage sys-
tem, network computing, and com-
puter architecture.

Xiang-Ke Liao received the B.S.
degree in computer science from Ts-
inghua University, Beijing, and M.S.
degree in computer science from
NUDT, Changsha, in 1985 and 1988,
respectively. Now he is a professor
and the dean of the School of Com-
puter in NUDT. His research areas
are computer architecture, operating
systems, and distributed systems.

Fang Liu received the B.S. and
Ph.D. degrees in computer science
from NUDT, Changsha, in 1999
and 2005, respectively. Now she is
an associate professor in the State
Key Laboratory of High Performance
Computing in NUDT. Her current
research interests include distributed
file system, network storage and
solid-state storage system.

