
Lv F, Cui HM, Wang L et al. Dynamic I/O-aware scheduling for batch-mode applications on chip multiprocessor systems

of cluster platforms. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 29(1): 21–37 Jan. 2014. DOI

10.1007/s11390-013-1409-2

Dynamic I/O-Aware Scheduling for Batch-Mode Applications on Chip

Multiprocessor Systems of Cluster Platforms

Fang Lv1,2 (吕 方), Hui-Min Cui1 (崔慧敏), Member, CCF, Lei Wang1 (王 蕾), Lei Liu1,2 (刘 磊)
Cheng-Gang Wu1 (武成岗), Member, CCF, ACM, IEEE, Xiao-Bing Feng1 (冯晓兵), Member, CCF, ACM, IEEE
and Pen-Chung Yew3,4 (游本中), Fellow, IEEE

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Computer Science and Engineering, University of Minnesota at Twin Cities, Minneapolis, MN 55455, U.S.A.
4Institute of Information Science, Academia Sinica, Taibei 115, China

E-mail: {flv, cuihm, wlei, liulei2010, wucg, fxb}@ict.ac.cn; yew@cs.umn.edu

Received December 28, 2012; revised August 13, 2013.

Abstract Efficiency of batch processing is becoming increasingly important for many modern commercial service centers,
e.g., clusters and cloud computing datacenters. However, periodical resource contentions have become the major performance
obstacles for concurrently running applications on mainstream CMP servers. I/O contention is such a kind of obstacle,
which may impede both the co-running performance of batch jobs and the system throughput seriously. In this paper, a
dynamic I/O-aware scheduling algorithm is proposed to lower the impacts of I/O contention and to enhance the co-running
performance in batch processing. We set up our environment on an 8-socket, 64-core server in Dawning Linux Cluster.
Fifteen workloads ranging from 8 jobs to 256 jobs are evaluated. Our experimental results show significant improvements on
the throughputs of the workloads, which range from 7% to 431%. Meanwhile, noticeable improvements on the slowdown of
workloads and the average runtime for each job can be achieved. These results show that a well-tuned dynamic I/O-aware
scheduler is beneficial for batch-mode services. It can also enhance the resource utilization via throughput improvement on
modern service platforms.

Keywords chip multiprocessor, batch processing, co-running, I/O contention, scheduling

1 Introduction

Cluster, datacenter and cloud computing have
emerged as major computing platforms for the ever
expanding applications today[1]. On such platforms,
batch-mode processing (or batch processing, for short)
is still one of the major service patterns①-②. It is
non-interactive and has very different demands on both
performance and QoS[1]. For example, some inquiry
services may have higher demands on the respond-
ing time (performance), while services such as offline
backup have higher demands on correctness. Harvard-

MIT Data Center (HMDC)③, some commercial ser-
vice providers such as Amazon Elastic Compute Cloud
(Amazon EC2), and Google Cloud Platform all offer
such services. There are three main requirements in
batch processing:
• Scalability in Pipelining. Batched jobs are dy-

namically and continuously pumped into the computing
platforms, and some with 300 jobs per night.
• Multi-Dimension Resource Requirements. The re-

source requirements for each job include not only com-
puting cores, but also memory, bandwidth, and I/O
related resources[3].

Regular Paper
Supported by the National High Technology Research and Development 863 Program of China under Grant No. 2012AA010902,

the National Basic Research 973 Program of China under Grant No. 2011CB302504, and the National Natural Science Foundation of
China under Grant Nos. 61202055, 60925009, 60921002, 61100011.

①Migration scenario: Migrating batch processes to the aws cloud. http://d36cz9buwru1tt.cloudfront.net/CloudMigration-
scenario-batch-apps.pdf, August 2013

②Microsoft. Batch applications — The hidden asset, August 2013.
③Getting started with batch processing. http://support.hmdc.harvard.edu/book/export/html/402, August 2013.
©2014 Springer Science +Business Media, LLC & Science Press, China



22 J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

• Scalability in Datasets. Due to the development of
web applications, big input datasets have become one
of the most remarkable characteristics.

These requirements have created higher demands on
the server system capacity, and thus have stimulated
the development of parallel server systems. Servers
have evolved from the former SMP (Symmetric Mul-
tiprocessing) architectures to the current CMP (Chip
Multiprocessor) architectures, which house multiple
sockets and more computing units. On such multi-
socket CMP systems, shared resource contentions be-
come major concerns because, if left unattended, the
potential contentions on shared resources among com-
peting jobs running on different cores may seriously im-
pede the co-running performance and the overall sys-
tem throughput. Hence, resolving such contentions
has become one of the most important issues for such
systems[2-13].

For many applications, shared I/O-related resource
is a significant contention point[14]. In fact, I/O bot-
tleneck has been known on parallel computing systems
for some time[14-19]. With decades of technological in-
novations, improvement on I/O latency still lags signifi-
cantly behind that of CPU and memory. There have
been many techniques proposed to improve the I/O per-
formance by rescheduling I/O requests[15-18], or using
shared memory as disk cache[20]. However, no mat-
ter for I/O intensive applications, or other types of
applications which rely on some data input files, I/O
contention is still one of the most harassing problems
in batch services. Their co-running performances are
much more prone to I/O conflicts because of the con-
current file operations. Therefore, more work still needs
to be done to mitigate I/O contention on large-scale
multi-socket CMP systems.

In this paper, a new approach using a dynamic
timeslice-based (quantum-based) I/O-aware scheduling
policy is proposed to enhance the I/O performance on
multi-socket CMP systems. It is done through regu-
lating I/O contention dynamically. We evaluate the
effectiveness of the scheduler from three aspects: the
throughput, workload slowdown, and average runtime
for each job. The evaluations are setup on an 8-socket,
64-core CMP server node. Fifteen workloads ranging
from 8 jobs to 256 jobs dynamically, are experimented
on this platform. Experimental results show that the
proposed scheduler can achieve 7% to 431% improve-
ments on the throughput of all workloads. Meanwhile,
noticeable improvements on the slowdown of workloads
and the average runtime for each job can be obtained.

Improving the co-running performance of CMP sys-
tems has many practical implications for large web ap-
plications with expanding datasets. From this perspec-

tive, we made the following contributions in this paper:
• A methodology is proposed that can isolate the im-

pacts of inter-socket I/O contention from intra-socket
resources contentions, such as CPU and memories, and
give a more precise qualification of the impacts from
global I/O contention on large-scale multi-socket CMP
systems.
• An effective dynamic scheduling policy for batch

processing is proposed to mitigate global I/O con-
tention. The policy is adaptive to the scalability of
batch applications and the dynamic variation of perio-
dical I/O contentions. Through evaluations on the
throughput, the slowdown of the workloads, and the
average runtime for each user job, the proposed dy-
namic policy is shown to be effective and beneficial for
batch services which are sensitive to I/O contentions.

The rest of the paper is organized as follows. The
impacts of global I/O contention on co-located batch-
processing jobs are examined in Section 2. Section 3
presents our proposed dynamic I/O-aware scheduling
policy. Experiments and evaluations are detailed in
Section 4. Related work is covered in Section 5. Section
6 concludes the paper.

2 Conflicts in Co-Location

Shared resource contentions among co-running ap-
plications are the major reasons for the performance
degradation on CMP systems. However, the effects of
contention from various shared resources such as CPU,
last-level shared cache (LLC), memories, and I/O sys-
tems are all juxtaposed in a very complex way. It is dif-
ficult to distinguish one kind of contention from another
on such systems. In this section, we use a methodology
of CMP stacking to distinguish the impacts of global
I/O contention from other shared resources contained
within a socket. The following two constraints are use-
ful to isolate such I/O contentions.
• Confinement. The overall resource requirements

of a batch job, including computing cores, private and
shared cache memories, as well as memory bandwidth,
are satisfied within each CMP (i.e., confined within
each socket). Although there may be multiple concur-
rent batch jobs sharing the resources of the same CMP
(in a socket), the inter-socket I/O contention becomes
the most outstanding feature for batch jobs running on
different CMPs considering the much higher costs of
I/O operations versus the lower costs of other resource
contentions.
• Sustainability. The overall resource requirements

of a job abide by the confinement rule during the exe-
cution. It will not ask for other inter-socket resources
except I/O demands during its entire execution.



Fang Lv et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 23

The constraints of “confinement” and “sustainabi-
lity” can be guaranteed in existing systems with
NUMA. In particular, for Linux, the default resource
allocation strategy (node-local) keeps a job’s resource
consumption as “local”, i.e., its memory will be allo-
cated to the local memory of its core(s) on NUMA
architecture[21]. Furthermore, the allocation strategy
also keeps the resource consumption as “local” through-
out the job execution. Therefore, the premises of CMP
stacking can be satisfied, and consequently, inter-socket
I/O contention turns into the critical issue for co-
running performance degradation. We will give a fur-
ther discussion for the leading role of the inter-socket
I/O contention in Subsection 2.3.1.

CMP stacking is set up to illuminate the negative im-
pacts of I/O contentions on batch processing. However,
our solution targets at all kinds of I/O contentions,
which include not only inter-socket I/O contentions but
also I/O contentions inside a socket.

2.1 CMP Stacking

In our methodology, we gradually increase the in-
tensity of I/O contention by adding CMPs one by one
(i.e., stacking up CMPs). Each CMP is fully loaded
with concurrent batch jobs on each core. By the two
constraints of “confinement” and “sustainability”, al-
though jobs on the same CMP still suffer from resource
contentions within the CMP, the global I/O contention
becomes the major inter-socket interferences during the
process of stacking up CMPs. For the easiness of our
presentation, we use the following definitions.

For a job, Jobj , on CMP p,
T j

alone: the execution time of Jobj when it runs alone,
i.e., without any resource contention;

T j
1-C: the execution time of Jobj when it co-runs

with other concurrent batch jobs on the same CMP
(denoted as 1-c in the subscript of T ), while no other
jobs are co-running on the other CMPs concurrently. It
is different from T j

alone because of possible contentions
within the CMP;

T j
k-C: the execution time of Jobj when there are k

CMPs running concurrent batch jobs (denoted as k-C
in the subscript of T ). It will change when the number
of concurrent jobs on other CMPs changes.

The performance degradation due to other concur-
rent jobs running on other k-1 CMPs can be measured
by the difference between T j

1-C and T j
k-C. It can be

clearly ascribed to the inter-socket I/O contentions. We
use normalized runtime for the comparison as in (1).

normalized runtime =
T j

k-C
T j

1-C
. (1)

2.2 Benchmarks and Platforms

Before presenting experiments with our methodo-
logy of CMP stacking, we introduce the benchmarks
and the platform as follows.

2.2.1 Benchmarks

More and more applications today become increas-
ingly sensitive to I/O contentions due to their fast ex-
panding input datasets. In this section, we use dupli-
cated copies of a benchmark with the same input sets
to demonstrate I/O contentions. This can facilitate our
analyses because they have the same demands on all
resources. More complicated and randomly generated
workload types are covered and examined in Section 4.

Different I/O APIs can lead to different forms of I/O
contentions. We have observed two types of I/O con-
tentions from our experiments:
• Explicit I/O. It is caused by the usage of API such

as fread and fwrite, which contends for I/O related re-
sources directly and as a result, suffers from I/O con-
flicts directly.
• Implicit I/O. It is incurred by the memory associa-

ted file operations (e.g., mmap), which impose a high
pressure on the main memory. Thus, swapping is usua-
lly involved in these operations, leading to I/O con-
tentions.

Considering the above differences, we use three kinds
of applications to demonstrate the side-effects of I/O
contentions in Table 1:
• Real User Application. Two real applications

from regular users in Dawning Cluster are adopted in
our work, which are paper similarity examination and
Kmeans cluster algorithm. These two applications em-
ploy explicit I/O APIs in their file operations.
• Benchmarks from Graph500④. Graph traversal

algorithms with sequential compressed-sparse-row im-
plementation are used. The amount of I/O requests
in the benchmark is proportionate to the graph size it
traverses. The graph for searching is generated with
two parameters, s and e. They correspond to a graph’s
scale and edge factor, respectively. For example, the
graph created with “-s 22 -e 18” is much larger than
that with “-s 22 -e 16”, so does the number of I/O re-
quests. The usage of mmap in the application will lead
to continuous implicit I/O behaviors.
• Benchmarks from the Princeton Application

Repository for Shared-Memory Computers (PARSEC
3.1)⑤. This package is made up of more than ten ap-
plications, which have diverse sensitivities to I/O con-
tentions due to their different sizes of data input files

④http://www.graph500.org/, August 2013.
⑤http://parsec.cs.princeton.edu/, August 2013.



24 J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

Table 1. Description for Applications

Application Type Description

Real user
application

Paper Similar (PS) 2-threaded A program which compares a paper with the other K papers concurrently,
where K is 2 in our work

Kmeans
Clustering (KM)

8-threaded A key algorithm from data mining which partitions n observations into K
clusters

Graph500 Graph 1-threaded BFS algorithm from Graph500. The graph for searching is generated with
two parameters, s and e, which stand for a graph’s scale and edge factor,
respectively

PARSEC x264 1-threaded Encoding video

benchmarks Vips 1-threaded Image processing library

Freqmine 1-threaded Data mining problem

Bodytrack 1-threaded Tracker of the 3D pose of a human body

Raytrace 1-threaded Tracing the path of light and generating images

and different periodic I/O characteristics. Contentions
from explicit I/O APIs can be demonstrated with this
package. Among all datasets, the medium dataset of
simlarge and the largest dataset of native are used in
our work. We only introduce five benchmarks which are
relatively more sensitive to I/O contentions as shown
in Table 1. We will include some benchmarks such as
swaptions which are less sensitive to I/O contention in
Section 4 for more thorough evaluations.

A workload is composed of one or more batch jobs.
For a clearer analysis, in this section, we use single-
threaded jobs as our examples to demonstrate the I/O
contentions, and the number of concurrently running
jobs in the workload ranges from 8 to 64 on a server
node. Note that our CMP stacking method and our
scheduling solution themselves do not have these lim-
itations. We will cover both single-threaded job and
multi-threaded jobs in later sections. Dynamically in-
creasing the number of batch jobs for the workload is
also permitted. All these issues will be discussed and
evaluated in Section 3 and Section 4.

2.2.2 Platform

The server node used in our work is a CMP sys-
tem integrated with Intelr Xeonr X7550 processors in
Dawning Linux Cluster. It is based on Nehalem ar-
chitecture. Most of the state-of-art high-performance
CMP systems from Intelr are evolved from this type
of architecture. The CMP server is an 8-socket CMP
server node with NUMA support. Each of the CMP
(socket) has 8 cores and 32GB local memory. It uses
Linux OS 2.6.32 for X86-64.

2.3 Performance Degradation from I/O
Contention

2.3.1 Influences from Inter-Socket I/O Contentions

In this subsection, we use CMP stacking to illustrate
the performance degradation from I/O contention. For

a clearer description, CMP stacking is experimented
with four workloads, which are composed of either du-
plicated explicit I/O jobs (x264) or duplicated implicit
I/O jobs (Graph) in this subsection. CMP stacking for
each workload includes four steps: one-CMP running,
two-CMP running, four-CMP running, and eight-CMP
running. Each step runs 8, 16, 32, and 64 jobs, respec-
tively. During each step, we full-load all cores with 8
jobs on each co-running CMP. Through this process,
we can observe the severe performance impacts from
inter-socket I/O contentions.

Table 2 lists the detailed information for each work-
load that is generated from two benchmarks, x264 and
Graph.

Table 2. Information of the Four Workloads

Index Benchmark Input Set

#1 x264 Simlarge

#2 x264 Native

#3 Graph -s 22 -e 16

#4 Graph -s 22 -e 18

There are four curves in Fig.1. Each curve stands
for the normalized runtime of each job in the four steps
(denoted as k-C or k-CMP in later figures). Take work-
load #1 in Table 2 as an example, the average runtime
for an x264 job is 7 seconds (denoted as 7 s) on one
CMP, while it degrades to 122 s when co-running with

Fig.1. Inter-socket performance impacts from I/O contentions

while increasing the number of CMPs.



Fang Lv et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 25

other 56 jobs on seven other CMPs. It is about 16x
degradation due to the increased I/O contention.

Data in the figure display similar trend in perfor-
mance degradation for all four workloads. That is,
each job’s performance will degrade with CMP stack-
ing. The more co-runners are, the more they suffer from
I/O contentions.

2.3.2 Discussion for Other Influences

It is worth noticing that the inter-socket I/O con-
tention is not the only type among different sockets.
Cache coherency (CC) still plays a role among CMPs
for some cache-miss intensive tasks. However, CC cost
is much lower than that from I/O contentions. There-
fore, we ignore CC interferences in our work according
to the following experiments.

Fig.2 displays experiments for the inter-socket CC
costs on our Intel Nehalem server system, which uses
MESIF⑥ as its cache protocol. The maximum CC cost
is about 33.7%, generated from the most serious LLC
(last level cache) misses (6.90/cycle per CMP) during
8-CMP co-running. This is much more trivial than
2x∼16x degradations from I/O contentions in Fig.1.

Fig.2. Performance degradation from inter-socket CC costs in

k-CMP configuration, k = 1, 2, 4, 6, 8.

The experiments in Fig.2 are performed with CMP
stacking, while each CMP runs LLC-miss intensive ker-
nels as in Fig.3. All experiments comply with the
two constraints of “confinement” and “sustainability”.
Each data copy in the kernel can produce a read miss
and a write miss. Through varying the number of nops,
we can get different LLC miss rates inside a CMP. CMP
LLC miss rate at 6.90/cycle is the maximum which can
be generated on the server. During the process of CMP
stacking, intensive LLC misses in a CMP bring forth
cache coherency information globally, which results in
inter-socket performance influences. In such circum-
stance, CC cost is the most outstanding inter-socket
performance influence. Each curve in the figure stands
for the runtime degradation of the kernel during the

CMP stacking process. Data in the figure displays that
the higher the LLC miss rate is, the more CC cost is.
However, the maximum performance influences from
CC (by LLC miss rate 6.90/cycle) is only about 33.7%
during 8-C running.

Procedure LLCMISS Pressure

1: #define ITERATION 1000 //repeat the experiments

#define CACHELINE 64 //the cache line size

2: #define COL CACHELINE/sizeof(int)

3: #define ROW (MEM SIZE/COL*sizeof(int))

4: int a[ROW][COL], b[ROW][COL];

5: #define nops 5000 //intervals between two successive

6: reads

7:

8: /*Memory allocation

9: Initialization(a, b);

10: for (iter = 0; iter < ITERATION; iter++) {
11: /*LLC cache miss kernel

12: for (i = 0; i <ROW; i + +) {
13: b[i][0] = a[i][0];

14: //Use nops to adjust the density of LLC misses

15: for (k = 0; k <nops; k + +) {
16: asm (“nops”);

}
}

}

Fig.3. LLC-miss intensive kernel.

Based on above all, we ignore CC costs and only
focus on costs from I/O contentions in our paper.

2.4 Analysis for I/O Contention

2.4.1 Analysis Methodology

The analysis of global I/O contention is made with
the support of Linux OS. For each I/O request serviced
by the local storage disk, the latency can be divided
into two parts: the I/O waiting time and the hard disk
serving time by the I/O devices, as shown in Fig.4.

IO Latency = Latencyserving + Latencywaiting. (2)

Latencyserving is the actual service time of an I/O re-
quest by the I/O device. This latency is decided by
both the decision making of the disk controller and the
specific I/O devices. Latencywaiting is the handling time
of the software scheduler for an I/O request, and the
time cost in I/O queues. The default task scheduler and
the default I/O scheduler are all fairness-oriented poli-
cies on our Linux OS[22]. Latencywaiting also includes
the extra overhead resulted from bursts of I/O requests.
I/O latency is calculated with these two parts as in (2).

⑥http://en.wikipedia.org/wiki/MESIF protocol, August 2013.



26 J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

Fig.4. Two parts for the latency of I/O requests.

The analysis is made with a Linux user utility, io-
stat, a statistical tool for I/O devices in Linux. This
tool samples the status of I/O devices at a fixed time
interval specified by the user. In our experiments, we
set the sampling interval to be 1 second.

For each I/O request, IO Lantency can be calculated
from the entry await in the report generated by iostat.
It includes both waiting time and hard disk serving
time for each I/O device operation. The entry svctm in
the report stands for the serving time and the software
waiting time can be calculated accordingly. By study-
ing changes in these two parts in the process of CMP
stacking, I/O bottlenecks exposed by I/O contention
can be identified.

2.4.2 Analysis Results

We analyze I/O contentions from two aspects: con-
tentions from implicit I/O interfaces and contentions
from explicit I/O interfaces.

1) Analysis for Explicit I/O Behavior.
Take workload #1 as an example, Fig.5 and Fig.6

show Latencywaiting and Latencyserving in k-CMP con-
figurations, k = 1, 2, 4, 8. Data in these two figures
show that the scaling during CMP stacking can lead to
degradation in both the serving time and the waiting
time. However, the increase in the waiting time de-
serves more attention since it deteriorates much more
seriously than the serving time. As shown in Fig.5,
when we scale from 1 CMP to 8 CMPs, the average
waiting time in 8-CMP configuration shows 128x degra-
dation compared with that in 1-CMP, i.e., 590ms vs
4.55ms.

A more detailed comparison is made between these
two kinds of latencies, and the results are shown in
Fig.7. The contrast clearly shows that I/O contention
has a much more severe impact on the waiting time

Fig.5. Average waiting time in k-CMP configuration, k =

1, 2, 4, 8.

Fig.6. Average serving time in k-CMP configuration, k =

1, 2, 4, 8.

than on serving time. Bursty I/O requests in a time
interval that cannot be handled due to limited I/O re-
sources will accumulate, and have a severe impact on
other co-running batch jobs in I/O queues.

From these figures we can observe that for explicit
I/O jobs, I/O quantities from co-running jobs have di-
rect relations with the performance influences. The
more co-runners are, the more co-runners suffer.



Fang Lv et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 27

Fig.7. Trend of I/O performance degradation for waiting time

and serving time in k-CMP configurations, k = 1, 2, 4, 8.

2) Analysis for Implicit I/O Behavior.
From Fig.1, we observed that workloads #3 and #4

behave differently from workloads #1 and #2. The
average runtimes of #3 and #4 keep stable until the
co-runners reach 32 jobs (before 4-C). After that, the
average runtimes display sudden degradations. The dif-
ference is actually resulted from the usage of implicit
I/O interfaces. For memory-associated optimizations
such as implicit I/O, paging will put a high pressure
on the memory. When the accumulated memory de-
mands reach a certain degree (50% of the whole sys-
tem memory in our environment), swapping for each
job will happen, which is always companied with se-
vere I/O contentions among co-running jobs.

The following experiments are used to study the
correlation between the memory utilization ratio and
the severity of I/O contentions for implicit I/O work-
loads. These experiments are implemented with four
more Graph workloads and each workload has 64 Graph
jobs. Through varying the value of s and e as in Table
1, different graphs can be generated, which will result
in different memory sizes to associate file operations.

In our experiment in Fig.8, the memory utilization
ratio ranges from 26.9% to 68.6% (the system mem-
ory is 256G in total). The figure draws an interesting
conclusion: the more memory we use, the more I/O
quantities will be generated and the more contentions
we have to suffer. As can be seen from the figure, if the
memory utilization is just 48.4% (or less), the I/O con-
tention period is only 1/250 of the entire sampling pe-
riod, indicating that the overall system performance is
not impacted by I/O contention seriously. Nevertheless,
on the contrast, when the memory utilization achieves
68.6%, we have to suffer the I/O contentions during
nearly 3/4 of our sampling period (30 000 s). This sig-
nificant difference is caused by I/O swapping for each
job and the corresponding I/O contentions. Notably,
the figure only displays partial data although we have
sampled the entire execution period.

Fig.8. Correlation between memory utilization ratio and the seve-

ralty of I/O contentions.

From the above analysis we can learn two points:
• The root reason for the performance degradation is

the much higher I/O demands and the relatively lower
disk serving capacity. The mismatch between these two
aspects results in dramatically longer I/O waiting time
in I/O queue.
• No matter for explicit I/O jobs or implicit I/O jobs

with high memory demands, they will eventually lead to
I/O contentions, and I/O quantities have much relation
with the performance influences during the contention.

In this paper, we propose an I/O-aware scheduling
policy. The policy uses a dynamic analyzing process
for I/O activities at a fixed time interval. Decisions
are made during these intervals by regulating the co-
running jobs, so that overheated I/O contention can be
mitigated.

3 Dynamic I/O-Aware Scheduling Policy

Based on the above analyses, an I/O-aware schedul-
ing policy is proposed, which is implemented as a
user-level timeslice-based scheduler. Timeslice-based
scheduling is an effective technique to deal with the
dynamic variation of resource contention. It has
been applied in other contention-aware schedulers,
such as bandwidth-aware scheduling[8] and LLC-aware
scheduling[9]. In this paper, we apply it with an I/O-
aware scheduling policy in order to regulate I/O con-
flicts.

3.1 Framework of the Dynamic Scheduler

We implement the proposed dynamic I/O-aware
scheduler (called dynamic scheduler in the rest of the
paper) as a user-level scheduler in Linux. It can also
be applied to other OS with a slight modification in its
system call interfaces.



28 J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

The framework of the dynamic scheduler and its in-
terface to OS are shown in Fig.9. The dynamic sched-
uler is registered as an exception handler in OS as
shown in the left part of the figure. Each time OS
receives a timer signal which is specified by the user
(at least 1 second), the exception handler will find the
entry for our dynamic scheduler and transfer the task
management control to the dynamic scheduler. The dy-
namic scheduler takes over all concurrent jobs and sam-
ples I/O information for each job. The I/O information
for each job can be collected through reading I/O files
(under/proc/pid/io). After the sampling, I/O related
analysis and the scheduling policies can be applied on
these jobs. Two kinds of interventions, job suspension
and resumption, are made according to some heuris-
tics. OS then takes over the management of both the
jobs and I/O operations once again. In this way, the
dynamic scheduling policy still can make use of all ex-
isting optimizations for the tasks and I/O operations in
OS.

Fig.9. Overall framwork of the dynamic I/O-aware scheduler.

The framework of the user-level dynamic scheduler
is also presented as the pseudo-code in Fig.10. It is
registered as a signal handler, sigalarm handler IO, in
line 3 of the pseudo-code. This program is triggered at
fixed interval (timeslice, or quantum), which is defined
by a tunable variable, TIMESLICE, in line 2.

Procedure 1. Dynamic IO-Aware Scheduling

{
1: struct itimerval IO Interval;

2: IO Interval.it interval.tv see=TIMESLICE;

3: Signal(SIGALRM, sigalarm handler IO);

4: int res =setitimer(ITIMER REAL, & IO Interval,

5: NULL);

}

Fig.10. Dynamic scheduling policy is implemented as a user-level

timeslice-based scheduler that is triggered by a timer signal.

3.1.1 Overall Approach

As shown in the left of Fig.9, the overall policy in the
signal handler is made up of two parts: I/O information
collector, and decision-making module. The implemen-
tation of the policy is presented in Fig.11. The two ma-

jor parts correspond to line 6 and line 14 respectively
in the figure.

Procedure 2. Sigalarm Handler IO

1: {
2: /*Read IO information for each running job

3: *from system device file

4: */

5:

6: Overall IO=IO Information Collector();

7:

8: /*For time intervals which cumulated IO requests

9: *exceed the I/O capacity limit, scheduling policy

10: *will be applied

11: */

12:

13: if (Overall IO>IO BOUND INTERVAL) {
14: Decision Making Module();

15: }
16: }

Fig.11. Major components of the I/O-aware scheduling policy.

• I/O Information Collector. This part mainly col-
lects I/O information for each job at certain intervals
under the control of OS. With such information, the
dynamic scheduler can regulate the execution of con-
current jobs under the guidance of some heuristics in
the decision-making module.
• Decision-Making Module. This module plays a

regulatory role to reduce the congestion from bursty
I/O without causing excessive idleness in I/O de-
vices. Two kinds of scheduling decisions are made
on each job, suspension or resumption, according to
the available capacity of I/O devices in each interval,
IO BOUND INTERVAL.

3.1.2 Workload

The workload needs to be scaled with the number
of jobs dynamically. Most of the batch jobs have rela-
tively less stringent demands on the QoS and the per-
formance. Newly arrived jobs are appended to the end
of the workload queue. Core-sharing for independent
jobs is not used for batch jobs on many of the cur-
rent platforms. At any time, the number of concurrent
batch jobs will not exceed the number of cores in the
system. All batch jobs are serviced according to their
submit order without preemption. A job is scheduled
whenever a core becomes available.

3.2 I/O Information Collector

With the support of OS, I/O operations of reads and
writes from each batch job are profiled and stored in
a device file periodically. IO Information Collector in
Fig.12 parses the devices file (under /proc/pid/io), and



Fang Lv et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 29

determines the I/O requirement for each batch job. It
is realized by Generate IO in line 4. Those jobs which
have non-zero I/O demands will be put in the candidate
queue. Each CMP has its own candidate queue. The
total number of I/O requests from all concurrent batch
jobs in a CMP is calculated and stored in Overall IO in
line 5. This information is useful for later analyses and
decisions made by the dynamic scheduler.

Procedure 3. IO Information Collector

1: {
2: open(device io file);

3: for each job in CMPs{
4: io request =Generate IO (device io file);

5: Overall IO+=io request;

6: }
7: return Overall IO;

8: }

Fig.12. Periodical collection of I/O information.

3.3 Decision-Making Module

The decision-making module targets at two key is-
sues: when to schedule and how to schedule. First, the
module will supervise the whole I/O bandwidth usage
and decide whether or not it needs to interfere with
the co-running execution. Second, at the moment that
the bandwidth exceeds the boundary, one of the two
measures, either suspension or resumption, is taken for
candidate jobs. Because the entire bandwidth is amor-
tized equally into each CMP, the dynamic module only
cares jobs on the CMP that exceeds its portion.

3.3.1 When to Schedule

Similar to other shared resources, the available ca-
pacity of I/O devices in a time interval is limited.
We use a threshold value, IO BOUND INTERVAL
(MB/s), as a guidance for scheduling.

3.3.2 How to Schedule

Different jobs show different sensitivities to I/O con-
tentions. This sensitivity has much relation with I/O
quantities (I/O bandwidth requirements) of each job.
We demonstrate this relation with the following experi-
ments.

We design a module, named Sensitivity RANKING,
which is composed of a file reading kernel. As Fig.13
shows, each kernel performs file reading only for one
time in case of page caching. Through varying the block
size for each read, the interval between two successive
readings and the number of concurrent kernels (insert-
ing nops), we can get different ranks of simultaneous
I/O requests.

1: #define block size 32 //data size for one read

#define nops 5000 //intervals between two successive

2: reads

3:

4: //Read file only for one time in case of page caching

5: while (!eof(file)) {
6: fgets(file, block size);

7: //Use nops to adjust the bandwidth density

8: for (i = 0; i <nops; i + +) {
9: asm (“nop”);

10: }
11: }

Fig.13. Kernel of Sensitivity RANKING.

We illustrate the relation between simultaneous I/O
quantities and their performance influences through
12 groups of experiments in Fig.14. Tasks in these
12 groups of experiments are composed of dupli-
cated Sensitivity RANKING kernels which has 1.5
MB/s∼26.4MB/s I/O demands per CMP respectively.
Each curve in the figure stands for the averaged run-
time degradation for a task when increasing co-running
tasks from 1 to 8 CMPs. From the figure we can learn
that, the higher the averaged I/O quantity is, the easier
co-running performance degradation happens. For the
group with 26.4 MB/s bandwidth requirement, it starts
to degrade when there are only two co-runners on an
8-socket, 64-core server. For the group which has band-
width lower than 5.63MB/s, I/O contentions will not
result in co-running performance influences.

Fig.14. Averaged performance degradation in k-CMP configura-

tion, k = 1 ∼ 8.

Therefore, the sensitivity of a task to I/O con-
tentions has much relation with its averaged I/O band-
width demands. This inspires us that, to mitigate the
I/O contention problem in large-scale platforms, the
sort of high-I/O quantity jobs (e.g., Kmeans) is worth
more attention than those tasks of lower-I/O quantity
(e.g., Graph). Regulation on high-I/O quantity tasks
will reduce the I/O bandwidth pressure, which are ben-
eficial for more low-I/O quantity jobs.



30 J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

The pseudo-code for the decision-making module
is shown in Fig.15. It intends to control the total

Procedure 4. Decision Making Module

{
1: /*Sorting jobs descendingly according to

*I/O qualities on each CMP

2: */

3: Sorting Jobs on Each CMP();

4:

5: /*Major part for decision maker */

6: /*In case of idleness of a CMP, the policy will

7: *pick out jobs which has the most I/O qualities

8: *on each CMP separately

9: */

10: for the i-th CMP in CMPs {
11: head [i]=the first job in the job set of the CMP;

12: }
13: if (Overall IO>IO BOUND INTERVAL) {
14: /*For a quantum in which Overall IO exceeds the

15: *upper capacity of the I/O device, the dynamic sche-

*duler suspends partial candidate jobs

16: */

17: while (Overall IO>IO BOUND INTERVAL) {
18: for the i-th CMP in CMPs {
19: if (Status (head [i]) is RUNNING) {
20: Overall IO-=head [i].IO;

21: Status(head [i])=SUSPENDED;

22: }
23: if (Overall IO<=IO BOUND INTERVAL)

24: break;

25: }
26: head [i] = bead [i]−>next;

27: }
28: if (Overall IO<=IO BOUND INTERVAL)

29: break;

30: }
31: } else {
32: /*For a quantum in which Overall IO is below the

33: *upper capacity of I/O, resuming those jobs which

34: *are suspended

35: */

36: for the i-th CMP in CMPs {
35: while (head [i]!=NULL) {
36: if (Status(head [i]) is SUSPENDED) {
37: Status(head [i])=RESUMING;

38: break;

39: }
40: head [i] = head [i]−>next;

41: }
42: }

}
}

Fig.15. Two different scheduling decisions according to the num-

ber of I/O requests.

number of I/O requests in the system so that they will
not result in severe congestion and long waiting time.

In an interval, if I/O requests exceed the upper
bound of the I/O capacity, the policy will start to sus-
pend some of the jobs until the total number of I/O
requests drops below IO BOUND INTERVAL. The
pseudo-code to make a decision on suspending a job
is presented in line 17 to line 30 in Fig.15. In an inter-
val, if the total number of I/O requests drops below the
upper bound of I/O capacity, another kind of decision,
resumption, will be made. Its pseudo-code is shown in
line 32 to line 42. Jobs that were suspended will be
resumed for better utilization of I/O capacity. In case
of too aggressive contentions from resumption, we will
let go a job at a time.

Moreover, to avoid excessive idleness in a CMP, a
procedure, Sorting Jobs in Each CMP is used for mak-
ing such a decision. It is shown in line 3. It sorts all
jobs according to their I/O requirements in a descend-
ing order. The policy will select the jobs that currently
have the most I/O demands pending on each CMP for
resumption.

3.4 Parameter Setting

There are two tunable variables in our dynamic
scheduler: TIMESLICE in I/O information collector
and IO BOUND INTERVAL in the decision-making
module.

Setting of TIMESLICE. The signal handler is trig-
gered at fixed time intervals. The number of time quan-
tum is defined by TIMESLICE. It is used as the gran-
ularity of time intervals for job scheduling. This value
is similar to the timeslice used in the Linux scheduler.
Since the average I/O latency is much higher than that
of memory operations and the algorithm is assisted with
periodic analysis of system I/O files, the cumulative
time overheads of these components can result in sub-
stantial total time overhead. Therefore, the value of
TIMESLICE should be carefully selected. Two differ-
ent values for TIMESLICE are adopted in our evalua-
tion in Section 4. For jobs with relatively shorter ex-
ecution time, e.g., benchmarks in PARSEC with sim-
large, we use a fine-grained TIMESLICE, set at 1 s.
For jobs with longer execution time (more than 1 000 s),
e.g., benchmarks in Graph500, we use a coarse-grained
TIMESLICE, and it is set at 20 s.

Setting of IO BOUND INTERVAL. Since the the-
oretical optimal value is always difficult to obtain in
real world, this threshold value for a specific CMP sys-
tem can be obtained through experimental results (e.g.,
via experiments with Sensitivity RANKING module) or
some empirical values. The value in our current policy
is set at 40 MB/s.



Fang Lv et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 31

3.5 Scheduling Overheads

Overheads of our proposed dynamic I/O-aware
scheduling determine not only the overall performance
of the workloads, but also the practicability of such a
policy. The total overheads are the sum of those in-
curred in each time quantum. The overheads in each
quantum depend on two major components: the I/O in-
formation collector and decision-making module. The
time complexity is O (N2) for both of them, where N
is the number of batch jobs.

Since our policy is implemented as a user-level sched-
uler, the overheads of context switching due to system
calls are the most time-consuming part. This is mainly
due to the current implementation of Linux that allows
certain time delay after it receives the signal before car-
rying out job suspension. Nevertheless, the overheads
will not exceed 1% when TIMESLICE varies from 1s to
20 s.

4 Evaluations

Our dynamic I/O-aware scheduling policy is eval-
uated on an 8-socket 64-core X7550 server node with
benchmarks as introduced in Table 1.

Since our dynamic scheduler is implemented as a
user-level scheduler, it will be taken over by Linux
scheduler eventually. The efficiency of our dynamic
scheduler can be evaluated through a comparison be-
tween Linux scheduler without and with our scheduling
policy.

To study its efficiency more comprehensively, per-
formance improvement on the throughput of the work-
loads is examined. The throughput is calculated by the
number of jobs in a workload (N), and the execution
time of the workload, Tworkload, as shown in (3). For
a fair comparison we evaluate our scheduler from the
other two aspects, slowdown and the average runtime.
The slowdown of a job, Jobj , is calculated by the ratio
of the runtime when it runs alone to that when it runs in
a k-CMP configuration. The slowdown for a workload
is the sum of slowdown for all jobs as shown in (4). The
average runtime of a workload (Aver-runtime) is calcu-
lated with all jobs’ T j

k-C values as in (5), where T j
alone

T j
k-C, are defined in Subsection 2.1.

throughput =
N

Tworkload
, (3)

slowdown =
N∑

j=1

T j
alone

T j
k-C

, (4)

Aver -runtime =

N∑

j=1

T j
k-C

N
. (5)

4.1 Workloads

Two different types of workloads are studied in this
subsection:
• Duplication Type (D-type). The workload is com-

posed of duplicated I/O sensitive jobs that have almost
the same behavior and will suffer serious contention
when they are running concurrently.
• Mixed Behaviors (M-type). The workload is com-

posed of different jobs that are combined randomly with
all applications in Table 1.

Table 3 lists detailed information for 15 workloads,
which includes benchmark name, input dataset, and
the corresponding number of jobs in each workload, de-
noted as batch length. At the beginning of the execu-
tion for each workload, the server full-loads 64 single-
threaded jobs on all 64 cores or 8 multi-threaded jobs
on all 8 CMPs at most for each batch. No core-sharing
is permitted in our experiment. For M-type workloads,
each job takes a separate CMP and at most 8 jobs can
be handled in a batch. More jobs will be served when-
ever there are cores released and become idle.

Table 3. Information for the Workloads

Type Index Benchmark Input Set Batch

Length

D-type #1 x264 Simlarge 128

#2 x264 Simlarge 256

#3 Freqmine Simlarge 64

#4 PS Duplicated 8

#5 PS Different 24

#6 KM Duplicated 8

#7 Graph -s 22 -e 16 64

#8 Graph -s 22 -e 18 64

#9 Graph -s 22 -e 16 128

M-type #10 Raytrace + x264 Simlarge 128

#11 Rarsec + Graph Mixed 128

#12 Parsec + Graph Mixed 128

#13 Parsec + real Mixed 128

#14 Parsec + real Mixed 128

#15 Parsec Simlarge 64

As in Table 3, experiments with D-type are
composed of 9 workloads. Explicit I/O interfaces
are evaluated through PARSEC benchmarks (work-
loads #1∼#3) and real user applications (workloads
#4∼#6). Implicit I/O interfaces are evaluated through
Graph applications (workload #7∼#9). Workloads
#10∼#15 are M-type, which are mixed with PAR-
SEC benchmarks, Graph and real user applications.
Applications in a workload can be single-threaded or
multi-threaded. Moreover, these workloads are mixed
with applications which are either sensitive to I/O con-
tentions or not (from PARSEC or Graph applications
with lower memory demands).



32 J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

4.2 Evaluations for D-Type Workloads

4.2.1 Performance Results

Fig.16 shows the performance improvement for six
workloads using our dynamic scheduler. All workloads
have achieved notable improvement in average runtime,
ranging from 6.7% to 67.9%, respectively. As for the
slowdown, most of the workloads obtain improvement
ranging from 8.3% to 73.3%, respectively, while #2 suf-
fers a slight degradation by 2.9%. Moreover, most of
the workloads can benefit 7.09%∼40.4% on the system
throughput, while #3 and #6 do not obtain obvious
benefits from this scheduler in their throughputs.

Fig.16. Performance improvement for D-type workloads (explict

I/O jobs: PARSEC and real user applications).

Compared with workloads of PARSEC, workloads
with concurrent Graph traversal algorithms have ob-
tained much more improvements from the dynamic
scheduling in Fig.17. The throughputs for them range
from 45% to 431%. The improvements on average slow-
down range from 40% to 433%. The average runtime is
improved by 45% to 82% with our dynamic scheduler.
For #8 which includes 64 jobs, our dynamic scheduler
obtains the most improvements on the throughput by
431%.

Fig.17. Performance improvement for D-type workloads (implicit

I/O jobs: Graph).

4.2.2 Performance Analysis

We take #1 for further analysis. Comparisons for
two kinds of latency, Latencywaiting and Latencyserving,

are made between Linux scheduler without and with the
optimization of the dynamic scheduler, denoted as OS
and Dynamic, in Fig.18 and Fig.19, respectively. La-
tency data are sampled at intervals of 1 second. Fig.18
illustrates the effects on Latencywaiting through inhibi-
tion of bursty I/O requests. With the dynamic sched-
uler, the average waiting time is improved by 59%, from
696ms to 286ms.

Fig.18. Improvement on waiting time for workload #1.

Latencyserving can also benefit from the dynamic
scheduler as shown in Fig.19. It achieves 21% im-
provement with the dynamic scheduler, from 4.95ms
to 3.9ms.

Fig.19. Improvement on serving time for workload #1.

4.3 Evaluations for M-Type Workloads

4.3.1 Performance Results

In this subsection, we evaluate six other workloads
which are mixed with the three types of applications in
Table 1.

Since the workloads are composed of benchmarks
with different execution time, the throughput is influ-
enced by the jobs that have the longest runtime. The
evaluation of slowdown can reflect the effect of opti-
mization more properly.

Fig.20 shows the improvement for M-type work-
loads. All these workloads achieve improvement on the
slowdown, ranging from 10.8% to 97.7%. The improve-
ment on average runtime ranges from 9.3% to 56.2%.
Except workload #10, all the other workloads see im-
provements in throughput at 1.5%∼131.2%, respecti-



Fang Lv et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 33

vely. Although workload #10 does not see obvious im-
provement in throughput, neither does it suffer with
the dynamic scheduler.

Fig.20. Performance improvement on M-type workloads.

4.3.2 Performance Analysis

We also perform analysis on the effect of the dy-
namic scheduler for M-type workload #11. The com-
parisons of two kinds of latency, Latencyserving and
Latencywaiting, are made between Linux scheduler with-
out and with optimization of our dynamic scheduler.
Data sampled at interval of 1 s are collected for these
two kinds of latency and the improvements are shown
in Fig.21 and Fig.22.

Fig.21. Improvement on waiting time for workload #11.

Fig.22. Improvement on serving time for workload #11.

Fig.21 shows the effect of the dynamic scheduler on
Latencywaiting. Average waiting time from all sampled
intervals is improved by 60% compared with that with
Linux scheduler, from 243.6 ms to 98ms. Latencyserving

also benefits slightly from the dynamic scheduler as
shown in Fig.22. The average serving time is improved
by 4.6% compared with that with Linux scheduler, from
3.05ms to 2.91ms.

4.4 Discussion on Efficiency and Inefficiency

In the experiments, we observed that workloads that
have a higher sensitivity to I/O contention would also
show a sensitivity to the dynamic scheduler. For exam-
ple, jobs of x264, raytrace and Graph with “-s 22 -e 18”
suffer a lot from I/O contention when there are multiple
co-running jobs. They are also much easier to achieve
more improvement from optimizations that deal with
I/O contention.

Through detailed comparisons between Linux sched-
uler without and with the optimization of dynamic
scheduler for workloads #8 and #15 (in Fig.23 and
Fig.24), we give a more detailed analysis on the effi-
ciency of the dynamic scheduler.

Fig.23. Improvement on the runtime for workload #8.

Workload #8 is the one that benefits the most from
the dynamic scheduler. The workload is generated by
duplicating Graph jobs that have relatively higher I/O
activities and longer execution time of more than 2000s.
Due to the calling of mmap, severe implicit I/O con-
tention is observed throughout the entire job execution.
For this kind of workloads, the dynamic scheduler plays
a better role for mitigating the I/O contention. All the
jobs show visible improvement in Fig.23.

Fig.24 displays contrasts for 64 jobs in workload
#15. All jobs have relatively shorter execution time
of about 30 s∼200 s. Jobs in this workload have diverse
I/O characteristics and with different sensitivities to
I/O contentions. For example, swaptions (in black cir-
cle) from PARSEC have less I/O contentions and corre-
spondingly they appear more stable in the experiments.
For this kind of workload, relatively few options for op-
timizations are there. The comparisons among jobs in
this workload reveal a very narrow gap between the



34 J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

Fig.24. Improvement on the runtime for workload #15.

runtime using Linux scheduler and that optimized by
the dynamic scheduler.

For workloads with more than 64 jobs, I/O con-
tention decreases gradually after the first 64 jobs. If
the workload is mostly composed of shorter jobs, tri-
vial degradation may occur for this kind of workloads,
e.g., in workload #2.

5 Related Work

Contention-aware scheduling has been investigated
ever since last century. Performance degradation
caused by contention in shared resources, such as last
level cache (LLC)[23-25], memory bandwidth[8], and
memory subsystem[9] on SMP or CMP has also been
studied extensively. Some of the researches put more
focuses on the optimizations of contentions for multi-
threaded applications[7,10]. Recent work in this area
has started to focus on more practical issues of re-
source utilization on modern service platforms such as
CMP and cloud computing[2,4]. These researches try
to enhance the resource utilization by co-locating ap-
plications with complementary demand on system re-
sources, e.g., one is CPU-intensive and the other is
memory-intensive. Through estimation or mitigation
of interference from shared-memory contention, these
techniques can improve resource utilization without los-
ing QoS. The research efforts[26-27] combine page color-
ing and XOR cache mapping to reduce row buffer con-
flicts due to inter-thread inference. A recent work[28]

introduces an empirical model for predicting cross-
core performance interference on multicore processors,
which can further be used to guide co-runner-aware
compiler optimizations[4,29], or some domain-specific
optimizations[30-32], to make datacenter applications
co-locate better.

Performance bottlenecks in I/O continue to be one
of the hot research topics since last century. There have
been many solutions proposed from different perspec-
tives for better I/O performance. As an effective opti-
mization, techniques using I/O scheduling policies can
be divided into two major types: performance-oriented
scheduling and fairness-oriented scheduling.

5.1 Performance-Oriented Scheduling

A lot of previous studies on mitigating I/O bottle-
necks have concentrated on the performance of I/O de-
vices. Under such premises, disk scanning is considered
as the core reason for low I/O performance. Scheduling
I/O operations to improve disk scanning is a kind of op-
timization that benefits from high concurrency among
I/O operations[15-16]. Those schemes do not take I/O
contention into consideration.

Longer disk scanning by noncontiguous I/O re-
quests is one of the main reasons that cause poor
disk performance. Optimization on the sequence I/O
operations by data sieving can improve such I/O
performance[17-18].

Disk caching in memory is an effective technique to
speedup I/O performance. The work in [20] demon-
strates several I/O optimizations with shared mem-
ory for specific languages, e.g., MPI-IO applications.
Since optimization using shared memory will take some
memory resources away from regular memory opera-
tions, a careful trade-off needs to be made. Workloads
with Graph500 in our work are also optimized with
disk caching for I/O operations. However, background
implicit I/O activities still can cause severe I/O con-
tention.

Research on I/O activities in virtual machines has
also become a hot topic. The work in [33] focuses on
I/O contention among multiple guest domains. The
work points out that the fairness in I/O resource al-
location may lead to poor performance due to the dif-
ferences in I/O requests. The work in [34] points out
a key shortcoming in the scheduler of current virtual
machine monitors (VMMs) that may lead to communi-
cation behavior of applications. Solutions include tech-
niques such as booking pages for communication, antici-
patory scheduling for sender, in order to make VMM
more aware of the characteristics of applications.

Most I/O schedulers focus on scheduling algorithms
without taking the characteristics of applications into
consideration. In fact, the applications may show dif-
ferent sensitivities to I/O performance. FIOS in [35]
is a flash I/O scheduler that targets at solid-state



Fang Lv et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 35

drives (SSD) and takes both fairness and performance
into consideration using timeslice-based heuristic. The
most important premise of FIOS is the discrepancy be-
tween read time and write time on SSD. Based on this
asymmetry, the scheduler can serve for better perfor-
mance with a preference to reads using timeslice-based
scheduling. This can do well to some applications used
to stall by writes.

I/O throttling is a kind of optimization for higher re-
source utilization, which is the most similar to our work
from the perspective of coordinating I/O demands[36].
This technique always is applied in services which are
comprised of tasks of different QoS. The study in [37]
is a very recent work which exploits I/O throttling in
MapReduce. However, it sacrifices low-QoS tasks to
ensure the performance of high-QoS tasks.

5.2 Fairness-Based Scheduling

Software scheduling policies are always better
choices for mitigating resource conflict, including I/O
contention. Among all I/O schedulers, fairness-oriented
I/O schedulers are the main type that has been thor-
oughly studied in the past. I/O scheduling policies,
such as NOOP, DEADLINE and CFQ, are among the
most commonly used polices in mainstream OS such
as Linux[22,38]. The work in [22] gives a comparative
study on all these policies. However, fairness-based
schedulers often take little or no consideration in per-
formance. Due to the lack of knowledge in the charac-
teristics of applications, contentions of shared resources
are difficult to resolve using fairness-oriented policies.

6 Conclusions

The efficiency of batch processing is attracting re-
newed interest on many modern service platforms such
as clouds and clusters because the massive datasets
need to be processed by many new applications. Multi-
socket CMPs on those platforms also have created new
challenges and opportunities for batch processing, for
example, shared resources contentions such as I/O con-
tentions that can lower the resource utilization of the
platforms and the QoS for batch-mode services running
in concurrent mode.

In this paper, the major causes of performance
degradation due to I/O contention were identified and
studied. A dynamic I/O-aware scheduling strategy was
proposed to deal with those issues. It can improve the
performance by regulating I/O contention and reducing
the overhead caused by bursty I/O requests. The ex-
perimental results on the large-scale server of Dawning
Linux Cluster show the effectiveness of such a strat-
egy in improving the throughput of the I/O sensitive
batch-mode workloads. Meanwhile, the slowdown of

workloads and the average runtime of each user job can
also benefit from such strategy.

Different applications have their different sensitivi-
ties to shared resource contention. Accommodating
such sensitivities can make the scheduler more adap-
tive. This part of work is still in progress, and will be
covered in our future work.

Our current scheduling policy aims primarily at co-
running performance. Applications with higher I/O de-
mands are more prone to be suspended. This tends to
hurt the fairness, which is a very important and prac-
tical issue of cluster platforms. Our future work will
consider more issues including fairness in our schedul-
ing policy.

Acknowledgement We thank anonymous re-
viewers for their constructive and valuable comments.
Our thanks also go to Ying Liu and Professor Shi-
Guang Shan at Institute of Computing Technology,
Chinese Academy of Sciences, for their technical feed-
back on earlier drafts of this paper.

References

[1] Armbrust M, Fox A, Griffith R et al. Above the clouds:
A Berkeley view of cloud computing. Technical Re-
port, UCB/EECS-2009-28, University of California, Berkeley,
February 10, 2009.

[2] Mars J, Tang L, Hundt R et al. Bubble-up: Increasing uti-
lization in modern warehouse scale computers via sensible co-
locations. In Proc. the 44th Int. Symp. Microarchitecture,
December 2011, pp.248-259.

[3] Mishra A K, Hellerstein J L, Cirne W et al. Towards charac-
terizing cloud backend workloads: Insights from Google com-
pute clusters. ACM SIGMETRICS Performance Evaluation
Review, 2010, 37(4): 34-41.

[4] Tang L, Mars J, Soffa M L. Compiling for niceness: Miti-
gating contention for QoS in warehouse scale computers. In
Proc. the 10th Int. Symp. Code Generation and Optimiza-
tion, March 31-April 4, 2012, pp.1-12.

[5] Barroso L, Holzle U. The case for energy-proportional com-
puting. IEEE Trans. Computer, 2007, 40(12): 33–37.

[6] Höelzle U, Barroso L A. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Morgan and Claypool Publishers, 2009.

[7] Snavely A, Tullsen D. Symbiotic jobscheduling for a simulta-
neous multithreaded processor. In Proc. the 9th ASPLOS,
November 2000, pp.234–244.

[8] Xu D, Wu C G, Yew P C. On mitigating memory bandwidth
contention through bandwidth-aware scheduling. In Proc. the
19th Int. Conf. Parallel Architectures and Compilation Tech-
niques, September 2010, pp.237–248.

[9] Zhuravlev S, Blagodurov S, Fedorova A. Addressing shared
resource contention in multicore processors via scheduling. In
Proc. the 15th Int. Conf. Architectural Support for Pro-
gramming Languages and Operating Systems, March 2010,
pp.129–142.

[10] Gao L, Nguyen Q H, Li L et al. Thread-sensitive modulo
scheduling for multicore processors. In Proc. the 37th Int.
Conf. Parallel Processing, September 2008, pp.132-140.

[11] Gao L, Xue J L, Ngai T F. Loop recreation for thread-level
speculation on multicore processors. Software: Practice and
Engineering (SPE), 2010, 40(1): 45-72.



36 J. Comput. Sci. & Technol., Jan. 2014, Vol.29, No.1

[12] Gao L, Li L, Xue J L et al. Loop recreation for thread-level
speculation. In Proc. the 13th Int. Conf. Parallel and Dis-
tributed Systems, Dec, 2007, pp.1-10.

[13] Gao L, Li L, Xue J L et al. Exploiting speculative TLP in re-
cursive programs by dynamic thread prediction. In Proc. the
18th Int. Conf. Compiler Construction, Mar, 2009, pp.78-93.

[14] Ghoshal D, Canon R S, Ramakrishnan L. I/O performance of
virtualized cloud environments. In Proc. the 2nd Int. Work-
shop on Data Intensive Computing in the Clouds, November
2011, pp.71-80.

[15] Jain R, Somalwar K, Werth J et al. Scheduling parallel I/O
operations in multiple bus systems. Journal of Parallel and
Distributed Systems, 1992, 16(4): 352-362.

[16] Jain R, Somalwar K, Werth J et al. Heuristics for schedul-
ing I/O operations. IEEE Trans. Parallel and Distributed
Systems, 1997, 8(3): 310-320.

[17] Thakur R, Gropp W, Lusk E. Data sieving and collective I/O
in ROMIO. In Proc. the 7th Symp. Frontiers of Massively
Parallel Computation, February 1999, pp.182-189.

[18] Acharya A, Uysal M, Bennett R et al. Tuning the perfor-
mance of I/O-intensive parallel applications. In Proc. the 4th
Workshop on I/O in Parallel and Distributed Systems, May
1996, pp.15-27.

[19] Lin Z, Zhou S. Parallelizing I/O intensive applications for a
workstation cluster: A case study. ACM SIGARCH Com-
puter Architecture News, 1993, 21(5): 15-22.

[20] Hastings A, Choudhary A. Exploiting shared memory to im-
prove parallel I/O performance. InProc. the 13th European
PVM/MPI User’s Group Conf. Recent Advances in Parallel
Virtual Machine and Message Passing Interface, September
2006, pp.212-221.

[21] Lameter C. Local and remote memory: Memory in a
Linux/NUMA system. In Linux Symp., July 2006, http://ci-
teseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.7986&
rep=rep1&type=pdf, Nov. 2013.

[22] Shakshober D J. Choosing an I/O scheduler for Red Hatr
Enterprise Linuxr 4 and the 2.6 kernel. http://www.redhat.
com/magazine/008jun05/features/schedulers/, Dec. 2012.

[23] Jiang Y L, Shen X P, Chen J et al. Analysis and approxi-
mation of optimal co-scheduling on chip multiprocessors. In
Proc. the 17th Int. Conf. Parallel Architectures and Compi-
lation Techniques, October 2008, pp.220-229.

[24] Zhuravlev S, Saez J C, Blagodurov S et al. Survey of schedul-
ing techniques for addressing shared resources in multicore
processors. ACM Computing Surveys, 2011, 45(1): Article
No.4.

[25] Majo Z, Gross T R. Memory management in NUMA multicore
systems: Trapped between cache contention and interconnect
overhead. In Proc. the Int. Symp. Memory Management,
June 2011, pp.11-20.

[26] Mi W, Feng X B, Xue J L, Jia Y C. Software-hardware coop-
erative DRAM bank partitioning for chip multiprocessors. In
Proc. the 7th Int. Conf. Network and Parallel Computing,
September 2010, pp.329-343.

[27] Mi W, Feng X B, Jia Y C et al. PARBLO: Page-allocation-
based DRAM row buffer locality optimization. Journal of
Computer Science and Technology, 2009, 24(6): 1086-1097.

[28] Zhao J C, Cui H M, Xue J L et al. An empirical model for pre-
dicting cross-core performance interference on multicore pro-
cessors. In Proc. the 22nd Int. Conf. Parallel Architectures
and Compilation Techniques, September 2013, pp.201-212.

[29] Bao B, Ding C. Defensive loop tiling for shared cache. In
Proc. the IEEE/ACM Int. Symp. Code Generation and Op-
timization, February 2013, pp.1-11.

[30] Cui H M, Wang L, Xue J L et al. Automatic library genera-
tion for BLAS3 on GPUs. In Proc. the 25th IEEE Int. Symp.

Parallel and Distributed Processing, May 2011, pp.255-265.
[31] Cui H M, Xue J L, Wang L et al. Extendable pattern-oriented

optimization directives. In Proc. the 9th Annual IEEE/ACM
Int. Symp. Code Generation and Optimization, April 2011,
pp.107-118.

[32] Cui H M, Yi Q, Xue J L, Feng X B. Layout-oblivious compiler
optimization for matrix computations. ACM Trans. Archi-
tecture and Code Optimization, 2013, 9(4): Article No.35.

[33] Ongaro D, Cox A L, Rixner S. Scheduling I/O in virtual ma-
chine monitors. In Proc. the 4th ACM SIGPLAN/SIGOPS
Int. Conf. Virtual Execution Environments, Mar. 2008,
pp.1-10.

[34] Govindan S, Nath A R, Das A et al. Xen and co.:
Communication-aware CPU scheduling for consolidated xen-
based hosting platforms. In Proc. the 3rd ACM SIG-
PLAN/SIGOPS Int. Conf. Virtual Execution Environments,
June 2007, pp.126-136.

[35] Park S, Shen K. FIOS: A fair, efficient flash I/O scheduler. In
Proc. the 10th USENIX Conf. File and Storage Technologies,
February 2012, Article No.13.

[36] Ryu K D, Hollingsworth J K, Keleher P J. Efficient network
and I/O throttling for fine-grain cycle stealing. In Proc. the
2001 ACM/IEEE Conf. Supercomputing, November 2001,
Article No.3.

[37] Ma S, Sun X H, Raicu I. I/O throttling and coordination for
MapReduce. Technical Report, Illinois Institute of Technol-
ogy, 2012.

[38] Domingo D. Linux 5 IO tuning guide-performance tuning
whitepaper for Red Hat Enterprise Linux 5.2. http://
wenku.baidu.com/view/b7fc01ee5ef7ba0d4a733b74.html, Au-
gust 2013.

Fang Lv participated in the Ad-
vanced Compiler Technology Labo-
ratory (ACT) of Institute of Com-
puting Technology (ICT), Chinese
Academy of Sciences (CAS) in 2001.
She is now a Ph.D. candidate of ICT,
CAS. Her research interests include
performance analysis, compiler op-
timizations, and resource utilization
for large-scale servers.

Hui-Min Cui participated in the
Advanced Compiler Technology Lab-
oratory (ACT) of Institute of Com-
puting Technology (ICT), Chinese
Academy of Sciences (CAS), in 2003.
She is now an associate professor of
ICT, CAS. Her research interests in-
clude programming language and op-
timization.

Lei Wang participated in the
Advanced Compiler Technology Lab-
oratory (ACT) of Institute of Com-
puting Technology (ICT), Chinese
Academy of Sciences (CAS), in 2002.
Her research interests include pro-
gramming language and optimiza-
tion.



Fang Lv et al.: Dynamic I/O-Aware Scheduling on Chip Multiprocessor Systems 37

Lei Liu is now a Ph.D. candidate
of ICT, CAS. His research interests
include operating system and mem-
ory system design and implementa-
tion.

Cheng-Gang Wu received his
Ph.D. degree in computer architec-
ture from ICT, CAS, in 2001. Now
he is an associate professor and Ph.D.
supervisor of ICT. His research in-
terests include compiler optimization
and binary translation.

Xiao-Bing Feng received his
Ph.D. degree in computer architec-
ture from ICT, CAS, in 1999. Now
he is a professor and Ph.D. supervi-
sor of ICT. His research interests in-
clude compiler optimization and bi-
nary translation.

Pen-Chung Yew received his
Ph.D. degree in computer science
from University of Illinois at Urbana-
Champaign, in 1981. He is a profes-
sor of the Department of Computer
Science and Engineering, University
of Minnesota at Twin Cities, USA.
His research interests include high-
performance and low-power multi-
core architectures, compilation tech-

niques that support multi-threading and speculation, dy-
namic compilation, binary translation, parallel machine or-
ganizations, and OS for multi-core embedded systems.


