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Abstract Recognizing scene information in images or videos, such as locating the objects and answering “Where am
I?”, has attracted much attention in computer vision research field. Many existing scene recognition methods focus on
static images, and cannot achieve satisfactory results on videos which contain more complex scenes features than images.
In this paper, we propose a robust movie scene recognition approach based on panoramic frame and representative feature
patch. More specifically, the movie is first efficiently segmented into video shots and scenes. Secondly, we introduce a
novel key-frame extraction method using panoramic frame and also a local feature extraction process is applied to get the
representative feature patches (RFPs) in each video shot. Thirdly, a Latent Dirichlet Allocation (LDA) based recognition
model is trained to recognize the scene within each individual video scene clip. The correlations between video clips are
considered to enhance the recognition performance. When our proposed approach is implemented to recognize the scene in
realistic movies, the experimental results shows that it can achieve satisfactory performance.
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1 Introduction

Over the last decade, the number of digital images
and videos has grown tremendously. At the same time,
some important but difficult problems have been raised.
It is one of the most challenging problems to know
“Where am I” in the computer vision area, namely to
recognize the place/scene. Scene recognition devotes to
getting location categories, while place recognition al-
ways focuses on finding the exact location in realistic.

According to the type of input data (image or video),
scene recognition can be classified into scene recogni-
tion for image and scene recognition for video. In the
past decades, many studies focused on scene recogni-
tion for image[1-5]. Some of these studies (e.g., [3])
have achieved satisfactory performance in certain im-
age datasets (e.g., [6]). For scene recognition for video,
MarszaÃlek et al.[7] proposed a context-based method to
recognize the scene of videos, and Engels et al.[8] pro-
posed an automatic annotation scheme for unique loca-
tions from videos. However, to the best of our knowle-

dge, there are still few researches on the scene recog-
nition for video. This is because videos contain more
complex scenes than images. The complexity is caused
by various changes, such as moving direction and light-
ing conditions. Moreover, well-annotated video scene
datasets are lacked.

In this paper, we focus on challenging scene recog-
nition for video, especially movies or teleplays, and
propose a panoramic frame and representative feature
patches based movie scene recognition approach (the
overview is shown in Fig.1). More specifically, we first
describe how to segment the whole movie into shots and
video scenes. Then, we introduce a novel key-frame
extraction method using panoramic frame and a rep-
resentative feature extraction method. These methods
can ensure that we obtain enough representative and
robust features for scene recognition. Finally, a recog-
nition model is designed to recognize the scene category
of each video clip. Our main contributions are as fol-
lows.
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Fig.1. Overview of the proposed movie scene recognition approach. P (c|si) is the output probability, which means the probability that

si is classified to scene category c.

• We propose to extract panoramic frames as key-
frames in each video shot through video registration.
• We introduce the representative feature patches

(RFPs) as middle-level features to comprehensively rep-
resent each video scene. The RFPs are extracted in the
previously obtained panoramic frames, where the re-
gions of human are eliminated effectively.
• In the scene recognition stage, the informative cor-

relations between video scenes are used to enhance the
recognition performance of individual video scene.

The remainder of this paper is organized as follows.
We review some related work in Section 2, and the
overview of our approach is introduced in Section 3.
We also present details of video segmentation in Sec-
tion 4. Panoramic frame based key-frames and RFPs
extraction are discussed in Section 5. In Section 6, we
describe how to get an enhanced generative model for
movie scene recognition using video scene correlations.
Experimental results are shown in Section 7. Finally,
we conclude this paper in Section 8.

2 Related Work

A scene is defined as a site where the image or video
is taken. Examples of scenes include office, bedroom

and so on. So far, there are many related scene recog-
nition methods, and some of them perform well, es-
pecially for images. For example, a probabilistic neu-
ral network (PNN) was used for indoor versus out-
door scene classification[1]. Zhou et al.[9] presented
a novel Gaussianized vector to represent the scene
images for unsupervised recognition. Besides, Oliva
and Torralba[10] incorporated the idea of using global
frequency with local spatial constraints to recognize
scenes.

However, scenes in the same category are presented
in various forms of appearances, thus many researches
thought that the local features would be more suitable
to construct the scene model. For example, Liu et al.[4]

utilized Maximization of Mutual Information (MMI)
co-clustering approach to discover clusters of semantic
concepts for scene modeling. Li et al.[2] proposed a hier-
archical Bayesian to classify 13 image scenes. Moreover,
Lazebnik et al.[6] argued that methods based on basic
bag-of-features representation will do scene recognition
better. Thus, they remained sympathetic to the goal
of developing robust and geometrically invariant struc-
tural object representations, and proposed the spatial
pyramid matching for recognizing natural scene cate-
gories. In addition, Wu and Rehg[3] introduced a new
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visual descriptor, named, Census Transform Histogram
(CENTRIST), to recognize both topological places and
scenes categories. Xiao et al.[11] even proposed the ex-
tensive Scene Understanding (SUN) database that con-
tains 899 categories and 130 519 images for scene recog-
nition.

Nevertheless, the aforementioned methods mainly
handle the recognition for specially collected images,
and cannot deal with the same problems well in movies.
Recently, there are also several studies on movie scene
recognition, such as [12-13]. Huang et al.[13] developed
the scene categorization scheme using a Hidden Markov
Model (HMM)-based classifier. However, these met-
hods concentrate on simple videos only, i.e., basketball
video, football video and commercial video, and cannot
be applied to movies. Movie scene recognition is more
challengeable since the physical location appearance
is various in camera viewpoints, partial occlusion and
lighting changes, etc. Schaffalitzky and Zisserman[14]

described the progress in matching shots of the same
3D location in a film. But both their local invariant de-
scriptors extraction and the shots’ matching process are
very time consuming. Meanwhile, an improved unsu-
pervised classification method was proposed by Héritier
et al.[15-16] to extract and link places features and clus-
ter recurrent physical locations (key-places) within a
movie. Their work focuses on near-duplicate detection
which is composed of footage or images of the same
object or same background but taken at different time
and/or different places. Bosch et al.[17] also presented
a pLSA-based scene classification method mainly for
images, but they tested key-frames from a movie. In
their movie, there are only a few images that could be
accurately classified. That is to say it is still a difficult
task to directly use image scene recognition method to
do movie scene recognition.

Actually, Ni et al.[18] presented an efficient algorithm
for recognizing the locations of a camera/robot in the
learned environment using only the images it captures.
However, the locations or scenes in movies are not so
specific and stable. In fact, the most related work to our
approach is the studies of [7-8]. Engels et al.[8] proposed
the automatic annotation scheme for unique locations
from videos. Although it is satisfactory and accurately
to annotate video locations with location word, it is
based on the hypothesis that the transcripts are avail-
able. MarszaÃlek et al.[7] proposed a joint framework for
action and scene recognition and also demonstrated the
enhanced recognition for both of them in natural video.
However, their main purpose is to do action recognition
and their scene recognition results are not satisfactory.

In order to deal with the various appearances in
movie scene recognition, we should extract more ro-

bust and representative feature patches and more effi-
cient recognition model as well as use domain knowle-
dge. Thus, in this paper, we use the panoramic frame
as the key-frame, and choose the representative feature
patches (RFPs) to represent each video clip. Mean-
while, local patches drops in human regions are ex-
cluded because human regions always mean the noisy
for movie scene. In addition, we consider the reoccurred
movie scenes referring to the same place as the optimal
candidates for enhanced recognition.

3 Overview

As shown in Fig.1, the proposed method consists
of five stages: 1) video segmentation; 2) key-frame ex-
traction; 3) representative local features extraction; 4)
LDA-based classifier construction; 5) video scene cor-
relations based enhancement. At first, the video is seg-
mented into shots and scenes, and this is introduced in
Section 4. Then, the panoramic frame is obtained as
the key-frame for each shot, and representative feature
patches are extracted from these panoramic frames be-
longing to the same video scene, detailed in Section 5.
After that, the Bayesian classifier with LDA model is
trained to recognize the scene category for each video
scene, and an enhanced scene recognition processing is
implemented with near duplicated video scene detec-
tion. The final processes are described in Section 6.

4 Video Segmentation

In this section, video segmentation, including shot
boundary detection and scene detection, is adopted to
segment each movie into clips. While there are two dif-
ferent meanings for the word scene (one is used in scene
recognition, the other is the description which refers to
a group of shots in video composition), we maintain the
meaning for scene in scene recognition, and use video
scene (VSC) to represent the meaning in video com-
position definition for notational distinction. At first,
an accelerating shot boundary detection method[19] is
adopted to segment a movie into shots efficiently. After
that, we propose a multi-modality movie scene detec-
tion method using kernel canonical correlation analysis
based feature fusion[20]. Specifically, feature movies are
often filmed in open and dynamic environments using
moving cameras, and also have continuously changing
contents. Thus, we focus on the association extrac-
tion of visual features x (e.g., color, gradient, motion)
and audio features y (e.g., mel-frequency cepstral coeffi-
cients (MFCCs), short time energy log measure (STE)).
Based on the Kernel Canonical Correlation Analysis
(KCCA), all these features are fused for efficient VSC
detection as follows.
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Canonical correlation is to choose wx and wy to
maximize the correlation between the two variables x
and y. Namely, the function to be maximized is

ρ = max
wx,wy
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Cxx = E[xxT] and Cyy = E[yyT] are the auto-
covariance matrix. Cxy = E[xyT] and Cyx = E[yxT]
are the polled-covariance matrix. Thus, while x and y
refer to the visual and audio features respectively, the
resulting combined audio-visual feature vector is thus
given by
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(
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)
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After that, a similarity graph is constructed with
spatial-temporal coherent shots and partitioned to
generate the VSC boundaries.

5 Representative Features Patches Extraction

A VSC usually refers to a group of shots taken in the
same physical location, thus single frame does not take
sufficient information of it. Therefore, we get several
key-frames in a VSC, and extract the representative fea-
tures in these key-frames. Concretely, while the frames
in a shot are captured by one time camera motion, we

use the panoramic frame obtained by video (frame-to-
frame) registration, as the key-frame. Then, in order
to get more representative features, RFPs are extracted
from key-frames.

5.1 Key-Frame Extraction

In order to get the most representative features
as well as to reduce the noise involved in redun-
dant frames, we propose a novel key-frame extraction
method using panorama frame. Recently, several key-
frame selection methods were proposed to choose an
appropriate number of key-frames, especially for a dy-
namic shot with larger motion of actor or camera[21-22].
However, these methods may satisfy the requirement of
applications such as video summary rather than movie
scene recognition. That is because to compare with
these applications, we need more comprehensive and
representative features of a VSC to distinguish different
scene categories. While the panoramic frame obtained
by video frame registration contains more completed
features, Xiao et al.[23] introduced the problem of scene
viewpoint recognition with panoramic images organized
into 26 place categories. Thus, in this paper we also use
the panoramic frame to construct our key-frames.

The panoramic frame can be obtained by video regi-
stering. In this paper, in order to obtain a more robust
panoramic frame, we adopt the RVR method proposed
by Ghanem et al.[24] As described in [24], we get the
panoramic frame by calculating the homography ma-
trix between two frames, since with the homography
matrix, we can map all the pixels in one frame to an-
other to generate the panoramic frame.

Fig.2. Examples of key-frames using panoramic frames.
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More specifically, while F t ∈ RM×N means the
frame at time t and ht refers to the homography ma-
trix from F t to F t+1. We spatially transfer F t to F t+1

using the operation of F̃ t+1 = F t ◦ ht. Ideally, F̃ t+1

should be approximated to F t+1, and the error arising
from outliers pixels denoted as et = F̃ t+1−F t+1 should
be assumed to be sufficiently sparse. So far, the video
registration problem is transferred to estimate the opti-
mal sequence of homography matrices that map consec-
utive frames and render the sparsest error (minimum `0
norm). Since this problem is NP-hard in general and
non-convex especially due to the nonlinear constraints,
the cost function is replaced with its convex envelope
(`1 norm) as follows:

min
et+1

‖et+1‖1
s.t. : F t ◦ ht = F t+1 + et+1. (4)

Although the objective function is convex, the equality
constraint is still not convex. Thus, with an iteratively
solved linearized convex problem, it begins with an es-
timation of each homography denoted as ht

(k) at the
(k +1)-th iteration. In order to linearize the constraint
around a current estimate of the homography, the cur-
rent estimation will be ht

(k+1) = h
(k)
t + 4ht. Thus,

(4) is relaxed to

min
4ht,et+1

‖et+1‖1

s.t. : J
(k)
t 4ht − et+1 = δ

(k)
t+1, (5)

where δ
(k)
t+1 = F t+1 − F t ◦ h

(k)
t represents the error in-

curred at iteration k and J
(k)
t ∈ RMN×8 is the Jacobian

of F t ◦ ht. Finally, the homography matrix is success-
fully extracted since the problem in (5) becomes a linear
problem which can be solved in polynomial time. After
that, the panoramic frame in each shot can be obtained
with this estimated homography matrix, as can be seen
in Fig.2. More details of the video registration and
stitching can be found in [24].

5.2 RFPs Extraction and Representation

Although the panoramic frame has contained more
comprehensive contents of a VSC, different panoramic
frames may refer to different view directions’ appear-
ances. Therefore, this subsection explains the method
to extract more representative feature patches (RFPs)
from these panoramic frames.

Firstly, movie M is supposed to be segmented into
a shot set T = {t1, . . . , tm} and then we cluster shots
into the VSC set S = {s1, . . . , sn}[20]. Meanwhile, key-
frames are obtained using the method depicted in Sub-
section 5.1 for each shot.

Local features are proved to be more reasonable for
semantic analysis and also more robust to sundry varia-
tions and occlusions[2]. Thus, we extract two types of
local features in key-frames: Scale-Invariant Feature
Transform (SIFT) key points and Maximally Stable
Extremal Regions (MSER). In the following we de-
scribe these two features in detail.
• SIFT. We compute the SIFT descriptor for the

regions obtained with the DoG detector[25]. We uti-
lize SIFT descriptors with scales of each interest point
varying from 20 to 120 pixels. It describes the static
appearance over spatial histogram.
• MSER. Every extremal region is a connected com-

ponent of a thresholded image. The regions are ob-
tained by thresholding the intensity image and track-
ing the connected components as the threshold value
changes. The idea is due to the work of Matas et al.[26].

The SIFT features are invariant to image
scale/rotation and robust to changes in illumination,
noise, and minor changes in viewpoint. Meanwhile,
SIFT features exhibit the highest matching accuracies
for an affine transformation of 50 degrees. But, after
this transformation limit, results start to become unreli-
able. However, MSER as a method of blob detection in
images, has been proved as one of the most robust fea-
ture detectors on invariance of affine transformation[27].
In order to generate the invariant description for MSER
feature, an elliptical image region is used to cover the
distinguished regions with the interest point as the cen-
ter. Meanwhile, the elliptical region normalized to a
circle, and the SIFT descriptor for the central point is
output as the final MSER feature description. These
SIFT and MSER features are named as feature patches.

In addition, human regions always shelter the back-
ground, thus the human regions should be considered
as the noise or obstacle for movie scene recognition.
Therefore, the human detection method[28] is applied
to the middle frame of each shot at first, and we ex-
clude shots with a large portion of human region in
middle frames, which correspond to the close up shots
and the medium close up shots. As shown in Fig.3, for
remained shots, we extract the panoramic frames as
key-frames, locate the human regions, and then mask
them out. Feature patches within the mask are then
filtered out, and we reserve feature patches from the
remainder. Meanwhile, we cluster the reserved patches
in one VSC using K -means algorithm and assign the
label of the centroid to each cluster. These labeled
patches are named as representative features patches
and denoted as R = {r1, . . . , r|R|}, where ri is a patch,
|.| means the size operator, and i = 1, . . . , |R|.

In our approach, the recognition model is based on
the Bayesian model using LDA[2]. We use VSCs as the
basic data for learning, and each VSC is represented
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by an RFP set. RFPs are considered as the basic units
of codewords, and they are used for training and learn-
ing. Besides, the reoccurred VSCs referring to the same
location are used to enhance the final recognition re-
sults.

Fig.3. Human detection in key-frames.

6 VSC Correlation Based Recognition

6.1 RFPs Based Individual VSC Recognition

To estimate the LDA topic mixtures, a patch x is
the basic feature unit, defined to be a patch mem-
bership from a dictionary of codewords indexed by
1, . . . , T . The t-th codeword in the dictionary is rep-
resented by a T -vector a such that at = 1 and av = 0
for v 6= t. A patch (or codeword) refers to an RFP.
A VSC is a sequence of N patches denoted by x =
(x1, x2, . . . , xN ), where xn is the n-th patch of the
VSC. A category is a collection of M VSCs denoted
by C = {a1,a2, . . . ,aM}.

Given an unknown VSC si, it is represented by a
set of codewords firstly. We empirically find that the
quality of topic distributions is relatively stable if the
number of topics is within a reasonable range, and we
choose k = 35 topics for the construction of LDA. Fi-
nally, we have the decision probability of si to be clas-
sified to movie scene category c.

p(c|si,θ,β,η) ∝ p(si|c,θ,β)p(c|η) ∝ p(si|c,θ,β), (6)

where θ,β and η are parameters learnt from the train-
ing set and c is the category index. Then, we use a
decision probability p(c|si) to classify VSC si into cate-
gory c. After that, each VSC is classified into a movie
scene category with the largest decision probability.

6.2 Enhanced Recognition Based on VSC
Correlation

Actually, there are many VSCs referring to the same
physical location in a movie. But the features ex-
tracted in different VSCs with different appearances

may present various recognition ability in the recog-
nition model. However, the similarity correlations be-
tween these VSCs are easy to obtain and they are relia-
ble context information for more accurate recognition.
Therefore, we use the near duplicate VSC identifica-
tion to get the VSC correlations. Given two VSCs sx

and sy, they are represented with two RFP sets Rx

and Ry respectively. For each RFP in Rx, it involves
a series of comparisons to search the nearest neigh-
bor in Ry and it is computationally expensive. How-
ever, the LIP-IS algorithm[29] can be used for more fast
RFP nearest neighbor searching. The similarity defini-
tion Sim for two RFPs rx = {rx,1, rx,2, . . . , rx,36} and
ry = {ry,1, ry,2, . . . , ry,36} is defined as

Sim(rx, ry) =
36∑

i=1

Col(rx,i, ry,i), (7)

where 0 < Col(rx,i, ry,i) 6 1 is the collision function[29].
The matching score of sx and sy is summarized in Al-
gorithm 1.

Algorithm 1. VSC Matching with LIP-IS Filtering

Mechanism

Input: VSC sx and sy

Output: matching score of sx and sy

1: Extract the RFP sets Rx and Ry in sx and sy re-
spectively.

2: Hash all RFPs in Rx to LIP-IS[29].

3: for each RFP ry in Ry do

4: Hash ry to LIP-IS.

5: Retrieve the nearest neighbor RFP rx in Rx and

label it as the matched one.

6: Compute the number of matched RFP pairs (i.e.,
{(rx, ry)|rx ∈ Rx, ry ∈ Ry}).

7: Return the portion of matched RFP pairs as the
matching score.

With Algorithm 1, we can get the matching score
(also named correlation score) Sc(x, y) of sx and sy.
If Sc(x, y) is bigger than the threshold T (we take
T = 0.68), they are named as the near duplicate for
each other. Supposing the near duplicates si and st are
with decision probability of p(c|si) and p(c|st) respec-
tively, and their correlation score is Sc(i, t), we update
the decision probability of p(c|si) as follows.

p′(c|si) =
1
N

N∑
t=1

( 1
1 + Sc(i, t)

p(c|si)+

Sc(i, t)
1 + Sc(i, t)

p(c|st)
)
, (8)
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where N is the number of the near duplicate VSCs for
si, and p′(c|si) is the new decision probability for scene
si referring to the category c.

According to (8), we can see that, if the matching
score Sc(i, t) is small, it means that the similarity mea-
sure is not reliable enough, and the near duplicate VSC
cannot provide credible context information. Other-
wise, the two VSCs could be seen as the same location,
and their final decision probabilities should be consis-
tent with a weighted average calculation.

7 Experimental Results

For movie scene recognition, the key issue is a suffi-
cient number of movie clips for visual training. Thus,
MarszaÃlk et al. have provided a dataset with 12 classes
of human actions and 10 classes of scenes distributed
over 3 669 video clips, using the alignment of scripts
and videos. However, this dataset is not suitable for
movie scene model training. That is because the video
clip is not a complete VSC in this dataset, and the ap-
pearance, including illumination, resolution and so on,
is not so typical and representative. Thus, we take the
idea of using script, to use scene captions, short descrip-
tions of the scene setup, to construct our movie scene
dataset.

Our dataset contains five categories of movie scene
(Street (45 clips), Office (58 clips), Restaurant (46

clips), Bedroom (51 clips), Incar (61 clips)), because
they are the most common ones in movies[7]. This
is also shown in Fig.4. In addition, we also use
WordNet[30] to select expressions corresponding to the
five instances. That means if the scene setting in scripts
is cafe, it refers to the generalized concept of restaurant.
In fact, we only use scripts for training and do not as-
sume scripts to be available during learning.

In the following, we mainly introduce how we deal
with the five movie scene categories. Each VSC is rep-
resented by an RFP set, and each RFP set is named
as a movie scene instance for training. While the code-
book of codewords is learned, we get the recognition
model. While the model is trained, our experiments
are performed over 50 movie clips which are generated
with our automatic scene segmentation, to assess the
performance of our approach. For these 50 clips, each
one is a VSC and 10 for each category. The RFPs are
extracted in the VSCs and the RFP set is constructed
to put into the trained model for recognition.

We first evaluate our approach by comparing it with
three others approaches: the movie scene recognition
method proposed by MarszaÃlk et al.[7] and two image-
based scene recognition methods: the spatial pyra-
mid matching based approach[6] and the Centrist-based
approach[3], both on MarszaÃlk’s dataset (MD) and our
scene dataset with five categories (DFC). And also, we
perform the comparisons on the following various con-

Fig.4. Some example movie scenes in our dataset.
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ditions: with and without panoramic frame based key
frame extraction, with and without RFP and human re-
gion removal, with and without VSC correlation. The
first set of comparisons is to assess the overall perfor-
mance of our approach, and the second set is imple-
mented to prove the efficiency of both panoramic frame
based key frame extraction and VSC correlation based
recognition improvement.

7.1 Performance of Different Methods

To the best of our knowledge, while most of
the scene recognition researches focus on static ima-
ges, there is a little work directly on movie scene
recognition, for example [7]. Thus, in this subsec-
tion, we compare the performance of our approach[6]

(OURM ) and the approach in [7] (MARCINM ). Be-
sides, in order to assess the efficiency of our approach
more comprehensively, we also implement the Centrist-
based approach[3] (CENTRISTM ) and Spatial Pyra-
mid Matching based approach[6] (SPMM ). Because
the last two approaches were proposed to handle im-
age scene recognition, we adopt them to perform video
scene recognition by applying them on the mid-frame
based key frames in each shot, and each VSC is classi-
fied into one of the five scene categories with the largest
decision probability. In addition, we also evaluate these
three methods in DFC and a subset of MD consisting of
50 randomly chosen clips. The recognition results are
shown in Table 1.

Table 1. Comparison of Proposed Approach with

MARCINM
[7], CENTRISTM

[3], and SPMM
[6]

OURM MARCINM CENTRISTM SPMM

MD DFC MD DFC MD DFC MD DFC

Street 0.81 0.84 0.52 0.55 0.62 0.66 0.59 0.68

Office 0.74 0.80 0.62 0.63 0.60 0.61 0.58 0.61

Restaurant 0.61 0.67 0.33 0.40 - - - -

Bedroom 0.72 0.71 0.51 0.51 0.69 0.70 0.65 0.69

Incar 0.64 0.64 0.66 0.67 - - - -

7.2 Performance Evaluation on Using
Panoramic Frame

Considering the use of panoramic frame, we compare
the performance of panoramic frame based key frame
extraction with normal key frame extraction. Here, the
normal key frame extraction is the key frame extraction
method in [20].

Static scene images are always landscape images
and contain more comprehensive features of the whole
scene, but the focus or attention in the movie scene is
mostly the moving objects. Thus there are only a few
features about the scene in some shots. However, using
panoramic frame based key frames, we can collect more

comprehensive scene features in consequent frames tak-
ing account that “redundance is also abundance”. Fi-
nally, as shown in Fig.5, we get a more efficient recog-
nition performance which archives an improvement of
9% accuracy on average in the five scene categories.

Fig.5. Comparisons of using or not using panoramic frames

(PFs).

Besides, the confusion matrix in all categories is
also reported in Fig.6. In fact, the most confus-
ing pairs of the five categories are office/restaurant,
office/bedroom and restaurant/bedroom, especially for
normal key frame extraction. That is because in par-
tial scene, these pairs of categories share very similar
scenes or backgrounds. However, from Fig.6, we can
see that our approach has satisfactory results in these
pairs because different categories present distinguishing
appearances in the panoramic frames.

Fig.6. Confusion matrix of our movie scene dataset.

7.3 Comparison on Different Experimental
Conditions

In order to assess the effectiveness of the feature ex-
traction on non-human regions as well as the VSC corre-
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lation based enhanced recognition, we perform several
experiments in different experimental conditions. We
evaluate the performance of the RFPs extraction, the
human regions removing as well as the VSC correla-
tion based enhanced recognition. The human regions
always take a large portion in most of the frames, but
they are the noises for scene recognition which mainly
refer to background information. Thus, the human re-
gion removing processing is introduced to exclude local
features in human regions, and the improved recogni-
tion accuracy is shown in Fig.7.

Fig.7. Performance improvement after human region removed.

In Fig.8, we compare the performance of the directly
sift features extraction based scene recognition (DS-
FSR) method, which is the method used in [7], method
with our RFP extraction and human region removing
(RFEHRSR), and also RFEHRSR combined with the
VSC-enhanced recognition method (VERFHRSR). We
find that the RFP and the human regions removing
enhance the recognition accuracy. Because we reduce
most of the redundant features which are identified as
noise by RFPs and by removing the human regions, the
pure location regions are more efficiently used for train-
ing and learning.

Meanwhile, the recognition of outdoor movie scene
of street even reaches a high accuracy of 80%, while the
recognition results of the three indoor movie scenes:
office, restaurant, bedroom, are not so good as that of
street. The movie scene of Incar seems to be discrimi-
nated easily, but the recognition result is not very well.
It is maybe because the human region occupies a very
large portion in a Incar movie scene, and the num-
ber of features used for training and recognition is very
small. We conclude that without removing the human
regions, the performance decreases obviously, especially
in inside movie scenes of bedroom and office. Besides,
the VSC correlation enhances the recognition result of

individual VSC. Our approach achieves a satisfactory
performance on the five movie scene categories as shown
in Fig.8.

Fig.8. Recognition performances on different conditions.

8 Conclusions

In this paper, we have studied how to effectively
recognize scenes in a movie. More specifically, the
movie is efficiently segmented into clips at first. Then,
by stitching the panoramic frame as key frames, the
representative local features in these key-frames are ex-
tracted, and further the noise of human regions is re-
moved. In addition, during the process of extracting
all the local patches in each VSC, the RFPs are cho-
sen to represent the VSC. After that, an LDA-based
movie scene recognition model is built by training the
collected VSCs. Finally, when the recognition results
for each individual VSC is ready, the correlations of
VSCs are taken into account for enhanced recognition.
Although the recognition results are not dramatically
improved, it is a very meaningful idea to collectively
use both key-frame information and related VSC infor-
mation for video content analysis.
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