
Wu Y, Chen YJ, Chen TS et al. An elastic architecture adaptable to various application scenarios. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 29(2): 227–238 Mar. 2014. DOI 10.1007/s11390-014-1425-x

An Elastic Architecture Adaptable to Various Application Scenarios

Yue Wu1,2 (伍 岳), Yun-Ji Chen1 (陈云霁), Member, CCF, ACM, IEEE, Tian-Shi Chen1 (陈天石)
Qi Guo3 (郭 崎), and Lei Zhang1 (张 磊), Member, CCF, ACM, IEEE

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3IBM Research-China, Beijing 100193, China

E-mail: {wuyue, cyj, chentianshi}@ict.ac.cn; joyguoqi@gmail.com; zlei@ict.ac.cn

Received November 14, 2013; revised January 8, 2014.

Abstract The quantity of computer applications is increasing dramatically as the computer industry prospers. Meanwhile,
even for one application, it has different requirements of performance and power in different scenarios. Although various
processors with different architectures emerge to fit for the various applications in different scenarios, it is impossible to design
a dedicated processor to meet all the requirements. Furthermore, dealing with uncertain processors significantly aggravates
the burden of programmers and system integrators to achieve specific performance/power. In this paper, we propose elastic
architecture (EA) to provide a uniform computing platform with high elasticity, i.e., the ratio of worst-case to best-case
performance/power/performance-power trade-off, which can meet different requirements for different applications. It is
achieved by dynamically adjusting architecture parameters (instruction set, branch predictor, data path, memory hierarchy,
concurrency, status&control, and so on) on demand. The elasticity of our prototype implementation of EA, as Sim-EA,
ranges from 3.31 to 14.34, with 5.41 in arithmetic average, for SPEC CPU2000 benchmark suites, which provides great
flexibility to fulfill the different performance and power requirements in different scenarios. Moreover, Sim-EA can reduce
the EDP (energy-delay product) for 31.14% in arithmetic average compared with a baseline fixed architecture. Besides,
some subsequent experiments indicate a negative correlation between application intervals’ lengths and their elasticities.

Keywords architecture design, configurable, elasticity, energy-delay product reduction

1 Introduction

The continuous advancing of computer processor de-
signing during the past decades enables millions of com-
puter applications to emerge. An application may have
different constraints on execution expenditure in dif-
ferent scenarios. For example, the power consumption
requirements of a same application can be significantly
different for hand-held terminals and desktop comput-
ers.

Under this circumstance, more and more processors,
which have similar functionalities, have been devised
to meet different performance-power trade-off require-
ments in different scenarios. For instance, the proces-

sor products of Intel had increased from 5 types to
near 30 types between 1999 and 2009①. Such repe-
titions consume considerable cost in processor design
and manufacture. Furthermore, the diversity of pro-
cessors makes the performance and power of an appli-
cation non-deterministic, which is inconvenient for pro-
grammers and system integrators.

To address this problem, we seek for a uniform plat-
form to tackle applications under different requirements
more efficiently. That is, this platform can solve appli-
cations with great flexibility in performance and power.
To quantitatively evaluate the flexibility of an architec-
ture, we propose a quantitative measure called elasti-
city, which means the ratio of the worst-case and best-

Regular Paper
This work is partially supported by the National Natural Science Foundation of China under Grant Nos. 61003064, 61100163,

61133004, 61222204, 61221062, 61303158, the National High Technology Research and Development 863 Program of China under Grant
No. 2012AA012202, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDA06010403,
and the Ten Thousand Talent Program of China.

A preliminary version of this paper was published in the Proceedings of NPC 2012.
①Intel 1999 annual report, http://www.intel.com/content/dam/doc/report/history-1999-annual-report.pdf, January 2014, and

Intel 2009 annual report, http://www.intc.com/intelAR2009/, January 2014.
©2014 Springer Science +Business Media, LLC & Science Press, China



228 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

case responses② when executing an application on the
architecture. Conventional architectures have certain
degrees of elasticities, however, their room of adjusting
responses is quite narrow. For instance, the perfor-
mance elasticity of a modern processor with dynamic
voltage/frequency scaling (DVFS) with the frequency
ranging from 1GHz to 2GHz is 2 for all applications.
Therefore, it might be hard for a conventional archi-
tecture to meet more sophisticated requirements (e.g.,
maintaining a high performance-power tradeoff) when
facing various applications.

In this paper, we propose Elastic Architecture (EA),
which offers high elasticities with respect to perfor-
mance, power, and performance-power tradeoffs for dif-
ferent application scenarios by employing reconfigu-
rable architectural features. Through dynamically con-
figuring these features, the thread-level parallelism
(TLP) and instruction-level parallelism (ILP) of the
processor can be adjusted on demand. For example, in
multi-core systems that explicitly exploit the TLP, we
can intuitively shut down several cores to save power
once the performance requirement is met. Moreover,
the reconfiguration of multi-core architecture around
hardware failure is also a promising solution to provide
enough system availability, reliability and dependabil-
ity for fault-sensitive, even life-critical scenarios, i.e.,
the failure may result in death or severe damage. In
comparison with conventional architecture that cannot
adapt to concrete applications and scenarios, the high
elasticity of EA not only allows it to achieve optimal or
near-optimal response over an individual application,
but also makes it possible to meet sophisticated perfor-
mance/power requirements under different application
scenarios.

Based on above ideas, we implement a prototype
design of EA, named Sim-EA. Sim-EA can be reconfi-
gured into more than 70 000 000 architecture instances.
We present the first part of the experiment by evalu-
ating the elasticity of performance-power tradeoff with
EDP (energy-delay product) of the EA, using 26 bench-
marks of SPEC CPU2000. The arithmetic average
EDP elasticity of Sim-EA is 5.41 and the mean EDP
reduction (defined as the percentage of EDP reduc-
tion of the best-case response to the fixed baseline re-
sponse) is 31.14%. The results indicate that selected
reconfigurable components have crucial impacts on the
performance-power tradeoff, and the EA can provide
near-optimal EDPs for all benchmark applications. In
the later part of the experiments, we focus on how the
interval length will impact elasticity and EDP reduc-
tion when executing an application interval by interval

(i.e., segment by segment), using 16 segments of ap-
plications from SPEC CPU2006. The interval lengths
are set into three levels, which are 1, 3, and 10 million
instructions (per interval) respectively, from the fine-
grained to the coarse-grained. Both elasticity and EDP
reduction show a monotonic negative correlation with
the interval length. To be exactly, the arithmetic ave-
rage elasticity goes from 17.56 (with interval length of
10 million instructions) to 19.24 (3 million) and up to
22.25 (1 million); while the EDP reduction goes from
33.93% (10 million) to 37.61% (3 million), and finally
to 42.41% (1 million). The results indicate that shorter
application intervals get higher elasticities and larger
percentages of EDP reduction.

The main contributions of this paper can be sum-
marized as follows. First, the elasticity is proposed
to measure quantitatively the flexibility of a processor.
Second, the elastic architecture, which can adapt to the
scenario requirements through dynamically reconfigur-
ing architecture parameters, is introduced. Third, the
advantage of the EA has been demonstrated by our ex-
perimental results carried out on a prototype of EA.

The rest of the paper is organized as follows. Section
2 introduces the concept and critical design issues of
EA. Section 3 presents the experimental methodology.
Section 4 empirically evaluates our implementation of
EA, as Sim-EA with respect to elasticity and EDP re-
duction on a baseline architecture. Section 5 discusses
utilizing application clusters to reduce the reconfigura-
tion overheads. Section 6 briefly reviews some related
work. Section 7 concludes the paper and discusses the
future work.

2 Elastic Architecture

In this section, we first present the concept of elastic
architecture. After that, we introduce an implementa-
tion of elastic architecture. Some additional implemen-
tation issues are also discussed in this section.

2.1 Concept

We say a CPU architecture is an elastic architecture
(EA), if its main features, which include instruction set,
branch predictor, data path, memory hierarchy, concur-
rency, status&control, and so on, can be dynamically
reconfigured on demand.

The EA is CPU-based so as to achieve generality. It
exhibits elasticity in different aspects, such as instruc-
tion set, performance, power. For an application with
high-performance requirement, the EA can work as a
high-performance CPU. For an application with low-

②Response is a term widely used in design space exploration, which refers to some kind of execution expenditure (e.g., performance,
power, performance-power trade-off).



Yue Wu et al.: An Elastic Architecture Adaptable to Various Application Scenarios 229

power requirement, it can work as a low-power CPU.
For an application without specific requirement, it can
select a running mode with a high performance-power
tradeoff. The concrete configurable features of an EA
may include:

1) The configurable instruction set mainly requires
a configurable instruction decoder, which is sufficient
to support multi instruction sets. It enables an EA to
support applications developed for different computer
families.

2) The configurable branch predictor guarantees the
EA can adopt suitable branch prediction strategies
(e.g., global history predictor, local history predictor)
for applications with different types of branch behav-
iors.

3) The configurable data path provides flexible com-
putational ability for the EA. Through configuring data
path, the number and functionality of computational
units can be adjusted to meet specific performance and
power requirements.

4) The configurable memory hierarchy is crucial to
the EA, since the memory hierarchy may consume
half of the area in a state-of-the-art CPU. There are
many important memory hierarchy parameters, such
as cache size, cache line size, cache way, cache replace-
ment strategies. Each of these parameters has a non-
negligible impact on the performance and power.

5) The configurable concurrency includes not only
TLP, but also ILP. Concretely, the concurrency configu-
rations can include core number, core interconnection
issue width, instruction window size, and so on.

6) The configurable status&control include volt-
age adjustment, frequency adjustment, kernel-model
resource adjustment, and other miscellaneous CPU
configurations.

Fig.1 illustrates the concept of EA, in which a cen-
tral configuration module controls the other modules
(the instruction fetch&decode model, execution engine,
computational units, memory access unit, status and

core interconnection) through several configuration bus
(instruction configuration bus, branch prediction con-
figuration bus, concurrency configuration bus, data
path configuration bus, memory hierarchy configura-
tion bus, and status&control configuration bus).

It is worth noting that an EA does not require that
all the above features of the CPU are reconfigurable,
since it may bring unnecessary difficulty to implementa-
tion. In other words, for a certain EA, it always consists
of a part of fixed features and a part of reconfigurable
features. Hence, determining which part to reconfigure
and reconfigure to what extend should cautiously trade
off the design complexity and obtained benefits. An
empirical guideline to determine the reconfigurable fea-
tures is that such reconfigurable parts can provide large
elasticity for applications, which can offer great adapti-
vity to a wide range of application scenarios.

2.2 Implementation of EA

To demonstrate the feasibility and merit of EA, we
implement Sim-EA, which is a prototyping of EA, on a
SimpleScalar-like C simulator[1]. As shown in Table 1,

Table 1. Reconfigurable Parameters in Processor with EA

Abbreviation Parameter Value

WIDTH Fetch width 2, 4, 6, 8

FUNIT FPALU/FPMULT units 2, 4, 6, 8

IUINT IALU/IMULT units 2, 4, 6, 8

L1IC L1-ICache 8KB∼256KB: step 2*

L1DC L1-DCache 8KB∼256KB: step 2*

L2UC L2-UCache 256KB∼4 096KB:

step 2*

ROB ROB size 16∼256: step 16+

LSQ LSQ size 8∼128: step 8+

GSHARE GShare size 1K∼32K: step 2*

BTB BTB size 512∼4 096: step 2*

Total 10 parameters 70 778 880 options

Note: “step 8(16)+” means the parameter is a finite arith-
metic sequence the common difference of which is 8(16); “step
2*” means the parameter is a finite geometric sequence the
common ratio of which is 2.

Fig.1. In an elastic architecture, the instruction fetch&decode model, execution engine, computational units, memory access unit,

status, and interconnection can be dynamically configured.



230 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

there are 10 configurable parameters in the EA, which
include the issue width (WIDTH), the number of
floating-point functional unit (FUNIT), the number of
integer functional unit (IUNIT), the size of L1 data
cache (L1DC), the size of L1 instruction cache (L1IC),
the size of L2 cache (L2UC), the size of gshare branch
history table (GSHARE), the size of branch target
buffer (BTB), the size of reorder buffer (ROB), and
the size of load store queue (LSQ).

We choose the above parameters mainly for two rea-
sons. Firstly and the most importantly, these para-
meters provide significant elasticity in our implemen-
tations. They are critical to influence elasticity by con-
trolling the overall performance/power of the processor,
i.e., most of such parameters are closely related to the
ILP, e.g., WIDTH, FUNIT, IUNIT, GSHARE, BTB
and ROB. Secondly they can be conveniently config-
ured. Among these parameters, WIDTH, FUNIT, IU-
NIT, ROQ and LSQ can be reconfigured in about 10
cycles. Once the pipeline is flushed, they can take effect
immediately. L1DC, L1IC, L2UC, GSHARE and BTB
need relatively long time to be reconfigured, since the
corresponding RAMs are needed to be flushed before
reconfiguring these parameters. The detailed costs of
reconfiguring such parameters are shown in Table 2.

Table 2. Reconfiguration Costs of Configurable Parameters

Parameter Reconfiguration Costs

WIDTH ≈ 10 cycle (flush pipeline)

FUNIT ≈ 10 cycle (flush pipeline)

IUNIT ≈ 10 cycle (flush pipeline)

L1DC ≈ 2 000 cycle (flush L1D cache)

L1IC ≈ 2 000 cycle (flush L1I cache)

L2UC ≈ 10 000 cycle (flush L2 cache)

GSHARE ≈ 200 cycle (flush gshare table)

BTB ≈ 100 cycle (flush branch target buffer)

ROB ≈ 10 cycle (flush pipeline)

LSQ ≈ 10 cycle (flush pipeline)

WIDTH relates to several pipeline stages of a proces-
sor, including fetch, decode, dispatch, writeback, and
commit. In Sim-EA, these stages should be bounded by
WIDTH. Concretely, in the fetch stage, the PC incre-
ment and the number of fetched instructions should be
less than the given WIDTH. In the dispatch stage, the
number of dispatched instructions should be less than
the configured issue width. Similarly, in the writeback
stage and commit stage, the result bus and commit bus
should be no wider than the given WIDTH.

FUNIT and IUNIT mainly relate to the issue queues
of the dispatch stage. The number of selected instruc-
tions to be issued per cycle is also bounded by FUNIT
and IUNIT.

To configure the sizes of L1 data cache, L1 instruc-
tion cache, L2 cache, branch history table, and branch
target buffer, the most important support is the flexi-
ble RAM. In Fig.2, we use L1 data cache to illustrate
how to achieve 4KB∼64KB configurable data cache.
We use 16 small RAMs, each of which has a size of
4KB. When the data cache is configured to be 4 KB,
only ram00 is used. When the data cache is configured
to be 16 KB, we can use ram00, ram01, ram02, and
ram03 to form a 4-way cache. When the data cache is
configured to be 64 KB, all RAMs should be activated.

Fig.2. Configurable L1 data cache. Each ram is 4KB.

Implementing configurable reorder buffer or load
store queue is not so difficult as imagined. Take load
store queue as an example. The size of the load store
queue is used to calculate whether the queue is full
or not, to allocate new queue entry, and to select the
appropriate queue entry to control data bus (such as
result bus). In practice, the impacts of queue size on
these operations can be easily encapsulated through
modulization.

2.3 Additional Implementation Issues

In practice, the implementation of an EA may meet
two main problems.

One problem is about area. Intuitively, an EA may
introduce additional area to support reconfiguration.
We argue that an EA does not have to bring significant
area cost in comparison with a fixed architecture whose
parameters are the same with the maximal parameters
supported by the EA. As we have mentioned in Subsec-
tion 2.2, all of the ten parameters involved by Sim-EA
can be implemented with little effort. They need nei-
ther a large number of registers, nor additional RAM.
Furthermore, they do not introduce complex combina-



Yue Wu et al.: An Elastic Architecture Adaptable to Various Application Scenarios 231

tional circuit. Considering the advantage of flexibility,
paying a little extra area on elasticity is cost-efficient.

The other problem is about frequency. Obviously,
introducing additional logic for elasticity may decrease
the maximal frequency of a processor. However, such
decrease is very small. Any configurable feature can
be finally boiled down to a multiplexor, which selects
the output from several functionality modules accord-
ing to the enable signal determined by the configura-
tion (as shown in Fig.3). When the enable signal of
a multiplexer is fixed to a certain value (e.g., 2’b00),
the latency from the S0 port to the Out port is only
around 10 ps in 28 nm process. Hence, for a processor
with 3GHz maximal frequency, the impact of elasticity
is only 3%.

Fig.3. Multiplexer to choose which functional module to use.

3 Experimental Methodology

In this section, we present the experimental metho-
dology utilized in our experiments. To evaluate the
EDP elasticity and the EDP reduction of Sim-EA, we
employ directly the 26 benchmarks of SPEC CPU2000
as the representative applications for real life applica-
tions in different fields. As shown in Table 1, 10 crucial
features of Sim-EA are variable, resulting in a design
space with more than 70M potential design architec-
tures. As defined in Section 1, the EDP elasticity is the
ratio of the worst-case and best-case EDP, which means
that we should determine such two extreme architec-
tures (i.e., achieving the best and worst EDPs) from
the design space for each application. Furthermore, we
also want to obtain the EDP reduction compared with
a baseline architecture, which also requires us to obtain
the optimal architectures from such a design space for
each application.

Actually, the above problem, which is called the de-
sign space exploration problem, has haunted architects
in last decade[2-4]. Apparently, the traditional brute-
force first-simulate-then-compare way falls short of such
a large design space due to extremely slow simulation
speed. To efficiently explore this design space, we utilize
predictive modeling techniques to significantly reduce
the number of design architectures need to simulate[5-6].
Concretely, we only simulate a small portion of the
whole design space to obtain corresponding perfor-

mance and power responses. The obtained responses,
along with simulated architectures, form the sample for
building predictive models via machine learning tech-
niques (e.g., model tree algorithm[7-8]), which is often
referred as the training phase. Afterward, in the so-
called predicting phase such models can be employed
to predict the performance/power responses of new ar-
chitecture without tedious simulations. The detail pro-
cess of predictive modeling is illustrated in Fig.4. Typi-
cally, in comparison with the traditional brute-force ap-
proach, predictive modeling can achieve at least 100x,
even 10 000x or larger speedup in design space explo-
ration.

Fig.4. Framework of predictive modeling technique for design

space exploration.

For fair comparison, we employ average cycle-per-
instruction (CPI) to measure the performance of each
architecture in the design space. In addition to the per-
formance metric, we also estimate the average power
consumption of each architecture. The goal to find an
optimal architecture for each application can be pre-
cisely interpreted as to find the architecture with the
best performance-power tradeoffs. One of the most
widely used metrics on performance-power tradeoffs can
be formulated as CPI2 × power, which corresponds to
the EDP[9] as mentioned before. Apparently, an archi-
tecture with smaller EDP indicates that it has better
performance-power tradeoffs. In other words, we deter-
mine the architectures with the minimal EDP for each
application during the early design of Sim-EA via pre-
dictive modeling techniques.

4 Experimental Results

4.1 Elasticity

As the first step of experiments, for each of the 26
benchmark applications we employ predictive modeling
techniques to explore the design space. For each appli-
cation, we first randomly sample 500 design architec-
tures as the training set, that is, we simulate each ap-
plication with 500 different design architectures to ob-



232 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

tain the corresponding performance/power responses.
Then, such information is collected as the training data
to build two predictive models, i.e., model trees, for
performance and power, respectively. After that, the
performance/power with respect to a given architecture
can be rapidly deduced by such models. Since we can
easily know the performance/power responses with the
help of predictive models, it is straightforward to find
the two architectures with the best and worst EDP for
each application.

Once we can obtain the best and worst case EDP
of Sim-EA, we can show the elasticity over 26 applica-
tions in SPEC CPU2000 in Fig.5. We observe that the
elasticity ranges from 3.31 (sixtrack) to 14.34 (art), and
the arithmetic average elasticity is 5.41. Briefly, an ap-
plication corresponding to larger elasticity implies that
the application is more sensitive to Sim-EA, which pro-
vides larger freedom for the EA to dynamically reconfi-
gure the architecture features on demand. For example,
the elasticity of art is 14.34, which indicates that art
is the most sensitive (among all the investigated 26 ap-
plications) to 10 reconfigurable parameters in Sim-EA.
Moreover, the average elasticity as 5.41 indicates that
the selected 10 reconfigurable parameters offer consi-
derable freedom for Sim-EA to obtain an appropriate
EDP for real-life scenarios. Similar situations can be
observed when using performance or power as the alter-
native response for estimating the elasticity (i.e., per-
formance elasticity or power elasticity).

4.2 EDP Reduction

By integrating the optimal architectures (obtained
for the 26 benchmarks respectively) as the candidate

running modes, Sim-EA can reconfigure its architec-
ture to achieve promising EDP over different applica-
tions. To demonstrate the effectiveness of Sim-EA, a
baseline architecture is employed in the experimental
comparison. Intuitively, architecture with larger issue
width, larger cache size and so on, can always achieve
better performance, i.e., smaller CPI. However, power
consumption will also increase with aggressive designs.
Therefore, the default architecture in SimpleScalar Tool
Suite, as shown in Table 3, is employed as the baseline.
Although this baseline architecture is somewhat conser-
vative, its power consumption is also very low compared
with nowadays aggressive superscalar designs. Thus, it
may also achieve better EDP compared with many ex-
isting commercial processors, especially for some per-
formance insensitive applications.

Table 3. Baseline Architecture

Parameter Value

WIDTH 4

FUNIT 4

IUNIT 4

L1IC 16KB

L1DC 16 KB

L2UC 128KB

ROB 16

LSQ 8

GSHARE 2 048

BTB 2 048

Fig.6 shows the EDP reduction of Sim-EA com-
pared with the baseline architecture, i.e., (1 −
EDPSim-EA/EDPbaseline) × 100%. It can be observed
that, for all applications, Sim-EA can reduce the EDP

Fig.5. EDP elasticities of Sim-EA over different applications. The arithmetic average elasticity is 5.41, which indicates that 10 variable

architectural parameters in Sim-EA are indeed crucial parameters to EDP that should be determined for reconfiguration.



Yue Wu et al.: An Elastic Architecture Adaptable to Various Application Scenarios 233

Fig.6. EDP reduction over the baseline architecture. The arithmetic average EDP reduction is 31.14%, ranging from 6.26% (eon) to

82.84% (art) for 26 applications in SPEC CPU2000.

of the baseline architecture significantly, and the arith-
metic average EDP reduction is 31.14%. The benefit
of Sim-EA is highlighted by application art, which can
reduce 82.84% EDP compared with the baseline archi-
tecture. However, for eon, it can only achieve 6.26%
EDP reduction, an insignificant improvement on EDP.
To be specific, the CPI and power of Sim-EA on eon are
0.79 and 14.43 respectively, while the CPI and power
of the baseline are 0.69 and 19.14, respectively. In fact,
the baseline architecture has already been at the Pareto
Frontier of the performance-power tradeoff function[10],
and it is a near-optimal architecture with respect to
EDP. In this case, the EDA reduction of Sim-EA is not
significant.

4.3 Elasticity and EDP Reduction of
Application Intervals

Similar to the former subsection, for each of the
16 application intervals (Table 4) which are selected
from SPEC CPU2006 benchmark suit and each inter-
val length (chosen from 1, 3, 10 million instructions),
500 random sampled architecture instructions are simu-
lated to build the predicting model and explore the de-
sign space, to help find the best and worst instructions
for each case. The results are shown in Fig.7 for elasti-
city and Fig.8 for EDP reduction. (Notice that two
different groups of benchmarks are used, which means
comparisons between the results of this subsection and
the former subsection are meaningless.) Additionally,
as shown in Fig.7 and Fig.8, for each application inter-
val, the elasticity/EDP reduction changes as the inter-
val length changes.

Fig.7 and Fig.8 show the range of elasticity/EDP
reduction of the 16 application intervals. The elasticity

Table 4. Application Intervals from SPEC CPU2006

Application Serial Number of Interval (Million

Input Parameter Set Instructions)

400.perlbench 1st 103∼104

400.perlbench 2nd 299∼300

400.perlbench 5th 202∼203

401.bzip2 1st 83∼84

401.bzip2 2nd 454∼455

403.gcc 1st 220∼221

433.milc 1st 191∼192

435.gromacs 1st 220∼221

436.cactusADM 1st 220∼221

437.leslie3d 1st 145∼146

444.namd 1st 220∼221

445.gobmk 1st 183∼184

445.gobmk 5th 150∼151

453.povray 1st 220∼221

456.hmmer 1st 277∼278

483.xalancbmk 1st 322∼323

ranges from 5.67 to 83.95, an incredible large value,
which demonstrates the interval 463 1 221 is quite sen-
sitive to different architecture instructions. The mini-
mum of EDP reduction is 0.005 8, the interval picked
from gobmk, indicating that the baseline instruction is
almost as good as the best-case during the execution of
the 10 million instructions. An intriguing phenomenon
in both the figures is that as the interval length becomes
bigger, elasticity and EDP reduction are reducing.

5 Discussions

As validated by previous experiments, Sim-EA can
achieve optimal architectures for each application,



234 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

Fig.7. For each application interval, the elasticity of Sim-EA decreases as the interval length increases.

Fig.8. For each application interval, the EDP reduction of Sim-EA decreases as the interval length increases.

while the conventional processor (with fixed architec-
ture) fails. However, in our implementation, Sim-EA
should reconfigure the architectural parameters for each
application. Actually, by detailed investigation on the
optimal architectures for each application, we observe
that there exists similarity among the optimal archi-
tectures of applications. As an extreme example, in
Sim-EA, both parser and twolf achieve the best EDPs
on the same architecture, which means that twolf may
also benefit from the optimization on the architecture
for parser, and it is not necessary to carry on reconfi-
guration between these two applications. Furthermore,
considering the optimal architectures of other two ap-
plications as mcf and parser, the only difference be-
tween their optimal architectures is the number of LSQ,
i.e., 16 (mcf ) and 32 (parser), which shows that the op-
timal architecture for mcf is also the near optimal one
for parser (only increasing 1% compared with the op-
timal EDP of parser). Therefore, mcf and parser can

share the same optimal architecture in industrial de-
sign, which can reduce the reconfiguration overheads.
We can also see that the similarity varies significantly
among applications. Table 5 gives the optimal archite-

Table 5. Example of Applications with Significantly

Different Optimal Architectures

Parameter apsi mgrid

WIDTH 8 4

FUNIT 8 2

IUNIT 8 2

L1IC 16KB 8KB

L1DC 8KB 8KB

L2UC 4 096KB 256KB

ROB 32 128

LSQ 32 64

GSHARE 1 024 1 024

BTB 512 4 096



Yue Wu et al.: An Elastic Architecture Adaptable to Various Application Scenarios 235

ctures of apsi and mgrid, where nearly all parameters
(8 of 10) need to reconfigure between these two appli-
cations. Otherwise, the optimal architecture for one
application may significantly harm the responses of the
other one, i.e., the best architecture of mgrid can in-
crease 28.4% EDP on apsi.

Based on the above observations on the similarities
among applications, we may utilize statistical/machine
learning techniques to classify applications into differ-
ent application clusters. In each cluster, we only need
to select one architecture as the representative archi-
tecture for all applications in this cluster. In fact,
the concept of application cluster has already been
taken into account in performance evaluation for seve-
ral decades. A famous example is the SPEC project[11].
It aims at selecting the most representative applica-
tions from distinct application clusters, so as to of-
fer balanced quantitative evaluations for a computer
that may be applied to applications from various clus-
ters. Each benchmark in SPEC CPU2000 can be con-
sidered as a representative application of an applica-
tion cluster consisting of applications from similar ap-
plication domains. Recently, a number of investiga-
tions have been dedicated to the classifications of ap-
plications based on architecture-independent program
characteristics[12-15], which offer alternative ways of
defining different application clusters. Actually, the
fact that existing researches on defining application
clusters are commonly based on the analysis of appli-
cation characteristics, gives us some hints to determine
application clusters for the design of efficient EA.

One potential criterion of defining application clus-
ters for EA is that, whether or not applications belong-
ing to the same cluster have similar responses when
being executed by a same computer architecture. If
an application cluster can be appropriately defined to
meet the above criterion, by the optimal architecture
deduced from the representative application we are able
to find optimal/near-optimal architecture for all the ap-
plications in this application cluster. Therefore, when
encountering a new application, after its characteristics
have been extracted and assigned to a specific cluster
with “similar” applications, we only need to reconfi-
gure the architecture to the representative architecture
of this cluster, and it is not necessary to reconfigure the
architecture in this cluster, which also can obtain the
near optimal responses of this application.

6 Related Work

Adaptive Systems. Over the past decades, in con-
trast to fine granularity reconfigurable systems in the
gate level, many studies try to tackle with the adapti-

vity by adjusting different micro-architecture features,
e.g., issue queue[16], reorder buffer, register file[17],
pipeline[18], and cache size[19]. Besides, as multi-core
becomes the mainstream architecture, many proposals
try to address the resource contention problem when
executing several programs on different cores by par-
titioning the cache size and bandwidth[20-21] according
to different application requirements, which is another
kind of adaptive systems. However, all these researches
only focus on limited number of architectural features
that can be easily changed.

Recently, a table-driven adaptive processor core has
been proposed to reduce the peak power[22]. In this
scheme, the design space is much smaller than ours and
the resultant elasticity is greatly restricted. Core fusion
is a reconfigurable CMP where groups of independent
small cores can be dynamically fused into a large su-
perscalar CPU, to adapt to application diversity[23].
Although it can improve the performance of single-
threaded programs, it cannot provide so much flexibi-
lity as EA due to the restriction of conventional multi-
core architecture. For example, EA can reduce the
number of functional units of a single core to achieve
less power consumption or less EDP. The most closet
proposal to our work is in [24], where Dubach et al. de-
veloped an adaptive micro-architecture that can tailor
resources to the specific requirements of different pro-
gram phases based on predictive modeling techniques.
However, in our study, we quantitatively analyzed the
elasticity of EA. Moreover, their adaptive system omits
many implementation details in industrial design, while
we presented detailed analysis of the reconfiguration
overheads, which can be further reduced by applica-
tion cluster techniques. Our former work in [25] first
proposed the measurement of elasticity and the main
frame of EA, but the detailed implementation were
not fully presented, such as the discussion of flexible
L1 data cache and the analysis of area & frequency
cost brought by additional configuration logical units.
Moreover, the elasticity and EDP reduction of applica-
tion intervals rather than the whole execution were not
evaluated.

Design Space Exploration. The design space explo-
ration is the first and centric challenge during the mi-
croprocessor design. Due to the extremely slow simu-
lation speed and exponential number of design archi-
tectures, it is impossible to explore the entire design
space by full extent simulation. To reduce the simula-
tion overheads, many fast simulation techniques have
been proposed, e.g., statistical sampling[26-27], statis-
tical simulation[28-29] and benchmark subsetting[14-15].
However, these fast simulation techniques only consider
to reduce the simulated instructions for each design ar-



236 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

chitecture, and the resultant simulation speedup is re-
stricted. Rather than reducing the simulated instruc-
tions for each architecture, predictive modeling reduces
the number of architectures for simulation, which can
significantly improve the simulation efficiency. In EA,
we also need to utilize existing design space exploration
techniques to determine the optimal architecture for
each application cluster. Moreover, we hope EA can
automatically detect the optimal architectures for each
application. In fact, the predictive modeling is quite
suitable for this task since prior knowledge is not nece-
ssary during model construction. It is clearly that the
design space exploration technique is only one of the
critical techniques to achieve software adaptivity.

Program Characteristics. A fairly large body of work
exists on analyzing program characteristics for perfor-
mance prediction or reducing the simulation costs. Sim-
Point, which is widely accepted for phase simulation, is
built based on detailed analysis on the similarity of pro-
gram characteristics such as cache miss rate, branch
misprediction, and IPC[26]. Apart from the analy-
sis of program signatures (microarchitecture depen-
dent characteristics), microarchitecture-independent
characteristics are also investigated by many pro-
posals for performance prediction[12-13], benchmark
subsetting[14-15], and compiler optimization[30]. The
above program characterizations are concerned with
single-threaded workloads. To adapt to parallel pro-
grams, Eyerman et al. proposed system metrics for
multi-programmed workloads[31]. Besides, Wang et al.
also proposed several program features for performance
prediction in order to determine the optimal parallelism
and scheduling policy[32]. However, unlike the cha-
racteristics for serial programs, the investigations on
the inherent characteristics for parallel programs are
far from enough. Moreover, even for proposed chara-
cteristics on single-threaded applications, we still need
further investigation to determine the close relationship
between program characteristics and optimal architec-
tures to facilitate the design of EA.

7 Conclusions and Future Work

In 1964, IBM SYSTEM/360 was designed as the
first computer family to cover all the complete range
of applications[33-35]. An application designed for one
member of a computer family can also run on ano-
ther member of the computer family. Computer family
greatly facilitates programmers and end users, thus has
been widely accepted. Currently, most processors can
be classified to some family, such as the x86 family,
Itanium family, Power family, MIPS family, SPARC
family, and ARM family. With the ever developing
of computer industry, the programmers and end users

have put more and more requirements on processors.
When running different applications, they hope that
the processor can adapt to specific requirements on per-
formance/power. Such requirements cannot be satisfied
with a processor, and may lead to excessive market seg-
mentation of processors, which increases the overall cost
of processor design and manufacture.

A promising solution is to make the processor elastic,
which has many configurable features (e.g., instruction
set, data path, memory hierarchy, concurrency). In this
paper, we proposed a prototype design of EA, which is
named Sim-EA. Experimental results show that with
respect to SPEC CPU2000 benchmark suite, the elasti-
city of Sim-EA, ranges from 3.31 to 14.34, with 5.41 in
arithmetic average, which provides great flexibility to
fulfill the different performance/power requirements in
different scenarios. Moreover, Sim-EA can also signifi-
cantly reduce the energy-delay product for 31.14% in
arithmetic average compared with a baseline fixed ar-
chitecture. The correlation between application inter-
vals’ lengths and their elasticities also indicates that
a proper reconfigure frequency may greatly improve
elasticity, and furthermore improve performance/power
of processors.

In the future development of EAs, it is possible that
more architecture features are designed to be reconfigu-
rable, resulting in advanced EAs. An advanced EA is
said to be downward-compatible with a former EA if
the advanced one can reconfigure all architecture fea-
tures that can be reconfigured by the former. Driven
by the rapid development of processor industry, it can
be predicted that a new concept called computer tribe
will debut, which is the set of consecutively-developed
processors adopting downward-compatible EAs.

References

[1] Austin T, Larson E, Ernst D. SimpleScalar: An infrastruc-
ture for computer system modeling. Computer, 2002, 35(2):
59-67.

[2] Kunkel S, Eickemeyer R, Lip M et al. A performance metho-
dology for commercial servers. IBM Journal of Research and
Development, 2000, 44(6): 851-872.

[3] Kumar R, Zyuban V, Tullsen D M. Interconnections in multi-
core architectures: Understanding mechanisms, overheads
and scaling. In Proc. the 32nd Annual Int. Symp. Com-
puter Architecture (ISCA2005), June 2005, pp.408-419.

[4] Li Y, Lee B, Brooks D et al. CMP design space explo-
ration subject to physical constraints. In Proc. the 12th
IEEE Symposium on High Performance Computer Architec-
ture (HPCA2006), February 2006, pp.17-28.

[5] Ïpek E, McKee S A, Caruana R et al. Efficiently explor-
ing architectural design spaces via predictive modeling. In
Proc. the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-XII), October 2006, pp.195-206.

[6] Lee B, Brooks D. Accurate and efficient regression model-
ing for microarchitectural performance and power prediction.
In Proc. the 12th Int. Conf. Architectural Support for Pro-



Yue Wu et al.: An Elastic Architecture Adaptable to Various Application Scenarios 237

gramming Languages and Operating Systems (ASPLOS-XII),
October 2006, pp.185-194.

[7] Quinlan J R. Learning with continuous classes. In Proc.
the 5th Australian Joint Conference on Artificial Intelligence
(AI1992), November 1992, pp.343-348.

[8] Wang Y, Witten I. Induction of model trees for predicting
continuous classes. In Proc. the 9th European Conference on
Machine Learning (ECML1997), April 1997, pp.128-137.

[9] Gonzalez R, Horowitz M. Energy dissipation in general pur-
pose microprocessors. IEEE Journal of Solid-State Circuits,
1996, 31(9): 1277-1284.

[10] Mariani G, Avasare P, Vanmeerbeeck G et al. An indus-
trial design space exploration framework for supporting run-
time resource management on multi-core systems. In Proc.
the Conference on Design, Automation and Test in Europe
(DATE2010), March 2010, pp.196-201.

[11] Hennessy J L, Patterson D A. Computer Architecture: A
Quantitative Approach (3rd edition). San Francisco, USA:
Morgan Kaufmann Publishers Inc., 2002.

[12] Hoste K, Phansalkar A, Eeckhout L et al. Performance pre-
diction based on inherent program similarity. In Proc. the
15th Int. Conf. Parallel Architectures and Compilation Tech-
niques (PACT2006), Sept. 2006, pp.114-122.

[13] Hoste K, Eeckhout L. Microarchitecture-independent work-
load characterization. IEEE Micro, 2007, 27(3): 63-72.

[14] Joshi A, Phansalkar A, Eeckhout L et al. Measuring bench-
mark similarity using inherent program characteristics. IEEE
Transaction on Computers, 2006, 55(6): 769-782.

[15] Phansalkar A, Joshi A, John L K. Subsetting the SPEC
CPU2006 benchmark suite. SIGARCH Computer Architec-
ture News, 2007, 35(1): 69-76.

[16] Folegnani D, González A. Energy-effective issue logic. In
Proc. the 28th Annual International Symposium on Com-
puter Architecture (ISCA2001), June 2001, pp.230-239.

[17] Abella J, González A. On reducing register pressure and en-
ergy in multiple-banked register files. In Proc. the 21st Int.
Conf. Computer Design (ICCD2003), Oct. 2003, pp.14-20.

[18] Hughes C J, Srinivasan J, Adve S V. Saving energy with ar-
chitectural and frequency adaptations for multimedia appli-
cations. In Proc. the 34th Annual ACM/IEEE Int. Symp.
Microarchitecture, Dec. 2001, pp.250-261.

[19] Balasubramonian R, Albonesi D, Buyuktosunoglu A,
Dwarkadas S. Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures.
In Proc. the 33rd Annual ACM/IEEE Int. Symp. Microar-
chitecture, Dec. 2000, pp.245-257.

[20] Qureshi M K, Patt Y N. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to par-
tition shared caches. In Proc. the 39th Annual IEEE/ACM
Int. Symp. Microarchitecture, Dec. 2006, pp.423-432.

[21] Liu F, Jiang X, Solihin Y. Understanding how off-chip mem-
ory bandwidth partitioning in chip multiprocessors affects sys-
tem performance. In Proc. the 16th Int. Symp. High Per-
formance Computer Architecture, January 2010.

[22] Kontorinis V, Shayan A, Tullsen D M, Kumar R. Reducing
peak power with a table-driven adaptive processor core. In
Proc. the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, December 2009, pp.189-200.

[23] Ipek E, Kirman M, Kirman N, Mart́ınez J F. Core fusion: Ac-
commodating software diversity in chip multiprocessors. In
Proc. the 34th Annual Int. Symp. Computer Architecture,
June 2007, pp.186-197.

[24] Dubach C, Jones T M, Bonilla E V et al. A predictive model
for dynamic microarchitectural adaptivity control. In Proc.

the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, December 2010, pp.485-496.

[25] Chen Y J, Chen T S, Guo Q, Xu Z W, Zhang L. An elastic
architecture adaptable to millions of application scenarios. In
Proc. the 9th IFIP Int. Conf. Network and Parallel Com-
puting, Sept. 2012, pp.188-195.

[26] Sherwood T, Perelman E, Hamerly G, Calder B. Automat-
ically characterizing large scale program behavior. In Proc.
the 10th Int. Conf. Architectural Support for Programming
Languages and Operating Systems, Oct. 2002, pp.45-57.

[27] Wunderlich R E, Wenisch T F, Falsafi B, Hoe J C. SMARTS:
Accelerating microarchitecture simulation via rigorous statis-
tical sampling. In Proc. the 30th Annual Int. Symp. Com-
puter Architecture, June 2003, pp.84-97.

[28] Yi J J, Lilja D J, Hawkins D M. Improving computer archi-
tecture simulation methodology by adding statistical rigor.
IEEE Transaction on Computers, 2005, 54(11): 1360-1373.

[29] Genbrugge D, Eeckhout L. Chip multiprocessor design space
exploration through statistical simulation. IEEE Transaction
on Computers, 2009, 58(12): 1668-1681.

[30] Chen Y, Huang Y J, Eeckhout L et al. Evaluating itera-
tive optimization across 1000 datasets. In Proc. the ACM
SIGPLAN Conf. Programming Language Design and Imple-
mentation, June 2010, pp.448-459.

[31] Eyerman S, Eeckhout L. System-level performance metrics for
multiprogram workloads. IEEE Micro, 2008, 28(3): 42-53.

[32] Wang Z, O’Boyle M F. Mapping parallelism to multi-cores:
A machine learning based approach. In Proc. the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Feb. 2009, pp.75-84.

[33] Blaauw G A, Brooks F P. The structure of SYSTEM/360:
Part I: Outline of the logical structure. IBM Systems Jour-
nal, 1964, 3(2): 119-135.

[34] Stevens W Y. The structure of SYSTEM/360: Part II: System
implementations. IBM Systems Journal, 1964, 3(2): 136-143.

[35] Amdahl G. The structure of SYSTEM/360: Part III: Process-
ing unit design considerations. IBM Systems Journal, 1964,
3(2): 144-164.

Yue Wu received the B.S. degree
in statistics from University of Sci-
ence and Technology of China, Hefei,
in 2006. He is currently a Ph.D.
candidate of Institute of Computing
Technology, Chinese Academy of Sci-
ences, Beijing. His main research
interests include computer architec-
ture, design space exploration, and
computational intelligence.

Yun-Ji Chen graduated from
the Special Class for the Gifted
Young, University of Science and
Technology of China, Hefei, in 2002.
He received the Ph.D. degree in com-
puter science from Institute of Com-
puting Technology (ICT), Chinese
Academy of Sciences (CAS), Beijing,
in 2007. He is currently a profes-
sor at ICT. His research interests in-

clude parallel computing, microarchitecture, hardware ver-
ification, and computational intelligence.



238 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

Tian-Shi Chen received the B.S.
degree in mathematics from the Spe-
cial Class for the Gifted Young, Uni-
versity of Science and Technology of
China (USTC), Hefei, in 2005, and
the Ph.D. degree in computer science
from Department of Computer Sci-
ence and Technology, USTC, in 2010.
He is currently an associate professor
at ICT. His research interests include

computer architecture, parallel computing, and computa-
tional intelligence.

Qi Guo received the B.E. degree
in computer science from Depart-
ment of Computer Science and Tech-
nology, Tongji University, Shanghai,
in 2007, and the Ph.D. degree in com-
puter science from Institute of Com-
puting Technology (ICT), Chinese
Academy of Sciences (CAS), in 2012.
He currently is a staff researcher at
IBM Research-China, Beijing. His

research interests include computer architecture, VLSI de-
sign and verification.

Lei Zhang received the B.E. de-
gree in computer sciences from Uni-
versity of Electronic Science and
Technology of China in 2003, and
his Ph.D degree in computer archi-
tecture from Institute of Computing
Technology (ICT), Chinese Academy
of Sciences (CAS) in 2008. He is cur-
rently an associate professor at ICT.
His research interests include multi-

core architecture, network-on-chip, fault-tolerant comput-
ing, cyber-physical systems and applications.


