
Chen P, Zhang L, Han YH et al. A general-purpose many-accelerator architecture based on dataflow graph clustering of appli-

cations. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 29(2): 239–246 Mar. 2014. DOI 10.1007/s11390-

014-1426-9

A General-Purpose Many-Accelerator Architecture Based on Dataflow

Graph Clustering of Applications

Peng Chen1,2 (陈 鹏), Lei Zhang1 (张 磊), Member, CCF, ACM, IEEE
Yin-He Han1 (韩银和), Member, CCF, ACM, IEEE, and Yun-Ji Chen1 (陈云霁), Member, CCF, ACM, IEEE

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: {chenpeng, zlei, yinhes, cyj}@ict.ac.cn

Received October 30, 2013; revised January 3, 2014.

Abstract The combination of growing transistor counts and limited power budget within a silicon die leads to the
utilization wall problem (a.k.a. “Dark Silicon”), that is only a small fraction of chip can run at full speed during a
period of time. Designing accelerators for specific applications or algorithms is considered to be one of the most promising
approaches to improving energy-efficiency. However, most current design methods for accelerators are dedicated for certain
applications or algorithms, which greatly constrains their applicability. In this paper, we propose a novel general-purpose
many-accelerator architecture. Our contributions are two-fold. Firstly, we propose to cluster dataflow graphs (DFGs) of
hotspot basic blocks (BBs) in applications. The DFG clusters are then used for accelerators design. This is because a DFG
is the largest program unit which is not specific to a certain application. We analyze 17 benchmarks in SPEC CPU 2006,
acquire over 300 DFGs hotspots by using LLVM compiler tool, and divide them into 15 clusters based on graph similarity.
Secondly, we introduce a function instruction set architecture (FISC) and illustrate how DFG accelerators can be integrated
with a processor core and how they can be used by applications. Our results show that the proposed DFG clustering and
FISC design can speed up SPEC benchmarks 6.2X on average.

Keywords dataflow graph, many-accelerator, clustering, function instruction set architecture

1 Introduction

Transistor density and speed continue to increase
with Moore’s Law. However, the limitation of threshold
voltage scaling is ushering an era of no-classical scaling
and the power efficiency of devices is growing slowly[1].
Both growing transistor count and limited power bud-
get cause the utilization wall phenomenon, a.k.a. Dark
Silicon, that limits the fraction of chip which can run at
full speed. For example, prior studies showed that with
45nm TSMC process, less than 7% of a 300mm2 pro-
cessor die can run at full frequency with 80 W power
budget[2]. This percentage will be less than 3.5% in
32 nm according to the ITRS roadmap projections and
CMOS voltage scaling theory.

To fully utilize the abundant on-chip transistor re-
source within energy envelope, customizing hardware
accelerators for specific application domains is an effec-
tive approach to tackling architecture design challenges
such as “power wall”, “utilization wall”. This approach

has great potential for energy-efficiency improvement,
and attracts the attention of both academia and in-
dustry. Recent studies have shown 1 000∼10 000X effi-
ciency improvement over mainstream processors[3-5].

Generally, there are two major issues that need to be
solved for accelerator-based general-purpose processor
architecture design, which is called many-accelerator
architecture. First, we should decide what kind of and
how many accelerators need to be integrated on chip to
maximize the coverage of applications. Currently, most
researches on accelerator design are coarse-grained and
mainly focus on applications, e.g., network processor[6],
multimedia processor[7], or algorithms, e.g., machine
learning[8], encryption and decryption[9], with a nar-
row applicable range. Secondly, we need to solve the is-
sue that when many accelerators are integrated on chip,
how applications and programmers use them to improve
energy-efficiency, i.e., programming model. Currently,
in most of the accelerator-based systems, applications
should be aware of the underlying hardware resource

Regular Paper
This paper is supported by the National Natural Science Foundation of China under Grant Nos. 601173006, 61221062, and the

Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDA06010403.
©2014 Springer Science +Business Media, LLC & Science Press, China

240 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

and explicitly map their code to specific hardwired
module. This “manual partition” is of a great burden
for programmers.

Based on the above analysis, we achieve two-fold
contributions in this paper. First, we propose a novel
accelerator design method by clustering of dataflow
graphs (DFGs) of basic blocks (BBs) in application
hotspot. The hotspot code regions consume major exe-
cution time and are generally considered to be the tar-
get of accelerator design. The basic block refers to the
code region which has single entry and exit, and is the
largest program unit that is not specific to a certain
application. The dataflow graph is a directed-acyclic
graph (DAG) representing the operations and data de-
pendencies within each basic block. By profiling SPEC
CPU 2006 benchmarks using LLVM compiling tool, we
acquire more than 300 hotspot DFGs and group them
into several clusters based on graph similarities among
them. We then design a hardware accelerator for each
cluster. The principle behind our approach is to find the
maximum intersection among general-purpose applica-
tions to promise both coverage and chip area efficiency.

Second, when we have a set of DFG accelerators,
we propose to define a customized macro instruction,
which we call “function instruction” for each accele-
rator. We implement the last pass of LLVM compiler
backend to search specific DFG and replace it with
one function instruction and its corresponding configu-
rations on accelerators. When such function instruc-
tions are decoded in pipeline, the configuration data
will be loaded to designated accelerator. Thus, from
the processor’s perspective, each accelerator is a func-
tional unit, which is exactly similar to ordinary function
units like adder, multiplier. Such Function Instruction
Set Computer (FISC), which corresponds to CISC and
RISC architecture, can make underlying hardware ac-
celerators entirely transparent to programmers. FISC
also eases the addition of more accelerators on chip.

To summarize, the main contributions we have made
in this paper include:
• A new accelerator design method based on hotspot

DFGs analysis and clustering. We define features for
DFGs and propose to use graph similarity algorithm
for DFG clustering.
• Function Instruction Set Computer (FISC) design

method, which is efficient for many-accelerator archi-
tecture.
• A set of application profiling tools and backend

code generation tools based on LLVM and clang frame-
work.

The following of the paper is organized as follows.
Section 2 introduces the approach of DFGs clustering.
Section 3 describes the accelerator design for each DFG
cluster. Section 4 introduces the FISC computer ar-

chitecture and Section 5 presents its evaluation results.
Section 6 discusses related work and Section 7 concludes
the paper.

2 DFGs Clustering

In this section, we describe the DFGs clustering ap-
proach in details. First, we give a brief introduction for
LLVM compiler tool for profiling. Second, we introduce
similarity flooding to compute the similarity between
DFGs. Finally, agglomerative clustering algorithm is
adopted to classify the DFGs training set.

2.1 Application Profiling Using LLVM

LLVM, a compiler framework, can collect high-level
information about arbitrary programs during compile-
time, link-time, run-time, and support transparent, life-
long program analysis[10]. LLVM passes perform the
transformations and optimizations for programs and
become the most interesting part of a compiler. In or-
der to get the dataflow graphs of basic blocks in the
hotspot, we implement three passes.

1) Instruction count pass: records the execution time
of every function.

2) Function processing pass: breaks the recursion
between functions and selects the loops in the hot func-
tions which have high weight of execution time.

3) Loop processing pass: the basic blocks of hot
loops are processed and dataflow graphs are produced.

Fig.1 describes the profiling procedure with LLVM
tool. Dataflow graphs are produced from original pro-
grams after seven processing steps.

Fig.1. Profiling procedure with LLVM tool.

The benchmark we use in this paper is SPEC CPU
2006 suite which is intended to be diverse and an ideal

Peng Chen et al.: General-Purpose Many-Accelerator Architecture Based on DFG Clustering of Applications 241

candidate for wide range workloads analysis. We mod-
ify clang, the C language family frontend of LLVM for
our profiling purpose. However, clang only supports
program languages including C, Objective-C, C++,
and Object C++. As a result, we choose 17 bench-
marks of SPEC CPU 2006, which are written with
C/C++. SPEC CPU 2006 provides four kinds of in-
put and output datasets for benchmarks — “all”, “ref”,
“test”, and “train”. Table 1 lists their names and input
sets of the benchmarks, where “test/input” refers to
the input data of the “test” set, “all/input” refers to
the input data of the “all” set.

Table 1. Benchmarks Chosen for Analysis and

Their Input Sets

Name Input Set Name Input Set

astar Test/input milc Test/input

bzip2 Test/input mcf Test/input

dealII All/input namd All/input

gcc Test/input perlbench Test/input

gobmk Test/input povray Test/input

h264ref Test/input sjeng Test/input

hmmer Test/input soplex Test/input

lbm Test/input sphinx3 Test/input

libquantum Test/input

After the profiling, we get over 300 dataflow graphs.
They come from loops of hot functions and account for
major program execution time. The instruction num-
ber of them varies from 5 to 50. Intuitively, we can
design hardware accelerator for each hot DFG. How-
ever, it is cumbersome and unacceptable regarding the
silicon estate efficiency. We propose to cluster these
DFGs based on their similarities among each other to
reduce the number of accelerators thus maximize their
utilization. We use 200 randomly chosen DFGs for clus-
tering (training set) and the remaining graphs are used
for evaluation (testing set).

2.2 DFGs Similarity

Prior researches on program similarity analysis
mainly use features like instruction mix, both static
and dynamic, load distance, etc. And the goal of pro-
gram analysis is optimization. However, in this work we
do program analysis and clustering for accelerator de-
sign. Generally, the most high performance and energy-
efficient design method of hardware for a piece of code
is to match its dataflow. Thus we consider both graph
similarity and other well-known program characteristics
including dynamic instruction mix, load distance, mem-
ory footprint, and instruction/data level parallelism for
basic blocks comparison and clustering.

For the graph comparison problem, a simple “yes” or
“no” result can be given with the help of traditional al-

gorithms. Instead, we adopt a versatile graph matching
algorithm, similarity flooding, to compute the approxi-
mate similarity between two graphs[11]. Mapping and
scoring are two most important parts of similarity com-
puting between two graphs. During the first stage, we
will pair vertex in graph A with certain vertex in graph
B, which is the most similar to the former one, based on
the instruction type of vertex and neighborhood infor-
mation. After the mapping for all vertexes, we assign
a similarity score for two input graphs.

Fig.2 shows a simple example of similarity flooding
algorithm used in this paper. A and B are the simpli-
fied DFGs that need evaluation. The vertexes of them
stand for the instructions in basic blocks and different
shapes indicate the instruction types. Edges between
nodes describe the data dependence of them. Detailed
steps in similarity flooding will be explained in the fol-
lowing subsections.

Fig.2. Simple example to illustrate the similarity flooding algo-

rithm.

2.2.1 Product Graph Construction

A product graph contains all the possible map pairs
of vertexes and edges derived from its two input graphs.
All the later computations about similarity are based
on the product graph. In order to define the construc-
tion of it, we annotate graphs A and B with (VA, EA)
and (VB , EB). The vertex set (VP) and edge set (EP)
in the product graph are defined as follows:

VP = {MxN ;M ∈ VA, N ∈ VB}, (1)

EP = {(MxN)× (M ′ ×N ′);M ×M ′ ∈ EA,

N ×N ′ ∈ EB}. (2)

Each vertex in the product graph is from A × B.
According to similarity flooding algorithm, the intu-

242 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

ition behind edges such as ((a1, b1), (a2, b2)) is that if
a1 is similar to b1, the similarity between a2 and b2
is probable higher. The value of vertex in the product
graph stands for the similarity between corresponding
vertexes in the two original graphs.

2.2.2 Induced Product Graph

As above mentioned, the similarity of a vertex in the
product graph will propagate for its neighbors along
edges. However, the end vertex of an edge should make
its similarity affect the start vertex. So, we need to
add an edge in the opposite direction for every edge in
the original product graph. Just as Fig.2 mentioned,
the edge from (a2, b2) to (a1, b1) is added. Now the
weights will be placed on the edges and indicate how
well the similarity of the start vertex affects its neigh-
bors, ranging from 0 to 1. The weight is assigned as
follows:

W ((M ×N)× (M ′ ×N ′)) =

1
|{(M ×N)× (J ×K), J ×K ∈ VP }| , (3)

where (J,K) denotes the vertex connected with (M, N).
In other words, the weight of an edge equals to the re-
ciprocal of the out-degree of (M, N). The assignment
is based on the intuition that every edge starting from
(M, N) makes equal contribution to spreading the simi-
larity of (M, N) to its neighbors.

2.2.3 Iteration

Before fixed number of iterations, we should assign
initial value for each vertex in the product graph. It is
based on the shapes of two corresponding vertexes in
the original graph. In Fig.2, because of the same opera-
tion type of a1 and b1, vertex (a1, b1) in the product
graph is given the initial similarity value of 1.0.

The similarity value of each vertex needs to be
propagated along edges. Let σk(M ×N) be the simila-
rity value of node (M, N) ∈ VP after k iterations and
σ0(M ×N) equals the initial value of (M, N). Accord-
ing to the similarity flooding, σk(M ×N) is computed
with the values of itself and its neighbors:

σk(M ×N) = normalize(σk−1(M ×N) + σ0(M ×N)+

ϕ(σk−1(J ×K) + σ0(J ×K))). (4)

The function ϕ increases the similarity of each vertex
in the induced product graph based on similarities of its
neighbors. After each iteration, normalization should be
done and make σk(M ×N) range from 0 to 1.

The iteration will continue until the Euclidean
length of the residual vector ∆(σn, σn−1) becomes less

than ε[5]. To solve the possible misconvergence, the
maximal iteration number will be used. After the itera-
tions, the similarity values of all vertexes in the induced
product graph become stable. We sort these values
in the decreasing order, as Fig.2(e) describes. In or-
der to get the maximal cumulative similarity, vertexes
with higher values are chosen to measure the similarity
of two original graphs. Then we get the vertexes set
MP containing the matching result. In our example,
MP = {(a1, b1), (a2, b2)}.

As a result, we define the scores between two input
graphs as follows:

SCORE (A,B) =

∑

(J,K)∈MP

(σ0(J,K))

max{|VA|, |VB |} . (5)

After quantitative comparisons for 200 dataflow
graphs, a 200×200 matrix named SCORE is produced.
Its element, SCORE [i][j], measures the similarity be-
tween graph i and graph j.

2.3 DFG Clustering and Analysis

Now that we have the similarity matrix, the next
step is to divide 200 training cases into several clus-
ters. In some famous clustering algorithms such as
agglomerative clustering, k-means, or SOM, elements
which have the highest similarity will be taken together.
Agglomerative clustering is a “bottom up” method of
hierarchical clustering. The pair of clusters which has
the highest similarity will be merged as one during
iterations. If we record the process of clustering, we will
get different clustering results. The number of clusters
will vary from N (the number of elements being pro-
cessed) in the beginning to 1 in the end.

Fig.3 is an example showing the agglomerative clus-
tering. Six dataflow graphs (a ∼ f) are shown here. The
element of 6×6 matrix, SCORE [i][j], refers to the simi-
larity between graph i and graph j. Five iterations need
to be done during the execution of clustering. In the
beginning, each cluster has a graph and the number
of clusters is 6. After an iteration, the most similar
graphs, b and c, are merged into one cluster and the
cluster number decreases to 5. The similarity values
within clusters and the cluster size will vary along with
iterations.

To evaluate the quality of clustering, we define
the correlation between clusters and within a cluster.
Firstly, we define the diversity of two clusters M1 and
M2 as follows:

Diversity(M1,M2) = 1−
∑

a∈M1

∑
b∈M2

Score[a][b]
|M1||M2| .

(6)

Peng Chen et al.: General-Purpose Many-Accelerator Architecture Based on DFG Clustering of Applications 243

Fig.3. Simple example illustrating the agglomerative clustering.

Higher diversity means more disparity between clus-
ters, or less overlap between clusters. Meanwhile, we
define the convergence within a cluster as:

Convergence(M1) =

∑
a∈M1

∑
b∈M1

Score[a][b]
|M1|2 . (7)

Convergence describes how individual DFGs within
a cluster close to each other. For a more converged
cluster, it will be much easier for hardware design to
abstract features.

Fig.4 shows the diversity and convergence of clusters
when the number of clusters decreases. It can be seen
that clusters themselves become less converged while
more diverged with others as the number of clusters
decreases. When the cluster number becomes 15, the
diversity among clusters increases to 0.437 and the con-
vergence within clusters still keeps high at 0.884. Thus,
in the following of this paper, we choose 15 clusters for
evaluation.

Fig.4. Average diversity between clusters and convergence with

a cluster.

Fig.5 describes the number of dataflow graphs in
each cluster and the benchmarks covered by each clus-
ter. The first observation is that different application
programs do have similar DFGs, which fits our com-

mon expectation, because different applications have
similar hotspot piece of code. Second, as Fig.5 shows,
12 of the clusters cover more than 4 programs while
2 of them cover 10 programs. This demonstrates the
applicability of our clusters.

Fig.5. Number of dataflow graphs in each cluster and coverage

of SPEC benchmarks.

3 Designing Accelerators for Each DFG
Cluster

Now that we have clusters containing many DFGs,
the next issue is how to design a hardware accelerator
for each cluster to maximally fit all DFGs in it. We
propose to find one representative DFG within a cluster
and design fixed hardwired module for it. The repre-
sentative DFG is the one with the closest distance with
all the others in terms of average similarity between two
DFGs. Designing hardwired module for it can promise
the match to all DFGs in the cluster to the maximum
extent. Lastly, we use reconfigurable functional unit
and interconnection to match other parts for individual
DFGs.

To evaluate the effectiveness of the 15 selected
DFGs, we use 100 DFGs from SPEC benchmarks as
testing set as mentioned in Subsection 2.1. We eval-
uate the similarity between 100 testing DFGs and the
representative DFGs of the cluster to decide which clus-
ter the testing DFG belongs to. The results are shown
in Fig.6. It can be seen that 90% of the testing DFGs

Fig.6. Coverage of clusters for 100 testing DFGs from SPEC.

244 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

have higher than 82% similarity value with our clusters
as Fig.6 shows. This proves the good coverage and ap-
plicability for our clusters.

Fig.7(a) is one of the 15 representative DFGs as men-
tioned above. Fig.7(b) describes a pipelined accele-
rator design for it. Fig.7(a) has four types of ver-
texes: square, circle, double circle, and octagon. The
square refers to the data dependence with neighbor ba-
sic blocks. The data produced by neighbor basic blocks
will be transferred to the current block. The circle
stands for integer operation and the double circle for
float operation. The octagon describes the memory
operation.

Fig.7. Accelerator design for DFGs.

Accordingly, in the accelerator design, four types of
vertexes in the dataflow graph will be mapped to differ-
ent kinds of reconfigurable units in Fig.7(b): reconfigu-
rable router, reconfigurable integer unit, reconfigurable
floating point unit, and reconfigurable memory unit to
load/store data from/to memory. For example, vertex
E in the dataflow graph will be mapped on a reconfigu-
rable integer unit and make integer operation. By map-
ping the hotspot DFGs onto the accelerator, we can
achieve much better performance and energy-efficiency,
because many energy-hungry operations such as in-
struction fetch, decode, data movement will be elimi-
nated.

4 Function Instruction Set Computer
Architecture

In above sections, we describe our approaches on
the problem of what kind of and how many acceler-
ators need to be integrated on chip to maximize the
coverage of applications. In this section, we introduce
the Function Instruction Set Computer (FISC) archi-
tecture, to tackle the problem of the integration of ac-
celerators with processor cores and its corresponding
programming model.

The simplified architecture of FISC is shown in
Fig.8. In FISC we introduce 15 macro instructions,
called function instructions, each of which corresponds
to a DFG accelerator. As shown in Fig.8, at the decode
stage of FISC pipeline, the processor core can identify
an instruction to be a regular or a function instruction.
Regular instructions follow traditional pipelines, while
a function instruction will load configurations into a
dedicated accelerator as indicated by the instruction.
The accelerators as described above can access register
file and memory hierarchy of the processor core. Reg-
ular instructions will not stall unless they have data
dependency on function instructions. The register file
is the place where regular and function instructions ex-
change data.

Fig.8. FISC: general-purpose many-accelerator architecture.

We have implemented the last pass of LLVM com-
piler tool to annotate the DFGs that can be mapped to
a certain accelerator within the application code, and
replace the basic block code with one function instruc-
tion and its corresponding reconfiguration information.
By doing this, FISC is totally compatible with current
programming model and the underlying hardware is en-
tirely transparent to programmers. This will greatly
ease the “manual partition” burden of prior accelerator-
based system design.

5 Evaluation

In this section, we show the evaluation results of our
proposed FISC architecture. In SimpleScalar tool set

Peng Chen et al.: General-Purpose Many-Accelerator Architecture Based on DFG Clustering of Applications 245

is modified to simulate real programs running on FISC
architecture. We choose ARM as the basic instruction
set and add 15 macro function instructions.

Firstly, in Fig.9, we show the breakdown of the exe-
cution time of benchmarks on FISC architecture. It
is clear that the applications have spent most of their
execution time on accelerators. This is because our ac-
celerators are designed for hotspot code regions, which
occupy much of the execution time of a program. The
results again prove the good coverage of our clusters.

Fig.9. Breakdown of benchmarks’ execution time.

Finally, Fig.10 shows the simulation results of
speedup for all selected benchmarks. We can achieve
6.2X on average speedup when compared with the base-
line model. The baseline is the ARM processor as
shown in Fig.10 without accelerators integrated.

Fig.10. Speedup for each benchmark on FISC.

6 Related Work

The related research topics include workload cha-
racterization for hardware and software optimization
efficiency. A great number of specialized processors ex-
ist for applications and domains such as encryption and
decryption[12], streaming multimedia processing[13-14],
vector streaming processing[15], physical simulation[16]

and computer graphics[17-19]. Although great energy-
efficiency is achieved, they cannot be capable for var-
ious workloads. The 10 × 10 processor[3] is designed
for general-purpose workload space. It is a multi-core
architecture and each engine is specialized for different
workload groups. However, code region uncovered by
multiple cores will be difficult to deal with under the ar-
chitecture without a general-purpose processor core. In
addition, its clustering method is still based on the in-
struction mix and the result of clustering has little value
in engine design. CENTRIFUGE[20] is used for graph
clustering for program characterization. But it does not
mention basic block level workload clustering method
and the detailed hardware design. Behavior-level ob-
servability analysis[21] was proposed for low power de-
sign. However, the concept is mainly used for RTL syn-
thesis tools and does not describe the workloads anal-
ysis.

7 Conclusions

With the motivation of solving the contradiction be-
tween utility and energy efficiency in the accelerator’s
design, we took detailed analysis for general-purpose
workloads. Seventeen programs of SPEC CPU 2006
were selected for our LLVM analysis tool and hundreds
of dataflow graphs were produced. Then we adopted
similarity flooding algorithm and agglomerative clus-
tering method to divide the graphs into 15 clusters.
The clustering result keeps low similarity between clus-
ters and high similarity within the cluster. We selected
15 representative graphs which have high average simi-
larity with others in the same cluster and tested their
coverage by testing basic block graphs. We found that
at least 90% of test graphs can be covered by repre-
sentations. Finally, 15 pipelined accelerators were de-
signed for each representative graph. Programs from
SPEC CPU 2006 can achieve as much as 6.2X average
speedup with little extra power consumption. There-
fore, our basic block level dataflow graph analysis can
improve the applicability of hardware accelerator and
relieve the contradiction between energy-efficiency and
applicability.

References

[1] Govindaraju V, Ho C H, Sankaralingam K. Dynamically spe-

246 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

cialized datapaths for energy efficient computing. In Proc.
the 17th Symp. High Performance Computer Architecture
(HPCA), February 2011, pp.503-514.

[2] Venkatesh G, Sampson J, Goulding N et al. Conservation
cores: Reducing the energy of mature computations. ACM
SIGARCH Computer Architecture News, 2010, 38(1): 205-
218.

[3] Guha A, Zhang Y, ur Rasool R et al. Systematic evaluation
of workload clustering for extremely energy-efficient architec-
tures. ACM SIGARCH Computer Architecture News, 2013,
41(2): 22-29.

[4] Cong J, Ghodrat M A, Gill M et al. Architecture support
in accelerator-rich CMPs. InProc. the 49th Annual Design
Automation Conference (DAC), June 2012, pp.843-849.

[5] Hameed R, Qadeer W, Wachs M et al. Understanding sources
of inefficiency in general-purpose chips. In Proc. the 37th
ISCA, June 2010, pp.37-47.

[6] Memik G, Memik S O, Mangione-Smith W H. Design and
analysis of a layer seven network processor accelerator using
reconfigurable logic. In Proc. the 10th IEEE Symposium
on Field-Programmable Custom Computing Machines, April
2002, pp.131-140.

[7] Yoon C W, Woo R, Kook J et al. An 80/20-MHz 160-
mW multimedia processor integrated with embedded DRAM,
MPEG-4 accelerator and 3-D rendering engine for mobile
applications. IEEE Journal of Solid-State Circuits, 2001,
36(11): 1758-1767.

[8] Steinkraus D, Buck I, Simard P Y. Using GPUs for machine
learning algorithms. In Proc. the 8th Int. Conf. Doc-
ument Analysis and Recognition, August 29-September 1,
2005, pp.1115-1119.

[9] Pionteck T, Staake T, Stiefmeier T et al. Design of a
reconfigurable AES encryption/decryption engine for mobile
terminals. In Proc. Int. Symp. Circuits and Systems, May
2004, Vol.2, pp.545-548.

[10] Lattner C, Adve V. LLVM: A compilation framework for life-
long program analysis & transformation. In Proc. Int. Symp.
Code Generation and Optimization: Feedback-Directed and
Runtime Optimization, March 2004, pp.75-86.

[11] Melnik S, Garcia-Molina H, Rahm E. Similarity flooding: A
versatile graph matching algorithm and its application to
schema matching. In Proc. the 18th Int. Conf. Data En-
gineering, March 2002, pp.117-128.

[12] Wu L, Weaver C, Austin T. CryptoManiac: A fast flexible
architecture for secure communication. In Proc. Int. Symp.
Computer Architecture, June 30-July 4, 2001, pp.110-119.

[13] Ebeling C, Cronquist D C, Franklin P. RaPiD — Reconfigu-
rable pipelined datapath. In Proc. the 6th International
Workshop on Field-Programmable Logic, Sept. 1996, pp.126-
135.

[14] Goldstein S C, Schmit H, Moe M et al. PipeRench: A copro-
cessor for streaming multimedia acceleration. In Proc. the
26th Int. Symp. Computer Architecture, May 1999, pp.28-
39.

[15] Ahn J H, Dally W J, Khailany B et al. Evaluating the imagine
stream architecture. In Proc. the 31st Int. Symp. Computer
Architecture, June 2004.

[16] Boeing A, Braunl T. Evaluation of real-time physics simula-
tion systems. In Proc. the 5th International Conference on
Computer Graphics and Interactive Techniques in Australia
and Southeast Asia, December 2007, pp.281-288.

[17] Luo Z, Liu H, Wu X. Artificial neural network computation
on graphic process unit. In Proc. Int. Joint Conf. Neural
Networks, July 31-Aug. 4, 2005, Vol.1, pp.622-626.

[18] Lindholm E, Nickolls J, Oberman S et al. NVIDIA Tesla: A
unified graphics and computing architecture. IEEE Micro,
2008, 28(2): 39-55.

[19] Owens J D, Luebke D, Govindaraju N et al. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 2007, 26(1): 80-113.

[20] Demme J, Sethumadhavan S. Approximate graph clustering
for program characterization. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 2012, 8(4): Article
No. 21.

[21] Cong J, Liu B, Majumdar R et al. Behavior-level observ-
ability analysis for operation gating in low-power behavioral
synthesis. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), 2010, 16(1): Article No.4.

Peng Chen received his B.S. de-
gree from the Department of Com-
puter Science and Technology, Hefei
University of Technology, in 2012.
He is currently a master’s student in
the Institute of Computing Technol-
ogy (ICT), Chinese Academy of Sci-
ences (CAS), Beijing. His research
interests include program analysis
and accelerator design.

For the technical biography of Lei Zhang, please refer
to p.238.

Yin-He Han received the M.S.
and Ph.D. degrees in computer sci-
ence from ICT, CAS, in 2003 and
2006, respectively. He is currently an
associate professor at ICT, CAS, His
research interests include VLSI/SOC
interconnection, testing and fault-
tolerance. Dr. Han is a recipient of
the Best Paper Award at Asian Test
Symposium 2003. He is a member of

CCF, ACM, IEEE society. He was the program co-chair
of Workshop of RTL and High Level Testing (WRTLT) in
2009, and serves on the Technical Program Committees of
several IEEE and ACM conferences, including ATS, GVLSI,
etc.

Yun-Ji Chen graduated from
the Special Class for the Gifted
Young, University of Science and
Technology of China, Hefei, in 2002.
Then, he received the Ph.D. de-
gree in computer science from ICT,
CAS, in 2007. He is currently a
professor at ICT. His research in-
terests include parallel computing,
microarchitecture, hardware verifica-

tion, and computational intelligence. He has authored or
coauthored one book and more than 40 papers in these ar-
eas.

