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Abstract Due to the decreasing threshold voltages, shrinking feature size, as well as the exponential growth of on-chip
transistors, modern processors are increasingly vulnerable to soft errors. However, traditional mechanisms of soft error
mitigation take actions to deal with soft errors only after they have been detected. Instead of the passive responses, this
paper proposes a novel mechanism which proactively prevents from the occurrence of soft errors via architecture elasticity.
In the light of a predictive model, we adapt the processor architectures holistically and dynamically. The predictive model

provides the ability to quickly and accurately predict the simulation target across different program execution phases on
any architecture configurations by leveraging an artificial neural network model. Experimental results on SPEC CPU 2000
benchmarks show that our method inherently reduces the soft error rate by 33.2% and improves the energy efficiency by
18.3% as compared with the static configuration processor.
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1 Introduction

As the continuous development of Moore’s Law, the
functionality and performance of microprocessors have
progressed tremendously over the past few decades.
However, increasing operating frequencies, lowering
threshold voltages[1-3] and shrinking feature size, espe-
cially the exponential growth of on-chip transistors[3]

are rendering current processors more and more sensi-
tive to errors. Therefore, error resilience has emerged
as a key factor in processor design and utilization[1-3].

Soft error is one pervasive cause of computer system
failure, induced by energetic particles from cosmic rays
and packaging material[1]. Because this type of fault
does not result in permanent failure in the hardware, it
is termed soft error.

Due to the harmfulness of soft errors, researchers
have carried out in-depth investigations on the miti-
gation of soft errors in the past twenty years. When
a soft error has been detected, there are two cate-
gories of solutions, i.e., correction and recovery, to

cope with it. Plenty of researches, including error cor-
recting codes (ECC)[4] and triple-modular redundancy
(TMR)[5], detect the soft errors and subsequently cor-
rect them. But most of these studies are limited to
memory structures. Different from the correction solu-
tions, when meeting a soft error, the recovery solution
rollbacks to the previous fault-free state to evade it.
The following are several popular recovery solutions.
The high reliability domains, such as the HP Nonstop
Advanced Architecture[6] and the IBM zSeries[7], em-
ploy large-scale modular redundancy to guarantee ex-
cellent fault coverage. Simultaneous redundant threads
(SRT) technology[8-9] was proposed to detect soft errors
based on simultaneous multithreading (SMT) proces-
sors. Muhkerjee et al. then introduced chip level redun-
dant threading (CRT)[10] by leveraging CMPs. A num-
ber of software approaches[11-12] apply compiler-based
instruction duplication in the same execution thread to
deliver extremely high fault coverage.

As mentioned above, most traditional schemes of
soft error mitigation take action only when a soft er-
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ror has been detected. Instead of passively mitigat-
ing soft error when a soft error has happened, this
paper proposes a novel mechanism which proactively
prevents from the occurrence of soft errors via architec-
ture elasticity[13]. Architecture elasticity is a promis-
ing technology which offers the ability to scale down or
up the hardware structures when the program is run-
ning. By adapting the processor architectures holis-
tically and dynamically, our proposal inherently re-
duces the soft error rate (SER) and improves the energy
efficiency.

Technically, we firstly construct a machine learning
model which can quickly and accurately predict the
simulation target across different program execution
phases on any architecture configuration by employ-
ing Artificial Neural Network (ANN) which represents
one of the most powerful machine learning algorithms
for generalized nonlinear regression. When the pro-
gram turns into a new phase of execution, we gather
a small amount of hardware counters that are capable
of characterizing the new phase in a short profiling pe-
riod. These characteristics combined with several sets
of processor architecture configurations are fed into our
predictive model to select the best architecture configu-
ration for guiding the architecture elasticity. After the

processor has been reconfigured, we proceed to run the
program until the next new phase is detected. An exa-
mple of proactive prevention of soft errors via archi-
tecture elasticity is illustrated in Fig.1. The significant
increase of data cache miss rate generally means that
the current processor architecture configuration has not
been able to satisfy the need of the new phase. Owing to
cache misses, long delays detain the instructions in the
vulnerable structures, such as ROB and issue queue,
which probably increases the soft error rate. More-
over, long delays often result in energy wastage and
performance losses. Therefore, the SER, performance
and power of processor may be better if the cache size
is augmented. In fact, it is intractable to decide how
to tune the processor architectures for better efficiency
and reliability in the situation of involving complex re-
lationships among variable elements.

We have carried out empirical evaluations on our
scheme for SPEC CPU 2000 benchmarks. Experimen-
tal results show that our proposal reduces the processor
SER and energy-delay-squared product by 33.2% and
18.3% respectively, compared with the static configu-
ration processor.

In summary, the main contributions of this paper
are the followings:

Fig.1. Framework of proactive prevention of soft errors. ED: energy-delay. ED×SER2: a metric that represents the trade-off between

soft error vulnerability and energy efficiency.
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• We propose a novel mechanism which proactively
prevents from the occurrence of soft errors, significantly
different from the traditional correction and recovery
mechanisms.

• It is demonstrated that reducing the SER of a
single processor structure may increase the SER of
other processor structures[14], while our proposal re-
duces the holistic processor SER, not only a single pro-
cessor structure.

The rest of this paper is organized as follows. Sec-
tion 2 introduces a measure method of SER. Section 3
describes our proposed mechanism which reduces the
processor SER and improves the energy efficiency. Sec-
tion 4 presents our experimental setup and Section 5
evaluates our approach. Section 6 lists the related work
and finally Section 7 concludes this paper.

2 Background

A chip’s raw soft errors are the bit flips or the logic
wrong results arising from energetic particle strikes. It
depends on the process technology and the number of
bits in the structure. Fortunately, not all raw soft er-
rors affect the final outcome of a program. There are
numerous researches which show that a large fraction
of radiation-induced faults are masked[3,15]. Mukher-
jee et al. introduced architectural vulnerability factor
(AVF)[2] to quantify the architectural masking effect
of raw soft errors. A hardware structure’s AVF is the
probability that a fault in the structure will result in a
visible error in the final output of a program. Because
of the masking capability of the AVF, the effective SER
of a processor structure is defined as (1).

effective SER=raw SER × AVF. (1)

In this study, we measure the AVF of processor
microarchitecture structures using Architecturally Cor-
rect Execution (ACE) analysis[2,16]. A bit in a struc-
ture can be classified as either ACE or un-ACE at a
certain point in time. An ACE bit is one whose cor-
rectness is required for the architecturally correct exe-
cution. The two types of un-ACE bits are microarchi-
tectural un-ACE bits and architectural un-ACE bits.
Microarchitectural un-ACE bits arise from idle or in-
valid state and bits in predictor structures. Architec-
tural un-ACE bits contain NOP instructions, prefetch
instructions, predicated-false instructions, and dynami-
cally dead instructions. The AVF of a structure is the
ratio of the number of ACE bits per cycle in the struc-
ture to the total number of bits in the structure. The
overall SER of the processor is obtained by adding the
SER of all processor structures. For hardware structure
E with size m, its AVF over a period of n cycles can be
expressed as (2).

AVFE =

∑n

i=1 Number of ACE bits in E at cycle i

m × n
.

(2)

3 Mechanism

We construct an artificial neural network model
which could predict the simulation target (the out-
put of the ANN model) quickly and accurately by in-
putting a small amount of hardware counters into the
ANN model. The hardware counters are capable of
characterizing a new program phase. Based on the pre-
dicted results, we select the best architecture configu-
ration from an architecture design space for the pro-
gram phase. We assume that the simulation target
value of the best architecture configuration is the low-
est.

The artificial neural network (ANN) is a machine
learning model that automatically learns to predict a
target (simulation result in our case) based on n puts.
Fig.2 shows the most common type of fully connected,
feed-forward ANN. The network consists of three lay-
ers: input layer, output layer, and hidden layer. Each
unit operates on its inputs to produce an output that is
passed to the next layer. An input unit passes its input
value to all hidden units presented at the hidden layer
via a set of weighted edges. Hidden and output units
calculate their output by first taking a weighted sum of
their inputs based on the edge weights, and transferring
this sum to a non-linear activation function. The tar-
get prediction is obtained from the output layer. The
commonly used activation functions must be nonlin-
ear, monotonic and differentiable, which include sig-
moid, linear threshold function, and radial basis func-
tion. Fig.3 shows a hidden unit using the sigmoid acti-
vation function that is applied to our predictive model.
The symbol w in Fig.3 is the model edge weight, I is
the input value, x is the weighted sum and f(x) is the
sigmoid activation function. ANN represents one of the
most powerful machine learning models for generalized

Fig.2. Basic architecture of a fully connected, feed-forward ANN.
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Fig.3. Single unit of an ANN.

nonlinear regression, and delivers accurate result in
the situation of involving complex relationships among
variables.

We utilize cross validation to set the tunable pa-
rameters of the ANN model for predicting the simula-
tion target accurately. Cross validation is a mechanism
which takes advantage of all available data to train pre-
dictive model so that it reduces the risk of overfitting.
In cross validation, the dataset is divided into N equal-
sized folds. The model is trained on N − 1 folds and
tested on the remaining fold, then the selection of folds
as testing data is rotated.

4 Experimental Methodology

4.1 Architecture Design Space

This paper proposes a scheme to quickly and accu-
rately select the best architecture configuration from an
architecture design space for any new phase of a pro-
gram. The configurable architectural parameters that
we have considered are shown in Table 1 and are simi-
lar to the parameters other researches have thought
over[17-19]. Table 1 shows the variation ranges and steps
of these parameters and the number of different values
they can take where “+” and “∗” represent steps. The
baseline machine configuration used in this study rep-
resents a high-performance out-of-order processor and
is shown in Table 2.

Table 1. Architectural Design Parameters Variation

for Model Training

Parameter Value Range Step Number of Values

Machine width 2, 4, 8 3

Fetch queue size 4, 8, 16 3

ROB size 32∼160 16+ 9

Issue queue size 8∼72 16+ 5

Load/store queue size 8∼72 16+ 5

Gshare size 1K∼32K 2* 6

BTB size 1K, 2K, 4K 3

L1 Icache size 8K∼128K 2* 5

L1 Dcache size 8K∼128K 2* 5

L2 Ucache size 256 K∼4M 2* 5

We vary 10 different parameters across their range of
values in a superscalar simulator. However, it would be

Table 2. Baseline Architecture Configuration

Parameter Configuration

Pipeline width 4

Fetch queue 8 entries

Issue queue 32 entries

ROB 56 entries

Load/store queue 32 entries

Gshare 2K entries

BTB 2K entries, 4-way

L1 Icache 16KB, 4-way, 32B blocks,

1 cycle latency

L1 Dcache 16KB, 4-way, 32B blocks,

1 cycle latency

L2 Ucache 2MB, 4-way, 64 B blocks,

6 cycle latency

impractical to select the best architecture configuration
online from a design space as large as this. Therefore,
due to the implementation and online search overheads,
we vary 5 important parameters in a small range and
remain the other parameters as same as in the base-
line configuration to construct an online design space
of 162 points. The online space shown in Table 3 con-
tains typical and feasible design points.

Table 3. Architectural Design Parameters Variation

for Online Adaptation

Parameter Value Range Number of Values

ROB size 32, 56, 80 3

Issue queue size 16, 32, 48 3

L1 Icache size 16K, 32K, 64 K 3

L1 Dcache size 16K, 32K, 64 K 3

L2 Ucache size 512K, 2M 2

4.2 Simulator and Benchmarks

Our cycle-accurate simulator is based on Wattch[20]

(an extension to SimpleScalar) and includes detailed
energy model for the processor. We split RUU of
SimpleScalar into a reorder buffer and an issue queue.
Moreover, we add a fetch queue and register files. In
order to model soft error vulnerability, we integrate
the AVF computation methods proposed in [2, 16] into
Wattch. Our reliability simulator covers a wide range
of significant architecture components: an issue queue,
function units, a reorder buffer, and a load/store queue.

We use 21 SPEC CPU 2000 benchmarks[21] com-
piled with the highest optimization level to evaluate
our methods with the reference input set. For each
benchmark, we abstract the representative traces using
SimPoint[22] with an interval size of 10 million instruc-
tions. At the end of each interval, the soft error vul-
nerability estimate along with performance and energy
values can be gained.
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4.3 Hardware Counters

We extract several hardware counters used to char-
acterize a program phase. The most important hard-
ware counters are listed as follows: Il1 accesses, Il1 miss
rate, Dl1 accesses, Dl1 miss rate, branch instructions
rate, branch mis-prediction rate, load/store queue oc-
cupant rate, ROB occupant rate, fetch queue occupant
rate, issue queue occupant rate, load/store instructions
rate, and ACE instructions rate. For example, the high
queue occupant rate usually means the soft error rate
of the queue is high, because the ratio of ACE bits per
cycle in the queue may be high.

4.4 Metric

The energy-delay (ED) product is widely used in ar-
chitecture design[18]. We use ED × SER2 as a metric
that represents the trade-off between soft error vulnera-
bility and energy efficiency. The lower the metric value,
the better.

4.5 Model Construction Methods

We use seven integer benchmarks (vpr, gcc, mcf,
parser, perlbmk, gap, twolf) and seven floating point
benchmarks (wupwise, swim, mgrid, applu, mesa,
ammp, lucas). Each benchmark is run for the first Sim-
Point trace. We uniformly and randomly sample 1 000
architecture configurations from the entire design space.
The characteristics of the first SimPoint trace of each
benchmark, 1 000 random architecture configurations,
and the corresponding simulation target are used to
build our ANN model. We apply 7-fold cross valida-
tion to build the appropriate ANN model by adjusting
parameters, such as learning rate and momentum.

5 Experimental Results

5.1 Accuracy of Our Predictive Model

We use the relative mean absolute error (rmae) de-
fined as (3) to measure the accuracy of our ANN model.

rmae =
∣

∣

∣

valuepred − valuereal

valuereal

∣

∣

∣
× 100%, (3)

where valuepred represents the value predicted by our
model and valuereal represents the real value.

To evaluate the accuracy of our ANN model, we ran-
domly and independently generate 100 sample points
for the second SimPoint trace of each benchmark men-
tioned above (Fig.4(b)), the first SimPoint trace of
other two integer benchmarks (eon and vortex), and
two floating point benchmarks (sixtrack and galgel)
(Fig.4(a)), respectively. Fig.4 demonstrates that our

ANN model accurately predicts the simulation target
of untrained programs and future execution phases.

Fig.4. Relative mean absolute error when predicting the target

for untrained programs (a) and future execution phases (b).

5.2 Reduction of SER and Improvement of

Efficiency Using Our Proposal

When the new phase of a program has been detected,
we gather the characteristics in the profiling period and
feed them together with sets of architecture configu-
rations within the entire online design space into the
constructed predictive model and then select the best
architecture configuration. After that, we continue run-
ning the current phase with the selected configuration.
The process is repeated until all the program’s phases
have been exhausted. Both processor SER and energy
efficiency are evaluated in this subsection. We assume
an arbitrary intrinsic fault rate of 0.01 units/bit[23] and
compute the SER for most significant processor archi-
tecture components. Fig.5 depicts the results achieved
by our approach as compared with the baseline configu-
ration. On average, we decrease the processor SER by

Fig.5. Reduction of SER and improvement of energy efficiency

achieved by our proposal compared with the static baseline

configuration for SPEC CPU 2000 benchmarks.
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more than 33.2%, relative to the static baseline configu-
ration. In some cases, for mcf, gap, bzip2, mgrid and
sixtrack, we achieve a remarkable reduction in proces-
sor SER even more than 70%. Meanwhile, we improve
the energy efficiency by 18.3% on average. Especially
for gcc, crafty, fma3d and sixtrack, their energy-delay-
squared product has been reduced by over 30%. For
these benchmarks, the L2 cache is usually not being
fully utilized, so we diminish their L2 cache size from
2M to 512K so as to reduce the power consumption.

In this study, reconfiguration only occurs once ev-
ery 10 million instructions. Thus, the reconfiguration
overheads for the whole program execution are signifi-
cantly reduced. Moreover, the majority of reconfigura-
tion time is hidden because transistors can be powered
up and down when the processor components are being
used[17,24]. In addition, the overheads for the imple-
mentation of the ANN model used in this study are
negligible[25].

6 Related Work

Recovery Solutions. n-Modular Redundancy
(nMR)[6] guarantees excellent fault coverage, but it
incurs 100% hardware and energy consumption, and
loses 50% throughput. Instead of full processor dupli-
cation, using simple checkers[26] or duplicating copies
of a processor component[27] is often performed. Nev-
ertheless, they are usually hardwired at the design time.
Simultaneous redundant threads[8] augment SMT pro-
cessors for transient fault detection. Because of re-
source contention between the leading thread and trail-
ing thread, Muhkerjee et al. introduced chip level re-
dundant threading (CRT)[10]. Recent studies[9,28] pro-
vide partial redundancy mechanisms. For instance,
[28] avoids redundant execution for low AVF program
phases. There has been a surge of researches[7,29-31]

that exploit anomalous microarchitectural behavior to
detect soft errors. The symptoms include memory ex-
ceptions, branch misprediction, cache misses, etc. Most
recovery solutions[29] rely upon the heavyweight, full-
system checkpointing mechanisms. Furthermore, the
recovery solutions must be based on the detection of
soft errors. But our proposal proactively prevents from
the occurrence of soft errors and improves the energy
efficiency.

Correction Solutions. Memory structures, like
caches and main memory, are protected against faults
using parity or ECC[4]. A cache line is extended with
parity or ECC, then every read requires error detec-
tion or correction and every write needs parity or ECC
encoding. Most of the correction solutions are only suit-
able for memory structures, due to the prohibitive costs.

Reducing SER Directly Without Recovery and

Correction. There has been a small amount of
researches[15-16,32] which reduce the SER directly by
keeping valid state out of vulnerable structures. When
cache-miss is encountered, [32] squashes instructions
that sit in the instruction queue. These methods are
limited to a single structure. Nevertheless, our proposal
reduces the holistic SER of processor.

Time Varying Characteristic, Phase Detection and

Online Estimation. Previous researches[17,23] showed
that AVF, performance and power exhibit time vary-
ing behavior both across and within programs. On-
line phase detection techniques[22,33] were proposed to
detect and classify program execution that shows ho-
mogeneous characteristics of interest. Walcott et al.[28]

and Duan et al.[34] demonstrated that AVF can be es-
timated online by utilizing a small set of microarchi-
tectural metrics. In this study, we consider reliability,
performance, and power consumption simultaneously
and predict the specified simulation target quickly and
accurately at runtime.

Architecture Elasticity Technology. How to dynami-
cally tune the processor structures or multiprocessor
for efficiency has received much attention in the past
few years. On the one hand, the studies for issue
queue[24], reorder buffer[35] and caches[36], aim at sin-
gle component of the processor by leveraging control
mechanisms. On the other hand, there are numerous
proposals that use reconfigurable processor to satisfy
both single-threaded programs and multi-threaded pro-
grams simultaneously[37-39].

7 Conclusions and Future Work

This paper proposed a novel mechanism which
proactively prevents from the occurrence of soft errors.
We built a machine learning model which can quickly
and accurately predict the simulation target across dif-
ferent program execution phases on any architecture
configurations by leveraging an artificial neural network
model. Based on the constructed predictive model,
we selected the best architecture configuration used to
guide the holistic and dynamic adaptation of processor
architectures. Compared with the static configuration
processor, our proposal reduces soft error rate by 33.2%
and improves energy efficiency by 18.3%. Although this
paper has targeted a uniprocessor design, our approach
probably can be extended to a multiprocessor design.
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