
Chen LC, Chen MY, Ruan Y et al. MIMS: Towards a message interface based memory system. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 29(2): 255–272 Mar. 2014. DOI 10.1007/s11390-014-1428-7

MIMS: Towards a Message Interface Based Memory System

Li-Cheng Chen1,2 (陈荔城), Student Member, CCF, ACM, IEEE
Ming-Yu Chen1,∗ (陈明宇), Member, CCF, ACM, IEEE, Yuan Ruan1 (阮 元), Member, CCF, ACM
Yong-Bing Huang1,2 (黄永兵), Student Member, CCF, ACM, IEEE
Ze-Han Cui1,2 (崔泽汉), Student Member, CCF, ACM, IEEE, Tian-Yue Lu1,2 (卢天越)
and Yun-Gang Bao1 (包云岗), Member, CCF, ACM, IEEE

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: {chenlicheng, cmy, ruanyuan, huangyongbing, cuizehan, lutianyue, baoyg}@ict.ac.cn

Received November 13, 2013; revised January 14, 2014.

Abstract The decades-old synchronous memory bus interface has restricted many innovations in the memory system,
which is facing various challenges (or walls) in the era of multi-core and big data. In this paper, we argue that a message-
based interface should be adopted to replace the traditional bus-based interface in the memory system. A novel message
interface based memory system called MIMS is proposed. The key innovation of MIMS is that processors communicate with
the memory system through a universal and flexible message packet interface. Each message packet is allowed to encapsulate
multiple memory requests (or commands) and additional semantic information. The memory system is more intelligent and
active by equipping with a local buffer scheduler, which is responsible for processing packets, scheduling memory requests,
preparing responses, and executing specific commands with the help of semantic information. Under the MIMS framework,
many previous innovations on memory architecture as well as new optimization opportunities such as address compression
and continuous requests combination can be naturally incorporated. The experimental results on a 16-core cycle-detailed
simulation system show that: with accurate granularity message, MIMS can improve system performance by 53.21% and
reduce energy delay product (EDP) by 55.90%. Furthermore, it can improve effective bandwidth utilization by 62.42% and
reduce memory access latency by 51% on average.

Keywords message interface, memory system, asynchronous, granularity, semantic information

1 Introduction

The exponential growth of the number of cores (com-
puting resource) and the amount of data needs to be
processed (working set) places heavy pressure on main
memory system for high throughput, high bandwidth,
high parallelism, large capacity, etc. The number of
cores integrated into a processor chip is expected to
double every 18 months①, and some many-core proce-
ssors have already been on the market, such as 60-core

Intelr Xeon PhiTM coprocessor②, 72-core Tilera TILE-
Gx 64-bit processor③. The increasing number of cores
demands for higher memory bandwidth and higher
memory parallelism. Furthermore, memory requests
from different cores tend to interfere with each other,
which will result in poor memory locality (e.g., low row
buffer hit rate). Thus how to leverage parallelism is
considered to have a higher priority than locality in
future memory architectures[1]. On the other hand, in
the era of big data, the amount of data needs to be

Regular Paper
This work is partially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant

No. XDA06010401, the National Basic Research 973 Program of China under Grant No. 2011CB302502, the National Natural
Science Foundation of China under Grant Nos. 60925009, 61221062, 61331008, and the Huawei Research Program under Grant No.
YBCB2011030.

∗Corresponding Author
①International technology roadmap for semiconductors. http://www.itrs.net/Links/2011ITRS/Home2011.htm, Dec. 2013.
②Intelr Xeon PhiTM Coprocessor: Datasheet. https://www-ssl.intel.com/content/dam/www/public/us/en/documents/datashee-

ts/xeon-phi-coprocessor-datasheet.pdf, Dec. 2013.
③TILE-Gx Processor Family. http://www.tilera.com/products/processors/TILE-Gx Family, Dec. 2013.
©2014 Springer Science+Business Media, LLC & Science Press, China



256 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

processed is predicted to grow with a rate of 40% per
year④. Big data processing requires larger memory ca-
pacity to put more data in-memory and higher memory
bandwidth to achieve better performance.

However the Synchronous Dynamic Random Ac-
cess Memory (SDRAM) based memory interface (e.g.,
DDRx), which acts as the bridge between low-level
cores and high-level data, fails to scale, and it has been
considered as the major bottleneck in a chip multi-
processor (CMP) system. Besides the well-known mem-
ory wall problem[2], it also faces many other challenges
(or walls), which are concluded as follows:

Memory Wall (Latency). The original “memory
wall” refers to memory access latency problem[2], which
was a major problem in the memory system until mid-
2000s. Then came the multi-core/many-core era after
the processor frequency race slowed down. The situa-
tion has changed a bit that queuing delay at the mem-
ory controller has become a major bottleneck, and it
can contribute up to 70% of the total memory latency
in an 8-core system[1]. Thus for future memory ar-
chitecture, it shall place a higher priority on reducing
queuing delay. Exploiting higher parallelism in mem-
ory system can effectively reduce queuing delay because
it is able to de-queue requests faster[1]. However the
synchronous design of traditional DDRx memory has
natural limitation on leveraging parallelism.

Bandwidth Wall. The increasing number of concur-
rent memory requests and the increasing size of work-
ing set will place heavy pressure on memory bandwidth.
However since the relatively slow growth of pin counts
of processor module (about 10% per year), the band-
width of memory system fails to scale with the num-
ber of cores. Actually, the average memory bandwidth
for each core is predicted to be decreasing, which has
been concluded as bandwidth wall[3]. In traditional
DDRx memory system, the memory controller (usually
integrated into processor chip) connects directly with
DRAM memory channels through synchronous paral-
lel bus, which costs a large number of processor pins
(e.g., 240 processor pins for a DDR3 DRAM channel).
Adopting faster and narrower serial link bus (commu-
nicates between cores and memory channels) can ef-
fectively alleviate the processor pin limitation, such as
fully-buffered DIMM, Intelr Scalable Memory Inter-
connect, buffer-on-board memory. Further optimiza-
tions such as optical interconnection and 3D stacking
are supposed to solve bandwidth problem substantially.

Efficiency Problem. Latency and bandwidth are two

of the physical factors of a memory system while the
efficiency of memory access really counts for processor.
In traditional DDRx DRAM memory system, the mem-
ory controller always reads or writes a cache-block data
(e.g., 64 B) within a burst-length (BL) burst (BL is 8 in
DDR3) in spite of which word is really needed. Before
that, a whole row data (e.g., 8 KB) needs to be acti-
vated and stored in the row buffer within the destina-
tion memory-rank. This fixed-size and coarse-grained
design can improve memory bandwidth when memory
accesses have good locality. However, in multi-core or
many-core systems, the locality both in cache block
and row buffer is lost due to memory requests interfer-
ence among cores[1,4]. It has been shown that coarse-
grained data cache has almost no performance bene-
fit for some scale-out workloads[5-6]. The well-known
over-fetch problem, that most of the read-in data have
never been used by the processor, will be amplified in
such situation. Thus for memory accesses with low spa-
tial locality, coarse-grained data unit will waste much
memory bandwidth and power. Memory systems that
support fine granularity access[4,7] can improve both the
bandwidth and power efficiency.

Capacity Wall. Big data processing workloads re-
quire larger memory capacity to put more data in-
memory. However the capacity of DDRx DRAM mem-
ory fails to scale with the demand. The number of
memory channels supported by a processor is limited
by the available pin counts. And the number of DIMMs
(or ranks) which can be supported within each DDRx
channel is limited by signal integrity restriction. For in-
stance, the maximum number of DIMMs supported in
each DDR1 channel can be four, while it is reduced to
only one in each DDR3-1600MHz channel[8]. Further-
more, the capacity provided by each DIMM is grow-
ing slowly due to the difficulties in decreasing the size
of capacitor in DRAM cell[9]. To increase the num-
ber of DIMMs supported in each channel, registers
and buffers have been added into the memory mod-
ule to improve signal integrity, such as RDIMM and
LRDIMM memory. Furthermore, there are also var-
ious proposals to provide big-capacity memory, such
as buffer-on-board (BOB) memory[9], Hybrid Mem-
ory Cube (HMC) memory⑤, high density non-volatile
memory (e.g., PCM)[10] and 3D-stacked memory[11].

Power Wall. It has been reported that memory
power can contribute about 40% to the total system
power in large servers[12-13]. Leaking in capacitor-
based DRAM cells contributes the major static power

④Oracle: Big data for the enterprise. http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf, Dec.
2013.
⑤Hybrid Memory Cube Consortium. Hybrid memory cube specification 1.0. http://www.hybridmemorycube.org/files/HMC Speci-

fication%201 0.pdf, Dec. 2013.



Li-Cheng Chen et al.: Message Interface Based Memory System 257

of DRAM system (including periodic refresh power),
which is not an architectural issue. However, due to the
low locality problem mentioned above, a large portion
of dynamic power in coarse-grained DRAM memory is
actually wasted on activating and reading/writing use-
less data. Changing DDRx memory systems to support
sub-access in row buffer and fine granularity memory
access can alleviate the over-fetch problem. To reduce
DRAM static power, non-volatile memory (e.g., PCM)
can be investigated as potential alternatives for exist-
ing memory technologies. However non-volatile mem-
ory (NVM) usually has totally different access parame-
ters and timing constraints, so it cannot work under a
traditional synchronous memory interface designed for
DRAM such as DDRx.

Reliability Problem. Memory reliability is increas-
ingly a concern with the rapid improvement of memory
density and capacity. Error correction codes (ECCs)
are the dominant solution for nowadays server memory.
However it has been shown that single error correc-
tion, double error detection (SECDED) is insufficient
for future memory system[14]. There are other stronger
memory protection schemes such as chip-kill which is
not widely adopted. In traditional DDRx memory sys-
tem, a fixed hardware error correction mechanism is
adopted and dedicated data bus pins are assigned to
ECC. The granularity and code pattern are all fixed
and processed by hardware logic (in integrated memory
controller). Recently many studies have contributed to
investigating more flexible error protection approaches,
especially when adopting sub-access memory and con-
sidering to introduce non-volatile memory into memory
systems[15].

Besides all the above walls, there is a long research
trend to equip the memory system with some simple
processing logic to make memory more autonomous.
Logic in memory can significantly reduce data trans-
fer between the memory system and processor (because
data can be processed in local), thus it can improve
performance and reduce power consumption. Many au-
tonomous memory systems have been proposed, such as
Processing in Memory (PIM)[16], Active Memory Ope-
ration (AMO)[17-18], and Huawei Smart Memory[19].
However these technologies are limited to proprietary
designs and never get into the standard DDRx mem-
ory interface, which supports read and write operations
only.

In summary, a large body of previous work has been
contributed to alleviating various memory bottlenecks
(or walls). However each of them only focuses on one
or part of these walls. To the best of our knowledge,
none of them is able to provide a universal solution to
all these problems. Table 1 gives a summary of these
approaches and the problems they address (please re-

fer to Section 2 for details). For example, the BOB[9]

memory system focuses on addressing DRAM memory
bandwidth and capacity wall, in which a simpler con-
troller is placed on board to receive memory requests
(in packets) and schedule memory requests to DRAM
devices, thus it makes the BOB memory system a little
autonomous.

Table 1. Comparison of Different Approaches to

Alleviating Various Memory Walls

LY BW CY EY PR AS

Sub-Access ∗ × × ∗ √ ×
FGMS ∗ × × √ √ ×
Buffer-Chip × × √ × × ×
BOB MS × √ √ × × ∗
AMO × × × × √ √

NVM × × √ × √ ∗
3D-Stacked × ∗ √ × √ ∗
Photonics × √ √ ∗ × ∗
Mobile × × ∗ × √ ∗
Note:

√
: yes, ×: no, ∗: maybe, LY: latency, BW: bandwidth,

CY: capacity, EY: efficiency, PR: power, AS: autonomous.

In this work, we argue that traditional synchronous
bus-based memory interface should be redesigned to in-
corporate more future innovations. In contrast to tra-
ditional read or write bus transaction based memory
interface, a flexible asynchronous message based mem-
ory interface will bring more design opportunities. We
propose a universal message interface based memory
system called MIMS. In MIMS, memory requests and
responses are transferred over faster and narrower se-
rial link bus with high-level message protocol. A local
buffer scheduler is placed between the on-chip memory
controller and DRAM memory modules (or channels).
Device-specific scheduling and timing constraints are
decoupled from the on-chip memory controller, which
is simplified to only encapsulate memory requests into
packets and process responses. The memory controller
communicates with the buffer scheduler over high-speed
serial bus with a flexible message packet protocol. Each
message packet is allowed to encapsulate multiple mem-
ory requests or responses and additional semantic in-
formation such as granularity, thread ID, priority, and
timeout. The buffer scheduler acts as the traditional
memory controller: it needs to track the status of local
memory devices, schedule memory requests, generate
and issue specific local memory bus commands, mean-
while fulfilling the timing constraints. Additionally,
the buffer scheduler can leverage semantic information
(from the processor) to optimize memory scheduling.

MIMS will bring at least the following advantages:
1) It provides a universal, scalable message inter-

face to access different memory subsystems. The status
tracking and request scheduling are decoupled from the



258 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

memory controller and placed down on the buffer sche-
duler. Thus the integrated memory controller has no
timing limitations and it is adaptive to work with other
emerging memory technologies. What is more, the
memory capacity is only restricted by the buffer sche-
duler, which is decoupled from the on-chip memory con-
troller (processor pin).

2) It can naturally support variable granularity
memory requests. Each memory request is transferred
with the exact size of really useful data. This can
significantly improve data/bandwidth efficiency and re-
duce memory power consumption.

3) It enables inter-request optimizations during the
memory access, such as encapsulating multiple mem-
ory requests in a message packet (when they access the
same destination memory module), compressing mem-
ory addresses of a sequence of requests, and combining
contiguous requests.

4) It is easy to add additional semantic information
in a message packet to help optimize memory requests
scheduling in the buffer scheduler. Local computation
or intelligent memory operation requests can also be
added as part of the message.

5) It enables independent design of the buffer sche-
duler and memory modules. The memory system can
be upgraded after the CPU module has been released
(which is impossible for integrated DDRx memory con-
troller). One type of processor can connect to multiple
memory-side designs with different organization, redun-
dancy, memory chips, and acceleration logics.

To demonstrate the benefits of using a message in-
terface in memory system, we have implemented a
cycle-detailed memory system simulator called MIM-
Sim. Trace-driven experiments are performed for multi-
thread workloads with fine-grained memory access.
The results provide elementary proof for the benefits of
MIMS on performance, effective bandwidth utilization
and power reduction. It also answers a basic question,
whether the additional latency for message processing
will effect on the overall performance.

The rest of the paper is organized as follows. Section
2 gives an overview of the memory system and related
work, while Section 3 presents the Message Interface
Based Memory System (MIMS), includes its architec-
ture, packet format, packet decoding and some chal-
lenges. Section 4 presents the experimental setup, and
the results and discussions are presented in Section 5.
Section 6 concludes this paper.

2 Background and Related Work

In this section, we first give a brief description of
dominant JEDEC-style DDRx SDRAM memory sys-

tem, then discuss some optimizations on memory ar-
chitecture, including sub-access memory, memory relia-
bility, buffer-chip memory, autonomous memory, and
some aggressive memory systems, such as non-volatile
memory (NVM), 3D-stacked memory, and photonics in-
terconnect memory.

2.1 DDRx Memory System

The JEDEC standard DDR⑥ (Double Data-Rate)
synchronous DRAM is dominant nowadays. In contem-
porary DDRx memory system, the memory controller
is usually integrated into processor chip, and serves as
the bridge logic between the processor core and off-
chip DRAM devices (or chips). The memory controller
is responsible for receiving memory requests from the
last level cache (cache miss) and scheduling memory re-
quests to DRAM chips. The memory controller needs
to track the status of DRAM devices (e.g., bank states)
and generate DRAM commands for selected requests.
The scheduling needs to meet the DDRx timing con-
straints. The integrated memory controller commu-
nicates with DRAM devices over parallel synchronous
DDR bus (with separate data, command, and address
bus). This wide synchronous bus design results in high
processor pin-count overhead, and it has become a bot-
tleneck to support large capacity memory, since the pro-
cessor pin is an expensive resource and the growth of
processor pin-count fails to keep up with the demand.

The DDRx memory system has a hierarchical orga-
nization, with available parallelism at each level. Each
memory controller can support multiple memory chan-
nels, and each channel has dedicated DDRx bus, thus
each channel can be accessed independently. Within
a memory channel, there might be multiple DIMMs.
Each DIMM might consist of multiple ranks (e.g., 1, 2,
4), and each rank provides a logical 64-bit data-path
(bus) to the memory controller (it is 72-bit for ECC-
DIMM). Multiple DRAM devices within a rank need to
be operated in tandem. DRAM device with 8-bit data
width (x8) is the most commonly used DRAM device
today, and it will be referred in this work by default.

A DRAM device consists of multiple DRAM banks
(it is 8 in DDR3) and these banks can be accessed con-
currently. Within each DRAM bank, there is a two-
dimensional (2D) data array, consisting of rows and
columns. A row buffer is dedicated to each bank, which
is usual 4 KB∼16KB. Before each column access, a
whole destination row data needs to be activated into
the row buffer by an Active command. If following re-
quests access the same row opened in the row buffer
(it is a row buffer hit), it can be accessed directly with
column read/write commands, which have shorter la-

⑥DDR3 SDRAM standard, http://www.jedec.org/standards-documents/docs/jesd-79-3d, Dec. 2013.



Li-Cheng Chen et al.: Message Interface Based Memory System 259

tency. Otherwise, the data in the row buffer needs to
be Precharged back into DRAM array before issuing
new requests (it is a row buffer conflict).

2.2 Sub-Access Memory

Sub-access memory refers to dividing a whole
DRAM component into multiple sub-components, so
that each memory request only needs to access data in
a sub-component. Here DRAM component can be re-
ferred to rank, row buffer and cache block. Sub-access
memory can reduce memory access power and improve
memory level parallelism (MLP).

Sub-ranked memory system divides a 64-bit mem-
ory rank into multiple narrower logical sub-ranks. Each
sub-rank has fewer DRAM devices and narrower data
bus, and they can be accessed concurrently. Data lay-
out needs to be adjusted so that each cache block is
placed into a single sub-rank. Each memory request
only requires a part of memory devices (in the same
sub-rank) to be activated and accessed. Thus sub-rank
technology can effectively reduce memory power by al-
leviating the over-fetch problem and improve MLP. The
downside of it is that the access latency of each memory
request will increase since only part of the total mem-
ory bandwidth can be utilized, if they still adopt fixed
coarse granularity memory access.

Rambus’s module-threading technique[20] divides a
memory channel into multiple thread modules, and
each thread module is selected by a separate chip select
signal and connected with independent narrower data
bus, thus they can be accessed independently. Sup-
porting fine granularity memory access, the module-
threading technique can improve memory throughput
and parallelism and reduce power consumption.

Multicore DIMM (MCDIMM)[21-22] was proposed to
save dynamic power by reducing memory over-fetch. It
achieves this by dividing a memory rank into multi-
ple narrower data-path subsets, and only one subset
needs to be accessed for each memory request rather
than a whole rank. Thus data transfer takes longer
for coarse-grained memory access. A demux register
is placed on each rank, which routes control signals to
the destination rank subset. Since the data bus is split
into multiple independent subsets, it might encounter
data load-unbalance problem if memory accesses are
not evenly distributed among subsets (partial data bus
can be unutilized).

Zheng et al. proposed Mini-Rank[23] to improve
memory power efficiency. A small bridge chip named
MRB (mini-rank buffer) is added in each DRAM DIMM
between DRAM devices and DDRx bus, which breaks
each 64-bit rank into multiple narrower mini-ranks.
The MRB is responsible for producing chip select sig-

nals to the destination mini-rank based on memory
address, and it also needs to relay data transfer be-
tween internal narrower mini-rank data-path and exter-
nal wider DDRx bus. It is worth noting that, the outer
DDRx data bus is not split into multiple mini-ranks,
and data is always transferred through the full 64-bit
DDRx bus, which prevents it from the load-unbalance
problem. Furthermore, Fang et al. proposed hetero-
geneous mini-rank[24] to support near-optimal configu-
ration for each workload based on its memory access
behavior and its memory bandwidth requirement. A
memory type mapping table (MEMTMT) is added into
the memory controller to store type information of
workloads. The memory controller needs to first check
the mini-rank type for each memory request.

Zhang et al. proposed heterogeneous multi-channel
(HMC)[25] to balance the performance and power con-
sumption of the DRAM system. HMC groups physical
DRAM devices into multiple logical sub-ranks with dif-
ferent width of data bus, and these heterogeneous sub-
ranks can be controlled and accessed simultaneously.
They also proposed a novel memory access scheduling
algorithm to improve data bus parallelism and achieve
high DRAM data bus utilization by grouping together
memory requests with the same channel (data width).

Yoon et al. proposed adaptive granularity memory
systems (AGMS)[4] to combine the best of fine-grained
and coarse-grained memory accesses. They adopted
sub-ranked memory systems to implement adaptive
granularity. They augmented the virtual memory in-
terface to allow software to specify the preferred access
granularity for each page, and this information is stored
in a page table entry when the page is allocated. The
access granularity can be determined by spatial loca-
lity: coarse-grained data accesses are used for high spa-
tial locality applications and fine-grained data accesses
are used for low spatial locality applications. They fur-
ther proposed the dynamic granularity memory system
(DGMS)[7] to dynamically adapt memory access granu-
larity without requiring software or OS support. A
two-level hardware prediction control mechanism was
proposed: a local prediction controller in each core and
a global prediction controller at the memory controller.
The access granularity of a memory request is deter-
mined based on its accessing history.

Udipi et al. proposed Selective Bit-Line Activation
(SBA) and Single Subarray Access (SSA)[1] to address
over-fetch problem and thus reduce memory power. In
SBA, each memory access just activates exactly those
bitlines that provide the requested cache line instead
of a whole row data. In SSA, an entire cache line is
accessed in a single subarray by re-organizing the data
layout in SSA. Cooper-Balis and Jacob[26] proposed a



260 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

fine-grained activation approach to reduce memory ac-
tive power, which only activates a smaller portion of a
row within the data array by utilizing posted-CAS com-
mand. Convey-designed Scatter-Gather DIMMs[27] are
designed to support 8 bytes (fine granularity) access
that can reduce the inefficiency in non-unity strides or
randomly memory accesses, however the implementa-
tion detail of SGDIMM is lack. Cray Black Widow[28]

adopts many 32-bit wide channels, allowing it to sup-
port minimum 16-byte memory access granularity.

2.3 Reliability for Fine Granularity Memory

Memory reliability becomes a concern with the rapid
improvement of memory density and capacity. How-
ever, it is not straightforward to provide reliability for
fine granularity memory, which might induce heavy
overhead. For example in multi-core DIMM[21], each
sub rank needs to be protected by chip-kill mechanism
independently, which will result in high storage over-
head (up to 37.5%).

Zheng et al.[23] briefly discussed the design options
to support ECC in the mini-rank architecture. They
suggested two approaches: the first one is to distribute
ECC-bit blocks over all devices as in RAID-5, thus a
mini-rank is no longer composed of a fixed set of de-
vices and each access needs to touch one more device
than the simple mini-rank design. The second one is
called embedded ECC, which proposes to store ECC
bits along with their associated data bits in the same
page, thus it needs to change the memory data layout.
The main difficulty is how to perform address trans-
lation, which can be solved as in the prime memory
system. Furthermore, the checking function (or logic)
can be implemented in the mini-rank buffers to avoid
extra traffic on memory bus.

As shown in [4], directly supporting ECC for fine-
grained memory access with sub-ranked memory is ex-
pensive, since each sub-rank requires at least one ex-
tra DRAM chip for ECC, and the overhead of ECC
for a 8-byte granularity memory access is up to 100%
(8-byte data + 8-byte ECC). To reduce the ECC over-
head, the authors proposed a unified data/ECC lay-
out for both coarse-grained and fine-grained accesses
simultaneously[7]. They spread ECC blocks across
sub-ranks in a uniform, deterministic fashion similar
to RAID-5. To further tolerate a pin failure, they
proposed a chipkill-level protection for DGMS, which
added a 7-bit CRC error detection for each 16B data
block, and extra parity block is stored in an extra
DRAM chip which is used to correct the error.

Udipi et al.[1] proposed an RAID-5 approach to pro-
vide chip-kill protection for the SSA (single subarray
access) DRAM architecture. In SSA design, a cache
line and its associated checksum are placed in a single

subarray within a single DRAM chip, and the checksum
verification is done for each memory access in the mem-
ory controller. An extra DRAM chip is added in the
DIMM, and every eight cache lines have an associated
global parity, and the global parity is evenly distributed
into all the nine DRAM chips in the DIMM.

Enhanced embedded ECC[29] suggests to store data
bits and the associated ECC bits in the same DRAM
device and in the same DRAM row, thus accessing the
associated ECC bits just requires another column ac-
cess. The extra ECC access is always row buffer hit to
reduce the overhead. The authors of [29] also proposed
a novel address-mapping scheme called Biased Chinese
Reminder Mapping (BCRM) to implement page inter-
leaving on E3CC without using expensive integer divi-
sion. To further reduce the ECC traffic, they added
an ECC cache in the memory controller to buffer and
exploit the locality of the ECC bits.

Another efficient approach to providing high mem-
ory reliability meanwhile maintaining low overhead is
to use multi-tiered error protection technique that de-
couples the process of error detection from error correc-
tion. The drawback of it is that it needs one or more
extra memory accesses to get error correction informa-
tion when DRAM error happens. Virtualized ECC[30]

detaches the physical mapping of data from the physi-
cal mapping of its associated ECC information; error
detection information is stored in extra chips of the
ECC DIMM while the full redundant information re-
quired for correction is mapped in data chips. The au-
thors of [30] further suggested to use processor cache for
ECC information to improve ECC access bandwidth.
Li et al.[14] proposed to use a staged Bose Chaudhuri-
Hocquenghem (BCH) code for exascale memory sys-
tems. They divided the complex error recovery pro-
cedure into three ECC logic paths to provide low ECC
latency and high error coverage. Chen et al.[29] also sug-
gested adopting BCH codes to reduce storage overhead
in E3CC. Udipi et al.[31] proposed a localized and multi-
tiered protection scheme named LOT-ECC, which em-
ploys simple checksum and parity codes. They sepa-
rated error detection and error correction functionality.
Data and codes are localized to the same DRAM row
to improve memory access efficiency. Yoon et al.[15]

also proposed FREE-p for non-volatile memory which
adopts multi-tiered BCH code.

2.4 Buffer-Chip Memory

To alleviate memory capacity problem, a common
way is to put an intermediate buffer (logic) between
the memory controller and DRAM devices, which can
reduce the electrical load on the memory controller and
improve signal integrity.



Li-Cheng Chen et al.: Message Interface Based Memory System 261

In registered DIMM (RDIMM)⑦, a simple register is
integrated on DIMM module to buffer control and ad-
dress signals. Load reduced DIMM (LRDIMM)⑧ fur-
ther buffers all signals issued to DRAM devices, includ-
ing all data and strobes. Decoupled DIMM[32] adopts
a synchronization buffer to convert signals between low
speed memory devices and high data rate memory bus.
With a similar idea, BOOM[33] adds a buffer chip be-
tween the fast DDR3 memory bus and wide internal
bus, which enables the use of low-frequency mobile
DRAM devices, thus BOOM could efficiently reduce
memory power.

In fully-buffered DIMM (FBDIMM)⑨ memory mod-
ule, there is an AMB (advanced memory buffer) in-
tegrated on each DIMM module, and multiple FB-
DIMMs are organized as a daisy chain which can sup-
port large capacity. The memory controller commu-
nicates with the AMB through point-to-point narrow,
high-speed channels with some simple packet proto-
col. Intelr Scalable Memory Interconnect (SMI)⑩ and
IBM POWER7TM memory system[34-35] also place logic
buffers between the processor and DRAM channels,
which can also support more memory channels.

Cooper-Balis et al.[9] proposed a generalized buffer-
on-board (BOB) memory system. In BOB, interme-
diate logic is placed (on motherboard) between the
on-chip memory controller and DRAM devices. The
memory controller communicates with the intermediate
buffer through serial link bus. The memory controller is
decoupled from scheduling, and the intermediate buffer
actually acts as a traditional memory controller: it
tracks status of its local memory devices and schedules
memory requests, issues corresponding DRAM com-
mands meanwhile meets the timing constraints. The
BOB memory system is able to alleviate the capacity
and bandwidth problem.

UniMA[36] aims to enable universal interoperability
between processors and memory modules. Each mem-
ory module is equipped with a unified DIMM interface
chip (UDIC). The memory controller sends read/write
requests to UDIC through the unified interface without
taking care of any device status or timing constraints.

Ham et al.[37] proposed disintegrated memory con-
troller to support heterogeneous command protocols in
a modular manner. The memory controller is split into
two parts: master and slave. The master controller is
integrated into the processor chip. It receives memory
requests from the processor and then forwards them to
destination salve memory controllers (based on memory

address). The slave controller receives memory requests
from the master and follows a technology-specific pro-
tocol when scheduling commands to memory devices
meanwhile fulfilling protocol and timing constraints.
The master and slaver controllers communicate over
serial, point-to-point link bus for higher off-chip band-
width with packets (encapsulating memory commands,
addresses, and data).

It is worth noting that all buffer-chip memory sys-
tems listed above adopt the simple design that a mem-
ory request is dedicated to a simple packet without any
semantic information, thus the packet is just a trans-
form of traditional parallel bus transaction. Besides
memory request as payload, the extra packet head and
tail will introduce packet overhead.

2.5 Autonomous Memory

There has been a long time effort to make memory
autonomous by equipping main memory with process-
ing logic to support some local computations in mem-
ory. Processor-in-memory (PIM) systems incorporate
processing units on modified DRAM chips[16,38]. PIMs
exploit the high memory bandwidth and low latency
available inside the DRAM package. Smart memory[19]

makes memory system smart by keeping computation
and lock management close to data in-memory, which
can reduce chip I/O bandwidth, reduce latency, and
achieve high performance. Fang et al.[17-18] proposed
an intelligent memory controller that can execute ac-
tive memory operations (AMOs) in memory module.
They added a new hardware component called active
memory unit (AMU) into each memory controller, so
that operations (which are issued by processors) can be
executed where the data reside. AMUs support both
scalar operations that operate atomically on individual
words of data and stream operations that operate on
sets of words separated by a fixed stride length. AMOs
can eliminate cache misses, reduce cache pollution, and
reduce network traffic.

2.6 Aggressive Memory System

Non-volatile memory (such as PCM)[10,39-41] has
been considered as a potential replacement for DRAM
chip in the future. NVM device can eliminate static
power consumption and promise to provide higher ca-
pacity. Recent results show that some NVM has compa-
rable latency to the DRAM. However, NVM chip usua-
lly has different timing constraints so that it cannot be

⑦http://download.micron.com/pdf/datasheets/modules/ddr3/JSZF36C512x72PD.pdf, Dec. 2013.
⑧http://www.micron.com/∼/media/Documents/Products/Data%20Sheet/Modules/LRDIMM/kszf36c1g 2gx72ldz.pdf, Dec. 2013.
⑨http://download.micron.com/pdf/datasheets/modules/ddr2/HTF9C32 64 128x72F.pdf, Dec. 2013.
⑩http://www.intel.la/content/dam/doc/datasheet/7500-7510-7512-scalable-memory-buffer-datasheet.pdf, Dec. 2013.



262 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

incorporated into the synchronous DDRx memory in-
terface directly.

On-chip optical interconnection is expected to pro-
vide high bandwidth for memory system. Udipi et al.[11]

proposed a novel memory architecture that adopts pho-
tonics interconnects among memory controller and 3D
memory stacked dies. They also proposed a novel
packet based interface to relinquish the memory con-
troller and make memory modules more autonomous.
Each packet only contains a single memory request, and
memory requests need to be processed in FCFS (First-
Come, First-Served) order.

Hybrid Memory Cube (HMC) 11O utilizes 3D inter-
connect technology. A small logic layer is placed be-
low vertical stacks of DRAM dies, and the logic layer
and 3D DRAM dies are connected with through-silicon
via (TSV) bonds. The logic layer is responsible for
controlling and scheduling memory requests. The mem-
ory controller communicates with the HMC logic layer
through abstracted high-speed interface. The logic
layer is flexible to allow HMC cubes to be designed
for multiple platforms and applications without chang-
ing the high-volume DRAM. All in-band communi-
cation across link is packetized in HMC, and each
packet is dedicated to a single operation. Further-
more, HMC supports variable memory access granu-
larity (16 B∼128B).

3 Message Interface Based Memory System

3.1 Why Message-Based Interface

The current synchronous bus-based memory inter-
face can be dated back to the 1970s when the first
DRAM chip in the world was produced. After 40 years
the main characteristics remains unchanged: separate
data, address and control signals; fixed transfer size and
memory access timing (latency); CPU being aware and
taking care of every bit of storage on memory devices;
limited on-going operations on the interface.

One may argue that a simple and raw interface for
DRAM keeps the minimum latency for memory access,
but it also brings obstacles to improve memory perfor-
mance as described in Section 1. Nowadays with more
and more parallelism in multi-core/many-core systems,
single memory access latency is not the main issue for
overall performance any more. Is it the right time to
change this decades-old interface?

Decoupling is the common trend of a lot of previous
work mentioned in Section 2. That is to separate the
data transfer with data organization. The CPU should
only take care of sending requests and receiving re-
sponses while the buffer scheduler takes charge of local

DRAM chip organization and scheduling. A packet-
based interface will enable this separation by encapsu-
lating data, address and control signals in packets. But
if we just stop here, then packet is only a low-level en-
capsulation for bus transaction.

We can go a further step from packet to message.
Here message means that the content of a packet is not
predefined or fixed but programmable. Message also
means the CPU can put more semantic information on
a packet in addition to read/write operations. Then
the buffer controller can make use of this information
to achieve better performance. The information maybe
request granularity, sequence, priority, process ID, or
even array, link pointer and locks. It is like that the
buffer controller is integrated with the processor virtu-
ally to get all necessary semantic information for mem-
ory scheduling optimization.

A message-based interface will provide many oppor-
tunities to help solve memory system issues.

For the latency problem, though a message inter-
face might increase the latency of a single memory re-
quest, it helps improve parallelism and perform better
prefetching and scheduling with the help of semantic
information. This can effectively reduce queuing delay
and thus decrease the overall memory access latency.

For the bandwidth problem, the message interface
will support better memory parallelism to fully utilize
the bandwidth; the packet interface enables new inter-
connection technologies. Message also enables effective
address compression.

For the efficiency problem, exact data granularity
information will help reduce the waste of data over-
fetching; message also enables accurate prefetching to
reduce unnecessary operations.

For the capacity problem, decoupling enables spe-
cial design for large capacity memory systems; message
even enables a network of extended memory systems.

For the power problem, message enables fine-grained
control of active DRAM regions. Decoupling also en-
ables low power NVM to be included in the memory
system transparently.

For the reliability problem, decoupling enables inde-
pendent design of memory organization and error cor-
rection pattern. There is no need to predefine memory
region as data and ECC. With semantic information,
different memory locations might have different protec-
tion levels at different time periods.

For autonomous operations, message provides a nat-
ural support with semantic information and command
extension.

To demonstrate the benefits of message interface, a
draft architecture design is given in the following sub-

11OHybrid memory cube specification 1.0. http://www.hybridmemorycube.org/files/HMC Specification%201 0.pdf, Dec. 2013.



Li-Cheng Chen et al.: Message Interface Based Memory System 263

section. It should be noted that the design is ele-
mentary and incomplete to cover all the advantages of
message-based interface.

3.2 MIMS Architecture

Fig.1 shows the architecture of the Message Inter-
face Based Memory System (MIMS). As in the buffer-
on-board (BOB) memory system[9], the memory con-
troller which is integrated into the processor does not
directly communicate with memory devices (DRAM).
Instead, it communicates with the buffer scheduler over
serialized point-to-point link bus which is narrower and
can work at a much higher frequency. Each memory
controller can support multiple buffer schedulers, and
each buffer scheduler can support multiple local mem-
ory modules. The buffer scheduler consists of memory
request buffer, packet generator, packet decoder, return
buffer and link bus, etc.

The memory controller receives variable-granularity
memory requests from multiple processor cores. The
memory controller firstly selects the destination buffer
scheduler based on the address mapping scheme, then
the memory request is placed into on-chip network
(NOC). The NOC routes each memory request to its
destination request buffer over link bus. For each buffer
scheduler, the request buffer is divided into read queue
and write queue, which is used to buffer read and write
requests respectively. By default, read requests have
higher priority when scheduling requests to encapsu-
late into packets. If the number of write requests in the
write queue exceeds the high water mark[42-43], then
write requests get higher priority. Write requests will
contiguously be selected to be packed and sent to the
destination buffer scheduler until the number of write
requests returns below the low water mark.

The packet generator is responsible for selecting mul-
tiple memory requests to encapsulate into a packet.
It needs to construct packet head, which contains the
meta data of a packet. Then the packet is sent to
the SerDes (serialize-deserialize) buffer. Note that, the

packing operation is not in the critical path, because
the packet generator keeps tracking the status of the
serialized link bus, and it can start the packing process
in advance before the link bus becomes available (free).
After the packet has been constructed and the link bus
becomes available, the packet will be sent to the desti-
nation buffer scheduler over link bus.

On receiving a message packet from the on-chip
memory controller, the packet decoder within the buffer
scheduler will unpack the packet and retrieve all mem-
ory requests from the packet. Then these memory re-
quests are sent to the scheduler. The scheduler acts as
a traditional memory controller: it communicates with
the DRAM memory module through relatively slow
parallel bus with the synchronous DDRx protocol as in
the traditional memory system. The scheduler needs to
track all the memory module states (e.g., bank state,
bus state) attached to it, and it also needs to sched-
ule memory requests, generate DRAM commands (e.g.,
ACTIVE, PRECHARGE, READ, WRITE) based on
the memory states, and issue DRAM commands to the
memory modules meanwhile fulfilling the timing con-
straints.

We adopt sub-rank memory system to support
variable-granularity memory access, which is also used
in DGMS[7]. We adopt x8 DRAM devices, and each
traditional 64-bit rank is separated into 8 sub-ranks,
with one DRAM device per sub-rank, thus the width of
a sub-rank is 8-bit. The data burst length (BL) is 8 as
in DDR3, and the minimum granularity of a memory
request is 8-byte.

3.2.1 Packet Format

The message packet is the essential and critical com-
ponent in MIMS, and a packet should be designed to
easily scale to support various memory optimizations.
Each packet can support to encapsulate multiple mem-
ory requests. Furthermore, each packet needs to con-
tain some link overhead (LKOH) which is generated and
processed at lower layer such as link layer and physical

Fig.1. Message interface based memory system architecture.



264 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

layer. The LKOH is necessary for serial bus commu-
nication protocol, which usually contains reliability-
related data such as start signal, end signal, sequence
ID, and checksum codes (CRC).

The overhead of LKOH is high if each packet only
contains a small amount of data (payload). Especially
for a read request, which only contains address and ope-
ration, the overhead of LKOH would be up to 50% for
a size of 8B LKOH (as in the PCIe protocol). Thus
encapsulating multiple memory requests into a packet
will increase the size of payload to reduce the link and
packet overhead.

To encapsulate multiple memory requests in a
packet, we propose a variable-length packet format for
MIMS. The packet has three basic types: read packet,
write packet, and read-return packet, which can con-
tain multiple read memory requests, write requests and
return data, respectively. Since a packet may contain
variable number of requests, it needs a packet head
(PKHD) which contains meta data of the packet. The
detailed format of a read packet is shown in Fig.2. We
can see that a read packet has a packet head and multi-
ple request messages (RTMSGs), and it also contains an
LKOH. The packet head contains the destination buffer
scheduler identifier (DESID), packet type (PT, such as
read), the count (CNT) of requests and some other re-
served (RSV) fields. Note that all the requests in a
packet are sent to the same destination buffer scheduler.
After the packet head, multiple request messages are
closely aligned. Each request message (RTMSG) repre-
sents a memory request with some additional semantic
information. It basically contains address (ADDR) and
granularity (GY) for each memory request, and can eas-
ily scale to contain more semantic information such as
request timeout (TO), thread ID (TID). The timeout
represents the longest acceptable latency (queue delay)
that it can tolerate, which is valuable to implement
QoS (quality of service) for memory requests. Other
messages that are valuable for scheduling can also be
integrated in RTMSG. All the RTMSGs in a packet are
in the same format and with same length, thus encoding
and decoding read packets can be direct and effective
with neglected overhead.

Fig.2. Read packet format.

For a write packet, as shown in Fig.3, the format
is nearly the same as a read packet. It also contains
an LKOH, a packet head and multiple write requests,

where the packet head is the same as in a read packet,
except that the packet type (PT) is write packet. Be-
sides an RTMSG, each write request also contains write
data (WTDA). The RTMSG is the same with that in
a read request. Write data might be variable-length,
and the length is determined by the granularity (in
RTMSG) of a request. For example, the length of data
is 8-byte for a fine granularity write, and it is 64-byte
for a coarse granularity write.

Fig.3. Write packet format.

The read-return packet has the same format with
write packet. The request address needs to be returned
since memory requests are scheduled in an out-of-order
manner both in the on-chip memory controller (packet
encoding) and in the buffer scheduler (request schedul-
ing). In order to reduce the overhead of returning ad-
dress, each read request can be assigned a request ID,
which is much smaller (e.g., 10-bit for 1 024 requests).

3.2.2 Packet Decoding

Once the buffer scheduler receives a packet, the
packet decoder firstly reads the packet head and gets
the meta data of the packet, such as DESID (destina-
tion buffer scheduler ID), packet type, memory requests
count and other reserved data. The DESID is used to
check whether the packet is routed correctly. The type
of the packet and the count of memory requests are
checked. Then the packet can be decoded based on the
packet type.

Read Packet. Since each read request message has
fixed-length fields, including address, granularity, etc.,
it can be processed in parallel easily. Fig.4 shows the
process of parallel decoding for a read packet. In this
example, 4 RTMSGs are decoded in parallel. Since the
format for each RTMSG is the same, they can be de-
coded with a single mask, and the address, granularity
and other messages of each read request can be extra-

Fig.4. Parallel decoding for a read packet. Each batch (e.g., 4)

of RTMSGs is decoded in parallel with MASK operator.



Li-Cheng Chen et al.: Message Interface Based Memory System 265

cted. After that, the next batch RTMSGs are ready to
be decoded.

Write Packet. Each write request has the request
message along with variable length of write-data, where
the length can be determined by the granularity of the
memory request. For example, if the granularity is 4,
then the length of data is 32-byte (8-byte ×4). The
decoder has to process the requests in serial due to the
variable size limitation: it extracts address, granularity
and other messages of the first write request, after then
it can calculate the length of write-data based on the
granularity. Then it can retrieve the write data based
on the length and advance to the next write request
until all the write requests are retrieved.

3.3 Challenge of Designing a Message Interface
Based Memory System

Besides valuable optimization benefit, message-
based interface for memory system will introduce some
challenges to all system levels that are concerned with
memory. Many challenges remain to be solved. The
following is an incomplete list.

1) Complexity. Message packet processing is more
complex than processing a simple packet. Both the
memory controller and the buffer scheduler need more
complex logic to accomplish the task, e.g., longer queue
management and complex consistence checking. Al-
though logic is becoming cheaper, it still needs to in-
vestigate whether the cost, power consumption, and in-
creased processing latency can be controlled within an
acceptable level.

2) ISA Extension. To fully utilize the flexibility of
messages, the processor needs to provide more semantic
information along with read/write requests. This needs
to bring some extensions to the ISA. For example, how
to provide the size information for variable granularity
memory requests; how to deliver process information
such as thread ID, priority, timeout, and prefetch; how
to generate active memory operation requests to the
memory controller and the buffer scheduler.

3) Cache Support. To better support variable
granularity memory accesses, the cache that supports
variable-sized cache block is preferred though with dif-
ficulty. Sector cache for fine granularity and SPM
(scratchpad memory) for large granularity can also be
adopted with a redesign.

4) Programming. The semantic information may
also be discovered and generated by user-level software
and sent via message. Applications can be implemented

with some hint API, or with the help of an aggressive
compiler to generate MIMS special instructions auto-
matically.

4 Experimental Setup

4.1 Simulator and Workloads

To evaluate the performance of MIMS, we have
implemented a cycle-detailed MIMS simulator called
MIMSim. We adopt DRAM modules (devices) based
on DRAMSim2[44], which is a cycle accurate DDR2/3
memory system simulator. DRAMSim2 models all
aspects of the memory controller and DRAM de-
vices, including transaction queue, command queue,
and read-return queue, address mapping scheme, DDR
data/address/command bus contention, DRAM device
power and timing, and row buffer management. The
DRAM module is modified to support sub-rank and
fine granularity memory access. We add re-order buffer
(ROB) above the memory controller to make simu-
lation more accurate. Channel interleaving address
mapping is adopted as the default (baseline) configu-
ration to maximum MLP (memory level parallelism).
We adopt the FR-FCFS (First-Ready, First-Come,
First-Served)[45] scheduling policy with closed-page row
buffer management.

Pin[46] is used to collect memory access traces from
various workloads running with 2∼16 threads. We
choose several multi-thread memory intensive applica-
tions including BFS in Graph500 12O, Canneal bench-
mark in PARSEC[47], Listrank[48], Pagerank bench-
mark in GraphLab 13O, SSCA2[49], GUPS 14O. Table 2 lists
the main characteristics of these workloads. We classify
the workloads into two categories based on the mem-
ory access granularity: fine granularity (FINE: 0∼3),
and middle granularity (MID: 3∼6). We do not inves-
tigate applications with coarse granularity since they
can be treated efficiently already. Memory read and
write requests are reported separately, including the
read memory requests per kilo instruction (RPKI), the
average read granularity (RG), the write memory re-
quests per kilo instruction (WPKI), the average write
granularity (WG), and the read/write ratio (RD/WT).
The reason to separate the read and write characteris-
tics is that we find the granularity distribution of read
and write might be different for some FINE and MID
workloads. Fig.5 shows the granularity distribution of
these workloads. For example, in the Canneal work-
load, the rate of 1-granularity are about 72.85% for read
requests, but it is about 97.59% for write requests. And

12Ohttp://www.graph500.org/, Dec. 2013.
13OGraphLab: Distributed graph-parallel API. http://docs.graphlab.org/index.html, Dec. 2013.
14OThe RandomAccess benchmark: GUPS (giga updates per second). http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/,

Dec. 2013.



266 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

in the Listrank workload, the rate of 2-granularity and
4-granularity is about 52.99% and 31.54% respectively
for read requests, but they are about 76.51% and 0.90%
respectively for write requests.

Table 2. Workloads Characteristics

Category Benchmark RPKI RG WPKI WG RD/WT

FINE GUPS 69.67 1.78 69.62 1.78 1.00

FINE SSCA2 20.89 1.68 20.42 1.56 1.02

FINE Canneal 17.79 1.64 8.64 1.10 2.06

FINE Pagerank 9.76 2.42 6.14 2.74 1.59

MID Listrank 22.56 3.56 15.45 3.37 1.46

MID BFS 22.36 3.10 2.44 3.49 9.16

Fig.5. Read and write granularity distribution of FINE and MID

memory-intensive workloads.

To collect exact granularity information for each off-
chip memory request, we implement a 3-level cache sim-
ulator as a Pin-tool. The detailed configuration is listed
in Table 3. We start the cache simulator after each

Table 3. System Configurations

System Parameters

Reorder buffer 2.7GHz, 256-entry, maximum
fetch/retire per cycle: 4/2, 5-pipeline

L1 cache Private, 32KB, 4-way, 64B cache block,
4 CPU cycles hit

L2 cache Private, 256KB, 8-way, 64B cache block,
10 CPU cycles hit

L3 cache Shared, 16-way, 64B cache line,
1MB/core, 40 CPU cycles hit

Memory controller 2 buffer schedulers/MC, read/write
queue: 64/64

Link bus 2.7GHz, point-to-point, read/write bus
width: 16/16

Buffer scheduler FRFCFS[45], closed page, channel-
interleave mapping

DRAM Parameters

Memory 2 64-bit channels, 2 ranks/channel, 8 de-
vices/rank, 8 sub-ranks/rank,

x8-width sub-rank, 1 device/sub-rank

DRAM device DDR3-1333MHz, x8, 8 banks, 32 768
rows/bank, 1 024 columns/row, BL=8,

8 KB row buffer, time and power para-
meters from Micron 2Gb SDRAM 15O

workload enters into a representative region. After
warm-up the cache simulator with 100 million memory
requests, we collect memory traces with granularity and
cache access type messages. For PARSEC benchmarks,
we naturally choose the ROI (Region-of-Interest); for
other benchmarks, we manually skip the initialization
phase (such as graph-generation in BFS) and collect
memory traces after meaningful work.

To make simulation more accurate with ROB, we
separate instructions into two types: non-memory in-
structions and memory access instructions. And we
collect the number of non-memory instructions between
two adjacent memory access traces. Each non-memory
instruction is considered to have a fixed latency when
it is added in the ROB, and each memory access might
have variable latency which depends on whether it is
hit on any level of cache or it needs to access DRAM
module.

4.2 System Configurations

Table 3 lists the main parameter settings used in
the cycle-detailed simulator. Note, the non-memory
instruction latency and cache hit latencies listed here
are used as the latency of an instruction needs to wait
in the ROB (in MIMSim) before it can be committed.
For example, an L2 cache hit memory access instruction
can be committable only after 15 CPU cycles (10 + 5)
when it is added in the ROB. The baseline memory
system has two DDR3-1333MHZ channels with dual
ranks in each channel. Each rank has 8 DRAM devices
and each DRAM chip has 8 banks. We bypass the first
64 million memory traces for each core (thread), and
simulate until all the threads have executed at least
100 million instructions.

To evaluate MIMS, we use the following memory
system configuration:
• DDR: traditional DDRx (3) memory system with

fixed coarse access granularity (cache line: 64 B), which
is served as the baseline.
• BOB: buffer-on-board memory system, fixed

coarse access granularity, 1 memory request
(read/write) per packet, and simple packet format with-
out any semantic information.
• MIMS 1 (MI 1): message interface based memory

system, adopts sub-rank memory organization to sup-
port variable-granularity access, 1 request per packet,
and contains granularity message in packet.
• MIMS mul (MI mul): message interface based

memory system, supports variable-granularity access,
and encapsulates multiple requests in a packet to reduce
packet overhead.

15ODDR3 SDRAM. http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb DDR3 SDRAM.pdf, Dec. 2013.



Li-Cheng Chen et al.: Message Interface Based Memory System 267

4.3 DRAM and Controller Power

We evaluate memory power consumption with
DRAMsim2[44] power calculator, which uses the power
model developed by Micron Corporation based on the
transitions of each bank. The DRAM power is di-
vided into 4 components: background, refresh, activa-
tion/precharge, and burst, where background and re-
fresh power are often concluded as static power, ac-
tivation/precharge and burst power are concluded as
dynamic power. Besides DRAM devices, we also take
the memory controller power into account, since it
can contribute a significant amount to overall power
consumption[13] (about 20%). In BOB and MIMS, the
controller power is actually referred to simpler con-
troller and buffer scheduler power respectively. For
DDR, we adopt the controller power to 8.5W; for BOB
and MIMS, we adopt the intermediate controller power
to 14W as in [9]. The controller idle power is set to
50% of its peak power.

5 Experimental Results

In this section, we will present the evaluation of
performance and power impacts of MIMS. We present
simulation results of a 16-core system on FINE and
MID granularity workloads. All the workloads are
in multiple-thread mode, with each core running one
thread. We use the total number of submitted instruc-
tions as the metric of performance.

Performance. Fig.6 shows the normalized perfor-
mance speedup and effective bandwidth utilization of
different memory systems, where the baseline is DDR.
For these FINE or MID workloads, such as BFS, Can-
neal, GUPS, fine granularity memory access will ben-
efit. The BOB performance degrades from 49.38%
to 78.38%. This is because that BOB still uses
coarse granularity access, and the intermediate con-
troller would introduce packet overhead and extra pro-
cessing latency. On the other side, MI 1 and MI mul
can improve the performance because they support
variable-granularity. The normalized speedup of MI 1

ranges from 1.11 to 1.53, and it ranges from 1.29 to
2.08 for MI mul. This indicates that integrating mul-
tiple requests in a packet can reduce packet overheard,
thus improve memory performance. The effective band-
width utilizations nearly have the same trend with the
speedups in different memory systems. For DDR, they
range from 15.58% to 31.55%; for BOB, the effective
bandwidth utilization is decreased, since each memory
request would introduce a packet overhead, along with
the wasting bandwidth for transferring useless data in
a cache block. MI 1 can eliminate wasting data but
still suffer significant packet overhead for FINE granu-
larity memory accesses. MI mul can achieve the best
efficiency bandwidth utilization, ranging from 21.15%
to 44.49%.

Power. Fig.7 shows the memory power breakdown
and the normalized EDP in different memory systems.
The DRAM memory power can be divided into back-
ground, refresh, activation/precharge (Act/Pre), and
read/write (Burst). The background power is due to
the peripheral circuitry, and it is independent of mem-
ory access. The refresh power is due to DRAM cell
leakage and refresh operations to maintain data in-
tegrity. The activation/precharge power is due to the
memory accesses to different row buffers within DRAM
chips. The read/write power is due to the column ac-
cesses to opened row buffers. Here we also consider
the power of controller, which is due to performing
memory schedule in the memory controller for DDR,
and the added buffer scheduler for other memory sys-
tems (BOB, MIMS). The average total power for DDR
is about 23.38 W, and BOB has a little more power
(26.36W), since the intermediate simple controller con-
sumes more power than the on-chip memory controller.
The DRAM power of them is nearly the same. MI 1 and
MI mul can effectively reduce the activation/precharge
(Act/Pre) power because each (fine granularity) mem-
ory request only activates/precharges a sub-rank (one
DRAM device in our work) with smaller row, and re-
duce the burst power because it only reads/writes the
really useful part of data instead of a cache block (such

Fig.6. Normalized speedup and effective bandwidth utilization of different memory systems in 16-core configuration. The baseline is

DDR. GMEAN: geometric mean.



268 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

Fig.7. Memory power breakdown and the normalized EDP (the lower, the better) in 16-core configuration. GMEAN: geometric mean.

as 8 B data in 64 B cache block). Thus the power of
MI 1 and MI mul reduced to 16.90W and 17.13W re-
spectively. The normalized EDP (Energy Delay Prod-
uct) of BOB reduces about 1.78. This is mainly be-
cause the introduced packet-processing latency. MI 1
and MI mul can improve EDP by about 0.53 and 0.44
respectively. This is because sub-rank can improve
memory parallelism and thus efficiently reduce queu-
ing delay.

Memory Latency. In DDR memory system, the
memory latency is categorized into two major cate-
gories: queuing latency (or delay) and DRAM core ac-
cess latency. The queuing latency represents the la-
tency of a memory request waiting to be scheduled in
the transaction queue (in memory controller), which
has been proved to be the main component of memory
latency in multi-core system[1]. The DRAM core ac-
cess latency represents the latency of executing DDR
commands of a memory request in DRAM devices.
In MIMS, there is an additional scheduling latency,
which represents the extra processing latency induced
by the buffer scheduler. It includes the SerDes latency,
scheduling latency, and packet encoding/decoding la-
tency. The queuing latency occur both in memory con-
troller (waiting to be packed) and in buffer scheduler
(waiting to be issued to DRAM devices) in MIMS.

Fig.8 shows the memory latency breakdown in 16-
core configuration. We can see that for these mem-
ory intensive workloads, the queuing latency dominates
the overall memory latency, especially for GUPS and
SSCA2 workload, which can achieve up to 1 185.67 ns
and 933.0 ns respectively in DDR memory system,
meanwhile the DRAM core access latency is only
22.22 ns. The reason for it is that these two workloads
suffer high MPKI as shown in Table 2 and the tra-
ditional DDR memory system fails to serve them due
to its limited memory level parallelism. However, the
queuing latency can be reduced significantly in MIMS.
For instance, it reduces to 234.81 ns for GUPS and

147.41 ns for SSCA2. This is because MIMS adopts sub-
rank and it can provide more MLP since each narrow
sub-rank can be accessed in parallel. Even though the
intermediate buffer scheduler will induce extra schedul-
ing latency, the overall memory latency is reduced for
all workloads.

Fig.8. Memory latency breakdown in 16-core configuration.

Latency Effect. The buffer scheduler will introduce
extra packet processing latency to memory requests,
since the memory controller needs firstly to send re-
quests to the buffer scheduler in packets. The extra
latency includes: packing multiple requests in the mem-
ory controller, SerDes transition, packet transferring
over serial link bus, and packet decoding. Due to dif-
ferent implementations and technics, the introduced la-
tency of buffer scheduler might have a range of possi-
bilities. In this subsection, we vary the latency from
0 (perfect) to 200 CPU cycles with a step of 40 CPU
cycles to study how the introduced latency would affect
the overall memory system performance. Fig.9 shows
the results.

We can see that the latency of the buffer scheduler
has a significant impact on the MIMS performance, and
the impact is different for different workloads. SSCA2
has the largest slowdown at a rate about 1.14 on pro-
cessing latency of every 40 more CPU cycles, and the
normalized speedup (based on DDR) reduces from 2.12
(with no extra cycle) to 1.09 (with 200 more cycles).



Li-Cheng Chen et al.: Message Interface Based Memory System 269

Fig.9. Normalized speedup of MIMS as the introduced packet-processing latency varies from 0 to 200 CPU cycles. GMEAN: geometric

mean.

Fig.10. Normalized speedup varied as the number of threads increasing from 2 to 16.

For Pagerank, the performance even reduces to 0.89,
which is worse than the baseline DDR. All workloads
still have good speedup with 100-cycle delay, which
means that with subtle design for the buffer scheduler
to reduce its processing latency, MIMS can improve the
overall system performance.

Fig.10 evaluates this problem with another view. As
we varying the number of threads from 2 to 16, the
speedup of MIMS over DDR3 will increase significantly.
It means that the more parallelism in the workloads, the
better acceleration will be achieved. This implies that
providing more parallelism might hide the extra latency
effectively.

In MIMS, we adopt the adaptive packet format,
which can provide more opportunities for further op-
timizations. In the following subsections, we will intro-
duce two optimizations on packets as shown in our pre-
vious work[50]: address compression for multiple mem-
ory requests in a packet, and merging multiple contin-
uous small-size memory requests into a large-size mem-
ory request (which can further reduce packet overhead).

Address Compression. Table 4 shows the result of
address compression for multiple memory requests in a
packet. We use a base address table to save a series
of base addresses and transmit the new updated base
address in packet to synchronize the base address table.
Although the base address table needs some extra stor-
age, this strategy brings the best effect of reducing the
bits for transmission. The compress ratio column shows
such effect. The ADDR fields in a packet are shorten
from 44.2% to 69.4% as before. Shorter ADDR length

is reflected in the bus utilization reduction. From this
table, we also find that address compression has bet-
ter results on workloads that have mainly fine-grained
memory access, which infers the proportion of addresses
is large in packet.

Table 4. Compress Ratio and Memory Bus Utilization

Reduction of Address Compression in MIMS

Workload Compress Bus Utilization

Ratio Reduction (%)

Streamcluster 1.61 7.93

STREAM 2.26 3.71

PerM 2.01 4.36

ScaleParC 2.26 12.25

SPECCPU/437 1.44 4.93

SPECCPU/458 2.14 7.46

Continuous Memory Requests Combining. We adopt
good memory locality with coarse granularity bench-
marks to evaluate the performance improvement, in-
cluding STREAM benchmark, BT, FT, UA, SP, and
MG benchmarks from the NAS Parallel Benchmarks
(NPB), the perM benchmark, and the Streamcluster
benchmark from PARSEC. Fig.11 shows the result of
memory access granularity and performance improve-
ment after combining multiple small-size continuous re-
quests into a large-size request. We can find that some
workloads have really good memory access locality (or
continuity) so that a large number of large-granularity
memory requests are successfully generated after com-
bining the continuous memory requests. The contention



270 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

on the memory bus is reduced by this combination and
the row buffer utilization is improved. Thus the overall
performance of the memory system can be improved.
In Fig.11, we can see that the average performance im-
provement is about 17.0%, while the maximal improve-
ment is about 24.9% for FT workload.

Fig.11. Memory access granularity and performance improve-

ment after combining continuous memory requests.

6 Conclusions and Future Work

In this paper, a message interface based memory sys-
tem (MIMS) was proposed. By decoupling memory ac-
cess with memory organization and associating seman-
tic information with memory request, MIMS provides
new opportunities to solve many existing memory prob-
lems. Experimental results show that MIMS is able to
improve parallelism and bandwidth utilization for fine
granularity applications and reduce power consumption
at the same time. It was also showed that although
MIMS would introduce extra access latency for indi-
vidual operation, the increased parallelism could reduce
the queuing latency and result in a overall latency im-
provement.

Using message interface instead of traditional bus
might open a new road for memory system innovations.
In the future we will extend MIMS to support more
operations and investigate on various implementation
issues.

References

[1] Udipi A N, Muralimanohar N, Chatterjee N et al. Rethink-
ing DRAM design and organization for energy-constrained
multi-cores. In Proc. the 37th Annual Int. Symposium on
Computer Architecture, Jun. 2010, pp.175-186.

[2] Wulf W A, McKee S A. Hitting the memory wall: Impli-
cations of the obvious. SIGARCH Computer Architecture
News, 1995, 23(1): 20-24.

[3] Rogers B M, Krishna A, Bell G B et al. Scaling the bandwidth
wall: Challenges in and avenues for CMP scaling. In Proc.
the 36th Annual Int. Symposium on Computer Architecture,
Jun. 2009, pp.371-382.

[4] Yoon D H, Jeong M K, Erez M. Adaptive granularity memory
systems: A tradeoff between storage efficiency and through-

put. In Proc. the 38th Annual Int. Symposium on Computer
Architecture, Jun. 2011, pp.295-306.

[5] Ferdman M, Adileh A, Kocberber O et al. Clearing the
clouds: A study of emerging scale-out workloads on mod-
ern hardware. In Proc. the 17th Int. Conf. Architectural
Support for Programming Languages and Operating Systems,
Mar. 2012, pp.37-48.

[6] Lotfi-Kamran P, Grot B, Ferdman M et al. Scale-out pro-
cessors. In Proc. the 39th Int. Symposium on Computer
Architecture, Jun. 2012, pp.500-511.

[7] Yoon D H, Jeong M K, Sullivan M et al. The dynamic granu-
larity memory system. In Proc. the 39th Int. Symposium on
Computer Architecture, Jun. 2012, pp.548-559.

[8] Fredriksson H, Svensson C. Improvement potential and equal-
ization example for multidrop DRAM memory buses. IEEE
Transactions on Advanced Packaging, 2009, 32(3): 675-682.

[9] Cooper-Balis E, Rosenfeld P, Jacob B. Buffer-on-board mem-
ory systems. In Proc. the 39th Int. Symposium on Computer
Architecture, Jun. 2012, pp.392-403.

[10] Lee B C, Ipek E, Mutlu O et al. Architecting phase change
memory as a scalable dram alternative. In Proc. the 36th An-
nual Int. Symposium on Computer Architecture, Jun. 2009,
pp.2-13.

[11] Udipi A N, Muralimanohar N, Balsubramonian R et al. Com-
bining memory and a controller with photonics through 3D-
stacking to enable scalable and energy-efficient systems. In
Proc. the 38th Annual Int. Symposium on Computer Archi-
tecture, Jun. 2011, pp.425-436.

[12] Barroso L A, Höelzle U. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines (1st
edition). Morgan and Claypool Publishers, 2009.

[13] Deng Q Y, Meisner D, Ramos L et al. Memscale: Active low-
power modes for main memory. In Proc. the 16th Int. Conf.
Architectural Support for Programming Languages and Oper-
ating Systems, Mar. 2011, pp.225-238.

[14] Li S, Chen K, Hsieh M Y et al. System implications of mem-
ory reliability in exascale computing. In Proc. the 2011 Int.
Conf. for High Performance Computing, Networking, Stor-
age and Analysis, Nov. 2011, Article No.46.

[15] Yoon D H, Muralimanohar N, Chang J C et al. FREE-p:
Protecting non-volatile memory against both hard and soft
errors. In Proc. the 17th IEEE Int. Symposium on High
Performance Computer Architecture, Feb. 2011, pp.466-477.

[16] Draper J, Chame J, Hall M et al. The architecture of the
DIVA processing-in-memory chip. In Proc. the 16th Int.
Conf. Supercomputing, Jun. 2002, pp.14-25.

[17] Fang Z, Zhang L X, Carter J B et al. Active memory opera-
tions. In Proc. the 21st Annual Int. Conf. Supercomputing,
Jun. 2007, pp.232-241.

[18] Fang Z, Zhang L X, Carter J B et al. Active memory con-
troller. J. Supercomput., 2012, 62(1): 510-549.

[19] Lynch B, Kumar S. Smart memory. In Hot Chips: A Sym-
posium on High Performance Chips, Aug. 2010. http://
www.hotchips.org/wp-content/uploads/hc archives/hc22/H-
C22.23.325-1-Kumar-Smart-Memory.pdf, Feb. 2014.

[20] Ware F A, Hampel C. Improving power and data efficiency
with threaded memory modules. In Proc. the 24th Int. Conf.
Computer Design, Oct. 2006, pp.417-424.

[21] Ahn J H, Leverich J, Schreiber R S et al. Multicore DIMM:
An energy efficient memory module with independently con-
trolled DRAMs. Computer Architecture Letters, 2009, 8(1):
5-8.

[22] Ahn J H, Jouppi N P, Kozyrakis C et al. Future scaling of
processor-memory interfaces. In Proc. the Conf. High Per-
formance Computing Networking, Storage and Analysis, Nov.
2009, Article No.42.



Li-Cheng Chen et al.: Message Interface Based Memory System 271

[23] Zheng H Z, Lin J, Zhang Z et al. Mini-rank: Adaptive DRAM
architecture for improving memory power efficiency. In Proc.
the 41st Annual IEEE/ACM Int. Symposium on Microarchi-
tecture, Nov. 2008, pp.210-221.

[24] Fang K, Zheng H Z, Zhu Z C. Heterogeneous mini-rank:
Adaptive, power-efficient memory architecture. In Proc. the
39th Int. Conf. Parallel Processing, Sept. 2010, pp.21-29.

[25] Zhang G F, Wang H D, Chen X K et al. Heterogeneous
multi-channel: Fine-grained DRAM control for both sys-
tem performance and power efficiency. In Proc. the 49th
ACM/EDAC/IEEE Design Automation Conference (DAC),
Jun. 2012, pp.876-881.

[26] Cooper-Balis E, Jacob B. Fine-grained activation for power
reduction in DRAM. IEEE Micro, 2010, 30(3): 34-47.

[27] Brewer T M. Instruction set innovations for the convey HC-1
computer. IEEE Micro, 2010, 30(2): 70-79.

[28] Abts D, Bataineh A, Scott S et al. The cray blackwidow:
A highly scalable vector multiprocessor. In Proc. the 2007
ACM/IEEE Conf. Supercomputing, Nov. 2007, Article
No.17.

[29] Chen L, Cao Y N, Zhang Z. E3CC: A memory error protec-
tion scheme with novel address mapping for subranked and
low-power memories. ACM Transactions on Architecture and
Code Optimization, 2013, 10(4): Article No.32.

[30] Yoon D H, Erez M. Virtualized and flexible ECC for main
memory. In Proc. the 15th Edition of ASPLOS on Archi-
tectural Support for Programming Languages and Operating
Systems, Mar. 2010, pp.397-408.

[31] Udipi A N, Muralimanohar N, Balsubramonian R et al. LOT-
ECC: Localized and tiered reliability mechanisms for com-
modity memory systems. In Proc. the 39th Annual Int. Sym-
posium on Computer Architecture, Jun. 2012, pp.285-296.

[32] Zheng H Z, Lin J, Zhang Z et al. Decoupled DIMM: Build-
ing high-bandwidth memory system using low-speed DRAM
devices. In Proc. the 36th Annual Int. Symposium on Com-
puter Architecture, Jun. 2009, pp.255-266.

[33] Yoon D H, Chang J C, Muralimanohar N et al. BOOM: En-
abling mobile memory based low-power server DIMMs. In
Proc. the 39th Int. Symposium on Computer Architecture,
Jun. 2012, pp.25-36.

[34] Kalla R, Sinharoy B, Starke W J et al. Power7: IBM’s next-
generation server processor. IEEE Micro, 2010, 30(2): 7-15.

[35] Van Huben G A, Lamb K D, Tremaine R B et al. Server-
class DDR3 SDRAM memory buffer chip. IBM Journal of
Research and Development, 2012, 56(1.2): Article No.3.

[36] Fang K, Chen L, Zhang Z et al. Memory architecture for inte-
grating emerging memory technologies. In Proc. the 2011 Int.
Conf. Parallel Architectures and Compilation Techniques,
Oct. 2011, pp.403-412.

[37] Ham T J, Chelepalli B K, Xue N et al. Disintegrated control
for energy-efficient and heterogeneous memory systems. In
Proc. the 19th Int. Symposium on High Performance Com-
puter Architecture, Feb. 2013, pp.424-435.

[38] Hall M, Kogge P, Koller J et al. Mapping irregular ap-
plications to DIVA, a PIM-based data-intensive architec-
ture. In Proc. the 1999 ACM/IEEE Conf. Supercomputing
(CDROM), Jan. 1999, Article No.57.

[39] Qureshi M K, Srinivasan V, Rivers J A. Scalable high per-
formance main memory system using phase-change memory
technology. In Proc. the 36th Annual Int. Symposium on
Computer Architecture, Jun. 2009, pp.24-33.

[40] Zhou P, Zhao B, Yang J et al. A durable and energy effi-
cient main memory using phase change memory technology.
In Proc. the 36th Annual Int. Symposium on Computer Ar-
chitecture, Jun. 2009, pp.14-23.

[41] Zhang W Y, Li T. Exploring phase change memory and
3D die-stacking for power/thermal friendly, fast and durable
memory architectures. In Proc. the 18th Int. Conf. Par-
allel Architectures and Compilation Techniques, Sept. 2009,
pp.101-112.

[42] Stuecheli J, Kaseridis D, Daly D et al. The virtual write
queue: Coordinating DRAM and last-level cache policies. In
Proc. the 37th Annual Int. Symposium on Computer Archi-
tecture, Jun. 2010, pp.72-82.

[43] Chatterjee N, Muralimanohar N, Balasubramonian R et al.
Staged reads: Mitigating the impact of DRAM writes on
DRAM reads. In Proc. the 18th Int. Symposium on High-
Performance Computer Architecture, Feb. 2012, pp.41-52.

[44] Rosenfeld P, Cooper-Balis E, Jacob B. DRAMSIM2: A cycle
accurate memory system simulator. Computer Architecture
Letters, 2011, 10(1): 16-19.

[45] Rixner S, Dally W J, Kapasi U J et al. Memory access
scheduling. In Proc. the 27th Annual Int. Symposium on
Computer Architecture, Jun. 2000, pp.128-138.

[46] Luk C K, Cohn R, Muth R et al. Pin: Building customized
program analysis tools with dynamic instrumentation. In
Proc. the 2005 ACM SIGPLAN Conf. Programming Lan-
guage Design and Implementation, Jun. 2005, pp.190-200.

[47] Bienia C, Kumar S, Singh J P et al. The PARSEC bench-
mark suite: Characterization and architectural implications.
In Proc. the 17th Int. Conf. Parallel Architectures and Com-
pilation Techniques, Oct. 2008, pp.72-81.

[48] Bader D A, Cong G J, Feo J. On the architectural require-
ments for efficient execution of graph algorithms. In Proc. the
2005 Int. Conf. Parallel Processing, Jun. 2005, pp.547-556.

[49] Bader D A, Madduri K. Design and implementation of the
HPCS graph analysis benchmark on symmetric multiproces-
sors. In Proc. the 12th Int. Conf. High Performance Com-
puting, Dec. 2005, pp.465-476.

[50] Lu T Y, Chen L C, Chen M Y. Achieving efficient packet-
based memory system by exploiting correlation of memory
requests. In proc. Design, Automation & Test in Europe,
Mar. 2014, to be appeared.

Li-Cheng Chen is a Ph.D. can-
didate of Institute of Computing
Technology (ICT), Chinese Academy
of Sciences (CAS), Beijing. Previ-
ously, he obtained the B.S. degree
from University of Science and Tech-
nology of China (USTC) in computer
science, Hefei, in 2008. His current
research focuses on computer archi-
tecture, memory architecture and op-

timization, system performance evaluation and optimiza-
tion, and memory management.

Ming-Yu Chen received his B.S.
degree from University of Science
and Technology of China in 1994
and M.S. and Ph.D. degrees both
in computer science from the CAS
in 1997 and 2000, respectively. He
is a processor in ICT, CAS. His re-
search interests include computer ar-
chitecture, operating system, and al-
gorithm optimization for high perfor-

mance computers. He is a member of CCF, ACM, IEEE.



272 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

Yuan Ruan received his B.S. de-
gree from Shandong University in
2004 and Ph.D. degree in computer
science from the CAS in 2010. He
is an engineer in ICT, CAS. His cur-
rent research interests include com-
puter architecture, memory system
and hardware acceleration architec-
ture. He is a member of CCF, ACM.

Yong-Bing Huang is a Ph.D.
candidate of ICT, CAS, Beijing. Pre-
viously, he obtained the B.S. degree
from Wuhan University in computer
science, in 2008. His current research
interests focus on computer architec-
ture, operating system, system per-
formance modeling and evaluation,
and hardware or architecture support
for applications.

Ze-Han Cui is a Ph.D. candidate
of ICT, CAS, Beijing. Previously, he
obtained the B.S. degree from USTC
in 2009. His current research inter-
ests include computer architecture,
memory architecture and power, sys-
tem performance modeling and eval-
uation.

Tian-Yue Lu is a M.S. student
of ICT, CAS, Beijing. Previously, he
obtained the B.S. degree from USTC
in 2011. His current research inter-
ests include computer architecture,
memory architecture and optimiza-
tion, system performance modeling
and evaluation.

Yun-Gang Bao received his B.S.
degree from Nanjing University in
2003 and Ph.D. degree in computer
science from the CAS in 2008. He is
an associate professor in ICT, CAS.
From 2010 to 2012, he was a post-
doctoral researcher in Department of
Computer Science, Princeton Uni-
versity. His current research interests
include computer architecture, oper-

ating system, system performance modeling and evaluation.
He is a member of CCF, ACM, IEEE.


