
Bao WT, Fu BZ, Chen MY et al. A high-performance and cost-efficient interconnection network for high-density servers.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 29(2): 281–292 Mar. 2014. DOI 10.1007/s11390-014-

1430-0

A High-Performance and Cost-Efficient Interconnection Network for

High-Density Servers

Wen-Tao Bao1,2 (包雯韬), Student Member, CCF, ACM, IEEE
Bin-Zhang Fu1 (付斌章), Member, CCF, ACM, IEEE, Ming-Yu Chen1,2 (陈明宇), Member, CCF, ACM, IEEE
and Li-Xin Zhang1,2 (张立新), Member, ACM, IEEE

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: {baowentao, fubinzhang, cmy, zhanglixin}@ict.ac.cn

Received November 14, 2013; revised January 9, 2014.

Abstract The high-density server is featured as low power, low volume, and high computational density. With the
rising use of high-density servers in data-intensive and large-scale web applications, it requires a high-performance and
cost-efficient intra-server interconnection network. Most of state-of-the-art high-density servers adopt the fully-connected
intra-server network to attain high network performance. Unfortunately, this solution costs too much due to the high
degree of nodes. In this paper, we exploit the theoretically optimized Moore graph to interconnect the chips within a
server. Accounting for the suitable size of applications, a 50-size Moore graph, called Hoffman-Singleton graph, is adopted.
In practice, multiple chips should be integrated onto one processor board, which means that the original graph should be
partitioned into homogeneous connected subgraphs. However, the existing partition scheme does not consider above problem
and thus generates heterogeneous subgraphs. To address this problem, we propose two equivalent-partition schemes for the
Hoffman-Singleton graph. In addition, a logic-based and minimal routing mechanism, which is both time and area efficient,
is proposed. Finally, we compare the proposed network architecture with its counterparts, namely the fully-connected, Kautz
and Torus networks. The results show that our proposed network can achieve competitive performance as fully-connected
network and cost close to Torus.

Keywords high-density server, interconnection network, Moore graph, Hoffman-Singleton graph, equivalent partition

1 Introduction

With the rapid expansion of user data, more and
more cloud-sea computing applications have emerged
in modern data centers. Those applications are usua-
lly classified as high-throughput-computing (HTC)
applications[1], and highly concerned with the system
performance. In order to serve the HTC applications ef-
fectively, the new architecture called high-density server
consisting of hundreds or thousands of processor cores
has been proposed[2-4]. For instance, one Cray Cas-
cade chassis may consist of 128 Xeon processors (1 280
cores if Xeon E7 processor is adopted)[2], one SeaMicro
SM10000 server may consist of 512 cores[5], and each
IBM Power 775 drawer contains 256 cores[4].

In general, an HTC system consists of a lot of high-
density servers connected by electrical or optical cables.
Each high-density server can be in the form of chassis,
drawer or cabinet consisting of many processor boards
connected by the processor backplane or midplane. In
addition, a processor board further consists of several
switch chips or SoCs (system-on-chips) and each chip
(or SoC) connects some processors. Note that the ba-
sic unit (or node) to construct the network of a high-
density server is the switch chip (or SoC) and we only
focus on the intra-server network. In other words, we
will not discuss the way to connect separated servers
with electrical or optical cables within this paper.

Moreover, a high-density sever is usually prone to
adopt a high-performance intra-server interconnection

Regular Paper
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.

XDA06010401, the National Natural Science Foundation of China under Grant Nos. 61202056, 61331008, 61221062, and the Huawei
Research Program of China under Grant No. YBCB2011030.

A preliminary version of the paper was published in the Proceedings of HPCC 2013.
©2014 Springer Science +Business Media, LLC & Science Press, China



282 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

network to connect a large number of nodes to im-
prove system performance. For instance, Cray Cas-
cade and IBM Power 775 exploit the fully-connected
network[2,4], and SeaMicro SM10000 adopts the 3D-
Torus network[5]. Obviously, the fully-connected net-
work could obtain the best performance since every
two nodes could communicate with each other at any
time without any contention. However, the high perfor-
mance of fully-connected network is at the expense of its
high cost. For example, each node at least needs (n−1)
ports to construct the n-node-size fully-connected net-
work. Torus network, on the other hand, is highly scal-
able since the number of ports is determined by the
number of network dimensions, but the growing scale
of Torus network will result in long diameter, which will
degrade the network performance significantly.

To make a trade-off between cost and performance,
we exploit the Moore graph① to construct the intra-
sever interconnection network. As we will extensively
discuss in Section 2, a Moore graph is a regular maxi-
mal graph with the given degree d and the diameter k.
In other words, given the network size and diameter,
the Moore graph will get the minimal degree of a node
which will potentially minimize the cost of a router and
the network. In this paper, we focus on the Moore
graph with diameter k = 2. Given the diameter of
Moore graph, it is natural to ask that how many nodes
should be integrated into one server. As we will discuss
in Subsection 3.1, the 50-node-size Moore graph called
Hoffman-Singleton graph is the most reasonable choice
because it can provide enough parallelism for most HTC
applications.

In practice, multiple nodes are usually integrated
onto one processor board to further increase the server
density. As shown by the Hoffman-Singleton graph, we
can integrate 5 or 10 nodes onto one processor board de-
pending on the density of each board and the manufac-
turing technology. To facilitate the batch production,
homogenous boards are expected which means that the
subgraphs of the Hoffman-Singleton graph should be
identical. Furthermore, the subgraph is required to be
connected in case that all other boards break down.
Note that a connected board indicates that the nodes in
a single board can communicate with each other with-
out the help of other boards.

To make the subgraphs homogenous, two partition
schemes are proposed in this paper. The first scheme
divides the Hoffman-Singleton graph into ten groups,
each of which is a 5-node ring. While the other scheme
divides the graph into five groups, each of which is a 10-
node Petersen graph[6]. Since the ring (d = 2, k = 2)
and Petersen (d = 3, k = 2) graph are both Moore

graphs, the network of each board is also optimal. Fi-
nally, for each partition scheme, a logic-based routing
algorithm is proposed.

The main contributions of the paper are as follows:
1) The Moore graph is discussed and utilized to re-

duce the cost of intra-server network without degrading
the network performance.

2) Two partition schemes of Hoffman-Singleton
graph are proposed, making the whole solution prac-
tical.

3) Two deadlock-free routing algorithms are pro-
posed to fully utilize the path diversity of the network.

4) The traffic characteristics of five typical cloud-sea
applications are analyzed in this paper.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the intra-server networks of high-
density servers as well as the Moore graph. Section 3
discusses the network architecture and the two parti-
tion schemes. Section 4 shows the two routing algo-
rithms. Section 5 discusses the traffic characteristics
of cloud-sea applications. Section 6 compares the pro-
posed network with its counterparts through simula-
tions and analyses. Finally Section 7 concludes this
paper.

2 Background

In this section we will discuss the interconnection
networks of current high-density servers and then intro-
duce three well-known Moore graphs which are closely
related to our work.

2.1 Interconnection Networks of High-Density
Servers

First, note that this paper refers to the compute
unit, whose components are not connected by cables, as
a “high-density” server. For example, a Cray Cascade
chassis and a Power 775 drawer are both the “high-
density” servers. As mentioned, a high-density server
may contain hundreds of processors. The network con-
necting these processors is called the intra-server inter-
connection network.

Investigations indicate that most of current high-
density servers adopt fully-connected intra-server net-
work such as Cray Cascade and Power 775. In Cray
Cascade, as shown in Fig.1(a), the chassis backplane
connects 16 blades, each blade contains four nodes,
and each node contains two Xeon processors, thus each
chassis contains 128 Xeon processors. Since it adopts
fully-connected network to connect 16 blades, every two
blades in one chassis can communicate with each other
directly. In Power 775, as shown in Fig.1(b), the su-

①Moore graph. http://en.wikipedia.org/wiki/Moore graph, Dec. 2013.



Wen-Tao Bao et al.: A High-Performance and Cost-Efficient Interconnection Network 283

pernode can contain up to four drawers, each of which
contains up to eight compute nodes. Similarly, the
fully-connected network is used to connect compute
nodes including both intra- and inter- drawers.

Fig.1. Architecture of high-density servers. (a) Architecture of a

chassis of Cray Cascade system. (b) Architecture of a supernode

of IBM Power 775 system.

2.2 Moore Graph

In this subsection we will discuss three typical Moore
graphs closely related to our proposed network. The
first graph called ring consists of five nodes. Both of
the degree and diameter of the 5-node ring are 2. The
second one with degree 3 and diameter 2 is called Pe-
tersen graph. As is shown in Fig.2(a), a Petersen graph

can be formed by embedding a five-point star into a
ring. The last one is the Hoffman-Singleton graph as
shown in Fig.2(b), which has 50 nodes with degree 7
and diameter 2.

Fig.2. Examples of Moore graphs. (a) Petersen graph. (b)

Hoffman-Singleton graph.

As shown in Fig.3, a Hoffman-Singleton graph can
be formed by stars and rings. The five-point star is
represented by Pj (with 0 6 j 6 4) and ring is repre-
sented by Qk (with 0 6 k 6 4). To form the Hoffman-
Singleton graph, every node in the five-point star should
be connected to one node of every ring. Mathemati-
cally, node Pj,i should be connected to node Qk,q, where
q = (i + j × k) mod 5. For example, node P1,0 should
be connected to node Q1,1 since i = 0, j = k = 1 and
q = (0 + 1× 1) mod 5.

3 Proposed Network Architecture

In this section, we will first answer the question
that why the Hoffman-Singleton graph instead of others
should be selected. Secondly, the equivalent-partition
schemes, which are used to address the batch produc-
tion problem, are discussed.

3.1 Why Hoffman-Singleton

Although the network diameter is not the only factor
that determines the network performance, we still want
to keep it as small as possible to reduce the network

Fig.3. Traditional way to form a Hoffman-Singleton graph.



284 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

latency. Since the cost of fully-connected network with
diameter 1 is too high, we decide to design an intra-
server network with diameter 2.

Once the network diameter is determined, the next
job is to determine the network size. In general, the
size is expected to be large enough to provide suf-
ficient parallelism for most applications. Therefore,
one application is usually mapped onto a single high-
density server to fully utilize the benefits of the high-
performance intra-server network. Otherwise, inter-
server network with relatively low performance may de-
grade the application performance.

Generally, the parallelism is limited by the Amdahl’s
law. If P is the portion of an application that can be
made parallel, N is the total number of threads, then
the speedup of parallelization can be presented as (1).
Obviously, given P , the speedup will not increase (no-
ticeably) once N is large enough.

Speedup =
1

(1− P ) + P/N
. (1)

From this equation, we could find that 8 192 threads
are enough for most applications, even for those with
P = 0.99, i.e., 99% of the applications can be made
parallel. Note that we do not consider the applica-
tions with P = 1, because we can divide those appli-
cations, which can be 100% made parallel, into seve-
ral separated sub-applications. We consider the case
that there are many-core processors already taped out,
such as Intel’s 80-core processor[7] and Tilera’s Tile64
processor[8]. Since there may be multiple threads per
processor core, it is possible to provide hundreds of
threads by a processor. Assuming one many-core pro-
cessor could provide 160 threads (80 cores × 2 threads
per core), it requires 51.2 processors to provide 8 192
threads. Therefore, we choose the Hoffman-Singleton
graph with 50 nodes as the intra-server network. We
believe that future many-core processors could provide

more parallelism, thus integrating 50 nodes into a server
will be enough for future applications. Otherwise, if
the Petersen graph is chosen, then the total number of
threads will be 1 600 which is not enough for applica-
tions with P > 0.97.

3.2 Partition Schemes

To facilitate the batch production, two partition
schemes are proposed in this subsection. Based on the
original construction② of the Hoffman-Singleton graph,
the first scheme is simply to transform each Pj into
a ring and the nodes of Pj are re-indexed from 0 to
4 clockwise. After rearrangement, the ten groups are
identical since Pj is the same with Qk. Thus, for ev-
ery two nodes in Pj , their relative position has been
changed as shown in Fig.4.

Fig.4. Transforming a five-point star into a ring.

Additionally, the connection rule between P and Q
also should be changed: for the node i in a Pj , the
only adjacent node it has in Qk is the node labeled
((i + b j

2c × bk
2 c)× 3) mod 5. The whole construction

is shown in Fig.5. To better understand the specific
architecture, we present it in Fig.6. There are ten pro-
cessor boards (labeled Blade0 to Blade9) on the proces-
sor backplane and each processor board contains five
nodes forming a ring. One possible mapping from Pi

and Qj (0 6 i, j 6 4) to Bladek (0 6 k 6 9) is that
Bladek = Pk/2 if k%2 = 0, otherwise Bladek = Qk/2.
In this way, Bladei is connected to Bladej , where
i%2 6= j%2. The second scheme is to divide the graph
into five groups, and each group forms a Petersen graph

Fig.5. Way to form a Hoffman-Singleton graph with rings.

②Hoffman-Singleton graph. http://mathworld.wolfram.com/Hoffman-SingletonGraph.html, Dec. 2013.



Wen-Tao Bao et al.: A High-Performance and Cost-Efficient Interconnection Network 285

Fig.6. Architecture of the high-density server consisting of 10

ring-connected boards.

as shown in Fig.2(a). Unlike the first partition scheme,
we combine Pi with Qi (0 6 i 6 4) to form the Petersen
graph (labeled Ti) as shown in Fig.7. Obviously, T0, T1

(or T4) and T2 (or T3) are heterogeneous because the
relative position of every two nodes in each group is
different. For example, node 0 of the outer ring is ad-
jacent to node 0 of the inner star in T0 while adjacent
to node 4 of the inner star in T1. Thus it is neces-
sary to re-index the nodes to keep all Peterten graphs

the same with T0. Furthermore, in order to simplify
the routing algorithm, we should index the nodes in a
processor board Ti with 0 to 9 where the nodes in the
outer ring and inner star labeled with 0 to 4 and 5 to
9 respectively.

Since their relative positions have been changed,
similar to the first scheme, we create a new connec-
tion rule to connect different groups that is proposed
as follows: Generally, a node Tj,i is connected to the
node Tk,q, where q = (i + (j − k) × k) mod 5 + 5, if
i ∈ [0, 4] and j > k; otherwise, it is connected to Tk,m,
where m = (i − 5 − (k − j) × j) mod 5 if i ∈ [5, 9]
and j > k. The whole construction is shown in Fig.8.
We also present the specific architecture as shown in
Fig.9. There are five processor boards (labeled Blade0

to Blade4) in the processor backplane. Each processor
board Bladei contains ten nodes (labeled 0 to 9) form-
ing a Petersen graph. One possible mapping from Ti to
Bladej is that Bladei = Ti.

Fig.7. Combinations of Pi and Qi. (a) T0. (b) T1. (c) T2. (d) T3. (e) T4.

Fig.8. Way to form a Hoffman-Singleton graph with Petersen graphs.

Fig.9. Architecture of the high-density server consisting of 5

Petersen-graph-connected boards.

The characteristics of the two partition schemes are
concluded as follows. First, the homogenous partition
facilitates the batch production. Second, either the ring
or the Petersen graph is proven to be a Moore graph.
Thus, the network of each processor board is also opti-
mal. Third, we can expand the processor board one by

one without any re-cabling operation or degradation of
network performance.

4 Routing Mechanisms

In general, there are two popular ways to implement
routing algorithms: table-based solution and logic-
based solution. Table-based implementation is flexible,
but may cause large space and time overhead. Thus
we adopt the logic-based solution for the two partition
schemes.

4.1 Rring: Routing Algorithm for Ring-Based
Partition

Note that the ring-based partition solution has two
significant characteristics. First, nodes in Pi (Qi) are



286 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

not connected to any nodes in Pj (Qj), where i 6= j.
Second, every node in Pi (or Qi) has a connection with
only one node in Qj (or Pj).

The main idea of this routing algorithm is to find the
shortest route. Given the source and destination node,
there are three possible cases that should be discussed.

1) They are in the same processor board.
2) The source node is in Pj (or Qj) and the destina-

tion node is in Pk (or Qk), where j 6= k.
3) The source node is in Pj (or Qj) and the destina-

tion node is in Qk (or Pk).
For case 1, we only need to forward the packet to the

corresponding port according to the routing algorithm
inside the processor board.

For case 2, the packet must be forwarded to an
intermediate node. We denote an intermediate node
as Bladee,f where e represents the group number and
f represents the node number inside this group. Sim-
ilarly, we denote the source node as Bladea,b and the
destination node as Bladec,d. Since a, b, c and d are
already known, we use them to calculate e and f . We
first calculate e according to the parity of a where even
represents that the source node is in Pa

2
, or vice versa

in Qa
2
. If a is even, e is calculated as (2) where v is

variable, and then f = ((b + ba
2 c × b e

2c) × 3) mod 5.
Otherwise, e is calculated as (3) where v is variable
and f = ((2× b− 6×ba

2 c× b e
2c)) mod 5. Now we have

finished finding the intermediate node. Note that the
way to choose the variable v is determined by the sign
of the denominator. If the denominator is negative (or
positive), v will minus 1 (or add 1) from 0, and then
we will choose the value that first makes the numerator
divisible by the denominator.

e =
(d− b + 5× v)× 2⌊a

2

⌋
−

⌊ c

2

⌋
+ 1

, (2)

e =
(d− b + 5× v)× 2

3×
(⌊ c

2

⌋
−

⌊a

2

⌋) . (3)

For case 3, the source and destination nodes may not
be adjacent, because every node in Pj is connected to
only one node in Qk directly. Therefore there are also
three cases as shown in Fig.10.

Fig.10. Routing examples based on different distributions of the

source node (Scr) and destination node (Dest).

1) The source and the destination nodes are adja-
cent.

2) The source node first forwards the packet to the
intermediate node in its own processor board.

3) The source node first forwards the packet to the
intermediate node in the processor board where the des-
tination node is.

For case 1, the source node forwards the packet to
the destination directly. However, as for the following
cases, we should find the processor board where the
intermediate node locates. Since the diameter of the
graph is 2, the intermediate node is adjacent to either
the source node or the destination node.

Without loss of generality, we assume that it belongs
to case 3 where the intermediate node is adjacent to the
destination node. So we should find out the interme-
diate node which is not only adjacent to the source node
but also in the processor board where the destination
node locates. First, we denote Bladea,b, Bladec,g and
Bladec,d as the source node, the intermediate node and
the destination node respectively. We need to calculate
g with given values of a, b and c. The calculation is also
discussed with two categories according to the parity of
a. If a is even, g is calculated as (4). Otherwise, g is
calculated as (5).

g =
((

b +
⌊a

2

⌋
×

⌊ c

2

⌋)
× 3

)
mod 5, (4)

g =
(
2× b− 6×

⌊a

2

⌋
×

⌊ c

2

⌋)
mod 5. (5)

If Bladec,g is adjacent to Bladec,d, the intermediate
node is Bladec,g. Otherwise, we can infer that it must
belong to case 2. Therefore, the intermediate node must
be in the processor board where the source node is and
is adjacent to the destination node. Hence, we can use
the equation above to find the intermediate node by
simply replacing a with c, b with d, c with a, because
the source node is Bladec,d, the intermediate node is
Bladea,g and the destination node is Bladea,b. Note
that all cases are checked in parallel by hardware. The
basic routing procedure is shown in Fig.11.

4.2 RPeterson: Routing Algorithm for the
Petersen-Based Partition

The basic idea of RPeterson is the same with that of
Rring, but we utilize the RInnerP algorithm[9] to route
packets within each processor board. As shown in
Fig.12, the procedure of RPeterson is the same with that
of Rring except that Bladee,f , Bladec,g and Bladea,g are
calculated in a different way.

Particularly, to determine Bladee,f , we can use (6)
to get e.



Wen-Tao Bao et al.: A High-Performance and Cost-Efficient Interconnection Network 287

1: Require: source node: Bladea,b; destination node: Bladec,d

2: if Bladea,b == Bladec,d then

3: Consume the packet

4: else

5: if a == c then

6: Call Rbasic unit

7: else

8: if a%2 == c%2 then

9: Find the middle node Bladee,f

10: else

11: if Bladea,b and Bladec,d are neighbours then

12: Forward the packet to Bladec,d directly

13: else

14: Calculate Bladec,g adjacent to Bladea,b

15: if Bladec,g is adjacent to Bladec,d then

16: Forward the packet to Bladec,g

17: else

18: Calculate Bladea,g adjacent to Bladec,d

19: Forward the packet to Bladea,g

20: end if

21: end if

22 end if

23 end if

24: end if

Fig.11. Routing algorithm for the ring-based partition.

1: Require: source node: Bladea,b; destination node: Bladec,d

2: if Bladea,b == Bladec,d then

3: Consume the packet

4: else

5: if a == c then

6: Call RInnerP

7: else

8: if (b > 4 and c > 4) or (b < 5 and c < 5) then

9: Find the middle node Bladee,f

10: else

11: if Bladea,b and Bladec,d are neighbours then

12: Forward the packet to Bladec,d directly

13: else

14: Calculate Bladec,g adjacent to Bladea,b

15: if Bladec,g is adjacent to Bladec,d then

16: Forward the packet to Bladec,g

17: else

18: Calculate Bladea,g adjacent to Bladec,d

19: Forward the packet to Bladea,g

20: end if

21: end if

22: end if

23: end if

24: end if

Fig.12. Routing algorithm for the petersen-based partition.





d− b + 5× v

a− c
, b > 5,

(b− d + 5× v)
a− c

+ a + c, b < 5.

(6)

Likewise, to determine Bladec,g, we use (7) to calcu-
late g.

{
(b− 5− (c− a)× a) mod 5, b > 5,

(b + (a− c)× c) mod 5 + 5, b < 5.
(7)

As for calculating Bladea,g, we also use (7) but re-
place a with c, b with d, c with a.

5 Network Traffic Characteristics

In this section, we discuss the traffic characteristics
of cloud-sea applications, which have a great influence
on the simulation and evaluation of our proposed net-
work. Particularly, by analyzing the following five typi-
cal applications, we want to answer the following ques-
tions in this section: 1) what are the synthetic traffic
patterns? 2) what are the aggregate characteristics of
packet size?

The five applications include the web search[10] and
four Hadoop applications: TeraSort[11] (big data ap-
plication), K-Means[12] (data mining application), Join
and Aggregation[13] (data base application). As for the
web search application, a Faban server is utilized to
simulate the real world clients, a Tomcat server to simu-
late the frontend, and a Nutch server to simulate the
search engine. We deploy the Hadoop applications on a
cluster with one master and eight slaves. The version of
Hadoop and JDK is 1.0.2 and 1.6.0, respectively. Par-
ticularly, each slave node has 16 map task slots and
12 reduce task slots, and 2 GB Java heap is assigned
to each map and reduce task. The size of dataset of
TeraSort, Hive, and K-Means is 100 GB, 150GB and
150GB, respectively.

As for the synthetic traffic patterns, all four
Hadoop applications generate the all-to-all traffic pat-
tern among the slave nodes since most of the data is
exchanged during the shuffle phase. Taking the Tera-
Sort as an example, Fig.13 shows that each slave node
communicates with all other slave nodes with a similar
possibility. Node 4 and node 5 receive packets with a
little higher possibility due to the uneven distribution
of data. Join, Aggregation and K-Means generate the
similar traffic pattern, but the synthetic traffic patterns
are omitted due to the limited space. As for the web
search application, one-to-many or many-to-many traf-
fic pattern is generated depending on whether multiple
web servers are utilized to balance traffic load[10].

Beside the synthetic traffic pattern, the size of pack-
ets also strongly affects the network design. Large pack-
ets help to improve the utilization of bandwidth, but
they also increase the possibility of congestion. Small
packets, on the other hand, are difficult to fill the router
pipeline. Thus, advanced techniques, such as sophisti-



288 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

cated arbiters and speedup techniques, are required to
achieve the idea throughput. As shown in Fig.14, the
packet sizes of all Hadoop applications exhibit a simi-
lar pattern, where about 20%∼30% of packets are small
ones, 70%∼80% are MTU packets, and other size pack-
ets are very few. However, for the web search applica-
tion, 80% of the packets are smaller than 600 bytes.

Fig.13. Traffic matrix of TeraSort. The y-axis represents the

source node, x-axis represents the destination node, the size of

balls represents the possibility of communication, 0 is the master

node and 1∼8 are the slave nodes.

Fig.14. CDF of distribution of the size of packets.

6 Simulation and Analysis

So far we have already proposed the two differ-
ent partition schemes and the corresponding rout-

ing mechanisms for Hoffman-Singleton network. In
the reminder of this paper, we compare the perfor-
mance of Hoffman-Singleton network with its coun-
terparts, namely the fully-connected③, Kautz④ and
3D-Torus[14] networks. All networks are simulated
with an event-driven simulator, namely the BookSim
simulator[15].

For fair comparison, we should make the configura-
tions of all networks as same as possible. In our experi-
ment, the simulation parameters are shown in Table 1.
It can be inferred that all of these networks’ sizes are 50
except Kautz, whose size is determined by dn−1 + dn,
where d is the degree and n is the diameter[16]. There-
fore, we choose K(7, 2) and the resultant network size is
56. We believe that the small difference does not affect
the simulation results. For 3D-Torus, in order to get
the same network size, we choose the one with every
dimension (x, y, z) = (5, 5, 2). To equalize the capabi-
lity of storing and forwarding in every node, the same
number of buffers is allocated to each input port. In
the end, internal speedup of 2 is chosen to achieve a
high fraction of the ideal throughput.

Table 1. Simulation Parameters

Topology Network Number of Virtual Internal

Size Virtual Buffer Speedup

Channels Size

Fully-connected 50 1 128 2.0

Hoffman-Singleton 50 2 64 2.0

Kautz 56 2 64 2.0

Torus 50 2 64 2.0

According to the extensive analysis of traffic chara-
cteristics in Section 5, we conduct the experiments un-
der two environments: different synthetic traffic pat-
terns and different cloud-sea applications. As for the
first environment, we consider three synthetic typical
traffic patterns, uniform, shuffle, and transpose. On
the other hand, as for the second environment, we use
the new distribution of packet size instead of constant
packet size to mimic these real cloud-sea applications
and adopt uniform to simulate the all-to-all communi-
cation.

6.1 Throughput

The throughput comparisons are shown in Fig.15
and Fig.16 where x-axis represents the injection rate
and y-axis represents the throughput in the number of
flits accepted per cycle per node.

As shown in Fig.15, it is obviously that different traf-
fic patterns have significantly different influences on the

③Complete graph. http://en.wikipedia.org/wiki/Complete graph, Dec. 2013.
④The Kautz graph. http://pl.atyp.us/wordpress/?p=1275, 2007, Dec. 2013.



Wen-Tao Bao et al.: A High-Performance and Cost-Efficient Interconnection Network 289

Fig.15. Network throughput under synthetic traffic patterns. (a) Uniform. (b) Shuffle. (c) Transpose.

Fig.16. Network throughput under 5 cloud-sea applications. (a) TeraSort. (b) Aggregation. (c) Join. (d) K-Means. (e) Web search.

performance of network. First, regardless of the net-
work, the uniform traffic always shows the best per-
formance, while the transpose traffic always shows the
worst performance. Secondly, the fully-connected net-
work performs the best regardless of the traffic pattern,
because every node is connected to each other directly.
Thirdly, although the Hoffman-Singleton network per-
forms worse than the fully-connected network, it shows
relatively good performance.

As shown in Fig.15(a), the differences come to
occur when the injection rate is larger than 0.85:

the Hoffman-Singleton network performs better than
Torus and shows the similar result with Kautz under
the uniform traffic pattern. As shown in Fig.15(b),
the Hoffman-Singleton network performs slightly worse
than Tours but similar with Kautz under the shuffle
traffic pattern. As for the transpose traffic pattern in
Fig.15(c), Kautz performs the worst while the other
networks show similar performance. In summary, the
fully-connected network has the best performance while
the Hoffman-Singleton network is second to it from an
overall perspective.



290 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

Furthermore, we use the traffic patterns of five typi-
cal cloud-sea applications to evaluate the networks.
Fig.16 shows similar simulation results under the five
different applications. That is because the distribution
of packet size of different applications has no signifi-
cant difference. From these results, we can clearly find
that all networks perform similarly with injection rate
increasing. Only when the injection rate exceeds 0.85,
some slight differences occur. We can find that the
throughput of Tours is slightly worse than others while
the fully-connected network performs the best. Fur-
thermore, the performance of the Hoffman-Singleton
and Kautz networks is almost consistent.

6.2 Latency

Similar to the analysis of throughput, we firstly com-
pare the simulation results under different traffic pat-
terns regardless of the specific network. The fully-
connected network performs the best because its la-
tency always increases more slowly than the other net-
works. This phenomenon is reasonable since the dia-
meter of the fully-connected network is 1 that is shorter
than the others. Now, we focus on the comparison
of different networks under same synthetic traffic pat-
terns. As for the result of the uniform traffic pattern
shown in Fig.17(a), the average latency of the fully-
connected network remains below 20 cycles until the
injection rate exceeds 0.9. For the Torus network, the
latency increases rapidly when the injection rate ex-
ceeds 0.8. In addition, the curves of the Hoffman-
Singleton network and Kautz network almost overlap
and between the other two networks’ curves. As for
the comparison of the shuffle traffic shown in Fig.17(b),
Torus performs the worst since it has the longest dia-
meter, while the other networks are nearly consistent.
Lastly, all networks show poor performance with slight
differences as shown in Fig.17(c). Their latency tends
to go up once injection rate merely exceeds 0.25. The
Hoffman-Singleton network performs better than Kautz

but worse than the fully-connected and Torus networks.
In the end, we can conclude that the fully-connected
network performs the best and the Hoffman-Singleton
network is only second to it from an overall perspective.

As shown in the comparison of throughput for the
five typical applications above, there are no significant
differences between these graphs in Fig.18. Thus we
only need to have an explicit description about the
results as shown in Fig.18(a). We can find that all
curves have the same tendency with a slight differ-
ence. It should be pointed out that the curves of the
Hoffman-Singleton network and Kautz network are al-
most overlapped. On the other hand, the latency of
Torus is slightly higher than the others while the fully-
connected network has the lowest latency. These results
are mainly due to the length of diameter where Torus’s
diameter is much longer than the others’ and the fully-
connected network has the shortest diameter.

6.3 Cost

In order to get a visual representation of the cost, we
simply take the number of links and ports of every node
into consideration. As shown in Table 2, the cost of the
fully-connected network is extremely high since its link
number and port number are both seven times of those
of the Hoffman-Singleton network. High cost makes the
fully-connected network not acceptable even though it
shows extremely good performance on throughput and
latency. On the contrary, Torus costs the least while
its performance is the worst compared with the others.
To balance the performance and the cost, the Hoffman-
Singleton network and Kautz network are the most de-
sirable candidates since their performance is relatively
good and the cost is not very high. However, in terms
of cost of them, the cost of the Kautz network is four
times of that of the Hoffman-Singleton network. Con-
sidering every aspect, the Hoffman-Singleton network is
the most suitable one that can be applied to the intra-
server interconnection network of high-density servers.

Fig.17. Average packet latency under synthetic traffic patterns. (a) Uniform. (b) Shuffle. (c) Transpose.



Wen-Tao Bao et al.: A High-Performance and Cost-Efficient Interconnection Network 291

Fig.18. Average packet latency under 5 cloud-sea applications. (a) TeraSort. (b) Aggregation. (c) Join. (d) K-Means. (e) Web search.

Table 2. Cost Comparison

Topology Number of Links Number of Ports

Fully-connected 1 225 49

Hoffman-Singleton 175 7

Kautz 784 14

Torus 150 6

7 Conclusions

The intra-server interconnection network largely de-
termines the performance and the cost of high-density
servers. Inspired by the Moore graph theory, we ex-
ploited the Hoffman-Singleton graph to construct an
intra-server interconnection network in this paper. To
facilitate the batch production, the Hoffman-Singleton
graph should be equivalently divided into connected
subgraphs. To address this problem, two partition
schemes were presented. Furthermore, two routing
mechanisms were proposed for the two corresponding
partition schemes. Finally, a series of experiments
were taken to compare our proposed network architec-
ture with its counterparts, namely the fully-connected,
Kautz and Torus networks. The simulation results show
that our proposed network could attain competitive
performance as the fully-connected network and cost
close to Torus. Therefore, the proposed network archi-
tecture is quite suitable for modern and future high-
density servers.

References

[1] Montero R S, Huedo E, Llorente I M. Benchmarking of high
throughput computing applications on grids. Parallel Com-
puting, 2006, 32(4): 267-279.

[2] Faanes G, Bataineh A, Roweth D, Court T, Froese E, Alver-
son B, Johnson T, Kopnick J, Higgins M, Reinhard J. Cray
cascade: A scalable HPC system based on a Dragonfly net-
work. In Proc. the International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC2012), November 2012, Article No.103.

[3] Rao A. SeaMicro technology overview. Technical Report,
AMD, January 2012. http://www.seamicro.com/sites/defau-
lt/files/SM TO01 64 v2.5.pdf, December 2013.

[4] Rajamony R, Stephenson M C, Speight W E. The power 775
architecture at scale. In Proc. the 27th International ACM
Conference on International Conference on Supercomputing
(ICS2013), June 2013, pp.183-192.

[5] Rao A. SeaMicro SM10000 system overview. Technical Re-
port, AMD, June 2010. http://www.tiger-optics.ru/ down-
load/seamicro/SM TO02 v1.4.pdf, December 2013.

[6] Hoffman A J, Singleton R R. On Moore graphs with diame-
ters 2 and 3. IBM J. Research and Development, 1960, 4(5):
497-504.

[7] Mattson T G, Van der Wijngaart R, Frumkin M. Program-
ming the Intel 80-core network-on-a-chip terascale processor.
In Proc. the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC2008),
Nov. 2008, Article No.38.

[8] Bell S, Edwards B, Amann J et al. TILE64-processor: A
64-core SoC with mesh interconnect. In Proc. Interna-
tional Solid-State Circuits Conference (ISSCC2008), Febru-
ary 2008, pp.88-89.

[9] Seo J, Lee H, Jang M. Optimal routing and Hamiltonian cycle



292 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

in Petersen-Torus networks. In Proc. the 3rd International
Conference on Convergence and Hybrid Information Tech-
nology (ICCIT2008), November 2008, pp.303-308.

[10] Barroso L A, Dean J, Hölzle U. Web search for a planet: The
Google cluster architecture. IEEE Micro, 2003, 23(2): 22-28.

[11] O’Malley O. TeraByte sort on Apache Hadoop. Technical Re-
port, Yahoo!, May 2008. http://sortbenchmark.org/Yahoo-
Hadoop.pdf, December 2013.

[12] Esteves R M, Pais R, Rong C. K-Means clustering in the cloud
– A Mahout test. In Proc. the 2011 IEEE Workshops of In-
ternational Conference on Advanced Information Networking
and Applications (WAINA2011), March 2011, pp.514-519.

[13] Thusoo A, Sarma J, Jain N et al. Hive: A warehousing solu-
tion over a map-reduce framework. In Proc. the 35th Inter-
national Conference on Very Large Data Bases (VLDB2009),
August 2009, pp.1626-1629.

[14] Adiga N R, Blumrich M A, Chen D et al. Blue Gene/L torus
interconnection network. IBM Journal of Research and De-
velopment, 2005, 49(2): 265-276.

[15] Nan J, Becker D U, Michelogiannakis G et al. A detailed and
flexible cycle-accurate Network-on-Chip simulator. In Proc.
IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS2013), April 2013, pp.86-96.

Wen-Tao Bao received the
B.S. degree from Jilin University,
Changchun, in 2012. Now she is
pursuing her M.S. degree in Insti-
tute of Computing Technology, Chi-
nese Academy of Sciences, Beijing.
Her research interests include high-
performance and high-reliable inter-
connection networks.

Bin-Zhang Fu received his
B.Eng. degree in both electron-
ics and information engineering, and
computer science and technology
from Huazhong University of Science
and Technology, Wuhan, in 2004,
and Ph.D. degree in computer sci-
ence from the Institute of Comput-
ing Technology, Chinese Academy of
Sciences, Beijing, in 2011. He is cur-

rently an associate professor at the Institute of Computing
Technology, Chinese Academy of Sciences. His research in-
terests include high-performance and high-reliable intercon-
nection networks.

Ming-Yu Chen received his B.S.
degree from University of Science and
Technology of China in 1994 and
M.S. and Ph.D. degrees in computer
science from Institute of Computing
Technology (ICT), Chinese Academy
of Sciences (CAS) in 1997 and 2000,
respectively. He is a processor in
ICT, CAS. His research interests in-
clude computer architecture, operat-

ing system, and algorithm optimization for high perfor-
mance computer.

Li-Xin Zhang received his B.S.
degree in computer science from Fu-
dan University and his Ph.D. de-
gree in computer science from the
University of Utah. He was a re-
search associate from 1999 to 2003
at the University of Utah. He was
a member of the Novel Systems Ar-
chitecture group in the IBM Austin
Research Lab from 2003 to 2010.

Dr. Li-Xin Zhang is a professor at Institute of Com-
puting Technology, Chinese Academy of Sciences, Beijing.
His research interests include data center computing sys-
tems, advanced cache/memory systems, architectural simu-
lators, distributed/parallel computing, performance evalua-
tion, and workload characterization.


