
Liao XK, Yang CQ, Tang T et al. OpenMC: Towards simplifying programming for TianHe supercomputers. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 29(3): 532–546 May 2014. DOI 10.1007/s11390-014-1447-4

OpenMC: Towards Simplifying Programming for TianHe

Supercomputers

Xiang-Ke Liao1 (廖湘科), Member, ACM, IEEE, Can-Qun Yang1 (杨灿群), Tao Tang1 (唐 滔)
Hui-Zhan Yi1 (易会战), Feng Wang1 (王 锋), Member, CCF, ACM, Qiang Wu1 (吴 强), Member, IEEE, and
Jingling Xue2 (薛京灵), Senior Member, IEEE, Member, ACM

1School of Computer Science, National University of Defense Technology, Changsha 410073, China
2School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

E-mail: {xkliao, canqun, taotang84, huizhanyi, fengwang, qiangwu}@nudt.edu.cn; jingling@cse.unsw.edu.au

Received August 29, 2013; revised January 21, 2014.

Abstract Modern petascale and future exascale systems are massively heterogeneous architectures. Developing produc-
tive intra-node programming models is crucial toward addressing their programming challenge. We introduce a directive-
based intra-node programming model, OpenMC, and show that this new model can achieve ease of programming, high
performance, and the degree of portability desired for heterogeneous nodes, especially those in TianHe supercomputers.
While existing models are geared towards offloading computations to accelerators (typically one), OpenMC aims to more
uniformly and adequately exploit the potential offered by multiple CPUs and accelerators in a compute node. OpenMC
achieves this by providing a unified abstraction of hardware resources as workers and facilitating the exploitation of asyn-
chronous task parallelism on the workers. We present an overview of OpenMC, a prototyping implementation, and results
from some initial comparisons with OpenMP and hand-written code in developing six applications on two types of nodes
from TianHe supercomputers.

Keywords supercomputer, programming model, heterogeneous, MIC

1 Introduction

Modern petascale and future exascale systems,
which can process one quadrillion (1015) FLOPS and
one quintillion (1018) FLOPS, respectively, are mas-
sively heterogeneous architectures comprising multi-
core CPUs and accelerators. As heterogeneous sys-
tems achieve higher performance and energy efficiency
than CPU-only systems, there are increasingly more
accelerator-based supercomputers (using, e.g., GPUs[1]

and Intel MIC[2]) appearing in the Top500① and
Green500② lists.

The TianHe supercomputers, designed at the Na-
tional University of Defense Technology (NUDT), are a
few of the earliest large-scale systems embracing hete-
rogeneous architectures. Announced in 2009, TianHe-
1[3] achieved a peak performance of 1.206 PFLOPS
and became China’s first supercomputer beyond petas-

cale. TianHe-1 consists of 2 560 compute nodes, each
containing two Intelr Xeonr processors and an ATI
RadeonTM HD4870×2GPU. TianHe-1A[4], a subse-
quently upgraded system of TianHe-1, achieved 2.566
PFLOPS on the Linpack benchmark and ranked the
first of Top500 list in November 2010. TianHe-1A,
whose architecture is similar to that of its predeces-
sor, consists of 7 168 compute nodes, each featuring
two Intelr Xeonr X5670 processors and one Nvidia
M2050 GPU. Recently, we have developed TianHe-2③,
which consists of 16 000 nodes accelerated by Intelr

Xeonr PhiTM co-processors. With a Linpack bench-
mark performance of 33.9 PFLOPS, TianHe-2 has been
the fastest supercomputer in the world since June 2013.

Over the last few years, we have been looking for
a suitable programming model for heterogeneous sys-
tems. In TianHe supercomputers, we relied on a hybrid
model, in which MPI applies to inter-node program-

Regular Paper
This work is supported by the National High Technology Research and Development 863 Program of China under Grant No.

2012AA01A301, and the National Natural Science Foundation of China under Grant No. 61170049.
①http://www.top500.org, Mar. 2014.
②http://www.green500.org, Mar. 2014.
③www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf, Mar. 2014.
©2014 Springer Science +Business Media, LLC & Science Press, China

Xiang-Ke Liao et al.: Programming Model for TianHe Supercomputers 533

ming and “OpenMP + X” to intra-node programming,
where X is accelerator-specific, e.g., Brook+/CAL for
AMD GPUs④, CUDA for NVIDA GPUs[5] or “Offload”
for Intel MIC[2]. While MPI may continue to be the pri-
mary model for inter-node programming, “OpenMP +
X” is becoming less appealing as it makes intra-node
programming ad hoc, fairly complex, and quite difficult
to obtain the degree of portability desired.

In search for a better intra-node programming
model, we prefer a directive-based solution to CUDA[5]

and OpenCL[6], because the former provides a
higher-level abstraction for programming accelerators
and facilitates incremental parallelization[7]. Several
directive-based models, including OpenACC[8], PGI
Accelerator⑤ and OpenHMPP⑥, have recently been
introduced. By providing directive-based interfaces,
they enable programmers to offload computations to
accelerators and manage parallelism and data commu-
nication explicitly or implicitly.

To harness the full potential of TianHe supercom-
puters, existing directive-based intra-node program-
ming models are inadequate in three aspects. First,
a single code region, when offloaded, is usually exe-
cuted as a solo task in an entire accelerator, result-
ing in its low utilization when the task exhibits in-
sufficient parallelism. Second, as accelerator-oriented
computing is emphasized, the ever-increasing process-
ing power of general-purpose multi-core CPUs is ne-
glected and thus inadequately exploited, especially for
some irregular applications. Finally, multiple devices,
i.e., multiple multi-core CPUs and multiple many-core
accelerators are nowadays found in a single node. We
need a little more than just offering a syntax to offload
computations to accelerators. The ability to orches-
trate the execution of multiple tasks efficiently across
these devices becomes essential. We are not aware of
any directive-based open-source compiler for TianHe-
like heterogeneous systems accelerated by both GPUs
and Intel MIC.

In this work, we are motivated to overcome the afore-
mentioned three limitations. By building on recent ad-
vantages in the field, we make the following contribu-
tions:
• We introduce a directive-based intra-node pro-

gramming model, OpenMC (Open Many-Core), to-
wards simplifying programming for heterogeneous com-
pute nodes, especially those used in the TianHe super-
computers. OpenMC provides a unified abstraction of
the hardware resources in a compute node as workers,
where a worker can be a single multi-core device or a

subset of its cores (if this is permitted), and facilitates
the exploitation of asynchronous task parallelism on the
workers. As a result, OpenMC allows different types of
devices to be utilized uniformly (without distinguishing
CPUs from accelerators) and flexibly (with a device be-
ing utilized either wholly or partially).
• We present a prototype for OpenMC, including a

basic runtime system and a compiler built on top of
GCC.
• We show that OpenMC can achieve ease of pro-

gramming, high performance, and the degree of porta-
bility desired. For the six representative applications
running on two types of compute nodes (CPU-GPU and
CPU-MIC) used in TianHe supercomputers, OpenMC
obtains about 59.60% (56.50%) of hand-tuned perfor-
mance with 11.20% (15.12%) coding overhead on CPU-
GPU (CPU-MIC) on average. In addition, OpenMC
outperforms OpenMP running on the CPUs only in two
platforms by 1.87X and 2.47X on average.

The rest of this paper is organized as follows. Sec-
tion 2 introduces OpenMC. Section 3 illustrates it with
HPL as a significant example. Section 4 describes a
prototype, including a basic runtime system and a com-
piler. Section 5 evaluates OpenMC on two types of
heterogeneous nodes. Section 6 discusses the related
work. Section 7 concludes the paper.

2 OpenMC Programming Model

We present an introduction to OpenMC, including
its execution model, memory model, API, and runtime
library.

2.1 Execution Model

Without loss of generality, we assume that MPI is
used as the inter-node programming model. There can
be several (MPI) processes running per node. OpenMC
represents an intra-node programming model that al-
lows programmers to orchestrate the execution of a sin-
gle (MPI) process, called an OpenMC program, across
the multiple devices in a node.

As shown in Fig.1, the OpenMC execution model
provides two levels of abstraction for the “software”
running on the “hardware”. All the hardware resources
in a compute node are available to an OpenMC program
as a group of workers at the logical level. The tasks in
an OpenMC program are organized at the software level
in terms of a master thread, asynchronously executing
agents that are dynamically spawned by the master (to
run in slave threads) and accs (or accelerator regions)

④http://ati.amd.com/technology/streamcomputing, Mar. 2014.
⑤PGI Accelerator Compilers, Portland Group Inc., http://www.pgronp.com/, Apr. 2014.
⑥http://www.caps-entreprise.com/openhmpp-directives/, Mar. 2014.

534 J. Comput. Sci. & Technol., May 2014, Vol.29, No.3

offloaded to workers from an agent. In this paper, a task
is an execution or invocation of an agent/acc. All the
tasks (between two consecutive global synchronization
points) will run in parallel unless their dependencies are
explicitly annotated by programmers.

Fig.1. OpenMC execution model.

The four types of entities, worker, master, agent, and
acc, are explained in more detail below.
• Worker. A worker represents a group of pro-

cessing cores with the same shared memory space. A
worker can be either an entire device (CPU or accele-
rator) or a subset of its cores. By default, the cores
in a worker require hardware coherence, so that pro-
grammers can request the conventional multi-threaded
codes (e.g., OpenMP or Pthread) to be scheduled and
executed correctly on the worker. In the absence of
hardware coherence (e.g., on GPUs), the codes must
be written to ensure global memory consistency (e.g.,
in CUDA).
• Master. As the main thread of an OpenMC pro-

gram, the master thread is responsible for managing
agents and accs, handling I/O requests, and communi-
cating with (the master threads of) the other OpenMC
programs. Like an OpenMP program, the master
thread of an OpenMC program is created and termi-
nated at the entry and exit of the OpenMC program
respectively. The master thread is executed serially on
the host.
• Agent. An agent is a code segment that consists

of some serial and parallel regions. As shown in Fig.1,
an agent may have no parallel region, or have multiple
parallel regions and organize them in terms of tightly
coupled acc regions as well as handle the required data
communication and synchronization. Spawned asyn-
chronously by the master thread, an agent starts its
execution as a task, with its serial regions running on
the host and its accs running on some workers. The
OpenMC runtime system decides when an agent can
be scheduled and how.
• Acc. An acc region is a parallel region, a paral-

lel loop, or a function, marked in an agent, which is
executed on a worker. How an acc is mapped to a par-
ticular worker is determined by a worker directive (will

be discussed in Subsection 2.3) or the OpenMC runtime
system. To exploit the performance characteristics of
some accelerators more effectively, an acc region can be
written in a domain-specific language, such as CUDA.

We discussed the three limitations in Section 1 re-
garding existing directive-based intra-node program-
ming models. OpenMC address them 1) by abstracting
heterogeneous hardware resources in a compute node
uniformly as workers and 2) by exploiting asynchronous
task parallelism in an OpenMC program efficiently on
the workers. In addition, our preliminary experience,
as reported in Section 5, suggests that intra-node asyn-
chronous task parallelism integrates well with inter-
node MPI communications.

2.2 Memory Model

In principle, the OpenMC memory model is similar
to those adopted by existing ones such as OpenACC[8]

and OpenHMPP. In an OpenMC program, the serial
code in an agent runs on the host, where the master
thread runs. As a result, their program states are mu-
tually visible. However, programmers are able to cre-
ate agent-private copies for certain variables (e.g., loop
variables) for a particular agent.

The cores in a worker share the same memory space.
If two workers have different memory spaces, then data
movement between the two spaces is either annotated
by programmers or deduced by the OpenMC compiler.
For example, explicit data transfers will happen for
agents and acc regions running on workers with dif-
ferent memory spaces.

An agent is responsible for managing data com-
munication and synchronization required by its accs.
Presently, data movement between two workers must
always be done via the host even if both represent ac-
celerators.

2.3 API

We describe the OpenMC API, which enables pro-
grammers to annotate code in a style that is conceptua-
lly similar to OpenMP, except that OpenMP’s sentinel
“!$omp” is replaced by “!$omc”. Presently, OpenMC
can be used to annotate C programs.

Table 1 lists the OpenMC directives, together with
their clauses, which fall into three categories: 1) hard-
ware abstraction, which is defined by using the worker
directive, 2) task management, which is accomplished
by using agent and acc directives, and 3) synchroniza-
tion, which is specified by atomic, wait and bi-barrier
directives. As an agent/acc directive can be modified
with data clauses specifying data movement, OpenMC
does not have data directives.

At this stage, we have kept OpenMC simple and in-
cluded only the core features essential to demonstrate

Xiang-Ke Liao et al.: Programming Model for TianHe Supercomputers 535

Table 1. OpenMC Directives and Their Clauses

Directive Clauses

Worker name(type:id[:subid1-subid2:stride], string)

Agent flag(expr), deps(expr1[:expr2]), private(list),
on(list), priority(n), time(kind, expr), copyin(list),
copyout(list), copy(list), create(list)

Acc flag(expr), deps([expr1:]expr2), time(kind, expr),
copyin(list), copyout(list), copy(list), create(list),
present(list), implemented-with(list)

Atomic read, write, update, capture

Wait all, flag(expr1[:expr2])

Bi-barrier flag(expr)

its effectiveness. Once we have gained more experience
with OpenMC, we expect to enrich OpenMC with more
directives to turn it into a more productive program-
ming model. Below we describe the current OpenMC
directives in three subsections.

2.3.1 Hardware Abstraction

A worker directive is used to define a group of
cores in a multi-core device (CPU or accelerator) with
the same memory space as a worker. When its solo
clause in Table 1 is used, the worker is named as string
and comprises the cores specified in the range subid1-
subid2:stride from the id -th device of type type. If only
type:id is given, the worker denotes the entire device,
which is typically the case for GPUs.

Note that workers with different names are logically
different even if they share some cores. Programmers
should be aware of the resulting performance implica-
tions if they opt to organize hardware resources in this
way.

Just like a variable declaration in C, a worker di-
rective introduces its name into the scope where it is
declared. This enables different abstractions to be de-
fined at different scopes to achieve better performance
while also keeping annotated code better structured, as
will be discussed in Subsection 3.4.

2.3.2 Task Management

In OpenMC, programmers use agent and acc direc-
tives for task management as described below.

Agent. An agent directive defines an agent as a code
region containing some parallel loops and/or function
invocations in an OpenMC program. During the execu-
tion of the master thread, an agent is asynchronously
spawned to run as a relatively independent task in a
(slave) thread. An agent directive plays a similar role
as a task directive in OpenMP. The clauses given in
Table 1 for an agent directive are straightforward, ex-
cept for 1) deps, which allows task dependences to be

identified, and 2) on, which suggests a list of execut-
ing workers for the accs contained in the agent being
defined.

The acceptable clauses for an agent directive are:
• flag(expr). This clause assigns a unique identifier,

obtained as the runtime value of expr, to this particular
execution (or task) of the agent. Programmers must
ensure that between two consecutive global synchro-
nization points (in the master thread), different exe-
cutions of the same or different agents have different
IDs. Otherwise the program behavior is undefined.
• deps(expr1[:expr2]). This clause dictates that the

current agent cannot start until the agent (acc) with an
ID of expr1 (expr1 :expr2) has finished. The OpenMC
runtime system will ensure that the dependence is sati-
sfied before the current agent can proceed.
• private(list). This requests the variables on list

from the master thread to be privatized in the current
agent. This clause is often used when an agent is nested
inside a loop to make its loop variable agent-private.
• on(list). This clause identifies all potential workers

used for executing the acc regions in the current agent.
When such an acc is ready, the OpenMC runtime sys-
tem will schedule it to run on the first idle worker found
from list and defer its execution otherwise. All the
workers on list are restricted to share the same mem-
ory space. As a result, a clause on data movement us-
ing copyin/copyout/copy/create (described below) can
be uniformly applied to all the workers.
• priority(n). This clause states that all the acc re-

gions in the current agent will run with a priority of
n. The lowest priority is 0, which is the default. The
OpenMC runtime system will schedule a given set of
acc regions in non-decreasing order of their priorities.
This clause is associated with an agent directive instead
of an acc directive, because all the accs in an agent
are tightly coupled and will run with the same priority.
Note that agents are not assigned priorities; their serial
codes run on the host scheduled by the host OS.
• time(kind, expr). This clause advises the OpenMC

runtime system to monitor the execution time of the
agent for abnormal behavior. If the agent runs longer
(shorter) than the time given in expr (in seconds) when
kind is ubound (lbound), a warning is issued. This helps
detect abnormal nodes in large-scale systems.
• copyin/copyout/copy/create(list). If an acc region

in the current agent is scheduled to run on a worker
that does not share the same memory space as the host,
one of these data clauses can be used to define explicit
data movement between the two memory spaces. Be-
having similarly in OpenACC[8], copyin, copyout, and
copy allocate the memory for the variables on list on
the worker and copy data from the host to the worker,

536 J. Comput. Sci. & Technol., May 2014, Vol.29, No.3

or back, or both, before the agent starts its execution,
and release the memory at its end. Note that create
only allocates the memory for list.

In summary, an agent is a portion of an OpenMC
program including a code region and a data region.
All agents are asynchronously spawned from the master
and run potentially in parallel unless their dependen-
cies are annotated.

Acc. An acc directive marks a parallel code region in
an agent, as illustrated in Fig.1. Among its nine clauses
given in Table 1, seven are also applicable to an agent
directive and two are new. The seven clauses, flag, deps,
time, copyin, copyout, copy, and create, which can also
modify an agent directive, have similar semantics.

A flag(expr) modifies an acc directive to assign a
unique ID to this invocation of the acc. The accs in an
agent must be executed with different IDs. By using
a deps([expr1 :]expr2) clause, programmers can specify
a dependent agent (acc) within an ID of expr1 :expr2
(expr2 in the same agent). Note that a data clause,
copyin/copyout/copy/create, can modify both an agent
directive and an acc directive. Whenever possible, data
movement should be done at the level of agents to
avoid redundant data transfers and exploit producer-
consumer locality among the accs in an agent.

Let us examine the two new clauses for an acc di-
rective:
• present(list). This clause states that the data on

list are available on the worker executing the acc. Note
that if no copyin/copyout/copy/create/present clause is
given, then the OpenMC compiler will deduce which of
the five clauses should be applied.
• implemented-with(list). OpenMP remains to be

the most widely used standard for SMP[9]. In addi-
tion, a lot of legacy OpenMP code has been written.
For these two reasons, OpenMC presently makes use of
the OpenMP API, by default, to allow parallel regions,
such as parallel loop and parallel section, to be iden-
tified as accs in an agent. For a worker that does not
support OpenMP, an acc running on it can be a list of
implementations written in the languages on list in that
order, using e.g., implemented-with(CUDA,OpenCL).
The corresponding compilers will be invoked to gene-
rate a correct executable for the acc in each case. By
default, implemented-with(OpenMP) is assumed.

2.3.3 Synchronization

There are three types of synchronization directives,
atomic, wait, and bi-barrier, which are used in the mas-
ter and/or an agent but outside an acc. In an acc re-
gion, which is presently implemented in OpenMP or
domain-specific languages such as CUDA and OpenCL,
any synchronization operations required are imple-

mented using these languages.
Atomic. As multiple agents run in different threads,

accesses to some shared variables must happen atomi-
cally. An atomic directive is used to guarantee the
atomicity of some operations performed by the mas-
ter thread and asynchronously executing agents. The
four associated clauses, read, write, update, and capture
are carried over from the atomic directive in OpenMP
3.1.

Wait. A wait directive has two clauses:
• all. If the wait directive appears in the master

thread, an all clause instructs the master to wait for
all spawned agents to finish. In this case, the directive
serves as a global synchronization point. If the wait di-
rective appears in an agent, an all clause instructs the
agent to wait for all its generated acc regions to fin-
ish. There is an implicit wait directive at the end of an
agent. The default clause for a wait directive is all.
• flag(expr1[:expr2]). This clause instructs the un-

derlying master/agent to wait until the dependent
agent/acc specified has finished. If the runtime sys-
tem fails to find the dependent agent/acc, this clause is
ignored.

Bi-barrier. This directive allows a pair of agents to
synchronize with each other at some specified points.
A bi-barrier directive has only one clause, flag(expr).
Consider two agents, A1 specified with flag(expr1) and
A2 specified with flag(expr2). By inserting a bi-barrier
flag(expr2) in agent A1 and a bi-barrier flag(expr1) in
agent A2, the two agents perform a barrier synchro-
nization at the points marked by the two directives. To
avoid deadlock, the runtime system will allow one agent
to resume its execution if it detects that the matching
agent does not exist (since a matching bi-barrier direc-
tive is missing). In this case, such a bi-barrier behaves
like a wait directive.

2.4 Runtime Library

OpenMC provides a set of runtime functions to help
programmers manage workers and tasks. For exam-
ple, programmers can call bool omc test free(name) to
query the specified (logical) worker to see if it is busy
executing a task or not. Whether the worker shares
some cores with another worker physically is irrelevant
for this query.

3 HPL: A Programming Example

We illustrate how to apply OpenMC to parallelize
HPL (High-Performance Linpack) for a compute node
in the TianHe-2 supercomputer. HPL is used by
the Top500 (Green500) list to rank the fastest (most
energy-efficient) supercomputers in the world.

Subsection 3.1 describes the architecture of a com-

Xiang-Ke Liao et al.: Programming Model for TianHe Supercomputers 537

pute node in TianHe-2. Subsection 3.2 reviews the HPL
algorithm. Subsection 3.3 describes our OpenMC HPL
for this node. In Subsection 3.4, we discuss how to de-
fine a logical worker abstraction and make the trade-off
between performance and portability.

3.1 TianHe-2 Compute Node

As shown in Fig.2, a single compute node consists of
two 8-core Intelr Xeonr CPUs and three Intelr Xeonr

PhiTM coprocessors (MIC). Further architectural de-
tails about this node is given under “CPU-MIC” (Plat-
form B) in Table 2.

Fig.2. Compute node in TianHe-2.

Table 2. Two Types of TianHe Compute Nodes

Platform A: CPU-GPU B: CPU-MIC

CPU Intelr Xeonr Intelr Xeonr
E5-2680 E5-2670

Number of CPU 2 2

Accelerator Nvidia Intelr
M2050 GPU Xeonr PhiTM

Number of Accelerators 2 3

Memory 64GB 96GB

Host compiler GCC4.7.2 GCC4.7.2

Accelerator compiler CUDA-5.0 ICC 13.0.0

The two CPUs share the same memory space while
each MIC has its own separated memory. As the cores
in an MIC are cache-coherent, OpenMP is inherently
supported.

3.2 HPL

The baseline algorithm[10] is sketched in the top of
Fig.3. HPL solves a system Ax = b of linear equations
of by performing LU factorization with pivoting. As a
blocked algorithm, (A, b) is partitioned into nb × nb

Fig.3. HPL: baseline and look-ahead algorithms.

blocks and block-cyclically distributed to a two-
dimensional (2D) process grid.

For each participating process, each iteration of its
main loop proceeds in five steps: 1) panel factoriza-
tion (PF) performed on a panel of nb columns of the
matrix allocated to the process, 2) broadcast (BR) for
sending the factored panel to the other processes, 3)
swap for pivoting (SW), 4) DTRSM, and 5) DGEMM
for updating the trailing matrix, the remaining part of
the matrix. DTRSM and DGEMM are amenable to
acceleration with MIC as they are compute-intensive.
BR and SW will run on the host as they are memory-
and I/O-intensive (both within and across the nodes).
PF can run on the host or accelerators.

To exploit the inherent parallelism on parallel sys-
tems, a look-ahead algorithm[10], as illustrated in the
bottom of Fig.3 is used. Upd combines DTRSM and
DGEMM to work on the trailing matrix. In this case,
PF i, BRi and SW i at iteration i can be performed in
parallel with Updi−1 from iteration i−1, subject to the
underlying data dependencies.

3.3 OpenMC HPL

Fig.4 sketches our OpenMC version of the look-
ahead HPL algorithm. In general, an OpenMC pro-
gram works on a set of nb×nb blocks of a given matrix
allocated to it in a block-cyclic manner. For simpli-
city, we assume that our OpenMC program works on a
sub-matrix of size N ×N .

Hardware Abstraction. The fiver workers, including
three MIC workers (M0∼M2) and two CPU workers
(P0∼P1), are defined in lines 1∼5, one per device in a
TianHe-2 node. A CPU worker consists of 16 threads
exposed by the OS.

Task Management. There are seven agents, num-
bered 1∼7, which execute the tasks in HPL, as depicted
in Fig.5. To facilitate their pipelined execution as dis-
cussed below, agent 2 runs at a priority of 1 and the
remaining six at 0.

Agent 1 is invoked only once in the prologue, by per-
forming PF 0 and BR0 (on the first panel) and SW 0 at
the first iteration on the host (lines 8∼11). The other
six agents are invoked repeatedly inside the main loop
(line 13). Agent 7 performs PF i and BRi (on the i-th
panel) and SW i for each subsequent iteration i on the
host (lines 52∼55).

Agents 2∼6 (lines 15∼50) are responsible for per-
forming Upd on the trailing matrix, denoted as A′

below. Agent 2 (lines 15∼16) updates the first nb
columns of A′ on M0. Setting its priority to 1 allows
it to be scheduled earlier, so that agent 7, which uses
the updated columns of A′ from agent 2 (indicated by
deps(i)), can start working on the next iteration as soon

538 J. Comput. Sci. & Technol., May 2014, Vol.29, No.3

1 #pragma omc worker name(MIC:0,"M0")
2 #pragma omc worker name(MIC:1,"M1")
3 #pragma omc worker name(MIC:2,"M2")
4 #pragma omc worker name(CPU:0:0-15:1,"P0")
5 #pragma omc worker name(CPU:1:0-15:1,"P1")
6 ...
7 // prologue
8 #pragma omc agent //Agent 1
9 {

10 PF(0); BR(0); SW(0);
11 }
12 #pragma omc wait all
13 for(i = nb; i < N; i += nb) // main loop
14 {
15 #pragma omc agent flag(i) on(M0) priority(1) //Agent

2
16 Upd(i, nb);
17 ...
18 #pragma omc atomic capture
19 { j = i + nb; }
20 #pragma omc agent on(M0) private(jstart) //Agent 3
21 while(1){
22 if(omc_test_free(M0))
23 {
24 #pragma omc atomic capture
25 {jstart = j; j += N_MIC;}
26 if(jstart < N)
27 Upd(jstart, N_MIC);
28 else break;
29 }
30 else continue;
31 }
32
33 /*codes on M1 and M2 are the same as that on M0 */
34 #pragma omc agent on(M1) private(jstart) //Agent 4
35 {...}
36 #pragma omc agent on(M2) private(jstart) //Agent 5
37 {...}
38
39 #pragma omc agent on(P0, P1) private(jstart) //Agent

6
40 while(1){
41 if(omc_test_free(P0)||omc_test_free(P1))
42 {
43 #pragma omc atomic capture
44 {jstart = j; jstart += N_CPU;}
45 if(jstart < N)
46 Upd(jstart, N_CPU);
47 else break;
48 }
49 else continue;
50 }
51 ...
52 #pragma omc agent deps(i) //Agent 7
53 {
54 PF(i/nb); BR(i/nb); SW(i/nb);
55 }
56 #pragma omc wait all
57 }
58 ...
59 void Upd(jstart, n_col)
60 /* Update columns [jstart, min(jstart+n_col-1, N)] */
61 {
62 ...
63 #pragma omc acc flag(jstart)
64 DTRSM(jstart, n_col);
65 #pragma omc acc deps(jstart)
66 DGEMM(jstart, n_col);
67 ...
68 }

Fig.4. High-level sketch of the OpenMC HPL.

Fig.5. Seven agents in the OpenMC HPL.

as possible. After the first nb columns of A′ are up-
dated, its remaining columns are updated by agents
3∼6 inside four while loops. Agents 3, 4 and 5 run
on M0, M1 and M2, respectively, while agent 6 runs
on P0 and P1. Each MIC agent will asynchronously
update N MIC columns of A′ each time and the CPU
agent settles with N CPU columns as long as their desi-
gnated workers are free. Note that N MIC and N CPU
are tunable parameters. As a result, all hardware re-
sources are fully utilized.

The Upd function invoked by agents 2∼6 contains
two acc regions, where the second one depends on the
first one. To save space, their associated data clauses
are omitted.

There are some differences between agents 1 and 6
even both run on the host. Agent 1, which contains
no accs, runs on all the CPU cores of the host subject
to the host OS. As for agent 6, its serial code runs on
the host but its accs run on P0 and/or P1 under the
OpenMC runtime system.

Synchronization. Each of the wait directives in lines
12 and 56 ensures that PF i, BRi and SW i are done be-
fore Updi can start. The accesses to the shared variable
j in the master thread and agents 3∼6 are safe as they
are atomic.

3.4 Discussion

Worker Abstraction. Admittedly, programming
massively heterogeneous systems is not easy. Given a
large sequential program to parallelize with OpenMC,
domain-expert programmers and computer scientists
may often work together to define a suitable “worker
abstraction” of the hardware resources in a node so
that they can be uniformly and adequately exploited.
Furthermore, some “model” abstractions for represen-
tative HPC applications can be made available for a
given node, allowing them to be leveraged by program-
mers for other applications. Even if such an abstraction
is not used, programmers would still need to spend the
same or even more efforts thinking about how to offload
computations to different devices in a node, albeit in ad
hoc way.

Device Partitioning. In Fig.4, each MIC is a worker
as a whole. However, an MIC coprocessor allows its
subset of cores to be used independently as a worker,
just like an SMP processor. This improves resource ef-
ficiency, thereby boosting application performance, as
evaluated in Section 5.

Multiple Abstractions. According to Subsec-
tion 2.3.1, programmers can define different abstrac-
tions in different scopes, thereby improving load bal-
ance adaptively, especially for irregular applications. In
the OpenMC HPL, as the iteration proceeds, the trail-

Xiang-Ke Liao et al.: Programming Model for TianHe Supercomputers 539

ing matrix becomes smaller and smaller. Agents 3∼5
will each have insufficient workload to saturate an MIC.
In this case, programmers can use a different abstrac-
tion, by splitting an MIC into multiple workers and is-
suing more agents to run on the MIC, as demonstrated
below:

1 if (the trailing matrix is smaller than a threshold)
{

2 #pragma omc worker name(MIC:0:0-29:1, "M00")
3 #pragma omc worker name(MIC:0:30-59:1,"M01")
4 #pragma omc agent on(M00,M01) private(jstart)//Agent

3
5 // similarly for Agents 4 and 5
6 }

In Section 5, we will evaluate the performance bene-
fits of this adaptive scheme for HPL.

Portable Performance. The Holy Grail for software
is portable performance. In reality, however, a trade-
off between portability and performance must be made.
Given a compute node that is different from Fig.2, pro-
grammers are expected to provide a different worker
abstraction and possibly modify the on clauses (for
mapping accs to workers). The other directives for
task management and synchronization may hopefully
remain unchanged. However, for a new node with radi-
cally different devices (e.g., accelerators), a quite differ-
ent parallelization strategy may be employed, regard-
less of which directive-based model is used.

To harness the full potential of TianHe supercom-
puters, we tend to trade portability for performance
while still maintaining a unified abstraction in terms of
workers across different OpenMC implementations of
the same application for different compute nodes. In
Section 5, we show that such abstraction helps reduce
programming efforts when porting OpenMC applica-
tions across different platforms.

4 Reference Implementation

We describe a prototyping framework for OpenMC,
as depicted in Fig.6, which consists of a compiler and a

Fig.6. OpenMC framework.

basic runtime system. Presently, OpenMC allows pro-
grammers to annotate programs written in C (the
host language) and supports two types of accelerators,
NVIDIA GPUs and Intel MIC. Accs running GPUs
are written in CUDA, indicated with an implemented-
with(CUDA) clause, and accs running on MIC (and the
host) are parallelized using OpenMP, indicated with an
implemented-with(OpenMP) clause.

4.1 OpenMC Compiler

Fig.7 outlines the source-to-source compilation pro-
cess for an OpenMC program. Implemented in GCC
4.7, our compiler handles the OpenMC directives based
on an extension of GCC’s codebase for handling the
OpenMP directives. The source code of an OpenMC
program is first parsed by a directive parser. A di-
rective of a particular type, such as worker, agent or
atomic, is represented as a node of that type in the
intermediate representation of the program.

Fig.7. OpenMC compiler.

An OpenMC program, after its agents and accs have
been processed, will be compiled by the host (C) com-
piler into the master thread, which can be viewed a
special agent.

The agent generator processes each agent in an
OpenMC program as follows. As an agent takes care of
the data communication for its accs, the data clauses for
the agent and its accs are replaced by data movement
operations. In addition, every synchronization direc-
tive found is replaced by a call to an equivalent library
function. Specifically, an atomic, wait or bi-barrier di-
rective is replaced by a library call to agent atomic,
agent wait or agent bi-barrier. Then the transformed
agent code is compiled into an executable by the host
C compiler. Finally, the agent code is replaced with a
library call to agent create, by passing it with a pointer
to the executable, together with agent-specific informa-
tion collected from the corresponding agent directive.

The acc generator scans each acc directive in an
agent and compiles its acc region (using a compiler
for the language, specified with an implemented-with
clause, in which the acc is written). Then the acc
generator replaces the acc region by a library call to
acc create, by passing with it a pointer to the acc exe-

540 J. Comput. Sci. & Technol., May 2014, Vol.29, No.3

cutable, together with acc-specific information collected
from its acc and agent directives.

4.2 OpenMC Runtime System

The runtime API includes those discussed in Sub-
section 2.4 and others like agent create exposed to the
OpenMc compiler. The three managers are described
below.

4.2.1 Worker Manager

The worker manager simply maintains a list of work-
ers, with the state of each worker being either busy or
idle. Whenever a worker is allocated to run an acc or
has finished executing an acc, its state is updated ac-
cordingly.

4.2.2 Agent Manager

As shown in Fig.8, this manager is responsible for
creating, scheduling and, freeing agent objects. Four
queues are maintained: “ready”, “running”, “suspend”,
and “finished”.

Fig.8. Architecture of the agent manager.

During the execution of the master thread, agents
are asynchronously spawned. Every call to agent create
causes its associated agent to be created and initiali-
zed. Then the agent is inserted into the suspend
queue if it has some dependent tasks specified by a
deps(expr1[:expr2]) clause and the ready queue other-
wise. Just after the agent has finished, its destructor,
agent destroy, is called to free the agent object.

During the execution of an agent, whenever some
synchronization is performed, a call to agent atomic,
agent wait or agent bi-barrier is made. As shown in
Fig.8, agent scheduling is triggered by an execution of
any of the five library functions, called an agent schedul-
ing point. Depending on the nature of a scheduling
point, the agent manager will reorganize the four queues
appropriately. For example, an agent will be moved
into the ready queue if its dependent tasks are all in
the finished queue or a global synchronization pointer
is reached (in which the case some annotated dependent

tasks are non-existent). The agent manager will issue a
warning when a cyclic dependence is detected and will
break the dependence arbitrarily. When scheduling an
agent in the ready queue to run on the host, the agent
manager will try to reuse an idle thread maintained in
the thread pool for efficiency considerations.

4.2.3 Acc Manager

The acc manager, as shown in Fig.9, proceeds simi-
larly as the agent manager, except for a few differences.
First, the four queues of the same nature are maintained
for scheduling accs. Second, acc create and acc destroy
are the analogues of agent create and agent destroy for
accs. Third, calls to acc create and acc destroy are the
only acc scheduling points when acc scheduling is per-
formed. Unlike agents, synchronization operations in
an acc running on a worker do not affect acc schedul-
ing. There are two cases. If the worker is an accelera-
tor, then it executes the acc independently of the host.
If the worker is the host, how the acc is executed de-
pends on the host OS. At an acc scheduling point, the
acc manager will schedule an acc from the ready queue
with the highest priority possible to run on a free worker
according to the on clause for the containing agent.

Fig.9. Architecture of the acc manager.

5 Experimental Evaluation

We use six representative programs on two types
of TianHe compute nodes to evaluate OpenMC in
terms of programmability, portability, and performance
achieved. Due to the lack of directive-based open-
source compilers supporting both GPUs and Intel MIC,
we will compare OpenMC with OpenMP (on the host
only) and hand-tuned implementations.

5.1 Platforms

Table 2 lists two types of compute nodes used.
Platform A stands for an upgraded compute node in
TianHe-1A[4] (enhanced with new CPUs and one more
GPU) and platform B represents a node from TianHe-2
(shown in Fig.2).

Xiang-Ke Liao et al.: Programming Model for TianHe Supercomputers 541

Each platform consists of two eight-core CPUs, each
being equipped with one or two GPUs/Xeon PhiTM

accelerators. For CPU-GPU, the peak performance of
two CPUs is 0.35 TFLOPS and that of two GPUs is
1.03 TFLOPS. For CPU-MIC, the peak performance of
two CPUs is 0.33 TFLOPS and that of the three Xeon
Intelr PhiTM coprocessors is 3 TFLOPS.

5.2 Benchmarks

Six representative applications are selected in HPC:
• Swim and Mgrid: taken from SPEC CPU2000[11],

Swim is for shallow water wave modeling and Mgrid a
multi-grid solver computing a 3D potential field;
• HPL[10]: well-known and illustrated in Section 3;
• MPC, SWP and Lared-p[12-13],⑦: these are real-world

applications on molecular dynamics. MPC (Metal Par-
ticles Collision) simulates two blocks of copper parti-
cles moving with high velocity into each other. SWP
(Shock Wave Propagation) simulates the propagation
of shockwave through metallic foams. Lared-p, a 2D
and 3D parallelized particle-in-cell (PIC) code series, is
used to study laser-plasma interaction.

Our prototype, as shown in Fig.6, supports C only.
Swim and Mgrid are available in Fortran. We have de-
veloped and used their equivalent versions in C below.

5.3 Programmability and Portability

To show that OpenMC simplifies programming, Ta-
ble 3 gives a feel about programming efforts made in
terms of LOC added/deleted/changed to the original
programs by comparing OpenMC with OpenMP and
hand-tuning for platforms A and B. In hand-crafted
versions, the platform-specific APIs (CUDA for A and
SCIF/COI for B), are used. Note that annotating a
program may necessitate code deletion and modifica-
tion to make it more amenable to annotation.

In the “OpenMP” column, the result for HPL is
not given. The HPL program contains no OpenMP
directives itself, as it relies on the BLAS library for
parallelization.

Table 3. LOC Added/Deleted/Changed

Appli- Original OpenMP OpenMC (%) Hand-Tuned (%)

cations (%) A B A B

Swim 435 5.98 12.41 19.08 23.14 26.10

Mgrid 490 14.69 19.80 23.06 25.01 32.97

HPL 34 270 - 9.82 14.10 29.88 43.25

MPC 2 561 3.05 7.26 12.18 29.78 35.33

SWP 2 320 3.75 9.87 13.28 32.47 36.43

Lared-p 4 570 3.28 8.00 8.99 29.96 38.45

Avg. ∆ - 6.15 11.20 15.12 28.37 35.42

To annotate each program, programmers write
slightly more code with OpenMC than with OpenMP
but much less than with hand-turning. On average, the
LOC added/deleted/changed for OpenMP, OpenMC,
and hand-tuning are 6.15%, 11.20% on A and 15.12%
on B, and 28.37% on A and 35.42% on B, respectively.
Note that for each program, Intel MIC is harder to pro-
gram than GPUs for both OpenMC and hand-tuning.
Platform A boasts one more accelerator than platform
B. Under OpenMC, more agent and acc regions are
therefore required for B than A, as explained shortly,
in order to fully exploit the three accelerators. In hand-
tuning, the hand-tuned vectorization in terms of Intel’s
intrinsics for Intel MIC on platform B incurs some more
coding efforts.

We have collected more statistics to understand fur-
ther programming complexity reduced and the degree
of portability supported by OpenMC. Table 4 lists the
number of workers, agents, accs, and synchronization
directives introduced (under columns 2∼5) for a pro-
gram. Note that the number of directives added to a
program on a platform (column 6) is smaller than the
corresponding total LOC added in Table 3, due to some
necessary modifications made to the program to facili-
tate its annotation, as mentioned earlier.

To assess the degree of portability provided when mi-
grating OpenMC programs between platforms, column
“A → B” gives the total LOC modified to the OpenMC
programs written for A (CPU-GPU) when ported to B
(CPU-MIC). Due to the architectural differences, some

Table 4. Statistics on the OpenMC Directives

Applications Number of Workers Number of Agents Number of Accs Number of Synchronization Total A → B

A B A B A B A B A B (%)

Swim 4 8.0 20.0 28.0 20 28.0 4.0 4 48.0 68.0 11.83

Mgrid 4 8.0 22.0 32.0 22 32.0 10.0 12 58.0 84.0 16.06

HPL 4 15.0 158.0 194.0 86 98.0 75.0 88 323.0 395.0 7.72

MPC 4 14.0 42.0 59.0 42 59.0 18.0 24 106.0 156.0 10.38

SWP 4 8.0 36.0 48.0 36 48.0 15.0 26 91.0 130.0 7.85

Lared-p 4 11.0 61.0 70.0 40 40.0 15.0 20 120.0 141.0 7.87

Avg. 4 10.7 56.5 71.8 41 50.8 22.8 29 124.3 162.3 10.28

⑦ http://www.iapcm.ac.cn/jasmin/index.php?page=lared-p, Apr. 2014.

542 J. Comput. Sci. & Technol., May 2014, Vol.29, No.3

agent and acc regions had to be re-organized. However,
on average, only 10.28% of the code was modified. In
addition, the programmer who originally annotated a
program for A will spend much less time migrating the
annotated program for A to B, compared with when
the programmer annotates the program directly for B.
Our estimated saving in terms of programming time
is 63.3%. This validates our claim in Subsection 3.4
that by providing a unified abstraction of hardware re-
sources, OpenMC makes it easier to migrate OpenMC
programs between platforms.

5.4 Performance

OpenMC is an intra-node programming model. We
evaluate OpenMC by comparing it with OpenMP and
hand-tuning. For the six benchmarks selected, the
OpenMC and hand-tuned programs will run on plat-
forms A and B. The OpenMP programs will run on
the two CPUs only in each platform.

5.4.1 Platform A: CPU-GPU

Table 5 gives the problem sizes used for the six
benchmarks on this platform. Fig.10 plots the speedups
of OpenMP, OpenMC and hand-tuning against the se-
rial execution time. With 16 cores on both CPUs,
OpenMP achieves an average speedup of 10.6x, with
HPL enjoying the highest speedup (15.8x) due to the
abundance of parallelism in the code. Accelerated fur-
ther by two GPUs, OpenMC and hand-tuning obtain
better speedups, 19.7x and 33.1x, respectively, on ave-
rage, with HPL still being the best performer. Note that
Lared-p is not sped up much in all the three cases as
it has a large portion of serial code. Swim is the second
worst due to its low ratio of compute-to-memory access
and a large number of I/O operations incurred.

Table 5. Problem Sizes on Platform A (CPU-GPU)

Applications Size

Swim ref dataset

HPL N = 40 000

SWP 1 680 000 particles

Mgrid ref dataset

MPC 8 000 particles

Lared-p 686 000 particles

Fig.10. Speedups on platform A (CPU-GPU).

For each benchmark, the acc regions in its OpenMC
version are written in CUDA and compiled by the
NVCC compiler. These accs are expected to run as ef-
ficiently as the corresponding parts in the hand-tuned
version. However, the hand-tuned version is (expect-
edly) much faster, because its code has been crafted
to hide communication latency as much as possible by
overlapping CPU computation, GPU computation, and
CPU-GPU communication. This is one area where
OpenMC will be improved in future work.

Fig.11 shows the speedups achieved by OpenMC and
hand-tuning for the four real-world applications with
several different problem sizes. Just like hand-tuning,
OpenMC is scalable. Lared-p does not scale well in
both cases because it has a large portion of serial code,
as noted earlier.

5.4.2 Platform B: CPU-MIC

Table 6 lists the problem sizes used for the six bench-
marks for CPU-MIC. Fig.12 is an analogue of Fig.10 for
CPU-MIC. As in the case of CPU-GPU, HPL remains to
be the best performer under OpenMP, OpenMC, and
hand-tuning on CPU-MIC. By comparing Figs. 10 and
12, we observe that OpenMP achieves similar speedups
on both platforms: 10.6x on CPU-GPU and 10.4x on
CPU-MIC. However, OpenMC and hand-tuning have
delivered better average performance improvements on
CPU-MIC than on CPU-GPU. The average speedups
of OpenMC and hand-tuning are 25.58x and 45.3x, re-
spectively.

Table 6. Problem Sizes on Platform B (CPU-MIC)

Applications Size

Swim ref dataset

HPL N = 40 000

SWP 2 250 000 particles

Mgrid ref dataset

MPC 120 000 particles

Lared-p 1 372 000 particles

In addition to tapping into the full potential of
multiple accelerators, OpenMC also allows the full-
processing power of CPUs to be exploited (uniformly
as workers). Take HPL as an example. Its speedup
achieved by OpenMC will drop from 33.88x to 24.4x if
the two CPUs, i.e., P0 and P1 (in lines 4∼5 in Fig.4)
are not used.

Fig.13 is an analogue of Fig.11, demonstrating again
the scalability of OpenMC on platform B (CPU-MIC).

As in the case of CPU-GPU, hand-tuning delivers
much better performance than OpenMC for our bench-
marks on CPU-MIC, for the same key reason. The
hand-tuned code has been elaborately designed to max-
imize computation and communication overlap by using
the SCIF/COI API for MIC.

Xiang-Ke Liao et al.: Programming Model for TianHe Supercomputers 543

Fig.11. Scalability of OpenMC and hand-tuned code on platform A (CPU-GPU). (a) HPL. (b) MPC. (c) SWP. (d) Lared-p.

Fig.12. Speedups on platform B (CPU-MIC).

In Fig.12, each MIC is used entirely as one worker.
As discussed in Subsection 3.4, when the trailing sub-
matrix is small enough, we can split a single MIC into
multiple workers and map multiple agents to run on
the same MIC. Fig.14 demonstrates some potential im-
provements obtained using this parallelization strategy,
denoted as OpenMC-SPLIT.

In this experiment, each MIC is partitioned into two
equal-sized workers when the trailing sub-matrix has
reached half of the original matrix. By providing better
load balancing, OpenMC-SPLIT outperforms OpenMC
by 21.75%, 19.57%, 23.23% and 25.53% in the four
problem sizes tested.

Finding a best partitioning strategy is beyond the
scope of this work, which may be obtained based on
domain knowledge, compiler analysis, and performance
tuning. However, OpenMC provides a unified abstrac-
tion of hardware resources that allows such paralleliza-
tion schemes to be explored.

6 Related Work

CUDA[5] and OpenCL[6] are the most widely
used programming models for heterogeneous (pre-
dominantly CPU-GPU) systems. CUDA is vendor-
specific for NVIDIA GPUs only. In contrast, OpenCL
offers a unified programming interface for a variety of
accelerators. For example, SnuCL is an OpenCL frame-
work recently proposed for heterogeneous CPU/GPU
clusters[14]. While CUDA and OpenCL are the two
most common programming environments for GPU ac-
celerators, programming directly at this level is consi-
dered to be complex and error-prone, making it difficult
to achieve portability and correctness for non-expert
programmers.

There are a number of attempts on leveraging exis-
ting parallelizing compiler techniques, which are origi-
nally developed for multiprocessors, to enable CPU-
GPU systems to be programmed with traditional lan-
guages, models and/or environments[15-26]. Some of
these attempts focus on translating C to CUDA[19],
OpenMP to CUDA[21-23], OpenACC to CUDA[27] and
X10 to CUDA[20].

Recently, directive-based programming of GPUs or
Intel MIC has become more prevalent, because it pro-
vides better productivity than CUDA and OpenCL,
allows incremental parallelization, and achieves rea-
sonable performance[7]. A number of directive-based
programming models have been introduced, including
OpenACC[8], PGI Accelerator, OpenHMPP, hiCU-

544 J. Comput. Sci. & Technol., May 2014, Vol.29, No.3

Fig.13. Scalability of OpenMC and hand-tuned code on platform B (CPU-MIC). (a) HPL. (b) MPC. (c) SWP. (d) Lared-p.

Fig.14. Speedups of HPL with and without splitting a single MIC

into two equally-split workers.

DA[28], OmpSs[29], Lime[30-31] and “Offload”[32]. Fur-
thermore, the OpenMP Program Committee has
recently set up a sub-committee to develop an
accelerator-oriented programming model[33].

A directive-based approach is promising for pro-
gramming massively heterogeneous systems. How-
ever, as discussed in Section 1, existing directive-
based models are inadequate for programming com-
pute nodes in such large-scale systems, since they
are mostly designed to offload a single task to a sin-
gle device, failing to exploit asynchronous task para-
llelism uniformly and adequately across the multiple
CPUs and accelerators in a node. While OpenHMPP
supports multiple accelerators, we are not aware of
any directive-based open-source compiler that supports
multiple accelerators, including both GPUs and Intel
MIC. The OpenACC/OpenHMPP-based CAPS com-
pilers are proprietary. OpenMC aims to address these
limitations by providing a unified abstraction of the

hardware resources (CPUs, GPUs, and Intel MIC) as
workers in a node and by exploiting asynchronous task
parallelism across all the workers.

Asynchronous parallelism is widely supported in
asynchronous PGAS models, such as UPC[34], X10[35],
and Chapel[36]. While simplifying programming by
exposing an abstracted shared space to programmers,
these models are focused on distributed shared-memory
clusters.

In addition to automatic parallelization and
directive-based programming for heterogeneous sys-
tems, Thrust[37] provides library interfaces that ab-
stract the details of these systems. Phalanx[38] rep-
resents a unified programming model for heterogeneous
systems, with an asynchronous task model providing
constructs for launching large, structured collections
of cooperating threads, thus supporting both coarse-
grained task parallelism and fine-grained thread paral-
lelism.

Accelerators such as GPUs are constantly improv-
ing. For example, Hyper-Q supported in NVIDIA’s Ke-
pler allows concurrent GPU kernel execution from mul-
tiple processes and Intelr Xeon PhiTM allows multiple
tasks to share the same MIC. Programmers may shoul-
der the responsibility of massaging the code to produce
the desirable performance for a program. Experiences
show that such responsibility presents a major bur-
den on even expert programmers. As a directive-based
model, OpenMC provides a higher-level abstraction, al-
lowing programmers to specify directives to guide the

Xiang-Ke Liao et al.: Programming Model for TianHe Supercomputers 545

compiler in tuning program performance. However,
some performance-critical code regions can still be writ-
ten by experts, if desired, using an implemented-with
clause.

7 Conclusions

In this paper, we addressed one of the program-
ming challenges for heterogeneous systems by intro-
ducing OpenMC, a new model for intra-node program-
ming. OpenMC provides a unified abstraction for the
hardware resources in a node as workers and empha-
sizes asynchronous task parallelism, which, we believe,
is critical for harnessing the full potential of petascale
and exascale systems. An OpenMC worker can be ei-
ther an entire multi-core device or a subset of its cores,
so as to provide a flexible hardware abstraction mech-
anism. We introduced a prototype implementation
for OpenMC, including a compiler and a runtime sys-
tem. Our preliminary experience from our experiments
suggests that OpenMC is promising in terms of pro-
grammability, portability and performance achieved.

One future work is to improve OpenMC to support
computation and communication overlap to narrow the
performance gap between OpenMC and hand-tuning.
Such improvement is of great importance for heteroge-
neous systems with separate address spaces. Another
is to add new directives to provide an application-level
fault-tolerance API. During the development of large-
scale parallel computing systems, we observe that some
nodes exhibit abnormal performance behaviors from
time to time, which does not cause a system crash but
can slow down the performance of the entire system
considerably. Such abnormal performance behaviors
are often difficult to locate and fix. We have found
that associating a time clause with an agent directive
is useful in detecting these abnormal nodes, especially
in TianHe-2 with 16 000 compute nodes.

References

[1] Owens J, Luebke D, Govindaraju N et al. A survey of gen-
eral purpose computation on graphics hardware. Computer
Graphics Forum, 2007, 26(3): 80-113.

[2] Sherlekar S. Tutorial: Intel many integrated core (MIC) ar-
chitecture. In Proc. the 18th ICPADS, Dec. 2012, p.947.

[3] Yang X, Liao X, Xu W et al. TH-1: China’s first petaflop su-
percomputer. Frontiers of Computer Science in China, 2010,
4(4): 445-455.

[4] Yang X, Liao X, Lu K et al. The TianHe-1A supercomputer:
Its hardware and software. Journal of Computer Science and
Technology, 2011, 26(3): 344-351.

[5] Kirk D. NVIDIA CUDA software and GPU parallel comput-
ing architecture. In Proc. International Symposium on Mem-
ory Management, Oct. 2007, pp.103-104.

[6] Gaster B, Howes L, Kaeli D et al. Heterogeneous Comput-
ing with OpenCL — Revised OpenCL 1.2 Edition. Morgan
Kaufmann, 2013.

[7] Lee S, Vetter J. Early evaluation of directive-based GPU
programming models for productive exascale computing. In
Proc. Int. Conf. High Performance Computing, Networking,
Storage and Analysis, Nov. 2012, Article No.23.

[8] Wienke S, Springer P, Terboven C et al. OpenACC: First ex-
periences with real-world applications. In Proc. the 18th Int.
Conf. Euro-Par Parallel Processing, Aug. 2012, pp.859-870.

[9] Chapman B, Gropp W, Kumaran K et al (eds.). OpenMP in
the Petascale Era Springer, 2011.

[10] Petitet A, Whaley R, Dongarra J et al. HPL — A
portable implementation of the high-performance linpack
benchmark for distributed-memory computers, Sept. 2008.
http://www.netlib.org/benchmark/hpl/, Mar. 2014.

[11] Henning J. SPEC CPU2000: Measuring CPU performance in
the new millennium. Computer, 2000, 33(7): 28-35.

[12] Plimpton S. Fast parallel algorithms for short-range molecular
dynamics. J. Computational Physics, 1995, 117(1): 1-19.

[13] Zhang A, Mo Z. Parallelization of lared-p codes for simu-
lation of laser plasma interactions. Technical Report, ZW-
J-2002045, Institute of Applied Physics and Computational
Mathematics, 2002.

[14] Kim J, Seo S, Lee J et al. SnuCL: An OpenCL framework for
heterogeneous CPU/GPU clusters. In Proc. the 26th ACM
Int. Conf. Supercomputing, Jun. 2012, pp.341-352.

[15] Cui H, Wang L, Xue J et al. Automatic library generation
for BLAS3 on GPUs. In Proc. IEEE Int. Parallel and Dis-
tributed Processing Symposium, May 2011, pp.255-265.

[16] Di P, Wan Q, Zhang X et al. Toward harnessing DOACROSS
parallelism for multi-GPGPUs. In Proc. the 39th Int. Conf.
Parallel Processing, Sept. 2010, pp.40-50.

[17] Di P, Xue J. Model-driven tile size selection for DOACROSS
loops on GPUs. In Proc. 2011 Int. Conf. Euro-Par Parallel
Processing, Aug. 2011, pp.401-412.

[18] Diogo M, Grelck C. Towards heterogeneous computing with-
out heterogeneous programming. In Proc. the 13th Int.
Symp. Trends in Functional Programming, June 2012,
pp.279-294.

[19] Baskaran M, Ramanujam J, Sadayappan P. Automatic C-to-
CUDA code generation for affine programs. In Proc. the 19th
Int. Conf. Compiler Construction, Mar. 2010, pp.244-263.

[20] Cunningham D, Bordawekar R, Saraswat V. GPU program-
ming in a high level language: Compiling X10 to CUDA. In
Proc. the 2011 ACM SIGPLAN X10 Workshop, Jun. 2011,
Article No.8.

[21] Ohshima S, Hirasawa S, Honda H. OMPCUDA: OpenMP ex-
ecution framework for CUDA based on Omni OpenMP com-
piler. In Proc. the 6th Int. Workshop. OpenMP, June 2010,
pp.161-173.

[22] Lee S, Min S, Eigenmann R. OpenMP to GPGPU: A com-
piler framework for automatic translation and optimization.
In Proc. the 14th PPoPP, Feb. 2009, pp.101-110.

[23] Lee S, Eigenmann R. OpenMPC: Extended OpenMP pro-
gramming and tuning for GPUs. In Proc. the 2010
ACM/IEEE Int. Conf. High Performance Computing, Net-
working, Storage and Analysis, Nov. 2010, pp.1-11.

[24] Hormati A, Samadi M, Woh M et al. Sponge: Portable stream
programming on graphics engines. In Proc. the 16th Int.
Conf. Architectural Support for Programming Languages and
Operating Systems, Mar. 2011, pp.381-392.

[25] Yang Y, Xiang P, Kong J et al. A GPGPU compiler for mem-
ory optimization and parallelism management. ACM SIG-
PLAN Notices, 2010, 45(6): 86-97.

[26] Wu B, Zhao Z, Zhang E et al. Complexity analysis and algo-
rithm design for reorganizing data to minimize non-coalesced
memory accesses on GPU. In Proc. the 18th PPoPP, Feb.
2013, pp.57-68.

546 J. Comput. Sci. & Technol., May 2014, Vol.29, No.3

[27] Reyes R, Lopez I, Fumero J et al. accull: An user-directed
approach to heterogeneous programming. In Proc. IEEE the
10th ISPA, Jul. 2012, pp.654-661.

[28] Han T, Abdelrahman T. hiCUDA: A high-level directive-
based language for GPU programming. In Proc. the 2nd
Workshop on General Purpose Processing on Graphics Pro-
cessing Units, Mar. 2009, pp.52-61.

[29] Duran A, Ayguadé E, Badia R et al. OmpSs: A proposal for
programming heterogeneous multi-core architectures. Paral-
lel Processing Letters, 2011, 21(2): 173-193.

[30] Auerbach J, Bacon D, Burcea I et al. A compiler and run-
time for heterogeneous computing. In Proc. the 49th Annual
Conference on Design Automation, Jun. 2012, pp.271-276.

[31] Dubach C, Cheng P, Rabbah R et al. Compiling a high-level
language for GPUs: (Via language support for architectures
and compilers). In Proc. the 33rd PLDI, Jun. 2012, pp.1-12.

[32] Cooper P, Dolinsky U, Donaldson A et al. Offload–
automating code migration to heterogeneous multicore sys-
tems. In Proc. the 5th HiPEAC, Jan. 2010, pp.337-352.

[33] Beyer J, Stotzer E, Hart A et al. OpenMP for accelerators.
In Proc. the 7th Int. Conf. OpenMP in the Petascale Era,
June 2011, pp.108-121.

[34] UPC Consortium. UPC language specifications v1.2. Tech-
nical Report LBNL-59208, Lawrence Berkeley National
Lab, 2005. http://upc.gwu.edu/docs/upc specs 1.2.pdf, Mar.
2014.

[35] Saraswat V, Bloom B, Peshansky I et al. X10 language spec-
ification version 2.4. Technical Report, IBM, January 2012,
http: //x10.sourceforge.net / documentation/languagespec/x-
10-latest.pdf, Mar. 2014.

[36] Chamberlain B, Callahan D, Zima H. Parallel programmabil-
ity and the Chapel language. International Journal of High
Performance Computing Applications, 2007, 21(3): 291-312.

[37] Hwu W W. GPU Computing Gems Jade Edition. Morgan
Kaufmann, 2011.

[38] Garland M, Kudlur M, Zheng Y. Designing a unified pro-
gramming model for heterogeneous machines. In Proc. the
International Conference on High Performance Computing,
Networking, Storage and Analysis, Nov. 2012, Article No.67.

Xiang-Ke Liao received his B.S.
and M.S. degrees both in com-
puter science from Tsinghua Univer-
sity, Beijing, and National Univer-
sity of Defense Technology (NUDT),
Changsha, in 1985 and 1988, respec-
tively. He is now a professor and the
dean at the School of Computer Sci-
ence, NUDT. His research interests
include parallel and distributed com-

puting, high-performance computer systems, operating sys-
tem, and networked embedded system. He is a member of
IEEE and ACM.

Can-Qun Yang received the
M.S. and Ph.D. degrees both in com-
puter science from NUDT, in 1995
and 2008, respectively. Currently he
is a professor at NUDT. His research
interests include programming lan-
guages and compiler implementation.
He is the major designer dealing with
the compiler system of the TianHe
supercomputer.

Tao Tang received his Ph.D. de-
gree in computer science from the
School of Computer science, NUDT,
in 2011. He is currently an asso-
ciate professor at the university. His
research interests lie in high perfor-
mance computing and compiler opti-
mizations.

Hui-Zhan Yi received his Ph.D.
degree in computer science from
NUDT. He is currently an asso-
ciate professor at the university. His
research interests include program-
ming languages, parallel program-
ming, and compiler optimizations
and verifications.

Feng Wang received his Ph.D.
degree in computer science from
NUDT, in 2013. He is currently
an associate professor at the uni-
versity. His research interests in-
clude programming languages, paral-
lel programming, and compiler opti-
mizations and verifications. He is a
member of CCF and ACM.

Qiang Wu received his M.S. and
Ph.D. degrees both in computer sci-
ence from NUDT, in 2009 and 2013,
respectively. His research interests
include compiler techniques for high
performance, compiler techniques for
embedded systems, and parallel pro-
gramming. He is a member of IEEE.

Jingling Xue received his B.S.
and M.S. degrees in computer sci-
ence and engineering from Tsinghua
University in 1984 and 1987, respec-
tively. He received his Ph.D. de-
gree in computer science and engi-
neering from Edinburgh University
in 1992. He is currently a professor of
computer science and engineering at
the University of New South Wales

(UNSW). He leads the Programming Languages and Com-
pilers Group and its subgroup Compiler Research Group
(CORG) at UNSW. His research interests are programming
languages, compiler optimisations, computer architecture,
parallel computing, distributed systems and cluster com-
puting, and embedded systems.

