
Ding C, Xiang X, Bao B et al. Performance metrics and models for shared cache. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 29(4): 692–712 July 2014. DOI 10.1007/s11390-014-1460-7

Performance Metrics and Models for Shared Cache

Chen Ding1 (丁 晨), Xiaoya Xiang1 (向晓娅), Bin Bao1 (包 斌), Hao Luo1 (罗 昊), Ying-Wei Luo2 (罗英伟)
and Xiao-Lin Wang2 (汪小林)

1Department of Computer Science, University of Rochester, Rochester, NY 14627-0226, U.S.A.
2School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

E-mail: cding@cs.rochester.edu; {sappleing, bin.bao}@gmail.com; hluo@cs.rochester.edu; {lyw, wxl}@pku.edu.cn

Received March 1, 2014; revised May 14, 2014.

Abstract Performance metrics and models are prerequisites for scientific understanding and optimization. This paper
introduces a new footprint-based theory and reviews the research in the past four decades leading to the new theory. The
review groups the past work into metrics and their models in particular those of the reuse distance, metrics conversion,
models of shared cache, performance and optimization, and other related techniques.

Keywords memory performance metric, cache sharing, reuse distance

1 Introduction

Computing is ubiquitous in science, engineering,
business, and everyday life. Most of today’s applica-
tions, whether for cloud, desktop, or handheld, run on
multicore processors. As a result, they interact with
peer programs. It is beneficial to minimize the nega-
tive interaction. The benefit is important not just for
good performance but also for stable performance, not
just for parallel code but also for sequential applications
running in parallel.

This paper surveys the theories and techniques to
measure and improve program interaction on multicore
processors. A program is either a sequential application
or a parallel application being treated as a single party
in interaction. Here we assume that programs do not
share data or computation, but they share the hard-
ware host. We call it a solo-run if a program runs by
itself on a machine and a co-run if multiple programs
run in parallel.

Cache sharing is a primary cause of co-run interfer-
ence. Modern applications take most of their time to
access memory, and most memory accesses — over 99%
typically — happen in cache. A commodity system to-
day has 2 to 8 processors (sockets), 2 to 6 physical cores
per processor, and 2 to 4 hyperthreaded logical cores
per physical core. Nearly a hundred programs can run
together in parallel.

Partitioned cache solves the interference problem
via program isolation. However, cache partitioning is
wasteful when only one program is running and ineffi-
cient when co-run programs share data. Current multi-
core processors use a mix of private and shared cache.
For example, Intel Nehalem has 256 K L2 cache per core
and 4 MB to 8MB L3 cache shared by all cores. IBM
Power 7 has 8 cores, with 256 KB L2 cache per core and
32MB L3 shared by all cores.

Depending on which CPU they are using, programs
interact in different ways. Physical cores have private
caches at the first and second levels but share the last
level cache. Logical cores share the caches at all levels.
Different processors do not share the caches. However,
they share the memory bandwidth, and the demand
of memory bandwidth depends entirely on the perfor-
mance of the cache. In addition, some caching policies,
e.g., inclusive cache on Intel machines, may induce in-
direct interaction, where a program may lose data in
its private cache due to the data access by another pro-
gram in the shared cache.

The advent of cache sharing the 2000s is reminiscent
of the middle 1960s when time sharing was invented.
Since then, the problem of memory management has
been well studied and solved, and modern operating
systems routinely manage memory for a large number
of programs. However, the problem of cache sharing is
more complex.

Survey
The work is partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61232008, the

NSFC Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao under Grant No. 61328201, the
National Science Foundation of USA under Contract Nos. CNS-1319617, CCF-1116104, CCF-0963759, an IBM CAS Faculty Fellowship
and a research grant from Huawei. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the funding organizations.

Xiang has graduated and is now working at Twitter Inc. Bao has graduated and is now working at Qualcomm Inc.
©2014 Springer Science +Business Media, LLC & Science Press, China

Chen Ding et al.: Performance Metrics and Models for Shared Cache 693

Cache is managed by hardware, not the operating
system. Cache has multiple levels and varying mixes of
exclusivity and sharing. Events of cache accesses and
replacements are orders of magnitude more frequent
than memory access and paging. A single program may
access cache a billion times a second and can wipe out
the entire content of the cache in less than a millisec-
ond. The intensity multiplies when more programs are
run in parallel. Furthermore, the size of cache is fixed
on a given machine. One cannot get online and buy
more cache as one can with memory.

Cache interference is asymmetrical, non-linear, and
circular. The asymmetry was shown experimentally by
Zhang et al.[1] at Rochester and confirmed by later
studies. In a pair-run experiment we conducted using
Zhang’s setup. One program becomes 85% slower, while
its partner is only 15% slower. The interference changes
from program to program. The effect depends not as
much on how many programs are running as on which
programs are running. Finally, the effect is circular. As
a program affects its peers, it is also affected by them.

The solution to these problems requires a special th-
eory called the theory of locality. Locality is a basic
property of a computing system. Denning[2] defined lo-
cality as “a concept that a program favors a subset of its
segments during extended intervals (phases).” There
is a difference between the data that a program has
and the data that the program is actively using. The
“active” data is a subset, which Denning[3] called the
working set.

Performance depends on how fast a computer system
provides access to the active data subset. The access
time of the other data is irrelevant. Locality analysis
is therefore a prerequisite to memory design, for the
oft quoted reason “we cannot improve what we can-
not measure.” In this article, we review the metrics for
measuring and techniques for improving performance
in shared cache.

2 Footprint Theory of Locality

2.1 Footprint

As a locality metric, the footprint measures the
amount of active data usage. Given a program exe-
cution, we extract the data accesses as a linear sequence
of memory addresses or object IDs. The sequence is
called an access trace or an address string. A window
is a sub-sequence of consecutive accesses. The length
of a window is measured by time, either logically based
on the number of accesses in the window or physically
based on the time when the first and the last accesses
were made.

Given a window, the footprint is the amount of data
accessed in the window, i.e., the size of the “active”
data. For an execution, the footprint is defined for each
window length as the average footprint of all windows
of that length. In a dynamic execution, the data usage
may change in different length windows and in differ-
ent windows of the same length. The footprint shows
the change over all window lengths. For each length, it
shows the average footprint, which is a single, unique
value.

For example, consider three data blocks a, b, c. Fig.1
shows two patterns of data accesses. One has a stack ac-
cess pattern, where the data block last accessed is first
reused. The other has a streaming pattern, where the
blocks are traversed in the same order. The footprints
are shown for all length-3 windows, four in each trace.
The footprint of a trace is the average. For length-3
windows, the footprint, fp(3), is 2.5 in the stack trace
and 3 in the streaming trace. Therefore, the stream-
ing access has a greater data activity for that window
length. The complete footprint is defined for all window
lengths and would count in the amount of data access
in all windows of all lengths.

Fig.1. Amount of data accessed in length-3 windows in two ac-

cess traces: (a) stack accesses and (b) streaming accesses. The

footprint of a trace is the average amount. It is defined for each

window length. When the length is 3, the footprint, fp(3), is 2.5

in the stack trace and 3 in the streaming trace.

In practice, the footprint is too numerous to enume-
rate. The number of time windows is quadratic to the
length of the trace①. Assuming a program running for
10 seconds on a 3 GHz processor, we have 3E10 CPU
cycles in the execution and 4.5E20 distinct windows.

Brock et al.[4] described program analysis as a Big
Data problem, and showed the scale of the problem by
the number of time windows in an execution. Fig.2
shows that as the length of execution increases from
1 second to 1 month, the number of CPU cycles (n)
ranges from 3E9 to 2E15, and the number of distinct
execution windows

(
n
2

)
from 4.5E18 to 5.8E29, that is,

from 4 sextillion to over a half nonillion.
As a dynamic analysis problem, the scale quickly

reaches the size of any static problem. As a compa-
rison, the figure shows the radius of the Milky Way in
centimeters, 48 sextillion, and the radius of the observ-
able universe, 44 octillion.

①If the trace length is n, the number of windows (and hence footprints) is
(n
2

)
+ n =

n×(n+1)
2

or O(n2) asymptotically.

694 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

Fig.2. Scale of the problem shown by the number of footprint

windows in a program execution, compared to the size of a galaxy

and the universe. Reproduced from [4].

For system design, it may not be very useful to
consider very large windows, since caching decisions
are usually based on information on the recent exe-
cution. For programming, however, it is necessary
to analyze the full execution to find opportunities of
global optimization. This is shown by Zhong et al. in
whole-program locality analysis, which analyzes the full
length of reuse distances to see how it changes with the
input[5], and in affinity-based data layout, which groups
structure fields based on the distribution of long reuse
distances[6].

The purpose of a footprint theory is to overcome the
enormity of the analysis problem, characterize the ac-
tive data usage in all windows, and make it useful for
system analysis and optimization.

2.2 Footprint Theory

For locality analysis, the basic unit of information
is a data access, and the basic relation is a data reuse.
The theory of locality is concerned with the fundamen-
tal properties of data accesses and reuses, just as the
graph theory is with nodes and their links.

The footprint theory consists of a set of formal defini-
tions, algorithms, and properties based on the concept
of the footprint. This subsection introduces the four
components of the theory and their supporting tech-
niques, based on the material published in a series of
papers[7-12].

Footprint Measurement. The enormous scale of all-
window analysis is tackled by a series of three algo-
rithms. Each is two orders of magnitude more efficient
than the previous one.
• Footprint distribution analysis, which enumerates

all O(n2) footprints in O(n log m) time, where n is the
length of the trace and m the maximal footprint.
• Average footprint analysis, which reduces the cost

to linear time O(n) by computing the average without
enumerating all footprints.
• Footprint sampling, which samples limited-size

windows and further reduces the cost.
The distribution analysis is the first algorithm to

measure the all-window footprint. As it actually enu-
merates all footprints, it finds the largest, smallest, me-
dian, average, and any percentile footprint for each win-
dow length. However, the cost is sometimes thousands
of times slowdown compared to the speed of the original
program.

The second algorithm computes just the average
footprint, and the cost is reduced from a thousand times
slowdown to about 20 times. Being a linear time algo-
rithm, it is scalable in that the cost increases propor-
tionally to the length of the program execution.

The cache on a real machine has a finite size, so an
analysis does not have to consider windows whose foot-
print is greater than the cache size. In addition, the
behavior of a long running program tends to repeat it-
self. Furthermore, on modern processors, the analysis
can be carried out on a separate core in parallel with
the analyzed execution. Footprint sampling specializes
and parallelizes the analysis for a specific machine and
program. The average cost is reduced to 0.5% of the
running time of the unmodified execution.

The algorithmic development attains immense gains
in both computational complexity and implementation
efficiency. As the baseline, the distribution analysis is
the first viable solution for precise all-window analysis.
The second and the third algorithm each improves effi-
ciency by another order of magnitude, eventually mak-
ing it fast enough for real-time analysis. This has a
beneficial impact elsewhere, because the footprint can
be used to compute other locality metrics, as we will
see in the third part of the footprint theory.

Composability. A locality metric is composable if the
metric of a co-run can be computed from the metric of
solo-runs. If co-run programs do not share data, the
footprint is composable. Let the average footprint of
a program be prog .fp(x) for window length x. If we
have k programs prog1, prog2, . . . , progk actively shar-
ing the cache, the aggregate footprint is the sum of the
individual footprints.

corun.fp(x) =
k∑

i=1

prog i.fp(x).

In comparison, the miss ratio is not composable. We
will prove it later in Subsection 3.6.3. Intuitively, the
co-run miss ratio will change compared to the solo-run
miss ratio, since each program has now a fraction in-
stead of the whole cache. The change in miss ratio,
as mentioned earlier, is asymmetrical, non-linear, and

Chen Ding et al.: Performance Metrics and Models for Shared Cache 695

affected by circular feedback. As a result, we cannot
directly add the solo-run miss ratio to compute the co-
run miss ratio, as we can with the footprint.

Another locality metric is reuse distance. Reuse dis-
tance does not depend on cache parameters, but as we
will explain in Subsection 3.2, neither is it composable.

As mentioned earlier, we can measure the average
as well as the distribution of footprints. The average
footprint is immediately composable. The distribution,
although composable, requires a convolution which is
expensive to compute and difficult to visualize. In the
following, the term “footprint” means the average foot-
print.

The next question is whether the footprint composa-
bility can help in analyzing the miss ratio and other
locality metrics in shared cache. This is solved in the
third part of the new theory.

Locality Metrics Conversion. Locality has different
measurements, just like temperature can be measured
in different scales, Celsius or Fahrenheit. For locality,
the two most common metrics are miss ratio for hard-
ware design and reuse distance for program optimiza-
tion.

Central to a locality theory is the conversion between
different metrics. The footprint theory shows that the
footprint is convertible with a number of other met-
rics. Let mr(c) be the miss ratio for cache size c. It
can be computed from the footprint using the following
formula[10]:

mr(c) =
fp(x + ∆x)− fp(x)

∆x
,

where c = fp(x). If these are continuous functions, we
would say that the miss ratio is the derivative of the
footprint.

The higher order mathematics implies mathematical
properties. Since the derived metric, the miss ratio, is
non-decreasing, the source metric, the footprint, must
be not just non-decreasing, but also concave. Indeed,
the monotonicity and concavity were proved in two suc-
cessive papers[9-10].

The conversion is reversible. If we have the miss ra-
tios of all cache sizes, we can reverse the formula and
compute the average footprint. The reverse process is
the analog of integration for a discrete function.

Combining footprint composition and metrics con-
version, we can see immediately that if the co-run miss
ratio (miss ratio seen by the shared cache) can be com-
puted from the aggregate footprint. Fig.3 shows the
derivation by adding the individual footprints and then
converting the sum into the co-run miss ratio.

Since the conversion formula is reversible, we can
switch between the footprint and the miss ratio and co-

Fig.3. Joint use of two theoretical properties: composition (dot-

ted line) and conversion (solid lines).

mpose the latter indirectly through the former. First,
we compute the individual footprint from the individual
miss ratios (of all cache sizes). Then we add the individ-
ual footprints and finally compute the co-run miss ratio
in the shared cache (of all sizes). Fig.3 shows this type
of deduction and others that are made possible by com-
position and conversion. In particular, the figure shows
how to compose another locality metric, the reuse dis-
tance. We use the terms private reuse distance (PRD)
and concurrent reuse distance (CRD), as introduced by
[13-14].

The solution of composition raises the problem of de-
composition. The co-run miss ratio does not tell us the
contribution from each program. To see the individual
effects, we need more elaborate models.

Composable Locality Models. We say a model is com-
posable if the co-run result can be computed from solo-
run results, not just for the co-run group as a whole,
but also for the co-run effect on each individual pro-
gram. In other words, a composable model must be
both composable and decomposable.

As a composable metric, the footprint has the fol-
lowing useful traits:
• Machine Independent. The analysis is based on

data accesses, not cache misses. It takes a single pass
to analyze a trace for all cache sizes, and the result is
not affected by program instrumentation. In compa-
rison, it is inescapable for direct measurement to be
affected by instrumentation.
• Clean-Room Statistics. The footprint of one pro-

gram can be measured in a co-run environment, unper-
turbed by other programs. The clean-room effect solves
the chicken-or-egg problem of direct measurement: the
behavior of one program depends on its peer, but the
peer behavior in turn depends on itself.
• Peer Independent. The footprint of a program

is independent of co-run peers. The analysis of cache
sharing does not require actual cache sharing. The co-
run effect is computed rather than measured.
• Statically Composable. There are 2P co-run com-

binations for P programs. The footprint model can
predict the interference in these 2P runs by testing P
single-program runs. For the P sequential runs, we can

696 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

choose to run them one by one or some of them in para-
llel to increase speed. The composition is static if there
is no actual co-run; otherwise we say the composition
is dynamic. Here dynamic composition means parallel
testing, while static composition does not need parallel
testing at all.

To compute the co-run effect on each individual pro-
gram, this dissertation describes three models. The
models solve the decomposition problem as a composi-
tion problem: how one program is affected by its peers.
• Composition by Reuse Distance and Footprint.

Variations of this model were invented by Thiebaut
and Stone[15] and Suh et al.[16] for time-sharing systems
(time-switched cache sharing) and Chandra et al.[17] for
multicore (continuous cache sharing). These studies es-
timated the footprint since there was no feasible ways
to measure it. After the invention of the fast measure-
ment, the cost of the model became limited by the time
required for reuse distance measurement[9-10].
• Composition by Footprint Only. The second model

converts the footprint into reuse distance, so it no
longer needs to measure the reuse distance and can be
hundreds of times faster[10].
• Composition by Program Pressure and Sensitivity.

The last model is as fast as the second model but more
intuitive and easier to use. It characterizes the behavior
of a program by two factors, pressure and sensitivity.
The two can be visualized as two curves. Performance
composition is as simple as looking up related values on
the two curves[12].

The composable models provide answers to a num-
ber of long-standing questions about shared cache, in-
cluding a machine independent way to compare pro-
grams by their shared cache behavior, the correlation
between a program’s cache interference and its miss ra-
tio, and the performance of cache sharing compared
with cache partitioning[12].

These models are theoretical, and they are appealing
partly due to the generality. The footprint is defined
on a program trace without knowing co-run peers or
machine parameters (other than having shared cache).
There are many sources of error due to the fact that
the basic models do not consider the effect of cache as-
sociativity, program phase behavior, the time dilation
due to interference, the filtering effect in a multi-level
cache hierarchy, and the impact of the prefetcher. A th-
eory must be validated to be practically relevant. The
past studies have used experiments on real systems to
evaluate the theoretical models and compare their pre-
dictions with actual miss counts measured by hardware
counters[8-10,12]. They also showed extensions of the

models to consider time dilation[8,12], cache associati-
vity, and program phases[10].

3 Locality Theory from 1968

Locality was started as an observation that programs
do not use all their data at all times[2]. After decades of
research, it has been developed into an important scien-
tific field. At its foundation are locality metrics, so the
concept and its effect can be measured. Among the ba-
sic problems are the measurement speed and accuracy
of these metrics.

3.1 Miss Ratio and Execution Time

The metric of miss ratio was first used by Belady[18]

to find out how often individual policies caused page
faults. It was challenging at that time to measure
page traces and simulate the various policies on them.
Today, the hardware performance counters on modern
machines enable a tool to measure program speed and
count cache misses in real time with little cost. The per-
formance of a single program or a group of programs
can be observed directly. However, direct observation
has difficulties in characterizing the locality cleanly due
to dependences on the observation environment. These
dependences include:
•Machine Dependence. Different machines have dif-

ferent memory hierarchies and processors, so we can-
not compare the locality in different programs entirely
based on their performance.
• Instrumentation Dependence. The analysis code

itself consumes processor and cache resources. It may
not be possible to completely separate the effect of the
instrumentation.
• Peer Dependence. It is unknown how the perfor-

mance has changed due to cache sharing. It would have
required another test on an unloaded system. It is also
unknown how the performance will change if the peer
programs change.

The effect of cache on performance is often dis-
ruptive. This phenomenon was first discussed by
Denning[19] and stated as the thrashing, which happens
when the sum of the working sets exceeds the available
memory. Chilimbi once compared the phenomenon to
strolling leisurely until suddenly falling over a cliff②.
The danger is greater in a shared environment. As more
programs are added, the combined working set grows.
When it exceeds the size of the shared cache, sharp
performance drops would ensue. Being peer and ma-
chine dependent, direct testing cannot foresee a pending
calamity. What is worse, it cannot even tell whether a

②Trishul Chilimbi made this analogy in a presentation in 2002[20].

Chen Ding et al.: Performance Metrics and Models for Shared Cache 697

given parallel mix is efficient or not without testing
them individually first.

3.2 Reuse Distance

The most common metric in program characteriza-
tion is the reuse distance. For each memory access in
a trace, the reuse distance is the number of distinct
data elements accessed between this and the previous
access to the same data. Mattson et al. first defined the
concept (to model the performance of an LRU stack)
and called it the LRU stack distance[21]. LRU is a
cache management method that favors recently used
data. Recognizing it as a measure of recency, Jiang and
Zhang[22] called the metric the inter-reference recency
(IRR).

For example, the reuse distance shows the locality
of stack access and streaming access traces in Fig.4.
When a block is first accessed, the reuse distance is
infinite. When the block is reused, the reuse distance
is the number of distinct blocks accessed between the
previous access and the reuse. The reuse would miss in
(fully associative LRU) cache if and only if its reuse dis-
tance is greater than the cache size. The figure shows
that the stack trace can reuse the data in cache when
the cache size is less than 3 but the streaming trace
cannot.

Fig.4. The locality of two traces, stack accesses on the left and

streaming accesses on the right, measured by the reuse distance

of each memory reference. An access is a miss in fully associative

LRU cache if and only if its reuse distance is greater than the

cache size.

The reuse distance quantifies the locality of every
memory access. The locality of a program, or a loop
or a function inside it, is the collection of all its reuse
distances. The collective result can be represented as
a distribution. It is called a locality signature [5] and
locality profile [14].

3.2.1 Relation with Cache Performance

In the absence of cache sharing, the capacity miss ra-
tio can be written as the fraction of the reuse distance
that exceeds the cache size[21]. Let the test program be
A and cache size be C; we have

P (capacity miss byA) = P (A’s reuse distance > C).
(1)

The reuse distance is machine independent but can
give the capacity miss ratio for cache of all sizes, as the
formula shows. The locality signature can be viewed

as a discrete probability density function, showing the
probability of a memory access having a certain de-
gree of locality. The miss ratio is then the probability
function, showing the probability of the access being
a miss for a given cache size. A probabilistic adjust-
ment invented by Smith can estimate the effect of cache
conflicts in set-associative cache[23-25]. Combining the
reuse distance and the Smith formula, we can compute
the miss ratio in the cache of all sizes.

Miss Ratio Curve (MRC). The miss ratio curve
(MRC) shows the miss ratio of all its cache sizes as
a discrete function. It is easy to visualize and show
directly the trade-off between performance and cache
size. For fully associative LRU cache, the miss ratio
curve is equivalent to the reuse distance distribution, as
the preceding formula shows. The problem is equivalent
in theory to the argument whether it is measuring the
miss ratio curve or the reuse distance. In practice, the
miss ratio curve is defined for only practical cache sizes,
i.e., powers of two between some range, e.g., 32KB and
8MB. The reuse distance has the full range between 1
and the size of program data.

The full range of reuse distance represents the com-
plete temporal locality. The miss ratio curve is a pro-
jection of the full information on a subset of cache
sizes. The two would be equivalent if the miss ratio
is defined for all cache sizes between 1 and infinity.
The unbounded size of the representation is necessary,
as shown by the theoretical result of Snir and Yu[26]

that temporal locality cannot be fully encoded using a
bounded number of bits. In the following, we review
the prior work on both the reuse distance and the miss
ratio curve.

3.2.2 Locality Analysis and Optimization

Reuse distance has found many uses. The locality
signature shows how the cache behavior changes with
the program input, and the changes can be predicted by
whole-program locality analysis[5,25,27], which was used
to predict the miss ratio of all inputs and cache sizes[28].
Fang et al. modeled locality signature for each memory
reference and used it to find critical memory loads and
important program paths[27,29]. Marin et al.[25] mode-
led the locality signature at reference, loop, and func-
tion levels to predict performance across different com-
puter architectures. Beyls and D’Hollander[30-31] built
a program tuning tool SLO, which identifies the cause
of long distance reuses and gives improvement sugges-
tions for restructuring the code. In addition to cache
misses, reuse distance has been used to analyze the re-
sponse time in server systems[32] and the usage pattern
in web reference streams[33]. Zhong et al.[5] classified
these and other uses of reuse distance as “Five Dimen-

698 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

sions of Locality” and reviewed the analysis techniques
for program input, code, data, execution phase, and
program interaction.

Reuse distance provides a common foundation to
model program behavior, predict machine performance,
and guide program optimization. Locality analysis and
profiling are to infer, measure, and decompose reuse
distances, and locality optimization is to shorten long
reuse distances. The analysis and the optimization
are free of machine, instrumentation, and peer depen-
dences. The downside, however, is the complexity of
measuring reuse distance.

3.2.3 Direct Measurement

Reuse distance is one of the stack distances defined
in the seminal paper in 1970 by Mattson et al.[21] The
stack algorithm in the paper needs O(nm) time to pro-
file a trace with n accesses to m distinct data. The
efficiency has been steadily improved over the past four
decades. In 1975, Bennett and Kruskal[34] organized
the trace as a tree and reduced the cost to O(n log n).
In 1980, Olken[35] made the tree compact and reduced
the cost further to O(n log m).

The Olken algorithm has been the most efficient
asymptotic solution (for full reuse distance measure-
ment) until 2003, when Ding and Zhong gave an
approximation algorithm[5,36]. The approximation
guarantees a relative precision, e.g., 99%, and takes
O(n log log m) time, which is effectively linear to n for
any practical data size m. Zhong et al. also gave an
algorithm that guarantees a constant error bound and
does not reduce the asymptotic cost[37]. In an indepen-
dent implementation, Schuff et al.[38] reported that the
average cost of the O(n log log m) method is as high as
several thousand times slowdown.

Kim et al.[39] gave a linear-time algorithm to mea-
sure the miss ratio for a fixed number of cache sizes,
which may be used to approximate reuse distance.

There are practical improvements to the Olken algo-
rithm. Cheetah implemented the Olken algorithm using
a splay-tree[40]. It became part of the widely used Sim-
pleScalar simulator[41]. Almasi et al.[42] used a different
tree representation to further improve the efficiency. A
greater efficiency can be obtained through sampling and
parallelization (Subsections 3.2.6 and 3.2.7).

Zhong et al. gave a lower bound result showing
that the space cost of precise measurement is at least
O(n log n), indicating that reuse distance is fundamen-
tally a harder problem than streaming, i.e., counting
the number of 1’s in a sliding window, which can be
done using O(n) space[5].

3.2.4 Approximation by Reuse Time

While the reuse distance counts the number of dis-
tinct memory accesses, the reuse time counts all ac-
cesses. It is simply the difference in logical time be-
tween the previous access and the current reuse and
can be measured quickly in O(n) time. The working
set theory uses the reuse time (inter-reference gap) to
compute the time-window miss rate[43]. If we take time-
window miss rate as an approximation of the LRU miss
rate, we may say that the working set theory is the first
approximation technique.

Two series of more recent studies have used the
reuse time to compute the reuse distance. The first
is StatCache and StatStack by Hagersten and his
students[44-47],③, and the second is time-based locality
approximation[48-50]. For brevity, we name the latter
technique after its lead author and call it the Shen con-
version.

Berg and Hagersten solved the following equation for
the miss ratio R[44]. Let N be the length of the trace,
h(t) be the number of accesses whose reuse time is t, and
f(k) be the probability that a cache block is replaced
after k misses. The cache is assumed to have random
replacement, so f(k) = 1− (1− 1

C)k, for cache with C
blocks. The total number of misses can be computed
in two ways, and they should be equal:

NR =
∑
t=1

Nh(t)ft(R).

StatCache solves the implicit equation for the miss ratio
R using numerical methods.

In the Shen conversion[48,51], the key measure is the
interval access probability p(∆), which is the probabi-
lity of a randomly chosen datum v being accessed dur-
ing a time interval ∆. For a reuse at time distance ∆,
below is the probability that its reuse distance is k:

p(k,∆) =
(

N
k

)
p(∆)k(1− p(∆))N−k.

The formula computes the probability for k distinct
data items to appear in a ∆-long interval. It assumes a
binomial distribution given the interval access probabi-
lity p(∆), which is computed as

p(∆) =
∆∑

t=1

T∑

δ=t+1

1
N − 1

p
T
(δ), (2)

where pt = h(t)
N is the probability that an access has the

time distance t. The derivation for p(∆) can be found
in a technical report[51].

③Berg and Hagersten used the term reuse distance for what we mean by reuse time[44].

Chen Ding et al.: Performance Metrics and Models for Shared Cache 699

The two statistical techniques are successful in pre-
dicting performance. StatCache was used to model first
private cache[44-45] and then shared cache[46-47]. The
Shen conversion was used first for sequential code[48-49]

and then multi-threaded code[50,52].
Although both using statistical analysis, StatCache

and the Shen conversion are fundamentally different:
one models the random cache, and the other the LRU
cache. Next we explore the difference between random
and LRU modeling in greater depth.

3.2.5 Random vs LRU

Any statistical analysis of locality invariably makes
some assumptions about randomness. We examine
three such assumptions.

The first is random access to a cache set, which
means that a data access can happen at any cache set
with equal probability. The Smith formula uses the as-
sumption to calculate the contention in a cache set and
the effect of cache associativity[23].

The second is random cache replacement, which
means that a miss may evict any cache block with equal
probability. Under the assumption of random replace-
ment, the lifetime of a block in cache is binomially dis-
tributed over the number of cache misses. Not knowing
the miss rate, StatCache uses the relation to compute
the miss rate from the reuse time[44]. Knowing the miss
rate, West et al. computed the cache occupancy[53]. Fe-
dorova et al. devised a fair scheduling policy based on
the assumption that a set of applications divide the
cache equally if they had the same miss rate[54].

Since real cache does not use random replacement,
the accuracy of the assumption needs to be examined.
For cache occupancy, West et al. compared the pre-
diction with the actual measurement (through cache
simulation) and found that the prediction is accurate
for caches using random replacement but less so for
caches using LRU[53].

Random has two other differences from LRU. One
is well known, which is that the random replacement
cache is fully associative by definition. The other is
less recognized, which is that the cache performance is
not deterministic as the replacement decisions change
randomly every time a program is run. Fortunately,
the problem is recently solved. Zhou gave an ingenious
algorithm to compute the average miss ratio in a sin-
gle pass, without having to simulate multiple times to
compute the average[55].

The way to model LRU is using reuse distance.
Knowing the reuse distance, the Smith formula uses
it to model the LRU replacement within a cache set[23].
Not knowing the reuse distance, the Shen conversion
needs a way to compute it[48,51]. It assumes a third
type of randomness — in a time window, each data

block is uniformly randomly accessed. By computing
the reuse distance, the Shen conversion models LRU
rather than random cache replacement.

Cache models can be divided by the replacement pol-
icy: LRU or random. There is a second dimension to
compare them: the metrics used to measure window-
based locality. For random replacement, we want to
know the number of misses in a time window. There
is a (trivial) linear relation between the miss count and
the window length. For LRU, we want to know the
footprint in a window. The relation is non-linear, and
it is the main source of complexity in the Shen conver-
sion in particular the derivation of the interval access
probability.

Cache models use two types of window-based local-
ity: the miss count and the footprint. The miss count
is linear but cache size dependent. In comparison, the
footprint is non-linear but cache size independent. For
example, StatCache has to solve its equation for every
cache size, while the Shen conversion produces the reuse
distance and the miss ratio for all cache sizes. The past
solutions represent different trade-offs between mode-
ling simplicity and power. With the footprint theory,
we have a new option, which is to compute the reuse
distance using the footprint, which we can measure as
accurately as we can with the miss count.

The three modeling methods, StatCache, the Shen
conversion, and the footprint conversion, are not gua-
ranteed to always give the correct reuse distance. In-
deed, a precise linear-time solution is unlikely given the
lower bound result in Zhong et al.[5] Among the three,
the footprint theory is unique in formulating the condi-
tion for correctness, which is the reuse hypothesis[10].

3.2.6 Sampling Analysis

Sampling is usually effective to reduce the cost of
profiling. Choosing a low sampling rate may reduce the
amount of profiling work by factors of hundreds or thou-
sands. In program analysis, bursty tracing is widely
used, where the execution alternates between short
sampling periods and long hibernation periods[20,56-57].
During hibernation, the execution happens in the origi-
nal code and has no analysis overhead.

Locality sampling, however, is tricker. Locality is
about the time of data reuse, but the time is unknown
until the access actually happens. The uncertainty has
two consequences. First, the length of the sampling pe-
riod cannot be bounded if it is to cover a sampled data
reuse pair. Second, the analyzer has to keep examining
every data access. Complete hibernation is effectively
impossible.

The problem of locality sampling is addressed by a
series of studies, including the publicly available SLO
tool[30], continuous program optimization[58], bursty

700 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

reuse distance sampling[59], and multicore reuse dis-
tance analysis[38]. Sampling can drastically reduce the
cost if sampled windows accurately reflect the behavior
of other windows[45-47].

SLO has been developed by Beyls and D’Holla-
nder[30]. It instruments a program to skip every k
accesses and take the next address as a sample. A
bounded number of samples are kept in a sample reser-
voir — hence the name reservoir sampling. To capture
the reuse, SLO checks each access to see if it reuses
some sample data in the reservoir. The instrumenta-
tion code is carefully engineered in GCC to have just
two conditional statements for each memory access (one
for address and the other for counter checking). Reser-
voir sampling reduces the time overhead from 1000-fold
slow-down to only a factor of 5 and the space overhead
to within 250 MB extra memory. The sampling accu-
racy is 90% with 95% confidence. The accuracy is mea-
sured in reuse time, not reuse distance or miss rate.

To accurately measure reuse distance, a record must
be kept to count the number of distinct data that ap-
peared in a reuse window. Zhong and Chang[59] de-
veloped the bursty reuse distance sampling, which di-
vides a program execution into sampling and hiber-
nation periods. In the sampling period, the counting
uses a tree structure and costs O(log log M) per access.
If a reuse window extends beyond a sampling period
into the subsequent hibernation period, counting uses
a hash-table, which reduces the cost to O(1) per access.
Multicore reuse distance analysis by Schuff et al.[38] uses
a similar scheme for analyzing multi-threaded code. Its
fast mode improves over hibernation by omitting the
hash-table access at times when no samples are being
tracked. Both methods track reuse distance accurately.

StatCache by Berg and Hagersten[45] is based on un-
biased uniform sampling. After a data sample is se-
lected, StatCache puts the page under the OS protec-
tion (at page granularity) to capture the next access to
the same datum. It uses the hardware counters to mea-
sure the time distance until the reuse. OS protection
is limited by the page granularity. Two other systems,
developed by Cascaval et al.[58] and Tam et al.[60], use
the special support on IBM processors to trap accesses
to specific data addresses. To reduce the cost, these
methods use a small number of samples. Cascaval et
al.[58] used the Hellinger Affinity Kernel to infer the ac-
curacy of sampling. Tam et al.[60] predicted the miss
rate curve in real time.

3.2.7 Parallel Analysis

Schuff et al.[38] combined sampling and parallel
analysis for parallel code on multicore. At the IPDPS
conference in 2012, three groups of researchers reported
that they made the analysis of even sequential pro-

grams many times faster with parallel algorithms. Niu
et al.[61] parallelized the analysis to run on a computer
cluster, while Cui et al.[62] and Gupta et al.[63] paral-
lelized it for GPU.

Unlike the reuse distance, the footprint can be eas-
ily sampled and analyzed in parallel using shadow
profiling[64-65]. By measuring the footprint and con-
verting it to reuse distance, we have shown the equiva-
lent of parallel sampling analysis for reuse distance,
which can be done in near real-time, with just 0.5% vis-
ible cost on average[10]. We note that the accuracy of
footprint conversion is conditional[10], but direct (para-
llel) measurements are always accurate.

3.2.8 Compiler Analysis

Reuse distance can be analyzed statically for sci-
entific code. Cascaval and Padua[66] used the depen-
dence analysis[67], and Beyls and D’Hollander[68] de-
fined reuse distance equations and used the Omega
solver[69]. While they analyzed conventional loops,
Chauhan and Shei[70] analyzed MATLAB scripts us-
ing dependence analysis. Unlike profiling whose re-
sults are usually input specific, static analysis can
identify and model the effect of program parameters.
Beyls and D’Hollander[68] used the reuse distance equa-
tions for cache hint insertion, in particular, conditional
hints, where the caching decision is based on program
run-time parameters. Shen et al.[71] used static and
lightweight reuse analysis in the IBM compiler for ar-
ray regrouping and structure splitting.

Using the static reuse distance analysis and the
footprint theory, Bao and Ding demonstrated a com-
piler technique for analyzing the program footprint
and discussed the potential use in peer-aware program
optimization[72-73]. In [72], they used the tiled matrix
multiply (Fig.5) as an example to show the reuse dis-
tance computed at the source level (Table 1). They also

for (jj = 0; jj < N ; jj = jj + Bj)

for (kk = 0; kk < N ; kk = kk + Bk)

for (i = 0; i < N ; i = i + 1)

for (j = jj; j < min(jj + Bj , N); j = j + 1)

for (k = kk; k < min(kk + Bk, N); k = k + 1)

C[i][j] = beta × C[i][j] + alpha ×A[i][k]×B[k][j];

Fig.5. Loop nest of tiled matrix multiply.

Table 1. Reuse Distance as a Function of the Loop Bounds

Loop Array Reuse Distance (Bytes)

k C[i][j] 8× 3

j A[i][k] 8× 1 + 8×Bk + 8×Bk

i B[k][j] 8×Bj + 8×Bk + 8×Bk ×Bj

kk C[i][j] 8×N ×Bj + 8×N ×Bk + 8×Bk ×Bj

jj A[i][k] 8×N ×Bj + 8×N ×N + 8×N ×Bj

Chen Ding et al.: Performance Metrics and Models for Shared Cache 701

showed the use of the conversion theory (Subsec-
tion 2.2) to compute the miss ratio curve and a measure
of shared-cache friendliness called the fill time.

3.2.9 Domain-Specific Modeling

To model graph algorithms, Yuan et al.[74] defined
the notion vertex distance and used statistical analysis
to derive the reuse distance. The study examines ran-
dom graphs and scale-free graphs. It shows the dual
benefits of domain-specific analysis. On the one hand,
the structure of a graph facilitates locality analysis. On
the other hand, locality analysis reveals the relation be-
tween the properties of a graph, e.g., edge density, and
the efficiency of its computation.

3.2.10 Discussion

Reuse distance is a powerful tool for program analy-
sis. It quantifies the locality of every program instruc-
tion. For a single sequential execution, the metric is
composable. For example, the composition can happen
structurally to show the locality of larger program units
such as loops, functions, and the whole program, or it
can happen temporally to show program executions as
(integer valued) signals.

There are at least two limitations. First, reuse dis-
tance is insufficient to analyze program interaction.
While programs interact at all times in the shared
cache, reuse distance provides locality information for
only reuse windows, not all windows. Second, precise
reuse distance is still costly to measure. Despite all
of the advances in sampling and parallelization, the
asymptotic cost is still more than linear. These prob-
lems will be addressed indirectly through the study of
another locality metric, the footprint.

3.3 Early Footprint

Measuring footprint requires counting distinct data
elements, and the result depends on observation win-
dows. The problem has long been studied in measur-
ing various types of reuse distances as discussed be-
fore. However, footprint measurement is a more diffi-
cult problem than reuse distance measurement. Given
a trace of length n, there is only O(n) reuse windows
but in total O(n2) footprint windows. This subsection
focuses on the measurement problem, which prior work
solved by either selecting a window subset to measure
or constructing a model to approximate.

Direct Counting for Subset Windows. Agarwal et
al.[75] counted the number of cold-start misses for all
windows starting from the beginning of a trace (cumu-
lative cold misses). Cumulative cold misses, together
with warm-start region misses, were used to evalu-

ate cache performance degradation caused by operation
system and multiprogramming activity.

The footprint in single-length execution windows
can be computed in linear time. On time-shared sys-
tems, the window of concern is the scheduling quan-
tum. On these systems, the cached data of one process
may be evicted by data brought in by the next pro-
cess. Thiebaut and Stone computed what is essentially
the single-window footprint by dividing a trace by the
fixed interval of CPU scheduling quantum and taking
the average amount of data access of each quantum[15].

Ding and Chilimbi[7] gave a sampling solution. At
each access, it measures the footprint of a window end-
ing at the current access. The length of the measured
window is chosen at random.

For an execution of length n, direct counting mea-
sures the footprint in O(n) windows. If we use direct
counting to estimate all-window footprint, we have a
sampling rate O(1

n). The sampling rate may be too low
to be statistically meaningful, or it may be sufficient in
practice. Without a solution for all-window analysis,
we would not have a way to evaluate the accuracy of
direct counting.

Footprint Equations. Suh et al.[16] and Chandra et
al.[17] used a recursive equation to estimate the foot-
print. As a window of size w is increased to w + 1, the
change in the footprint depends on whether the new
access is a miss. The equation is as follows: consider a
random window wt of size t being played out on some
cache of infinite size. As we increase t, the footprint
increases with every cache miss. Let E[wt] be the ex-
pected footprint of wt, and M(E[wt]) be the probabi-
lity of a miss at the end of wt. For window size t + 1,
the footprint either increases by an increment of one or
stays the same depending on whether t + 1 access is a
cache miss.

E[wt+1] = E[wt](1−M(E[wt]))+(E[wt]+1)M(E[wt]).

The term M(E[wt]) requires simulating sub-traces
of all size t windows, which is impractical. Suh et al.[16]

solved it as a differential equation and made the as-
sumption of linear window growth when the range of
window sizes under consideration is small. On the other
hand, Chandra et al.[17] computed the recursive relation
bottom up. Neither method can guarantee a bound on
the accuracy, i.e., how the estimate may deviate from
the actual footprint.

In addition, these approaches produce the average
footprint, not the distribution. The distribution can be
important. Consider two sets of footprints, A and B.
One tenth of A has size 10N and the rest has size 0.
All of B has size N . A and B have the same average
footprint N , but their different distribution can lead

702 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

to very different types of cache interference. With the
footprint distribution analysis[8], we now have a way
to evaluate whether the average footprint produces the
same composition results as the footprint distribution.

The past solutions on reuse distance often make simi-
lar estimates because the reuse distance is the footprint
in a reuse window. These techniques[45,48-50,76] were
mentioned in Subsection 3.2. They do not guarantee
the precision of the estimation.

3.4 Analytical Models

Instead of measuring the reuse distance or footprint,
a mathematical model may be used to characterize the
cache performance. Apex-Map uses a parameterized
model and a probe program to quickly find the model
parameter for a program and a machine[77]. Ibrahim
and Strohmaier[78] compared the result of synthetic
probing and that of reuse distance profiling, while He
et al.[79] used a fractal model to estimate the miss rate
curve through efficient online analysis.

There was much work earlier on analytical models
for memory paging performance. An extensive survey
can be found in [2]. Saltzer[80], a designer of the Multics
system, gave one simple formula (Subsection 3.6.1). He
explained that “Although it is only occasionally that
a mathematically tractable model happens to exactly
represent the real-world situation, often an approxi-
mate model is good enough for many engineering calcu-
lations. The challenge ... is to maintain mathematical
tractability in the face of obvious flaws and limitations
in the range of applicability and yet produce a useful
result.” Saltzer’s formula has been used by Strecker[81]

in cache modeling.
Another type of analytical models is the independent

reference model. Given a program with n pages, each
has an independent access probability p that adds to
1, King[82] showed that a steady miss rate exists for
fully associative caches managed by LFU, LRU, and
FIFO replacement policies. Later studies gave efficient
approximation methods for LRU and FIFO[83-84]. Gu
and Ding[85] proved a simple relation between random
access and the reuse distance distribution (which is uni-
form). The method of Dan and Towsley[84] can be used
to analyze a more general case where data is divided
into multiple groups and has different (random access)
probabilities. It is a type of composable model.

3.5 Metrics Conversion and Denning’s Law

Footprint is a form of working set. The working
set theory is the scientific basis as much for memory

management as it is for cache management. Denning
defined the working set precisely as “the set of distinct
pages referred to in a backward window of fixed size
T .”④ The average footprint for window length T is the
average working set size for all size T windows.

A breakthrough in this area is a simple formula dis-
covered by Denning④ and first published in 1972[43]. It
shows the relation between the working set size, which
is difficult to measure, and the frequency and interval
of data reuses, which are easy to measure. The formula
converts between two locality metrics. Metrics conver-
sion is at the heart of the science of locality, because
it shows that memory behavior and performance are
different displays of the same underlying property.

While the proof of Denning and Schwartz[43] de-
pends on idealized conditions in infinitely long exe-
cutions, subsequent research has shown that the work-
ing set theory is accurate and effective in managing
physical memory for real applications.

There are three ways to quantify the working set:
as a limit value in Denning’s original paper[3], as the
time-space product defined by Denning and Slutz[86],
and as the all-window footprint just defined in Subsec-
tion 3.3 (initially in [7]). The equation Denning dis-
covered holds in all three cases. In our 2013 paper[10],
we stated it as a law of locality and named it after its
discoverer:

Denning’s Law of Locality 1. The working set is
the second-order sum of the reuse frequency, and con-
versely, the reuse frequency is the second-order differ-
ence of the working set.

The footprint theory subsumes the infinitely long
case in the original working set theory and proves Den-
ning’s law for all executions. It gives a theoretical ex-
planation to the long observed effectiveness of the work-
ing set theory in practice.

Easton and Fagin[87] gave another important for-
mula for the conversion between the cold-start and
warm-start miss ratios. The authors called it their
“recipe”. The recipe reveals that the (cold-start) life-
time in cache size C is the sum of the inter-miss times of
the (warm) cache for sizes smaller than C. They found
that their “estimate was almost always within 10∼15
percent of the directly observed average cold-start miss
ratio.” They further quoted the analysis of [88] as cor-
roborating evidence. In these studies, as in the work of
Denning and Schwartz[43], a program is assumed to be
a stationary stochastic process. In the footprint theory,
the Easton-Fagin formula can be derived directly, and
the theory shows the correctness condition when it is
used for finite-length program executions.

④Personal communication, December 17, 2013.

Chen Ding et al.: Performance Metrics and Models for Shared Cache 703

3.6 Locality Models of Shared Cache

3.6.1 Early Models

There are two types of cache sharing: the shar-
ing between multiple time-switched programs, and the
sharing between the instruction and data of the same
program. Easton and Fagin[87] studied the former,
comparing the difference between cold-start and warm-
start miss ratios and computing the effect of task in-
terruptions as a weighted average of expected cold-
start miss ratios. Thiebaut and Stone[15] defined a pre-
cise measure called the reload transient. For a depart-
ing process, the reload transient is the amount of its
cached data lost when it returns after another process
is run. To compute the reload transient, Thiebaut and
Stone[15] defined cache footprint, which is the number
of data blocks a program has in cache. Given two pro-
grams A,B, the reload transient of A after B is the
overlap between their cache footprints.

To compute footprints and their overlap, Thiebaut
and Stone[15] assumed that a program has an equal
probability of accessing any cache block. The probabi-
lity is independent and identically distributed. The
overlap is then computed from expectations of bino-
mial distributions.

Instead of discrete probabilistic models, Strecker[81]

put forward an intuitive notion that a program is a
continuous flow and fills the cache at the rate that is
the product of two probabilities: the chance of a miss
and the chance that the miss results in a new loca-
tion in the cache being filled. A differential equation
was constructed since the fill rate is the derivative of
the footprint over time. To compute the miss ratio,
Strecker[81] used an analytical formula by Saltzer[80].
Saltzer[80] computed the inter-miss time in which he
called the headway as the number of hits between suc-
cessive misses.

The second type of cache sharing happens between
the instruction and the data of a program. Stone et
al.[89] investigated whether LRU produces the optimal
allocation. Assuming that the miss rate functions for
instruction and data are continuous and differentiable,
the optimal allocation happens at the points “when
miss-rate derivatives are equal”[90]. The miss rate func-
tions, one for instruction and one for data, were mode-
led instead of measured. The authors showed that LRU
is not optimal, but left open a question as to whether
there is a bound on how close LRU allocation is to op-
timal allocation. The footprint theory can be used to
compute the effective cache allocation (LRU allocation)
among any group of programs.

As a component of the Wisconsin Wind Tunnel
(WWT) project, Falsafi and Wood[91] developed a per-

formance model for cache. They used the formulation of
Thiebaut and Stone[15] but computed the overlap using
a queuing model. In implementation, they measured
the cold-start miss rate and used a reverse mapping
to estimate the footprint. Since WWT ran the con-
current processes of a parallel program, the instruction
code was shared between processes. The sharing was
modeled as the shared footprint in the overall process
footprint.

Falsafi and Wood[91] revised the terminology of
Thiebaut and Stone[15] and redefined the footprint as
the set of unique data blocks a program accesses. The
projection of the footprint is the set of data blocks that
the program leaves in cache. Viewed in another way,
the footprint is the program data in an infinite cache,
and the projection is the data in a finite cache. The
footprint theory uses their definition of the word foot-
print.

3.6.2 Reuse Distance in Parallel Code

Reuse distance measures the locality of a program
directly and does not rely on the assumptions that are
necessary for analytical models. In a parallel program,
we have two types of reuse distance. One considers
only the accesses of a single task, and the other consid-
ers the interleaved accesses of all tasks. Using the ter-
minology of Wu and Yeung[13] and Jiang et al.[50], we
call them private reuse distance (PRD) and concurrent
reuse distance (CRD). The new problem in analyzing
the parallel locality is the relation between PRD and
CRD.

Recent work has studied several solutions. Ding and
Chilimbi[76] built models of data sharing and thread
interleaving to compose CRD. Jiang et al.[50] tackled
the composition problem using probabilistic analysis,
in particular, the interval access probability based on
[48], discussed in Subsection 3.2.

Multicore reuse distance by Schuff et al.[38] mea-
sures CRD directly using improved algorithms made
efficient by sampling and parallelization. For loop-
based code, Wu and Yeung gave a scaling model to
predict how the reuse distance, both PRD and CRD,
changes when the work is divided by a different number
of threads[13]. These modeling techniques have found
uses in co-scheduling[52] and multicore cache hierarchy
design[13-14,92].

3.6.3 Non-Composability of Reuse Distance

A model is composable if the locality of a parallel
execution can be computed from the locality of indi-
vidual tasks. However, the reuse distance is insufficient
to build composable models.

704 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

We illustrate this limitation by a counter example,
first published in [8]. Fig.6 shows three short program
traces. Programs A,B have the same set of private
reuse distances (PRD). However, when running with a
third program C, the pair A,C produces a different set
of concurrent reuse distances (CRD) than the pair B,C.
Assuming that the cache size is 4, the pair A,C has no
capacity miss, but B,C has. The example also shows
the same limitation for miss ratio. With identical reuse
distances, A,B have the same number of misses in the
private cache. But in the shared cache co-running with
the same program C, they incur a different number of
cache misses.

Fig.6 is a disproof by counterexample. It shows con-
clusively that PRD is not enough to compute CRD,
and the solo-run miss ratio is not enough to compute
the co-run miss ratio.

In the example, the reason for the different co-run
locality is the different interaction based on the time
span of a reuse. Consider the data accesses to a in A,B.
They have the same private reuse distance, 2, but very
different (logical) reuse times, 3 in A and 7 in B. When
co-running with C, the reuse distance is lengthened be-
cause of the data accesses by C. Since the reuse in B
spans over a longer time, it is affected more by cache
sharing. As a result, the concurrent reuse distance for
a is 4 in the A,C but 5 in the B,C co-run.

Chandra et al.[17] described three models of cache
sharing. A simple one is the composition of reuse dis-
tance, called (LRU) stack distance competition (SDC).
Since the model uses the reuse distance as the only in-
put, it would have given the same prediction in our
example for A,C and B,C. Therefore, it is a flawed
model. A number of earlier studies have reached the
same conclusion through experiments[93-95].

3.6.4 Classic Composition Model

Let A,B be two programs that share the same cache
but do not share data. The effect of B on the locality
of A is:

P (capacity miss by A when running with B)

=P (A’s reuse distance + B’s footprint > cache size).

In this model, the cache interference (i.e., CRD) is
computed by combining the footprint (i.e., the interfer-
ence), and the reuse distance, i.e., the per-task locality.
Specialized versions of this model were first developed
by Suh et al.[16] for time-sharing systems and Chandra
et al.[17] for multicore cache sharing. While Chandra[17]

described and evaluated the composition for two pro-
grams, Chen and Aamodt[96] improved the accuracy
when analyzing more programs with a greater number
of cache conflicts. A later study by Jiang et al.[52] gives
the general form of the classic model not tied to cache
parameters such as associativity.

In the work of Suh et al.[16] and Chandra et al.[17],
the footprint equation is iterative (see Subsection 3.3),
while in the work of Jiang et al.[52], the footprint equa-
tion is statistical (see Subsection 3.2). Another foot-
print equation is the conversion formula by Denning
and Schwartz[43]. These equations are not completely
constrained, so the solution is not unique and depends
on modeling assumptions.

The classic model is not simple as presented in
the previous publications. In the work of Chandra
et al.[17], hardware and program factors were consid-
ered together. Xie and Loh[97] noted that the model
by Chandra et al. “is fairly involved; the large num-
ber of complex statistical computations would be very
difficult to directly implement in hardware.” In addi-
tion, the model has a high cost. It was not used in
the comparison study of Zhuravlev et al.[94], because it
was not “computationally fast enough to be used in the
robust scheduling algorithm.”

There is another weakness in usability. The two in-
puts, reuse distance and footprint, do not have a simple
effect on the composed output. The complexity hin-
ders the use of composable model in practice. As in-
troduced in Subsection 2.2, the footprint theory shows
many equivalent methods of composition. The subsec-
tion lists two other methods that are faster and easier
to use.

3.7 Performance and Optimization

Cache is one of the factors in machine performance.
Locality models show the frequency of cache hits and

Fig.6. Non-composability of reuse distance. Programs A, B have the same set of reuse distances (“−” means infty), but A, C co-run

has a different set of reuse distances than B, C co-run does.

Chen Ding et al.: Performance Metrics and Models for Shared Cache 705

misses. For performance analysis, the next question is
the combined effect on the execution time, and the ul-
timate question is the limit to which the performance
can be improved.

3.7.1 From Cache Misses to CPU Cycles

The effect of cache on execution time is tradition-
ally given by two metrics, AMP (average miss penalty)
and AMAT (average memory access time), which is the
number of cycles necessary for respectively, a cache miss
and a memory access on average[98].

On modern processors, the timing effect is increas-
ingly complex. A recent analysis was conducted by Sun
and Wang[99], who explained that AMAT is affected by
the processor techniques for improving instruction-level
parallelism, including pipelining, multiple functional
units, out-of-order execution, branch prediction, specu-
lation, and by the techniques for improving memory
performance, including pipelined, multi-port, multi-
bank cache, non-blocking cache, and data prefetching.
The increasing complexity motivates the development
of new metrics such as APC (access per cycle) studied
in their paper[99].

Much of the timing delay is caused by events out-
side the CPU and the cache, in particular, the memory
controller, the memory bus and the DRAM modules.

Zhao et al.[100] developed a model of pressure that
includes both cache and memory bandwidth sharing
using regression analysis to identify a piece-wise lin-
ear correlation between the memory latency and the
memory bandwidth utilization. The model is not peer
specific. The same utilization may be caused by one
program or a group of programs. Wang et al.[101] gave
an event model called DraMon to capture the probabi-
lity of DRAM hits, misses and conflicts and the effect
of contention and concurrency at the level of a DRAM
bank. The event model was shown to be more accurate
than linear and logarithmic regression[102].

It is important to manage contention and shar-
ing at the memory layer, as shown by two re-
cent techniques, bus-cycle modulation for execution
throttling[103] and memory partitioning to reduce bank-
level interference[104]. Next we turn the attention back
to cache and review the techniques for reducing the
cache interference.

3.7.2 Characterization of Interference

Xie and Loh[97] gave an animalistic classification of
program interference. Based on the behavior in shared
cache, a program belongs to one of the four animal
classes. A turtle has little use of shared cache. A rab-

bit and a sheep both have a low miss rate. A rabbit is
sensitive and tends to be affected by co-run peers, but
a sheep does not. Both programs have small impacts
on others. The last class is a devil, which has a high
miss rate and impairs the performance of others but is
not affected by others.

Other classifications include coloring of miss inten-
sity, dual metrics of cache partitioning, and utility of
cache space to performance. These are reviewed by Xie
and Loh[97].

Jiang et al.[52] classified programs along two locality
dimensions. The sensitivity is computed from the clas-
sic composition model (Subsection 3.6.4). It shows how
a program is affected by others. The competitiveness is
distinct data blocks per cycle (DPC), which is equiva-
lent to the average footprint. If we divide each locality
dimension into two halves, we have four classes, which
we may call locality classes. Locality classes are not the
same as animal classes. For example, a program can be
extremely competitive, i.e., devilish, but may also be ei-
ther sensitive or insensitive. This phenomenon was ob-
served by Zhuravlev et al.[94], who showed that “devils
were some of the most sensitive applications”.

3.7.3 Optimal Co-Scheduling

Given a set of programs, co-scheduling divides them
into co-run groups, where each group is run together.
The goal is to minimize the interference within these
groups, so to maximize resource utilization and co-
run throughput. The interference depends mostly on
the memory hierarchy, and the effect is non-linear and
asymmetric.

While a locality model may predict the cache inter-
ference, the impact on performance depends on many
other factors including the CPU speed, the effect of
prefetching, the available memory bandwidth, and, if
a program is I/O intensive, the speed of the disk or
the network. Direct testing can most accurately mea-
sure the performance interference. Complete testing,
however, has an exponential cost, since the number of
subsets in an n-element set is 2n. Note that solo exe-
cutions are needed to compute the slowdown in group
executions.

For pairwise co-runs, the interference can be repre-
sented by a complete graph where nodes are programs
and edges have weights equal to pair-run slowdowns.
Jiang et al.[105],⑤ showed that the optimization is min-
weight perfect matching, and the problem is NP-hard.
They gave an approximation algorithm that produces
near-optimal schedules.

The throughput is often not the only goal. Other
desirable properties include fairness, i.e., no program is

⑤First published by Jiang et al.[106]

706 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

penalized disproportionally due to unfair sharing, and
quality of service (QoS), i.e., a program must maintain
a certain level of performance.

As inputs, an optimal solution requires accurate pre-
diction of co-run degradation. Prior solutions are ei-
ther locality based (see Subsection 3.6) or performance
based (this subsection). It is difficult for them to
produce accurate prediction without expensive testing.
For co-run miss rates, the footprint gives near real-
time prediction, with an accuracy similar to exhaustive
testing[10].

3.7.4 Heuristics-Based Co-Scheduling

In symbiotic scheduling (SOS), Snavely and
Tullsen[107] used a sampling phase to test a number
of possible co-run schedules and select the best one
from these samples for the next (symbiosis) phase.
They showed that a small number of possible schedules
(instead of exhaustive testing) is sufficient to produce
good improvements. The system was designed and
tested for simultaneous multi-threading. Symbiotic
scheduling assumes that program co-run behavior does
not vary significantly over time, so the sampling phase
is representative of performance in the remaining exe-
cution. Testing does not require program instrumenta-
tion.

Fedorova et al.[54] addressed the problem of perfor-
mance isolation by suspending a program execution
when needed. They gave a cache-fair algorithm to en-
sure a program runs at least at the speed with fair cache
allocation. The technique is based on the assumption
that if two programs have the same frequency of cache
misses, they have the same amount of data in cache. In
locality modeling, the assumption means uniform dis-
tribution of the access in cache. While the assumption
is not always valid, the model is efficient for use in an
OS scheduler to manage cache sharing in real time.

The two techniques are dynamic and do not need
off-line profiling. However, on-line analysis may not be
accurate and cannot predict interference in other pro-
gram combinations. Furthermore, non-symbiotic pair-
ing (during sampling) and throttling (for fairness) do
not maximize the throughput.

Blagodurov et al.[95],⑥ developed the Pain classifi-
cation. The degree of pain that application A suffers
while it co-runs with B is affected by A’s cache sensi-
tivity, which is computed using the reuse distance pro-
file (PRD), and B’s cache intensity, which is measured
by the number of last level cache accesses per million
instructions. The Pain model is similar to the classic
composition model described in Subsection 3.6.4 except
that Pain uses the miss frequency rather than the foot-

print. The choice is partly for efficiency. Other on-
line techniques also use the last-level cache miss rate as
cache use intensity[108-109].

Pain is an offline solution. This idea is extended
into an online solution called Distributed Intensity (DI),
which uses only the miss rate. An application is clas-
sified as intensive if it is above the average miss rate
and non-intensive otherwise. The scheduler then tries
to group high-resource-intensity program(s) with low-
resource-intensity program(s) on a multicore to miti-
gate the conflicts on shared resources[3,18,93-95,110-111].

Cache misses represent only a (small) subset of pro-
gram accesses. In comparison, the footprint includes
the effect of all cache accesses. Furthermore, the miss
frequency depends on co-run peers and has the effect
of circular feedback, since the peers are affected by the
self. The result of counter-based modeling is specific to
one grouping situation and may not be usable in other
groupings. In comparison, footprint analysis collects
“clean-room” statistics, unaffected by co-run peers pro-
gram instrumentation or the analyzer code and usable
for interference with any peers (which may be unknown
at the time of footprint analysis). With the new theory
in this thesis, footprint can be obtained with near real-
time efficiency.

In an offline solution, Jiang et al.[105] defined the
concept of politeness for a program as “the reciprocal
of the sum of the degradations of all co-run groups that
include the job.” The politeness is measured by the ef-
fect on the execution time, not just the miss ratio, and
is used to approximate optimal job scheduling.

In an online solution, the high cost of co-run test-
ing is addressed in a strategy called Bubble-Up[112].
The strategy has two steps. First, a program is co-
run against an expanding bubble to produce a sensi-
tivity curve. The bubble is a specially designed probe
program. In the second step, the pressure of the pro-
gram is reported by another probe and probing run.
Bubble-Up is a composable strategy, since each pro-
gram is tested individually without testing all program
combinations. Bubble-Up extracts the factors that de-
termine the program execution time. In comparison,
the footprint theory has a narrower scope, which in-
cludes just the factors that determine the program be-
havior in cache.

Two recent solutions use machine learning. Delim-
itrou and Kozyrakis[113] built a data center scheduler
called Paragon. The design of Paragon identifies 10
sources of interference. It uses offline training (through
probe programs) to build parameterized models on
their performance impact. During online use, Paragon
feeds the history information to a learning algorithm

⑥Journal version of [93-94].

Chen Ding et al.: Performance Metrics and Models for Shared Cache 707

called collaborative filtering. Collaborative filtering
supports sparse learning. Based on a small amount of
past data, it can predict application-application inter-
ference and application-machine match.

Statistical techniques have had many uses in per-
formance analysis of parallel code, including clustering,
factoring, and correlation[114], linear models (with non-
linear components)[115], queuing models[116], directed
searches[117], and analytical models[118].

Machine learning is general and can consider differ-
ent types of resources together. It is also scalable as
more factors can be added by having additional learn-
ing. Paragon’s learning technique observes the co-run
results but has to be given the solo-run speed to com-
pute the co-run slowdown. The cache model comple-
ments performance models, which can include the spe-
cialized model as a component. Locality metrics such
as the footprint can be used as an input to a learning al-
gorithm. While the strength of machine learning is the
breadth and the general framework, the strength of the
locality theory is the depth and the focused formula-
tion. As a benefit of the latter, we now can understand
the shared cache with mathematically tractable models
and derive precise co-run miss ratios.

3.7.5 Performance Scaling Models

Using the PRD/CRD model[13], Wu et al.[14] con-
ducted experiments on a wide range of symmetric mul-
tithreaded benchmarks on modest problem size and
core counts and used their scaling framework to study
the performance (average memory access time AMAT)
over cache hierarchy scaling for large problem sizes on
large-scale (LCMPs). The study focuses on the effect
of hardware characteristics such as core counts, cache
sizes, and cache organizations on different programs
and program inputs, but not on hardware independent
program characterization.

3.8 Related Techniques

3.8.1 Input-Centric Analysis

The early work in profiling examines multiple exe-
cutions to identify what behavior is common. For
example, Wall compared the hot variables and functions
found in different executions of the same program[119].
Recent work has gone one step further to identify the
patterns of change and predict how the behavior will
differ from run to run. Shen called it input-centric
analysis [120].

Input-centric analysis covers the intermediate
ground between dynamic analysis, which is for a sin-
gle execution, and static analysis, which is for all exe-
cutions. For problems such as reuse distance and foot-

print, dynamic analysis is too specific, because the re-
sult is limited to what happens in one execution. Static
analysis is too general, since it assumes all code paths
are possible. Input-centric analysis provides a way to
overcome these limitations.

Imperative to input-centric analysis is a metric
whose results can be compared between different exe-
cutions. The access of a memory location, for example,
is not comparable because a program may allocate the
same datum to different locations in different runs. Nei-
ther is the instruction making the access, since the same
access may be made from different codes in different
runs. Reuse distance is the first metric to enable input-
centric analysis, since it is not tied to specific memory
allocation or control flow and can be compared between
different runs.

The first group of work studied how the reuse dis-
tance changes in different runs and developed sta-
tistical models of locality prediction (called whole-
program locality)[5,36,121], miss-rate prediction[28],
performance prediction (not just cross-input but
also cross-architecture)[25,122], critical load instruction
prediction[29], and locality phases[123-125]. Zhong et al.
surveyed these and other techniques and categorized
them as behavior (rather than code) based analysis,
analogous to observation and prediction in the physical
and biological sciences[5].

More recent work combined behavior and code
analysis, in particular, showed how to predict the loop
bounds in different runs. To characterize program in-
puts, Mao and Shen defined an extensible input char-
acterization language (XICL)[126]. Jiang et al. defined
the notion of seminal behavior, which is the smallest set
of program values that collectively determine the itera-
tion count of all loops[127]. Learning techniques such
as classification trees were used to identify the seminal
behavior[126,128]. Wu et al. later expanded the loop
analysis to capture sequence patterns[129].

Input-centric analysis has been used to improve the
feedback-driven program optimization (FDO) in the
IBM XL C compiler[127] and the just-in-time (JIT) com-
piler in Java virtual machines[120,130-131]. Profiles from
different inputs are routinely used in feedback-driven
and iterative compiler optimization. The quality of op-
timization depends on the quality of profiles. The de-
pendence has been examined using statistics[132-133].

3.8.2 Profiling and Performance Monitoring

The term profiling broadly refers to techniques that
extract and analyze a subset of events in a program
execution. Locality profiling extracts and analyzes the
sequence of memory accesses. It does so by program
instrumentation. At each memory reference, it inserts

708 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

a call to pass the memory address to an analyzer. The
instrumentation can be done at source or binary level.
Source level instrumentation is made by a compiler
such as GCC, Open64, and LLVM, usually at the level
of the intermediate code. Binary instrumentation is by
a binary rewriting tool. Both can be done statically,
i.e., without running a program. Binary rewriting can
also be done dynamically when a program is running.

The main problem of profiling is the cost of the
instrumentation. A compiler can optimize the instru-
mented code statically. Another advantage is that
the instrumentation tool is portable if a compiler is
portable. In comparison, binary rewriting is architec-
ture specific. For example, ATOM instruments only
Alpha binary[134], and Pin x86 binary[135]. On the
other hand, Pin can instrument dynamically loaded
library, which a static tool cannot do.

Profiling does not model the timing effect, for which
we need to either monitor an execution on actual hard-
ware or reproduce it in a simulator.

Performance monitoring for parallel code has a long
history[136-138]. Modern processors provide hardware
counters to monitor hardware events with little or no
run-time cost. The events related to memory perfor-
mance include the frequency of cache misses, cache
coherence misses, and various cycle counts, including
stalled cycles. When many events are being moni-
tored in a large system over a long execution, the large
volume of results presents two problems. The first is
the time and space cost of collecting and storing these
results. The second is analysis — how to identify high-
level information from low-level measurements.

These problems are solved by monitoring and visua-
lization tools, including commercial ones such as Intel
VTune Amplifier, AMD CodeAnalysist, and CrayPat,
and open-source projects such as PAPI library[139],
HPCToolkit[140], TAU[141], and Open|SpeedShop[142].
The aggregation of information is usually code cen-
tric, which shows performance in program func-
tions and instructions. Vertical profiling identifies
performance problems across a software stack[143].
Continuous program optimization (CPO) not only finds
performance problems but also optimizes performance
automatically[58,60,144-145]. In recent work, data-centric
aggregation is used to pin-point locality problems more
effectively, for issues of not just cache misses but
also non-uniform memory access (NUMA)
latency[146-148].

Bursty Sampling and Shadow Profiling. Arnold and
Ryder pioneered a general framework to sample Java
code, i.e., the first few invocations of a function or the
beginning iterations of a loop[56]. It has been adopted
for hot-stream prefetching in C/C++ in bursty sam-
pling [20] and extended to sample both static and dy-

namic bursts for calling context profiling[149]. Shadow
profiling pauses a program at preset intervals and forks
a separate process to profile in parallel with the base
program[64-65]. The reuse distance analysis is not a
good target for these techniques because of the un-
certain length of the reuse windows. However, the
footprint can be easily sampled using shadow profil-
ing. Reuse distance can then be computed using the
conversion theory.

4 Conclusions

In this paper we have described the recent footprint
theory of locality, including the definition and formal
properties especially the footprint composition and the
conversion between window-based statistics, i.e., the
footprint, and reuse-based statistics, e.g., the miss ra-
tio. We have surveyed a large literature, more than 140
publications over the past four decades, focusing on the
working set theory, which lays the foundation of this re-
search field, and recent performance models, which ad-
dress the complex challenges posed by the modern mul-
ticore memory hierarchy. Through the review, we have
appraised their strengths and weaknesses and pointed
out the relation with the new footprint theory.

Nicholas Wirth titled his 1976 book “Algorithms +
Data Structures = Programs” to emphasize the core
subjects and their relations. We would modernize the
figurative equation for use on today’s machines and
say “(Algorithms + Data Structures) × Locality = Ef-
ficient Programs”. In theory, locality is fundamental
in understanding the nature of computation. In prac-
tice, memory optimization is necessary in the design
and use of every computing system. Locality research
has made tremendous progress and immense impacts.
This review focuses on the growing body of research
to uncover the essential aspects of program behavior in
shared cache and as a result enhance our ability to un-
derstand and manage program interaction on multicore
systems.

Acknowledgment We thank Peter Denning and
Xipeng Shen for always patiently and promptly answer-
ing our questions about their work, for the many people
who worked with us at Rochester, and for the reviewers
and the organizers of this special issue. Given the scope
and depth of the past research, it is inevitable that the
presentation fails to be complete and completely pre-
cise. We apologize for any omission and misrepresenta-
tion. Any error is entirely ours. We appreciate reader
feedback, which can be sent to the email address listed
in the first page of the paper.

A Chinese version of the first two sections have
been co-authored with Yuan Liang and published in
the Journal of Computer Engineering and Science[150].

Chen Ding et al.: Performance Metrics and Models for Shared Cache 709

References

[1] Zhang X, Dwarkadas S, Shen K. Towards practical page
coloring-based multicore cache management. In Proc. the
EuroSys Conference, April 2009, pp.89-102.

[2] Denning P J. Working sets past and present. IEEE Transac-
tions on Software Engineering, 1980, 6(1): 64-84.

[3] Denning P J. The working set model for program behaviour.
Communications of the ACM, 1968, 11(5): 323-333.

[4] Brock J, Luo H, Ding C. Locality analysis: A nonillion time
window problem. In Proc. Big Data Analytics Workshop,
June 2013.

[5] Zhong Y, Shen X, Ding C. Program locality analysis using
reuse distance. ACM TOPLAS, 2009, 31(6): 1-39.

[6] Zhong Y, Orlovich M, Shen X, Ding C. Array regrouping and
structure splitting using whole-program reference affinity. In
Proc. PLDI, June 2004, pp.255-266.

[7] Ding C, Chilimbi T. All-window profiling of concurrent exe-
cutions. In Proc. the 13th PPoPP (Poster Paper), Feb. 2008,
pp.265-266.

[8] Xiang X, Bao B, Bai T, Ding C, Chilimbi T M. All-window
profiling and composable models of cache sharing. In Proc.
PPoPP, Feb. 2011, pp.91-102.

[9] Xiang X, Bao B, Ding C, Gao Y. Linear-time modeling of
program working set in shared cache. In Proc. PACT, Oct.
2011, pp.350-360.

[10] Xiang X, Ding C, Luo H, Bao B. HOTL: A higher order theory
of locality. In Proc. ASPLOS, March 2013, pp.343-356.

[11] Xiang X, Bao B, Ding C, Shen K. Cache conscious task re-
grouping on multicore processors. In Proc. the 12th CCGrid,
May 2012, pp.603-611.

[12] Xiang X. A higher order theory of locality and its application
in multicore cache management [Ph.D. Thesis]. Computer
Science Dept., Univ. of Rochester, 2014.

[13] Wu M, Yeung D. Coherent profiles: Enabling efficient reuse
distance analysis of multicore scaling for loop-based parallel
programs. In Proc. PACT, Oct. 2011, pp.264-275.

[14] Wu M, Zhao M, Yeung D. Studying multicore processor scal-
ing via reuse distance analysis. In Proc. the 40th ISCA, June
2013, pp.499-510.

[15] Thiébaut D, Stone H S. Footprints in the cache. ACM Trans-
actions on Computer Systems, 1987, 5(4): 305-329.

[16] Suh G E, Devadas S, Rudolph L. Analytical cache models
with applications to cache partitioning. In Proc. the 15th
ICS, June 2001, pp.1-12.

[17] Chandra D, Guo F, Kim S, Solihin Y. Predicting inter-thread
cache contention on a chip multi-processor architecture. In
Proc. the 11th HPCA, Feb. 2005, pp.340-351.

[18] Belady L A. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 1966, 5(2): 78-101.

[19] Denning P J. Thrashing: Its causes and prevention. In Proc.
AFIPS Fall Joint Computer Conference, Part 1, Dec. 1968,
pp.915-922.

[20] Chilimbi T M, Hirzel M. Dynamic hot data stream prefetch-
ing for general-purpose programs. In Proc. PLDI, June 2002,
pp.199-209.

[21] Mattson R L, Gecsei J, Slutz D, Traiger I L. Evaluation tech-
niques for storage hierarchies. IBM System Journal, 1970,
9(2): 78-117.

[22] Jiang S, Zhang X. LIRS: An efficient low inter-reference re-
cency set replacement to improve buffer cache performance.
In Proc. SIGMETRICS, June 2002, pp.31-42.

[23] Smith A J. On the effectiveness of set associative page map-
ping and its applications in main memory management. In
Proc. the 2nd ICSE, Oct. 1976, pp.286-292.

[24] Hill M D, Smith A J. Evaluating associativity in CPU caches.
IEEE Transactions on Computers, 1989, 38(12): 1612-1630.

[25] Marin G, Mellor-Crummey J. Cross architecture performance
predictions for scientific applications using parameterized
models. In Proc. SIGMETRICS, June 2004, pp.2-13.

[26] Snir M, Yu J. On the theory of spatial and temporal local-
ity. Technical Report, DCS-R-2005-2564, Computer Science
Dept., Univ. of Illinois at Urbana-Champaign, 2005.

[27] Fang C, Carr S, Önder S, Wang Z. Path-based reuse distance
analysis. In Proc. the 15th CC, Mar. 2006, pp.32-46.

[28] Zhong Y, Dropsho S G, Shen X, Studer A, Ding C. Miss rate
prediction across program inputs and cache configurations.
IEEE Transactions on Computers, 2007, 56(3): 328-343.

[29] Fang C, Carr S, Önder S, Wang Z. Instruction based memory
distance analysis and its application to optimization. In Proc.
PACT, Sept. 2005, pp.27-37.

[30] Beyls K, D’Hollander E H. Discovery of locality-improving
refactorings by reuse path analysis. In Proc. the 2nd Int.
Conf. High Performance Computing and Communications,
Sept. 2006, pp.220-229.

[31] Beyls K, D’Hollander E H. Intermediately executed code is the
key to find refactorings that improve temporal data locality.
In Proc. the 3rd ACM Conference on Computing Frontiers,
May 2006, pp.373-382.

[32] Kelly T, Cohen I, Goldszmidt M, Keeton K. Inducing models
of black-box storage arrays. Technical Report, HPL-2004-108,
HP Laboratories Palo Alto, 2004.

[33] Almeida V, Bestavros A, Crovella M, de Oliveira A. Char-
acterizing reference locality in the WWW. In Proc. the 4th
International Conference on Parallel and Distributed Infor-
mation Systems (PDIS), December 1996, pp.92-103.

[34] Bennett B T, Kruskal V J. LRU stack processing. IBM Jour-
nal of Research and Development, 1975, 19(4): 353-357.

[35] Olken F. Efficient methods for calculating the success func-
tion of fixed space replacement policies. Technical Report,
LBL-12370, Lawrence Berkeley Laboratory, 1981.

[36] Ding C, Zhong Y. Predicting whole-program locality through
reuse distance analysis. In Proc. PLDI, June 2003, pp.245-
257.

[37] Zhong Y, Ding C, Kennedy K. Reuse distance analysis for
scientific programs. In Proc. Workshop on Languages, Com-
pilers, and Run-time Systems for Scalable Computers, March
2002.

[38] Schuff D L, Kulkarni M, Pai V S. Accelerating multicore reuse
distance analysis with sampling and parallelization. In Proc.
the 19th PACT, Sept. 2010, pp.53-64.

[39] Kim Y H, Hill M D, Wood D A. Implementing stack simu-
lation for highly-associative memories. In Proc. SIGMET-
RICS, May 1991, pp.212-213.

[40] Sugumar R A, Abraham S G. Multi-configuration simulation
algorithms for the evaluation of computer architecture de-
signs. Technical Report, University of Michigan, August 1993.

[41] Burger D, Austin T. The SimpleScalar tool set, version 2.0.
Technical Report, CS-TR-97-1342, Department of Computer
Science, University of Wisconsin, June 1997.

[42] Almasi G, Cascaval C, Padua D A. Calculating stack dis-
tances efficiently. In Proc. the ACM SIGPLAN Workshop
on Memory System Performance, June 2002, pp.37-43.

[43] Denning P J, Schwartz S C. Properties of the working set
model. Communications of the ACM, 1972, 15(3): 191-198.

[44] Berg E, Hagersten E. StatCache: A probabilistic approach
to efficient and accurate data locality analysis. In Proc. IS-
PASS, March 2004, pp.20-27.

[45] Berg E, Hagersten E. Fast data-locality profiling of native
execution. In Proc. SIGMETRICS, June 2005, pp.169-180.

[46] Eklov D, Hagersten E. StatStack: Efficient modeling of LRU
caches. In Proc. ISPASS, March 2010, pp.55-65.

[47] Eklov D, Black-Schaffer D, Hagersten E. Fast modeling of
shared caches in multicore systems. In Proc. the 6th

710 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

HiPEAC, Jan. 2011, pp.147-157.

[48] Shen X, Shaw J, Meeker B, Ding C. Locality approximation
using time. In Proc. the 34th POPL, Jan. 2007, pp.55-61.

[49] Shen X, Shaw J. Scalable implementation of efficient local-
ity approximation. In Proc. the 21st LCPC Workshop, July
31-August 2, 2008, pp.202-216.

[50] Jiang Y, Zhang E Z, Tian K, Shen X. Is reuse distance ap-
plicable to data locality analysis on chip multiprocessors? In
Proc. the 19th CC, Mar. 2010, pp.264-282.

[51] Shen X, Shaw J, Meeker B, Ding C. Locality approximation
using time. Technical Report, TR 901, Department of Com-
puter Science, University of Rochester, December 2006.

[52] Jiang Y, Tian K, Shen X. Combining locality analysis with
online proactive job co-scheduling in chip multiprocessors. In
Proc. HiPEAC, Jan. 2010, pp.201-215.

[53] West R, Zaroo P, Waldspurger C A, Zhang X. Online cache
modeling for commodity multicore processors. Operating Sys-
tems Review, 2010, 44(4): 19-29.

[54] Fedorova A, Seltzer M, Smith M D. Improving performance
isolation on chip multiprocessors via an operating system
scheduler. In Proc. the 16th PACT, Sept. 2007, pp.25-38.

[55] Zhou S. An efficient simulation algorithm for cache of random
replacement policy. In Proc. the IFIP Int. Conf. Network
and Parallel Computing, Sept. 2010, pp.144-154.

[56] Arnold M, Ryder B G. A framework for reducing the cost of
instrumented code. In Proc. PLDI, June 2001, pp.168-179.

[57] Hirzel M, Chilimbi T M. Bursty tracing: A framework for
low-overhead temporal profiling. In Proc. ACM Workshop
on Feedback-Directed and Dynamic Optimization, Dec. 2001.

[58] Cascaval C, Duesterwald E, Sweeney P F, Wisniewski R W.
Multiple page size modeling and optimization. In Proc. the
14th PACT, Sept. 2005, pp.339-349.

[59] Zhong Y, Chang W. Sampling-based program locality approx-
imation. In Proc. the 7th ISMM, June 2008, pp.91-100.

[60] Tam D K, Azimi R, Soares L, Stumm M. RapidMRC: Ap-
proximating L2 miss rate curves on commodity systems for
online optimizations. In Proc. the 14th ASPLOS, Mar. 2009,
pp.121-132.

[61] Niu Q, Dinan J, Lu Q, Sadayappan P. PARDA: A fast para-
llel reuse distance analysis algorithm. In Proc. IPDPS, May
2012.

[62] Cui H, Yi Q, Xue J, Wang L, Yang Y, Feng X. A highly para-
llel reuse distance analysis algorithm on GPUs. In Proc. the
26th IPDPS, May 2012, pp. 1284-1294.

[63] Gupta S, Xiang P, Yang Y, Zhou H. Locality principle re-
visited: A probability-Based quantitative approach. In Proc.
the 26th IPDPS, May 2012, pp.995-1009.

[64] Moseley T, Shye A, Reddi V J, Grunwald D, Peri R. Shadow
profiling: Hiding instrumentation costs with parallelism. In
Proc. CGO, March 2007, pp.198-208.

[65] Wallace S, Hazelwood K. Superpin: Parallelizing dynamic
instrumentation for real-time performance. In Proc. CGO,
Mar. 2007, pp.209-220.

[66] Cascaval C, Padua D A. Estimating cache misses and local-
ity using stack distances. In Proc. the 17th ICS, June 2003,
pp.150-159.

[67] Allen R, Kennedy K. Optimizing Compilers for Modern Archi-
tectures: A Dependence-Based Approach. Morgan Kaufmann
Publishers, 2001.

[68] Beyls K, D’Hollander E H. Generating cache hints for im-
proved program efficiency. Journal of Systems Architecture,
2005, 51(4): 223-250.

[69] Pugh W, Wonnacott D. Eliminating false data dependences
using the Omega test. In Proc. PLDI, June 1992, pp.140-151.

[70] Chauhan A, Shei C Y. Static reuse distances for locality-based
optimizations in MATLAB. In Proc. the 24th ICS, June 2010,
pp.295-304.

[71] Shen X, Gao Y, Ding C et al. Lightweight reference affinity
analysis. In Proc. the 19th ICS, June 2005, pp.131-140.

[72] Bao B, Ding C. Defensive loop tiling for shared cache. In
Proc. CGO, Feb. 2013, pp.1-11.

[73] Bao B. Peer-aware program optimization [Ph.D. Thesis].
Computer Science Dept., Univ. of Rochester, January 2013.

[74] Yuan L, Ding C, Štefankovič D, Zhang Y. Modeling the local-
ity in graph traversals. In Proc. the 41st ICPP, Sept. 2012,
pp.138-147.

[75] Agarwal A, Hennessy J L, Horowitz M. Cache performance
of operating system and multiprogramming workloads. ACM
Transactions on Computer Systems, 1988, 6(4): 393-431.

[76] Ding C, Chilimbi T. A composable model for analyzing local-
ity of multi-threaded programs. Technical Report, MSR-TR-
2009-107, Microsoft Research, August 2009.

[77] Strohmaier E, Shan H. APEX-Map: A parameterized scal-
able memory access probe for high-performance computing
systems. Concurrency and Computation: Practice and Expe-
rience, 2007, 19(17): 2185-2205.

[78] Ibrahim K Z, Strohmaier E. Characterizing the relation be-
tween Apex-Map synthetic probes and reuse distance distri-
butions. In Proc. ICPP, Sept. 2010, pp.353-362.

[79] He L, Yu Z, Jin H. FractalMRC: Online cache miss rate curve
prediction on commodity systems. In Proc. IPDPS, May
2012, pp.1341-1351.

[80] Saltzer J H. A simple linear model of demand paging perfor-
mance. Communications of the ACM, 1974, 17(4): 181-186.

[81] Strecker W D. Transient behavior of cache memories. ACM
Transactions on Computer Systems, 1983, 1(4): 281-293.

[82] King W F. Analysis of demand paging algorithms. In Proc.
IFIP Congress, August 1971, pp.485-490.

[83] Fagin R, Price T G. Efficient calculation of expected miss ra-
tios in the independent reference model. SIAM Journal of
Computing, 1978, 7(3): 288-297.

[84] Dan A, Towsley D F. An approximate analysis of the LRU and
FIFO buffer replacement schemes. In Proc. SIGMETRICS,
May 1990, pp.143-152.

[85] Gu X, Ding C. Reuse distance distribution in random access.
Technical Report, URCS #930, University of Rochester, Jan-
uary 2008.

[86] Denning P J, Slutz D R. Generalized working sets for segment
reference strings. Communications of the ACM, 1978, 21(9):
750-759.

[87] Easton M C, Fagin R. Cold-start vs. warm-start miss ratios.
Communications of the ACM, 1978, 21(10): 866-872.

[88] Shedler G, Tung C. Locality in page reference strings. SIAM
Journal on Computing, 1972, 1(3): 218-241.

[89] Stone H S, Turek J, Wolf J L. Optimal partitioning of cache
memory. IEEE Transactions on Computers, 1992, 41(9):
1054-1068.

[90] Thiébaut D, Stone H S, Wolf J L. Improving disk cache hit-
ratios through cache partitioning. IEEE Transactions on
Computers, 1992, 41(6): 665-676.

[91] Falsafi B, Wood D A. Modeling cost/performance of a para-
llel computer simulator. ACM Transactions on Modeling and
Computer Simulation, 1997, 7(1): 104-130.

[92] Wu M J, Yeung D. Identifying optimal multicore cache hi-
erarchies for loop-based parallel programs via reuse distance
analysis. In Proc. the ACM SIGPLAN Workshop on Memory
System Performance and Correctness, June 2012, pp.2-11.

[93] Fedorova A, Blagodurov S, Zhuravlev S. Managing contention
for shared resources on multicore processors. Communica-
tions of the ACM, 2010, 53(2): 49-57.

[94] Zhuravlev S, Blagodurov S, Fedorova A. Addressing shared
resource contention in multicore processors via scheduling. In
Proc. ASPLOS, March 2010, pp.129-142.

Chen Ding et al.: Performance Metrics and Models for Shared Cache 711

[95] Blagodurov S, Zhuravlev S, Fedorova A. Contention-aware
scheduling on multicore systems. ACM Transactions on
Computer Systems, 2010, 28(4): Article No.8.

[96] Chen X E, Aamodt T M. A first-order fine-grained multi-
threaded throughput model. In Proc. HPCA, Feb. 2009,
pp.329-340.

[97] Xie Y, Loh G H. Dynamic classification of program memory
behaviors in CMPs. In Proc. CMP-MSI Workshop, June
2008.

[98] Hennessy J L, Patterson D A. Computer Architecture: A
Quantitative Approach (4th edition). Morgan Kaufmann,
2006.

[99] Sun X H, Wang D. APC: A performance metric of memory
systems. ACM SIGMETRICS Performance Evaluation Re-
view, 2012, 40(2): 125-130.

[100] Zhao J, Feng X, Cui H et al. An empirical model for predict-
ing cross-core performance interference on multicore proces-
sors. In Proc. PACT, Sept. 2013, pp.201-212.

[101] Wang W, Dey T, Davidson J W et al. DraMon: Predicting
memory bandwidth usage of multi-threaded programs with
high accuracy and low overhead. In Proc. HPCA, Feb. 2014.

[102] Kim M, Kumar P, Kim H, Brett B. Predicting potential
speedup of serial code via lightweight profiling and emula-
tions with memory performance model. In Proc. IPDPS,
May 2012, pp.1318-1329.

[103] Zhang X, Zhong R, Dwarkadas S, Shen K. A flexible frame-
work for throttling-enabled multicore management (TEMM).
In Proc. ICPP, Sept. 2012, pp.389-398.

[104] Liu L, Cui Z, Xing M et al. A software memory partition
approach for eliminating bank-level interference in multicore
systems. In Proc. PACT, Sept. 2012, pp.367-376.

[105] Jiang Y, Tian K, Shen X, Zhang J, Chen J, Tripathi R. The
complexity of optimal job co-scheduling on chip multiproces-
sors and heuristics-based solutions. IEEE Trans. Parallel
and Distributed Systems, 2011, 22(7): 1192-1205.

[106] Jiang Y, Shen X, Chen J, Tripathi R. Analysis and approxi-
mation of optimal co-scheduling on chip multiprocessors. In
Proc. PACT, Oct. 2008, pp.220-229.

[107] Snavely A, Tullsen D M. Symbiotic jobscheduling for a simul-
taneous multithreading processor. In Proc. ASPLOS, Nov.
2000, pp.234-244.

[108] Shen K. Request behavior variations. In Proc. ASPLOS,
Mar. 2010, pp.103-116.

[109] Knauerhase R, Brett P, Hohlt B, Li T, Hahn S. Using OS
observations to improve performance in multicore systems.
IEEE Micro, 2008, 38(3): 54-66.

[110] Denning P J. Equipment configuration in balanced computer
systems. IEEE Transactions on Computers, 1969, C-18(11):
1008-1012.

[111] Wulf W A. Performance monitors for multi-programming sys-
tems. In Proc. the ACM Symposium on Operating System
Principles, Oct. 1969, pp.175-181.

[112] Mars J, Tang L, Skadron K, Soffa M L, Hundt R. Increas-
ing utilization in modern warehouse-scale computers using
bubble-up. IEEE Micro, 2012, 32(3): 88-99.

[113] Delimitrou C, Kozyrakis C. Paragon: QoS-aware scheduling
for heterogeneous datacenters. In Proc. ASPLOS, March
2013, pp.77-88.

[114] Ahn D H, Vetter J S. Scalable analysis techniques for micro-
processor performance counter metrics. In Proc. ACM/IEEE
Conf. Supercomputing, Nov. 2002.

[115] Rodŕıguez G, Badia R M, Labarta J. Generation of simple
analytical models for message passing applications. In Proc.
Euro-Par., Aug. 31-Sept. 3, 2004, pp.183-188.

[116] Jacquet A, Janot V, Leung C et al. An executable analyt-
ical performance evaluation approach for early performance
prediction. In Proc. IPDPS, April 2003.

[117] Miller B P, Callaghan M D, Cargille J M et al. The Para-
dyn parallel performance measurement tool. IEEE Computer,
1995, 28(11): 37-46.

[118] Kerbyson D J, Hoisie A, Wasserman H J. Modelling the per-
formance of large-scale systems. IEE Proceedings - Software,
2003, 150(4): 214-222.

[119] Wall D W. Predicting program behavior using real or esti-
mated profiles. In Proc. PLDI, June 1991, pp.59-70.

[120] Tian K, Jiang Y, Zhang E Z, Shen X. An input-centric
paradigm for program dynamic optimizations. In Proc. OOP-
SLA, Oct. 2010, pp.125-139.

[121] Shen X, Zhong Y, Ding C. Regression-based multi-model pre-
diction of data reuse signature. In Proc. the 4th Annual Sym-
posium of the Los Alamos Computer Science Institute, Oct.
2003.

[122] Marin G, Mellor-Crummey J. Scalable cross-architecture pre-
dictions of memory hierarchy response for scientific applica-
tions. In Proc. the Symposium of the Los Alamos Computer
Science Institute, Oct. 2005.

[123] Shen X, Ding C. Parallelization of utility programs based on
behavior phase analysis. In Proc. the International Work-
shop on Languages and Compilers for Parallel Computing,
Oct. 2005, pp.425-432.

[124] Shen X, Zhong Y, Ding C. Locality phase prediction. In Proc.
ASPLOS, Oct. 2004, pp.165-176.

[125] Shen X, Zhong Y, Ding C. Predicting locality phases for dy-
namic memory optimization. Journal of Parallel and Dis-
tributed Computing, 2007, 67(7): 783-796.

[126] Mao F, Shen X. Cross-input learning and discriminative pre-
diction in evolvable virtual machines. In Proc. CGO, Mar.
2009, pp.92-101.

[127] Jiang Y, Zhang E Z, Tian K et al. Exploiting statistical cor-
relations for proactive prediction of program behaviors. In
Proc. the 8th CGO, April 2010, pp.248-256.

[128] Cavazos J, Moss J E B. Inducing heuristics to decide whether
to schedule. In Proc. PLDI, June 2004, pp.183-194.

[129] Wu B, Zhao Z, Shen X, Jiang Y, Gao Y, Silvera R. Exploiting
inter-sequence correlations for program behavior prediction.
In Proc. OOPSLA, Oct. 2012, pp.851-866.

[130] Arnold M, Welc A, Rajan V T. Improving virtual machine
performance using a cross-run profile repository. In Proc.
OOPSLA, Oct. 2005, pp.297-311.

[131] Tian K, Zhang E Z, Shen X. A step towards transparent in-
tegration of input-consciousness into dynamic program opti-
mizations. In Proc. OOPSLA, Oct. 2011, pp.445-462.

[132] Chen Y, Huang Y, Eeckhout L et al. Evaluating iterative op-
timization across 1000 datasets. In Proc. PLDI, June 2010,
pp.448-459.

[133] Wu B, Zhou M, Shen X et al. Simple profile rectifications
go a long way — Statistically exploring and alleviating the
effects of sampling errors for program optimizations. In Proc.
the European Conference on Object-Oriented Programming,
July 2013, pp.654-678.

[134] Srivastava A, Eustace A. ATOM: A system for building cus-
tomized program analysis tools. In Proc. PLDI, June 1994,
pp.196-205.

[135] Luk C, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wal-
lace S, Reddi V J, Hazelwood K. Pin: Building customized
program analysis tools with dynamic instrumentation. In
Proc. PLDI, June 2005, pp.190-200.

[136] Wagner Meira Jr., LeBlanc T, Poulos A. Waiting time analy-
sis and performance visualization in Carnival. In Proc. ACM
SIGMETRICS Symposium on Parallel and Distributed Tools,
May 1996.

[137] Reed D A, Elford C L, Madhyastha T M, Smirni E, Lamm S E.
The next frontier: Interactive and closed loop performance
steering. In Proc. ICPP Workshop, Aug. 1996, pp.20-31.

712 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

[138] Darema-Rogers F, Pfister G F, So K. Memory access patterns
of parallel scientific programs. In Proc. SIGMETRICS, May
1987, pp.46-58.

[139] Browne S, Dongarra J, Garner N, Ho G, Mucci P. A portable
programming interface for performance evaluation on modern
processors. The International Journal of High Performance
Computing Applications, 2000, 14(3): 189-204.

[140] Adhianto L, Banerjee S, Fagan M, Krentel M, Marin G,
Mellor-Crummey J, Tallent N R. HPCTOOLKIT: Tools for
performance analysis of optimized parallel programs. Con-
currency and Computation: Practice and Experience, 2010,
22(6): 685-701.

[141] Shende S, Malony A D. The TAU parallel performance sys-
tem. International Journal of High Performance Computing
Applications, 2006, 20(2): 287-311.

[142] Schulz M, Galarowicz J, Maghrak D, Hachfeld W, Montoya D,
Cranford S. Open|SpeedShop: An open source infrastructure
for parallel performance analysis. Scientific Programming,
2008, 16(2/3): 105-121.

[143] Hauswirth M, Sweeney P F, Diwan A. Temporal vertical pro-
filing. Software: Practice and Experience, 2010, 40(8): 627-
654.

[144] Childers B, Davidson J, Soffa M L. Continuous compilation:
A new approach to aggressive and adaptive code transforma-
tion. In Proc. Symp. Parallel and Distributed Processing,
April 2003.

[145] Cascaval C, Duesterwald E, Sweeney P F, Wisniewski R W.
Performance and environment monitoring for continuous pro-
gram optimization. IBM Journal of Research and Develop-
ment, 2006, 50(2/3): 239-248.

[146] McCurdy C, Vetter J S. Memphis: Finding and fixing NUMA-
related performance problems on multi-core platforms. In
Proc. ISPASS, March 2010, pp.87-96.

[147] Liu X, Mellor-Crummey J M. Pinpointing data locality prob-
lems using data-centric analysis. In Proc. the 9th CGO, April
2011, pp.171-180.

[148] Liu X, Mellor-Crummey J. A tool to analyze the perfor-
mance of multithreaded programs on NUMA architectures.
In Proc. the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Feb. 2014, pp.259-272.

[149] Zhuang X, Serrano M J, Cain H W, Choi J. Accurate, effi-
cient, and adaptive calling context profiling. In Proc. PLDI,
June 2006, pp.263-271.

[150] Ding C, Yuan L. Program interaction on multicore: Theory
and applications. Computer Engineering and Science, 2014,
36(1): 1-5. (In Chinese)

Chen Ding received his Ph.D.
degree from Rice University, M.S.
degree from Michigan Technologi-
cal University, and B.S. degree from
Beijing University, all in computer
science before joining University of
Rochester in 2000. His research
received young investigator awards
from NSF and DOE. He co-founded
the ACM SIGPLAN Workshop on

Memory System Performance and Correctness (MSPC) and
was a visiting researcher at Microsoft Research and a vis-
iting associate professor at MIT. He is an external faculty
fellow at IBM Center for Advanced Studies.

Xiaoya Xiang graduated in 2005
from Huazhong University of Science
and Technology with a B.S. degree in
computer science and technology and
at the same time from Wuhan Uni-
versity with a B.S. degree in finance.
She got her M.S. degree in computer
science from Institute of Computing
Technology, Chinese Academy of Sci-
ences, Beijing, in 2008. She earned

her Ph.D. degree in computer science at the University of
Rochester in 2013. She is now a software engineer at Twit-
ter Inc., where her main focus is the runtime performance
of the Twitter services in a cloud environment.

Bin Bao is a senior software engi-
neer at Qualcomm Technologies, Inc.
Prior to joining Qualcomm in 2013,
Bin spent one year at Adobe Inc. as
a computer scientist. He received
his Ph.D. degree in computer sci-
ence from University of Rochester
in 2013, M.S. degree in computer
science from Institute of Computing
Technology, Chinese Academy of Sci-

ences in 2007, and B.S. degree in software engineering from
the University of Science and Technology of China in 2004.
His current research interests include program analysis and
compilation for graphics processors.

Hao Luo is a third year Ph.D.
student in the Department of
Computer Science, University of
Rochester. His research interest lies
on performance modeling of multi-
threaded applications, locality-aware
task management, and program be-
havior analysis.

Ying-Wei Luo received his
Ph.D. degree in computer science
from Peking University in 1999. He
is a full professor of computer science
in the School of Electronics Engineer-
ing and Computer Science (EECS) in
Peking University. His research in-
terests include operating system, sys-
tem virtualization, and cloud com-
puting.

Xiao-Lin Wang received his
Ph.D. degree in computer science
from Peking University in 2001. He
is now an associate professor of com-
puter science in the School of EECS
in Peking University. His research in-
terests include operation system, sys-
tem virtualization, and cloud com-
puting.

