
Yuan M, Chen L, Yu PS et al. Protect you more than blank: Anti-learning sensitive user information in the social networks.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 29(5): 762–776 Sept. 2014. DOI 10.1007/s11390-014-1466-1

Protect You More Than Blank: Anti-Learning Sensitive User

Information in the Social Networks

Mingxuan Yuan1,2 (�²Z), Lei Chen1 (� X), Member, IEEE, Philip S. Yu3, Fellow, ACM, IEEE

and Hong Mei4,5,6 (r ÷), Fellow, CCF, Member, ACM, IEEE

1Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong

China
2Huawei Noah’s Ark Laboratory, Shatin, Hong Kong, China
3Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60637, U.S.A.
4Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China
5Institute of Software, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
6Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

E-mail: yuan.mingxuan@huawei.com; leichen@cse.ust.hk; psyu@cs.uic.edu; meih@pku.edu.cn

Received April 7, 2014; revised July 4, 2014.

Abstract Social networks are getting more and more attention in recent years. People join social networks to share their
information with others. However, due to the different cultures and backgrounds, people have different requirements on
what kind of information should be published. Currently, when social network websites publish data, they just leave the
information that a user feels sensitive blank. This is not enough due to the existence of the label-structure relationship. A
group of analyzing algorithms can be used to learn the blank information with high accuracy. In this paper, we propose a

personalized model to protect private information in social networks. Specifically, we break the label-structure association
by slightly changing the edges in some users’ neighborhoods. More importantly, in order to increase the usability of the
published graph, we also preserve the influence value of each user during the privacy protection. We verify the effectiveness
of our methods through extensive experiments. The results show that the proposed methods can protect sensitive labels
against learning algorithms and at the same time, preserve certain graph utilities.

Keywords social network, privacy, protection

1 Introduction

As a kind of Web 2.0 killer application, social net-
work websites enable users to share their information

when joining the network. The social network is of-
ten modeled as a weighted graph where nodes repre-
sent users and edges represent the relationships among
users[1-2]. Fig.1 shows a subgraph we got from Face-

Fig.1. Social network with blank label.

Regular Paper
This work is supported in part by the Research Grants Council (RGC) of Hong Kong, China, under Grant No. NHKUST612/09,

the National Basic Research 973 Program of China under Grant No. 2012CB316200, and the National Natural Science Foundation of
China under Grant No. 60931160444.©2014 Springer Science +Business Media, LLC & Science Press, China

Mingxuan Yuan et al.: Anti-Learning Sensitive User Information in the Social Networks 763

book. The weight between any two users represents
the frequency of posting on each other’s wall. The fre-
quency is normalized to a number in [0, 10].

When a user registers an account on a social net-
work, e.g., Facebook, he/she is often requested to fill in
some personal information to create an online profile,
including hobby, high school name, age, and so on. We
call each input item as a label or an attribute of the user.
For example, in Fig.1, each user has two labels, his/her
hobby and the purpose of joining the network. Due to
the background and culture diversities, users have dif-
ferent concerns to sensitive labels. For a label, some
users may not mind others to acquire. Moreover, some
of them even want more people to know them by pub-
lishing the label. These are open users in the network.
For example, in Fig.1, Harry, Michelle et al., would like
to share their hobby information with friends. However,
some users treat this label as sensitive information, and
do not want others to know. We call these users as con-

servative users. For these conservative users, the web-
sites normally leave their sensitive information blank
to satisfy the privacy requirement. Ben in Fig.1, for
instance, is a very sensitive person and wants to hide
his own hobby information. As a result, we only ob-
tained a graph as shown in Fig.1, in which Ben’s hobby
is published as blank.

However, simply leaving sensitive labels blank is not
enough to protect users’ privacy. A group of learning
algorithms are introduced in [3-4] to deduce the missing
labels in the social networks with high accuracy. The
attacks through links, groups, and their combinations
could detect the sensitive labels without any notice to
users. These algorithms use the fact that users often
have common social actions in a network, that is, indi-
viduals who have similar labels tend to form a commu-
nity. For example, although Ben in Fig.1 does not want
to publish his hobby, we could guess it as cooking since
two friends of Ben (Harry and Bily) like cooking and

only one friend (Aron) likes writing�. If Ben indeed
likes cooking, then his privacy is violated even when
the website protects him by leaving his hobby blank.
Therefore, to prevent a user’s sensitive labels from be-
ing learned, we should break the association between
his label and his neighborhood labels. In other words,
we want to publish the social graph which does not dis-
close sensitive labels when learning algorithms are being
applied. (It should be noted that the problem cannot
be simply solved by replacing the blank attribute with
a random label. When the associations between label
and neighborhood are not broken, they still can be used
to filter out the randomly filled labels.)

We call attacks using learning algorithms[3-7] as
“label-structure attack”. The current protection mo-
dels focus on preventing node re-identification[8-13].
The re-identification means matching a node in the
graph with a user based on the users’ information
(i.e., certain structure information such as node de-
gree and user’s nonsensitive labels). This attack is
also called “structure attack”. An attacker could know
all the information around a node by re-identifying a
user. To prevent node re-identification, an anonymized
graph must be published according to the assumption
about what information an attacker may use to re-
identify a user. Therefore, each user is totally hidden by
anonymization, which leads the information that users
want to share also unusable. However, social network
websites publish the network data (through API) to the
third parties who can get some knowledge about the
graph in order to provide more interesting services to
the target users. Without the information from the hid-
den users, it is difficult to achieve such a goal. There-
fore, it is necessary to design a new model to protect
sensitive information against being attacked by a learn-
ing algorithm and meanwhile to publish the useful in-
formation for sharing.

In this paper, we propose a utility-oriented random
method to break the label-neighborhood association.
For open users, their real labels are published without
any changes. For each conservative user, we modify
his/her neighborhood by randomly changing p% edges
which connect this user to other users with the same
label. p% is a constant set by each user or the data
publisher. For example, Ben in Fig.1 is a conservative
user and his p = 50%. Through our method, we can
delete the edge between 2 and 3. Then, an attacker
has no idea about Ben’s label from his neighborhood
(see Fig.2). Since the changed edges are randomly se-
lected, the constant p% of each conservative user can
be published to the attacker as well.

In order to increase the utility of the published
graph, we also preserve important characteristics of so-
cial network, “the influential values” of nodes. As a
common graph property, influential value is widely used
in different applications, such as expert finding, the
most valuable people searching, and so on[14-15]. The
value represents how important a user is in the whole
network or to his/her neighbors. If each user has the
same influential value in the published graph as that in
the original graph, he/she has the same “position” in
the two graphs. Therefore, the influential value should
be preserved in order to keep a graph as useful as be-
fore. We achieve the influential value preserving objec-�We can draw the same conclusion when considering the edge weights.

764 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

Fig.2. Edge editing to change Ben’s neighborhood.

tive by random edge editing. We make sure the ran-
dom edge editing for utility preserving does not change
the random effectiveness of the privacy protection. An
interesting result we observed is that through preserv-
ing the influential values, the maximum eigenvalue of
the graph’s adjacent matrix is also preserved. Eigenva-
lues have been shown as intimately connected to many
important topological features in paper [16]. Fig.3 is
an influential preserved graph of Fig.1 in case that Ben
wants to protect his label. If using the propagation-

based expert computation model� in [15, 17] to ana-
lyze Fig.1 and Fig.3, the corresponding nodes in these
two figures have the same influential value.

To summarize, the differences of our work and the
work to prevent the node re-identification in social net-
works are:

• We publish a graph with all the information that
a user wants to share. The graph leaves the labels that
users feel sensitive blank. We protect node sensitive
labels instead of the node itself. We make sure unpub-
lished labels could not be discovered by common label-
structure analysis algorithms with high confidence.

• We protect labels according to the user’s personal
setting. Each user has the privileges to set his/her own
preference in terms of hiding the sensitive labels.

• We preserve the influential value in the published
social network. When using the algorithms[15,17] to
analyze the user influential values, the results obtained

from the original graph and the published graph are the
same.

The rest of the paper is arranged as follows. Section
2 gives an overall description of the problem. Section 3
introduces the detailed designs of our algorithms. We
report the experimental results on real datasets in Sec-
tion 4. Finally, we compare our work with related pro-
posals in Section 5 and conclude the paper in Section 6.

2 Problem Description

In this paper, the social network is represented as an
un-directed weighted graph.

Definition 1 (Social Network Graph). A social net-

work graph is a six tuple G(V, E, W, σ, σ′, λ), where V

is a set of nodes, and each node represents an entity

in the social network. E ⊆ V × V is the set of edges

between nodes. W : E −→ R+ maps each edge to a

positive real number. σ maps each node to a group of

non-sensitive labels, where S is the sensitive label set.

σ′ : V −→ s|s ∈ S maps each node to a sensitive label.

λ : V −→ boolean maps each node to a boolean value,

indicating whether a node wants to protect its sensitive

label.

If a node wants to protect its sensitive label, λ is set
as true and vice versa. We call a node which needs to
hide its label as a conservative node and a node which
does not care that as an open node. In the remaining

Fig.3. Edge editing to reserve the influential values.�Propagation-based expert computation model is a method to compute the importance/influence of nodes in a graph. It is a re-
cursive algorithm, which considers the interactive propagation of the importance/influence between neighbors. For example, PageRank
is one of the most famous algorithms.

Mingxuan Yuan et al.: Anti-Learning Sensitive User Information in the Social Networks 765

part of this paper, we also use G or G(V, E, W) to rep-
resent a graph G(V, E, W, σ, σ′, λ) for simplicity.

For a weighted graph, one important data mining
task is to analyze the node influential values (i.e., the
expert finding[14-15,17]). We focus on the undirected
weighted graph in which weights reflect the coopera-
tion between users. The node influential values in a
weighted graph G are defined as:

Definition 2. The influential value fi of each node

ui in a weighted graph G is defined as[15,17]:

∀ui ∈ V, fti = fi +
∑

∀e(i,j)

w(i,j) × fj,

T =

|V |∑

i=1

fti,

∀ui ∈ V, fi =
fti

T
. (1)

(1)[15,17] is a typical propagation model to compute
node influential values. All fis can be calculated when
the above formula converges at the stable state. We
choose this formula, which is similar to pageranking al-
gorithm, since the pageranking algorithm is tightly re-
lated with the maximum eigenvalue of a graph. We
observed that through preserving the influential va-
lues computed by (1), the maximum eigenvalue of the
graph’s adjacent matrix is also preserved. It has been
shown that the eigenvalues have intimately connected
to many important topological features in paper [16].
In the rest of this paper, we use u.label and u.influence

to represent user u’s label and influential value respec-
tively.

The “label-structure attack” is the attack which
learns the blank label of a conservative node u by ana-
lyzing its neighborhood. Since our method randomly
changes the neighborhood of each conservative user, it
can provide protection to any learning method using the
connection information in neighborhoods. In our expe-
riment, we show the protection effectiveness against six
different learning methods.

The problem we solve in this paper is:

Problem 1. Given a graph G(V, E, W) and a con-

stant p, generate a new graph G′(V ′, E′, W ′) from G

that satisfies:

• V ≡ V ′;

• for each conservative user, at least p%� edges,

which connect this user to another user with the same

label, are changed;

• the influential values of any node u in G and G′

are the same.

3 Algorithms

We generate a privacy preserving graph by edge edit-
ing. The operations include two parts:

• break the label-neighborhood association;
• preserve the influential values.
For each conservative user, we delete p% edges which

connect this user to another user with the same label.
After that, we continue editing several edges to pre-
serve the influential values of all the nodes. We make
sure that the second step still guarantees the p% change
ratio in each conservative user’s neighborhood.

3.1 Edge Editing for Association Breaking

This step is simple, for each conservative user, we
randomly delete p% edges which connect this user to
another user with the same label.

3.2 Edge Editing for Influential Value

Preserving

After breaking the label-neighborhood relationship,
some nodes’ influential values are changed. We design
a novel method to make up the changed influential va-
lues. When we reduce the weight on the edge e(u, v)
(i.e., delete an edge), if we can maintain both ftu, ftv
and T in (1) unchanged, the influential value computa-
tion formulas still retain at the converging state. The
influential values of all nodes are not changed either.

We use an adjusting method to add the changes of
influential values back for each modified edge. Suppose
an edge e(u, v) with weight a is deleted, we randomly
select an edge e(x, y) with u.label 6= x.label ∧ v.label 6=
y.label . We change the weights on the edges e(u, x),
e(v, y) (if they do not exist, we first create these edges
with weight 0) and adjust the weight on the edge e(x, y).
The operation is shown in Fig.4. ftu, ftv, ftx and fty
should be preserved in order to retain fu, fv, fx and
fy. Suppose the weight on the edge e(u, v) is reduced
by a. Before reducing weight on edge e, fu, fv, fx and
fy satisfy:

ftu = fu +
∑

∀e(u,j)∧j 6=v

we × fj + a × fv,

f tv = fv +
∑

∀e(v,j)∧j 6=u

we × fj + a × fu,

f tx = fx +
∑

∀e(x,j)∧j 6=y

we × fj + b × fy,

f ty = fy +
∑

∀e(y,j)∧j 6=x

we × fj + b × fx.�In this paper, we use the same p for all conservative nodes to demonstrate our algorithms. Our algorithms can support different
ps as well, which means our solution could be used as a personalized model.

766 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

Fig.4. Adjusting after deleting case 1. (a) Original. (b) Adjust-

ing.

After the reducing and adjusting operations, fu, fv,
fx and fy should satisfy:

ftu = fu +
∑

∀e(u,j)∧j 6=v

we × fj + w1 × fx,

f tv = fv +
∑

∀e(v,j)∧j 6=u

we × fj + w2 × fy,

f tx = fx +
∑

∀e(x,j)∧j 6=y

we × fj + w1 × fu + w0 × fy,

f ty = fy +
∑

∀e(y,j)∧j 6=x

we × fj + w2 × fv + w0 × fx.

To keep fu, fv, fx, fy, ftu, ftv, ftx, fty and T

unchanged,

a × fv = w1 × fx,

a × fu = w2 × fy,

b × fy = w1 × fu + w0 × fy,

b × fx = w2 × fv + w0 × fx.

We can get the new weights:

w0 =
b × fx × fy − a × fu × fv

fx × fy

,

w1 =
a × fv

fx

,

w2 =
a × fu

fy

.

We can see if there is an edge e(x, y) with b × fx ×
fy − a× fu × fv > 0, we can always get a solution. For
example, after deleting edge e(2, 3) in Fig.1, we select
edge e(4, 7) to retain the influential value unchanged.

In the case all b× fx × fy − a× fu × fv < 0, we ran-
domly select a group of edges {e(xj , yj)|j = 0, 1, . . .}
with u.label 6= xj .label ∧ v.label 6= yj .label to preserve
the influential values. For each edge e(xj , yj) in this
group, we adjust the weights on edges e(u, xj), e(v, yj),
and e(xj , yj). Fig.5 shows an example of using two
edges to do the adjustment.

When using a group of edges e(xi, yi) to make up
the influential values, the new weights should satisfy:

a × fv =
∑

i

w1, i × fx, i,

a × fu =
∑

i

w2, i × fy, i,

∀i, bi × fx, i = w1, i × fu + w0, i × fy, i,

∀i, bi × fy, i = w2, i × fv + w0, i × fx, i.

Fig.5. Adjusting after deleting case 2. (a) Original. (b) Adjust-

ing.

One sufficient condition that the above formulas
have a non-negative solution is:

∑
i bi × fx, i × fy, i >

a × fu × fv. For a large social network, expectively
there are enough edges to hold the above condition. In
case

∑
i bi × fx, i × fy, i < a× fu × fv, we will compute

a′ =
∑

i
bi×fx,i×fy,i

fu×fv
(∀i, xi.label 6= u.label ∧ yi.label 6=

v.label ∧ xi 6= u ∧ yi 6= v) and do the influential value
make up by assuming the weight of e(u, v) is reduced
by a′. This is the best influential value preserving ef-
fect we can achieve. In our experiment, the adjustment
algorithm can always find a solution to make up the
changed influential values.

Since we only select edge e(x, y) with u.label 6=
x.label ∧ v.label 6= y.label to make up the influential
values, we never connect two nodes with the same label
in the influential value preserving. The second step still
guarantees the edge changing ratio p% in each conser-
vative user’s neighborhood.

The detailed adjusting process is shown in Algorithm
1. For each conservative user u, we firstly compute the
number of edges that connect u to another user with
the same label (|{e(u, v)|u.label ≡ v.label}|). Then the
number of edges to delete is numdel. We randomly
delete numdel edges that connect u to another user with
the same label. When deleting an edge e(u, v), we use
the method introduced in this subsection to make up
the change of influential values. We randomly select
an edge with u.label 6= x.label ∧ v.label 6= y.label ∧ u 6=
x∧v 6= y. If we(u, v)×fu×fv > we(x, y)×fx×fy, it means
by deleting e(x, y), the weight of e(u, v) can only be de-

creased by a′ =
we(x, y)×fx×fy

fu×fv
. In this case, we suppose

the weight of e(u, v) only needs to be decreased by a′

Mingxuan Yuan et al.: Anti-Learning Sensitive User Information in the Social Networks 767

and use (1) to adjust the weights of related edges�. We
repeat the above process to reduce e(u, v)’s weight un-
til we find an edge e(x, y) with we(u, v) × fu × fv 6

we(x, y) × fx × fy. Then we can directly use (1) to
delete e(u, v). The whole process guarantees no user’s
influential value is changed. If an edge e(x, y) with
u.label 6= x.label ∧ v.label 6= y.label ∧ u 6= x ∧ v 6= y

cannot be found, it means the extreme case that the
influential value changes caused by deleting e(u, v) can-
not be completely made up appears. The algorithm
has achieved the best preserving effect and no more
recovering can be made. Then, we delete e(u, v), re-
compute the influential values of nodes in G and finish
the making up process for deleting e(u, v).

Algorithm 1. Random Adjusting Algorithm

Compute the influential values of each node in G;

Set SE = E;

for each conservative user u in G do

int nume = |{e(u, v)|u.label ≡ v.label}|;

int numdel = ⌈nume × p⌉;

for (int i = 0; i < numdel; i + +)

edge e(u, v) = randomly select an edge with u.label ≡

v.label ;

SE = SE − {e(u, v)};

while we(u,v) × fu × fv > 0 do

edge e(x, y) = randomly select an edge from SE

with u.label 6= x.label ∧ v.label 6= y.label ∧ u 6=

x ∧ v 6= y;

if (e(x, y) ≡ null)

Delete e(u, v);

Re-compute the influential values of nodes in G;

Break;

double reduced = 0;

if (we(u, v) × fu × fv > we(x, y) × fx × fy)

reduced = we(x,y) × fx × fy;

else

reduced = we(u, v) × fu × fv;

a′ = reduced
fu×fv

;

w0 =
we(x, y)×fx×fy−reduced

fx×fy
;

w1 = a′
×fv

fx
, w2 = a′

×fu

fy
;

Set weight we(u,v) − a′ to e(u, v), set weight w0 to

e(x, y);

Add weight w1 to e(u, x), add weight w2 to e(v, y);

Update SE ;

We suppose each user has one sensitive label in this
paper. This method can be easily extended to mul-
tiple sensitive labels. We use lpub(u) and lpub(v) to
represent the published label lists of user u and v re-
spectively. Suppose the learning algorithms show that
when sim(lpub(u), lpub(v)) > t (sim(lpub(u), lpub(v)) is

the similarity between lpub(u) and lpub(v)), the miss-
ing labels of a conservative user can be predicted from
his/her friend. We can extend our algorithm as follow-
ings. Our first step needs to delete p% edges, which
connect this user to another user with their published
label lists’ similarity larger than or equal to t. When we
do the influential value make up, we never connect two
nodes whose label lists’ similarity is larger than or equal
to t. The second step still guarantees the edge changing
ratio p% in each conservative user’s neighborhood.

4 Experiment

4.1 Datasets

We test our algorithms on three real datasets.
• Facebook Data. We extract a subgraph of Face-

book, which contains 1 422 nodes. We set each user’s
label as his/her graduation school. The weights on the
edges represent the frequency of posting on each other’s
wall.

• ArXiv Data. ArXiv(arXiv.org) is an e-print ser-
vice system in physics, mathematics, computer science,
etc. We extract a co-author graph in computer science,
which contains 6 563 nodes. Each node denotes an au-
thor, and each edge means two authors have at least one
co-authored paper. Each edge has a weight that repre-
sents the number of papers co-authored by the two end-
points. We set each author’s research field as his/her
node label. There are totally 37 different node label
values.

• Arnet Data. ArnetMiner (http://www.arnetminer.
net/) is an academic researcher social network collected
by Tsinghua University. We use the country where each
researcher belongs to as the node label. We extract a
subset of the whole graph, which contains 11 932 nodes
and 20 different country labels.

4.2 Learning Algorithms

We test six learning algorithms which are similar to
or the same as the algorithms proposed in [3-4].

• Most Influential Neighbor Label by Frequency (MI

Frequency). Frequency is defined as the occurrence
number of l in u’s neighborhood. The label with the
maximum frequency is set as u’s real label.

• Most Influential Neighbor Label by Weight (MI

Weight). Weight is defined as the total weight
of nodes whose label is l in u’s neighborhood:∑

e(u,y)∧y.label=l we. The label with the maximum
weight is set as u’s real label.

• Most Influential Neighbor Label by Influence (MI

Influence). Influence is defined as the related influen-�When we set a new weight to an edge, if the new weight is 0, we delete this edge. If e(u, x)/e(v, y) does not exist, we create edge
e(u, x)/e(v, y) with weight w1/w2. Otherwise, we increase the weight of e(u, x)/e(v, y) by w1/w2.

768 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

tial values of nodes whose label is l in u’s neighborhood∑
e(u,y)∧y.label=l we × fy. The label with the maximum

influence is set as u’s real label.
• Most Influential Label by Overlapping Node Num-

ber (MI Number Overlapping). The studies for com-
munity mining often use the overlapping ratio of two
nodes’ neighborhood graphs to represent the simila-
rity between these two nodes. Suppose u’s neighbor-
hood graph is Gu and v’s neighborhood graph is Gv,
similarity(u, v) = |Gu∩Gv|

|Gu∪Gv|
. We compute the simila-

rity on overlapping node number: similarity(u, v) =∑
∀x∈Gu∧x∈Gv

1∑
∀x∈Gu∨x∈Gv

1 . Label l’s impact on u is computed as:
∑

∀v∧v.label=l similarity(Gu, Gv). The label with the
maximum impact is set as u’s real label.

• Most Influential Label by Overlapping In-

fluence (MI Influence Overlapping). We com-
pute the similarity of two nodes on over-
lapping node influence: similarity(u, v) =∑

∀x∈Gu∧x∈Gv
x.influence∑

∀x∈Gu∨x∈Gv
x.influence

. Label l’s impact on u is com-

puted as:
∑

∀v∧v.label=l similarity(Gu, Gv). The label
with the maximum impact is set as u’s real label.

• Graph-Based Semi-Supervised Learning Algorithm

(SSL). Local and global consistency semi-supervised
learning algorithm[4] is a learning method that consi-
ders both local consistency and global consistency in a
graph G. The algorithm is designed to predict missing
labels in social networks.

4.3 Utilities

When publishing a privacy preserving graph, besides
privacy protection, the other important issue is to check
the utilities of the published graph. People test different
graph characteristics through experiments to represent
the utilities[9-12,18-20]. The proposed method already
preserves one important utility, the influential values.
Similar to other studies, we also test several other fre-
quently used utilities.

• Clustering Coefficient (CC). The CC of a node in
a graph quantifies how close its neighbors are to be a
clique (complete graph). The CC of the whole graph
is: CC G = 1

N

∑
all node i CC i, where N is the number

of nodes in graph G. We test the change ratio of CC :

|CC G − CC G′ |

CCG

× 100%.

• Average Hop Distance (AHD). The AHD is a con-
cept in network topology that is defined as the average
number of steps along the shortest paths (the length
of the shortest path is represented by the number of
hops) for all possible pairs of network nodes. It is de-
fined as: AHDG = 2

N(N−1)

∑
∀ni,nj∈G d(ni, nj). We

test the change ratio of AHD:

|AHDG − AHDG′ |

AHDG

× 100%.

• Most Influential Neighbor Label (MI). This uti-
lity measures the neighborhood changes for open users
(since a conservative user’s neighborhood by default
should be changed). We use the first five different learn-
ing methods introduced in Subsection 4.2 (The SSL
method is a global method, which is unsuitable to be
used to represent the neighborhood of a single user) to
compute the most influential label l to a node u respec-
tively. The percentage of the open users whose most
influential label changed is used to measure this utility.

• Queries. In this experiment, we use one-hop
queries to test the graph change. The one-hop query[8]

has the following form: “the number of labels l1 and
l2 that have a direct link”. We test all possible queries
whose results are not smaller than 1% × |E|. We use
the average change ratio of the answers to measure this
utility. The change ratio of a query q is calculated as

r =
|n − n′|

n
× 100%,

where n is the query result from the original graph and
n′ is the result from the published graph.

• Average Shortest Length (APL). The APL in a
weighted graph is defined as the average shortest path
length (the length of the shortest path is represented
by the sum of edge weights in the path) for all possi-
ble pairs of network nodes. It is defined as: APLG =

2
N(N−1)

∑
∀ni,nj∈G d(ni, nj). We test the change ratio

of APL:
|APLG − APLG′ |

APLG

× 100%.

• Average Degree (AD). Since the degree of nodes
is an important property of a graph, we also test the
change of average degree. Suppose the degree of a
node u is D(u), the average degree AD of a graph G is∑

∀ u in G D(u)

N
. We test the change ratio of AD:

|ADG − ADG′ |

ADG

× 100%.

4.4 Results

In our experiment, we first test the existence of the
label-neighborhood relationship on these three graphs.
Then we show our edge editing method can guarantee
the privacy. Next, we demonstrate the maximum
change ratio of the influential values to confirm this uti-
lity has been successfully preserved. Finally, we test a
group of other graph utilities to show how much change
our method brings to these utilities besides preserving
the influential values.

Mingxuan Yuan et al.: Anti-Learning Sensitive User Information in the Social Networks 769

4.4.1 Learning Accuracy on the Original Graph

Firstly, we randomly select the conservative nodes
and use the six learning algorithms to predict the blank
labels in the social networks. If a label is frequently ap-
pearing in the graph (e.g., if 70% nodes in this graph
have this label, then the label does not need to be pro-
tected), we do not select nodes with such a label as
conservative nodes. In our experiment, we set this fre-
quent bound as 50%. Fig.6 shows the learning accuracy
of the three graphs respectively. From the results, we
can see the label-neighborhood relationship exists in the
real datasets. In Facebook, the three methods using

one-hop neighborhood information can achieve more
than 50% accuracy. In ArXiv, most methods achieve
60%∼80% accuracy. In Arnet, the accuracy is around
25%∼35%. The high accuracy of learning algorithms
confirms that it is necessary to preserve privacy against

the learning algorithms�.

4.4.2 Learning Accuracy on the Modified Graph

To test the privacy protecting effects of our method,
we run the six learning algorithms on the published
graphs with different edge change ratios respectively.
Figs. 7∼12 show the learning accuracy of MI frequency,

Fig.6. Learning accuracy on the original graphs. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.7. Learning accuracy of MI frequency on the published graphs. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.8. Learning accuracy of MI weight on the published graphs. (a) Facebook. (b) ArXiv. (c) Arnet.�We randomly select 2% to 10% users whose labels are minority (less than 50%). For example, in Facebook dataset, the majority
label occupies 80%. Therefore, the relative ratios of conservative users we tested are from 10% to 50%.

770 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

Fig.9. Learning accuracy of MI influence on the published graphs. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.10. Learning accuracy of MI number overlapping on the published graphs. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.11. Learning accuracy of MI influence overlapping on the published graphs. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.12. Learning accuracy of SSL on the published graphs. (a) Facebook. (b) ArXiv. (c) Arnet.

MI weight, MI influence, MI number overlapping, MI
influence overlapping and SSL on the published graphs
respectively. From the result, we can see that the learn-

ing accuracy of the learning algorithms decreases with
the increase of edge change ratios. When the edge
change ratio p% reaches 60%, the accuracy of algo-

Mingxuan Yuan et al.: Anti-Learning Sensitive User Information in the Social Networks 771

rithms becomes quite low in almost all cases. When
100% edges are changed, most algorithms can only get
0% accuracy. This result confirms the protecting effec-
tiveness of our method. In practice, the data publisher
can set different p%s for different users to further in-
crease the published graph’s randomness.

We generate 5-degree-anonymous graphs[11] for the
three datasets and run the learning algorithm MI fre-
quency on them. The results are shown in Table 1,
where we can find the learning algorithm can still learn
the blank labels correctly with high accuracy. This
shows that the previous models for preventing “struc-
ture attack” cannot prevent “label-structure attack”.

Table 1. Learning Accuracy of MI Frequency on the

5-Degree Anonymous Graphs

Percentage of Facebook ArXiv Arnet

Conservative Nodes (%) (%) (%)

2 53.6 47.3 39.9

4 53.6 54.6 39.4

6 41.2 53.9 40.4

8 46.0 54.9 41.5

10 46.3 52.4 41.8

4.4.3 Preservation of Influential Values

In order to show the influential values are indeed
preserved, we test the maximum change ratio of each
node’s influential value after the edge editing. The re-
sults are shown in Fig.13. The maximum change ratios

of Facebook, ArXiv and Arnet are 0.0065%, 0.2% and
0.26% respectively. From the result, we can see the
change ratios are very small and can be neglected. The
maximum change ratio is not zero due to the error of
real number computation in computer. We also observe
that the maximum eigenvalue of a graph’s adjacent ma-
trix is retained using our algorithm in the experiment.
The maximum eigenvalues of the three graphs’ adjacent
matrices are 53.183 9, 84.659 4 and 27.234 respectively.
We find the graphs generated by using our algorithms
retain these three values unchanged under all cases.

4.4.4 Other Utilities of the Modified Graph

The above results show that our method preserves
an important metric of the weighted social network.
Next, we demonstrate our testing results on other uti-
lities. Figs. 14∼23 give the results of different utilities
described in Subsection 4.3 respectively. All the ten
utilities become worse with the increasing of conserva-
tive users and the ratio of changed edges. This is obvi-
ous since the graph is changed more when the number
of conservative users or the ratio of changed edges in-
creases. For the path lengths, the maximum change
ratios of AHD and APL are 40% and 80% respectively.
This is an acceptable result since we have already pre-
served the influential values (the maximum eigenvalue
as well). The change of AHD is smaller than the change
of APL. This is because when we compute AHD, only

Fig.13. Maximum change ratio of influential values. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.14. Change ratios of CC. (a) Facebook. (b) ArXiv. (c) Arnet.

772 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

Fig.15. Change ratios of AHD. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.16. Change ratios of neighborhoods estimated by MI frequency. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.17. Change ratios of neighborhoods estimated by MI weight. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.18. Change ratios of neighborhoods estimated by MI influence. (a) Facebook. (b) ArXiv. (c) Arnet.

the number of changed edges influences it. While both
the number of changed edges and the weights on the
changed edges influence the APL. Thus the change of
APL is larger than that of AHD. The change ratios of
all the other utilities are very small. Nearly all of them

are less than 10% under all cases. Overall, considering
the utilities we tested, our method performs well. The
experiments on the utilities show our algorithm pre-
serves other utilities of the graph well besides keeping
the influential values unchanged.

Mingxuan Yuan et al.: Anti-Learning Sensitive User Information in the Social Networks 773

Fig.19. Change ratios of neighborhoods estimated by MI number overlapping. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.20. Change ratios of neighborhoods estimated by MI influence overlapping. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.21. Change ratios of queries. (a) Facebook. (b) ArXiv. (c) Arnet.

Fig.22. Change ratios of APL. (a) Facebook. (b) ArXiv. (c) Arnet.

5 Related Work

A lot of studies have been proposed to prevent
“structure attack” on the published graph. The basic

protecting method is to publish an anonymized graph
by clustering or edge editing. Clustering is to cluster
“similar” nodes together and publish a super node in-
stead of the original nodes. By making each cluster’s

774 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

Fig.23. Change ratios of AD. (a) Facebook. (b) ArXiv. (c) Arnet.

size be at least k, k-anonymity is achieved. Since only
clusters and the connection information between them
are published, the individual’s information is protected.
A series of clustering models[8,10,18-19,21] were proposed
by considering different utility and privacy require-
ments. The edge editing based approach tries to add or
delete edges in order to make the graph satisfy certain
structure constraints. Liu and Terzi[11] defined k-degree
anonymous model, which requires any degree value ap-
pears at least k times in the published graph. Then if
an attacker uses degree information to attack a user,
he/she will always get at least k candidates. Zhou and
Pei[12] proposed a stricter model: each node’s neighbor-
hood graph appears at least k times. This model avoids
the attack using one-hop subgraph knowledge. Zou et

al.[20], Wu et al.[22] and Cheng et al.[9] studied how to
generate symmetric graphs to avoid the attack using
any structure information. He et al.[23] proposed a pro-
tection model where each node’s local graph with size
d (d 6 1) must appear at least k times in different com-
munities. Yuan et al.[24] implemented an anonymous
model which considers the personalized privacy require-
ments of users. Liu et al.[13] designed a graph anonymiz-
ing algorithm which preserves the reachability. These
studies try to prevent an attacker from matching an
anonymous user to an individual. They totally hide
the individual users, which leads the information those
users want to share unusable. Furthermore, social net-
work websites publish the network data to the third
parties who can derive some knowledge about the graph
in order to provide more interesting services to the tar-
get users. However, without the information from the
hidden users, it is difficult to achieve such a goal. The
model proposed in this paper protects sensitive infor-
mation from being attacked by a learning algorithm and
meanwhile publishes the useful information for sharing.

Our work studies how to protect the blank labels
in the graph crawled from APIs provided by the so-
cial network websites. Lindamood et al.[25] designed a
random edge changing and label replacing method to

prevent the learning of blank labels using Bayes classi-
fier. The differences between our work and this work
are: 1) We consider personalized user privacy prefer-
ence setting (publish the labels that a user wants to
publish and make sure the labels that a user does not
want to publish are not released); while [25] does not
consider the information a user wants to publish, which
makes some users’ published information incorrect after
adjustment. 2) [25] does not have a quantifiable gua-
rantee on the protection for each user; while our work
guarantees the protection for each user on the privacy
parameter p. 3) We make sure the preserving of an im-
portant utility in the published graph. Our work tries
to publish a graph which protects the sensitive labels
against “label-structure attacks” without changing user
influential values.

There are some other related studies. Machanava-
jjhala et al.[26] investigated the relationship between
the privacy and the accuracy of personalized social rec-
ommendations. The differential privacy is considered
in [26]. Differential privacy[27] is a privacy protection
method, which returns statistical query results to users
through an interface instead of publishing sanitized
data. A random noise from the Laplace distribution
is added to make sure that the output of a statistical
query is approximately the same when any single tuple
in the database is added or removed. Machanavajjhala
et al.[26] found that for the majority of nodes in the net-
work, recommendations must either be inaccurate or
violate differential privacy. Recently, a series of papers
are proposed to use differential privacy on different sce-
narios, such as histogram query[28], statistical geospa-
tial data query[29-30], frequent item set mining[31-32]

and crowdsourcing[30]. This paper considers the pri-
vacy protection data publishing case, which is different
with the randomized statistical query result returning
scenario. Liu et al.[1] treated edge weights as sensitive
labels and proposed a shortest path length preserving
random weight assignment method. Das et al.[2] pro-
posed a linear programming based method to protect

Mingxuan Yuan et al.: Anti-Learning Sensitive User Information in the Social Networks 775

edge weights while preserving certain linear properties.
These studies do not consider the protection of node la-
bels. The “label-structure attack” is not considered by
them either. Akcora et al.[33] designed a mechanism to
help users estimate their privacy risk in social networks.

6 Conclusions

In this paper, motivated by users’ different privacy
preferences in the social network, we proposed a new
method to publish a graph for customized privacy pro-
tection. We found out that it is not secure after leaving
users’ sensitive information blank. Through some sim-
ple label-structure analysis, it is possible for attackers
to know users’ sensitive labels due to the label-structure
association. Our method could promise that those com-
mon learning algorithms could not find out the sensi-
tive information. More importantly, we preserved one
important metric of the graph during the privacy pro-
tection. With the good utility demonstrated by the
proposed approach, the social network websites could
guarantee privacy when providing data through API to
third party applications by adjusting the communica-
tion history and providing a partial friend list.

References

[1] Liu L, Wang J, Liu J, Zhang J. Privacy preserving in social
networks against sensitive edge disclosure. Technical Report,
CMIDA-HiPSCCS 006-08, Department of Computer Science,
University of Kentucky, Lexington, USA, 2008.

[2] Das S, Egecioglu Ö, El Abbadi A. Anonymizing weighted so-
cial network graphs. In Proc. the 26th ICDE, March 2010,
pp.904-907.

[3] Zheleva E, Getoor L. To join or not to join: The illusion
of privacy in social networks with mixed public and private
user profiles. In Proc. the 18th International Conference on
World Wide Web, April 2009, pp.531-540.

[4] Mo M, King I. Exploit of online social networks with
community-based graph semi-supervised learning. In Proc.
the 17th International Conference on Neural Information
Processing: Theory and Algorithms - Volume Part I, Novem-
ber 2010, pp.669-678.

[5] Lu Q, Getoor L. Link-based classification. In Proc. the 20th
International Conference on Machine Learning (ICML), Au-
gust 2003, pp.496-503.

[6] Neville J, Jensen D. Relational dependency networks. Journal
of Machine Learning Research, 2007, 8(Mar): 653-692.

[7] Tang L, Liu H. Relational learning via latent social dimen-
sions. In Proc. the 15th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, June 28-
July 1, 2009, pp.817-826.

[8] Bhagat S, Cormode G, Krishnamurthy B, Srivastava D. Class-
based graph anonymization for social network data. Proc.
VLDB Endow., 2009, 2(1): 766-777.

[9] Cheng J, Fu A W, Liu J. K-isomorphism: Privacy preserv-
ing network publication against structural attacks. In Proc.
the 2010 International Conference on Management of Data,
June 2010, pp.459-470.

[10] Hay M, Miklau G, Jensen D, Towsley D, Weis P. Resist-
ing structural re-identification in anonymized social networks.
Proc. VLDB Endow., 2008, 1(1): 102-114.

[11] Liu K, Terzi E. Towards identity anonymization on graphs.
In Proc. the 2008 International Conference on Management
of Data, June 2008, pp.93-106.

[12] Zhou B, Pei J. Preserving privacy in social networks against
neighborhood attacks. In Proc. the 24th ICDE, April 2008,
pp.506-515.

[13] Liu X, Wang B, Yang X. Efficiently anonymizing social net-
works with reachability preservation. In Proc. the 22nd ACM
International Conference on Information & Knowledge Man-
agement, October 27-November 1, 2013, pp.1613-1618.

[14] Campbell C S, Maglio P P, Cozzi A, Dom B. Expertise iden-
tification using email communications. In Proc. the 12th In-
ternational Conference on Information and Knowledge Man-
agement, November 2003, pp.528-531.

[15] Zhang J, Tang J, Li J. Expert finding in a social network. In
Proc. the 12th Int. Conf. Database Systems for Advanced
Applications, April 2007, pp.1066-1069.

[16] Ying X, Wu X. Randomizing social networks: A spectrum
preserving approach. In Proc. SDM, April 2008, pp.739-750.

[17] Zhang J, Tang J, Liu L, Li J. A mixture model for expert
finding. In Proc. the 12th Pacific-Asia Conference on Ad-
vances in Knowledge Discovery and Data Mining, May 2008,
pp.466-478.

[18] Zheleva E, Getoor L. Preserving the privacy of sensitive rela-
tionships in graph data. In Proc. the 1st PinKDD, August
2007, pp.153-171.

[19] Campan A, Truta T M. Data and structural k-anonymity in
social networks. In Proc. the 2nd PinKDD, August 2008,
pp.33-54.

[20] Zou L, Chen L, Özsu M T. k-automorphism: A general
framework for privacy preserving network publication. Proc.
VLDB Endow., 2009, 2(1): 946-957.

[21] Cormode G, Srivastava D, Yu T, Zhang Q. Anonymizing bi-
partite graph data using safe groupings. Proc. VLDB En-
dow., 2008, 1(1): 833-844.

[22] Wu W, Xiao Y, Wang W, He Z, Wang Z. k-symmetry model
for identity anonymization in social networks. In Proc. the
13th International Conference on Extending Database Tech-
nology, March 2010, pp.111-122.

[23] He X, Vaidya J, Shafiq B, Adam N, Atluri V. Preserving pri-
vacy in social networks: A structure-aware approach. In Proc.
the 2009 IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent Technology, Sept.
2009, pp.647-654.

[24] Yuan M, Chen L, Yu P S. Personalized privacy protection in
social networks. Proc. VLDB Endow., 2010, 4(2): 141-150.

[25] Lindamood J, Heatherly R, Kantarcioglu M, Thuraisingham
B. Inferring private information using social network data.
In Proc. the 18th International Conference on World Wide
Web, April 2009, pp.1145-1146.

[26] Machanavajjhala A, Korolova A, Sarma A D. Personalized
social recommendations: Accurate or private? Proc. VLDB
Endow., 2011, 4(7): 440-450.

[27] Dwork C. Differential privacy. In Proc. the 33rd ICALP Part
II, July 2006, pp.1-12.

[28] Xu J, Zhang Z, Xiao X, Yang Y, Yu G. Differentially private
histogram publication. In Proc. the 28th IEEE International
Conference on Data Engineering, April 2012, pp.32-43.

[29] Qardaji W, Yang W, Li N. Differentially private grids for
geospatial data. In Proc. the 29th IEEE International Con-
ference on Data Engineering (ICDE), April 2013, pp.757-768.

[30] To H, Ghinita G, Shahabi C. A framework for protect-
ing worker location privacy in spatial crowdsourcing. Proc.
VLDB Endow., 2014, 7(10): 919-930.

[31] Li N, Qardaji W, Su D, Cao J. PrivBasis: Frequent itemset
mining with differential privacy. Proc. VLDB Endow., 2012,
5(11): 1340-1351.

776 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

[32] Zeng C, Naughton J F, Cai J Y. On differentially private
frequent itemset mining. Proc. VLDB Endow., 2012, 6(1):
25-36.

[33] Akcora C, Carminati B, Ferrari E. Privacy in social networks:
How risky is your social graph? In Proc. the 28th IEEE
International Conference on Data Engineering, April 2012,
pp.9-19.

Mingxuan Yuan is currently
a researcher of Huawei Noah’s Ark
Lab, Hong Kong. Before that, he
served as a postdoctoral fellow in
the Department of Computer Science

and Engineering, The Hong Kong
University of Science and Technol-
ogy. His research interests include
spatiotemporal data storage/mining,
telecom data mining, and data pri-
vacy.

Lei Chen is currently an asso-
ciate professor in the Department
of Computer Science and Engineer-
ing, The Hong Kong University of
Science and Technology. Prof. Chen

got his Ph.D. degree in computer
science from University of Waterloo.
His research interests include mul-
timedia and time series databases,
crowdsourcing, sensor and peer-to-

peer databases, and stream and probabilistic databases. He
is a member of the IEEE and the IEEE Computer Society.

Philip S. Yu is a professor in the
Department of Computer Science at
the University of Illinois at Chicago
and also holds the Wexler Chair in in-
formation technology. He spent most
of his career in the IBM Thomas J.

Watson Research Center and was the
manager of the Software Tools and
Techniques Group. His research in-
terests include data mining, Internet

applications and technologies, database systems, multime-
dia systems, parallel and distributed processing, and perfor-

mance modeling. He is a fellow of ACM and IEEE. He is an
associate editor of the ACM Transactions on Internet Tech-
nology and the ACM Transactions on Knowledge Discovery
from Data.

Hong Mei is a professor in
the School of Electronics Engineer-
ing and Computer Science, Peking
University, and the Department of

Computer Science and Engineer-
ing, Shanghai Jiao Tong Univer-
sity. His research interests include
software engineering, software reuse,
distributed object technology and
middleware, and programming lan-

guages. Professor Mei received a Ph.D. degree in computer

science from Shanghai Jiao Tong University in 1992.

