
Fan W, Huai JP. Querying big data: Bridging theory and practice. JOURNAL OF COMPUTER SCIENCE AND TECH-

NOLOGY 29(5): 849–869 Sept. 2014. DOI 10.1007/s11390-014-1473-2

Querying Big Data: Bridging Theory and Practice

Wenfei Fan1,2 (樊文飞), Fellow, ACM, and Jin-Peng Huai2,3 (怀进鹏), Fellow, CCF, Member, ACM, IEEE

1School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U.K.
2International Research Center on Big Data, Beihang University, Beijing 100191, China
3School of Computer Science and Engineering, Beihang University, Beijing 100191, China

E-mail: wenfei@inf.ed.ac.uk; huaijp@buaa.edu.cn

Received February 22, 2014; revised August 5, 2014.

Abstract Big data introduces challenges to query answering, from theory to practice. A number of questions arise. What
queries are “tractable” on big data? How can we make big data “small” so that it is feasible to find exact query answers?
When exact answers are beyond reach in practice, what approximation theory can help us strike a balance between the
quality of approximate query answers and the costs of computing such answers? To get sensible query answers in big data,
what else do we necessarily do in addition to coping with the size of the data? This position paper aims to provide an
overview of recent advances in the study of querying big data. We propose approaches to tackling these challenging issues,
and identify open problems for future research.

Keywords big data, query answering, tractability, approximation, data quality

1 Introduction

Big data is a term that is almost as popular as “in-
ternet” was back 20 years ago. It refers to a collec-
tion of datasets so large and complex that it becomes
difficult to process using traditional database manage-
ment tools or data processing applications①. More
specifically, big data is often characterized with four
V’s: Volume for the scale of the data, Velocity for
its streaming or dynamic nature, Variety for its diffe-
rent forms (heterogeneity), and Veracity for the uncer-
tainty (poor quality) of the data②. Such data comes
from social networks (e.g., Facebook, Twitter, Sina
Weibo), e-commerce systems (e.g., Amazon, Taobao),
finance (e.g., stock transactions), sensor networks, med-
ical data, e-government and scientific research (e.g., en-
vironmental research), just to name a few, where data
is easily of PetaByte (PB, 1015 bytes) or ExaByte (EB,
1018 bytes) size. The chances are that big data will
generate as big impacts on our daily lives as internet
has done.

1.1 New Challenges

As big data researchers, we do not confine to the
general characterization of big data. We are more in-
terested in what research issues big data introduces to
query answering. Given a dataset D and a query Q,
query answering is to find the answers Q(D) to Q in
D. Here Q can be an SQL query on relational data,
a keyword query to search documents, or a personali-
zed social search query on social networks (e.g., Graph
Search of Facebook③).

Example 1. A fraction D0 of an employee dataset
of a company is shown in Table 1. Each tuple in D0

specifies the first-name (FN), the last name (LN), the
salary and the marital status of an employee, as well as
the area code (AC) and the city of her office. A query Q0

is to find distinct employees whose first name is Mary.
Such a query can be expressed in, e.g., relational alge-
bra, written as σFN=“Mary”R0 by using selection opera-
tor σ[1], where R0 is the relation schema of D0. To
answer the query Q0 in D0, we need to find all tuples in

Survey
This work was supported in part by the National Basic Research 973 Program of China under Grant No. 2014CB340302. Fan is also

supported in part by the National Natural Science Foundation of China under Grant No. 61133002, the Guangdong Innovative Research
Team Program under Grant No. 2011D005 and Shenzhen Peacock Program under Grant No. 1105100030834361, the Engineering and
Physical Sciences Research Council of UK under Grant No. EP/J015377/1, and the National Science Foundation of USA under Grant
No. III-1302212.

①Wikipedia. Big data. http://en.wikipedia.org/wiki/Big data#cite note-23, Aug. 2014.
②IBM. IBM big data platform. http://www-01.ibm.com/software/data/bigdata/, Aug. 2014.
③Facebook. Introducing graph search. https://en-gb.facebook.com/about/graphsearch, Feb. 2014.
©2014 Springer Science+Business Media, LLC & Science Press, China

850 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

D0 that satisfy the selection condition: FN = “Mary”,
i.e., tuples t1, t2 and t3.

Table 1. Employee Dataset D0

FN LN AC City Salary (k) Status

t1: Mary Smith 20 Beijing 50 Single

t2: Mary Webber 10 Beijing 50 Married

t3: Mary Webber 10 Beijing 80 Married

s1: Bob Luth 212 NYC 80 Married

s2: Robert Luth 212 NYC 55 Married

In the context of big data, query answering becomes
far more challenging than what we have seen in Exam-
ple 1. The new complications include but are not limi-
ted to the following.

Data. In contrast to a single traditional database
D0, there are typically multiple data sources with in-
formation relevant to our queries. For instance, a recent
study shows that many domains have tens of thousands
of Web sources[2], e.g., restaurants, hotels, schools.
Moreover, these data sources often have a large volume
of data (e.g., of PB size) and are frequently updated.
They have different formats and may not come with a
schema, as opposed to structured relational data. Fur-
thermore, many data sources are unreliable: their data
is typically “dirty”.

Query. Queries posed on big data are no longer limi-
ted to our familiar SQL queries. They are often for
document search, social search or even for data analy-
sis such as data mining. Moreover, their semantics
also differs from traditional queries. On one hand, it
can be more flexible: one may want approximate an-
swers instead of exact answers Q(D). On the other
hand, one could ask query answering to be ontology-
mediated by coupling datasets with a knowledge base[3],
or personalized and context-aware[4] such that the same
query gets different answers when issued by different
people in different locations.

These tell us that query answering in big data is a de-
parture from our familiar terrain of traditional database
queries. It raises a number of questions. Does big data
give rise to any new fundamental problems? In other
words, do we need new theory for querying big data?
Do we need to develop new methodology for query pro-
cessing in the context of big data? What practical tech-
niques could we use to cope with the sheer volume of
big data? In addition to the scalability of query an-
swering algorithms, what else do we have to pursue in
order to find sensible or even correct query answers in
big data?

1.2 Querying Big Data

This paper presents an overview of recent advances
in the study of these problems. It is a progress report of
the International Research Center on Big Data at Bei-
hang University④, which was established in September
2012, and has been working on querying big data since
then. We report how we tackle the problems mentioned
above.

BD-Tractability. The first question we need to an-
swer is what queries are tractable on big data. Given a
query Q and a big dataset D, we want to know whether
we can compute Q(D) within our available resources
such as time and space. As found in most textbooks
(e.g., [1, 5]), a class of queries is traditionally considered
tractable if there exists an algorithm for answering its
queries in time bounded by a polynomial in the size
of the input (PTIME), i.e., a database and a query. In
other words, a class of queries is feasible from a theo-
retical perspective if its worst-case time complexity is
PTIME, while a class is considered difficult to solve
when it is NP-hard. This notion of time complexity
dates back to 1965[6] and is almost 50-year old.

When it comes to big data, however, PTIME queries
may no longer be feasible. For instance, consider the
query Q0 and the dataset D0 given in Example 1. To
compute Q0(D0) in the absence of any indices, one may
need to scan D0. Assuming the fastest Solid State
Drives (SSD) with disk scanning speed of 6GB/s[7], a
linear scan of D0 takes 166 666 seconds when D0 con-
sists of 1PB of data, that is, 2 777 minutes, 46 hours, or
1.9 days! When D0 has 1 EB of data, we have to wait
5.28 years for a linear scan of D0. That is, even linear-
time (O(n)) queries become infeasible in the context of
big data.

This suggests that we revise the classical computa-
tional complexity theory for querying big data. To this
end, we propose a notion of BD-tractable queries[8], to
help us determine what queries are tractable or feasible
on big data.

Making Queries BD-Tractable. It is not surprising
that many query classes are not BD-tractable. The
next question naturally asks whether we can make these
query classes BD-tractable. We approach this by study-
ing both its fundamental problems and practical tech-
niques, by making big data “small”.

To understand what it takes to compute answers
Q(D) of a query Q in a dataset D, we want to identify a
core of D for answering Q, i.e., a minimum subset DQ

of D, such that Q(D) = Q(DQ). Indeed, it often suffices
to fetch a small or even a bounded subset DQ of D for
computing Q(D), no matter how large the underlying

④http://rcbd.buaa.edu.cn/en/index.html, Aug. 2014.

Wenfei Fan et al.: Querying Big Data 851

dataset D is. For instance, when Q is a Boolean con-
junctive query (a.k.a. SPC query[1]), we need at most
||Q|| tuples from D to answer Q, independent of the size
of D, where ||Q|| is the number of tuples in the tableau
representation of Q. This is also the case for many
personalized social search queries. Intuitively, if a core
DQ of D for answering Q has a bounded size, then Q
is scale-independent in D[9], i.e., we can efficiently com-
pute Q(D) no matter how big D is. This suggests that
we study how to determine whether a query is scale-
independent in a dataset.

In addition, we develop several practical techniques
for making big data “small”. These include: 1) distri-
buted query processing by partial evaluation[10], with
provable performance guarantees on both response time
and network traffic; 2) query-preserving data com-
pression[11]; 3) view-based query answering[12]; and
4) bounded incremental computation[13-14]. All these
techniques allow us to compute Q(D) with a cost that
is not a function of the size of D, and have proven effec-
tive in querying social networks. The list is not exclu-
sive: there are many other techniques for making big
data “small” and hence, making queries feasible on big
data.

Query-Driven and Data-Driven Approximation.
Some queries neither are BD-tractable nor can be made
BD-tractable. An example is graph pattern matching
by subgraph isomorphism. Here query Q is a graph
pattern, dataset D is a graph, and the answer Q(D) is
the set of all subgraphs of D that are isomorphic to Q.
Such queries are expensive: it is NP-complete even to
decide whether there exists a subgraph of D that is iso-
morphic to Q! It is beyond reach in the context of big D
to compute exact answers Q(D). In light of this, algo-
rithms for processing such queries on big data are nec-
essarily inexact. We may have to settle with heuristics,
“quick and dirty” algorithms which return approximate
answers that are not necessarily optimal[5].

This highlights the need for studying the next ques-
tion: how can we develop approximation algorithms,
i.e., heuristics which find answers that are guaranteed
not to be far from the exact query answers? We pro-
pose two types of approximation.

1) Query-Driven Approximation. For certain queries
we can relax their semantics and reduce the complexity
of query processing. One example is the class of graph
pattern queries mentioned above, for social network
analysis. Instead of adopting subgraph isomorphism
for graph pattern matching, we can use (revisions of)
graph simulation[15-17]. This reduces the complexity
of graph pattern matching from intractability by sub-
graph isomorphism to quadratic-time or cubic-time by
(revised) graph simulation! Better still, the revised no-
tions of graph simulation allow us to catch more sensible

matches in social data analysis than subgraph isomor-
phism can find.

2) Data-Driven Approximation. In some applica-
tions, we may not be able to relax query semantics.
To this end, we propose a notion of resource-bounded
approximation in this paper. In contrast to traditional
approximation algorithms that directly operate on a
given big dataset D, we first reduce D to “small data”
DQ with a “lower resolution” α ∈ (0, 1], such that
|DQ| 6 α|D|. We then compute Q(DQ) as approxi-
mate query answers to Q, such that Q(DQ) is within
a performance ratio η to the exact answer Q(D). We
explore the connection between the resolution α and
the quality bound η, to strike a balance between the
computation cost and the quality of the approximate
answers. Our preliminary study[18] has shown that for
personalized social search queries, the quality bound re-
mains 100% even when the resolution α is as small as
0.001 5% (15×10−6). That is, we can reduce D of 1PB
to DQ of 15GB, while still retaining exact answers for
such queries!

Big Data = Quantity + Quality. To compute high-
quality query answers from big data, it is often insuf-
ficient just to develop scalable algorithms to cope with
large volume of the data. To illustrate this, let us con-
sider the following example.

Example 2. Recall query Q0 and dataset D0 from
Example 1. Suppose that we have efficient techniques
in place to compute Q0(D0) for big D0. As remarked
earlier, Q0(D0) consists of three tuples t1, t2 and t3.
The question is: can we trust Q0(D0) to be the correct
answer to what the user wants to find?

Unfortunately, there are at least three reasons that
discredit our trust in Q0(D0). 1) In tuple t1, attribute
t1[AC] is 20 and t1[City] is Beijing, while the area code
of Beijing is 10. In light of this, tuple t1 is “incon-
sistent” and hence, its quality is in question. 2) The
chances are that all three tuples t1, t2 and t3 refer to the
same person; in other words, they do not represent dis-
tinct employees. 3) Furthermore, the dataset D0 may
be incomplete: for some employees whose first name is
also Mary, their records are not included in D0. In light
of these, we do not know whether the answer Q0(D0) is
correct or not!

From the example we can see that when the datasets
are dirty, we cannot trust the answers to our queries
in those datasets. In other words, no matter how big
datasets we can handle and how fast our query pro-
cessing algorithms are, the query answers computed
may not be correct and hence may be useless! Unfortu-
nately, real-life data is often dirty[19], and the scale of
data quality problems is far worse in the context of big
data, since real-life data sources are often unreliable.
Therefore, the study of the quality of big data is as

852 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

important as techniques for coping with its quantity;
that is, big data = quantity + quality!

This motivates us to study the quality of big
data. We consider five central issues of data quality:
data consistency[20], data accuracy[21], information
completeness[22], data currency[23] and entity resolu-
tion[24], from theory to practice. We study how to
repair dirty data[25-27] and how to deduce true values
of an entity[28], among other things, emphasizing new
challenges introduced by big data.

1.3 Organization

The remainder of the paper is organized as follows.
We start with BD-tractability in Section 2. We study
scale independence and present several practical tech-
niques for making queries BD-tractable in Section 3.
When BD-tractable algorithms for computing exact
query answers are beyond reach in practice, we study
approximate query answering in Section 4, by proposing
query-driven approximation and data-driven approxi-
mation. We study the other side of big data, namely,
data quality, in Section 5. Finally, Section 6 concludes
the paper.

The study of querying big data is still in its infancy,
and it has raised as many questions as it has answered.
In light of this, we also identify open research issues in
this paper, and propose approaches to tackling them.
We hope that the paper will incite interest in the study
of querying big data, and we invite interested colleagues
to join forces with us in the study.

2 Tractability Revised for Querying Big Data

This section studies the following problem: given a
class Q of queries that we need to use, we want to de-
termine whether Q is tractable in big data, i.e., it is fea-
sible to answer the queries of Q in big data within our
available resources. As we have seen in Section 1, poly-
nomial time can no longer provide a characterization
for Q to be tractable in big data. This suggests that
we revise the traditional notion of tractability, and de-
fine BD-tractability, i.e., tractability for queries on big
data.

Below we present a notion of BD-tractable queries.
We encourage the interested reader to consult [8] for
details.

2.1 Preliminaries

We start with a review of two well-studied comple-
xity classes (see, e.g., [29-30] for details).
• The complexity class P consists of all decision prob-

lems that can be solved by a deterministic Turing ma-
chine in polynomial time (PTIME), i.e., in nO(1) time,

where n is the size of the input (dataset D and query
Q in our case).
• The parallel complexity class NC, known as Nick’s

Class, consists of all decision problems that can be
solved by taking O(logO(1) n) time on a PRAM (pa-
rallel random access machine) with nO(1) processors.

In this paper we focus on query classes rather than
decision problems. We use P to denote the set of all
PTIME query classes. We say that a query class Q is
in NC if all of its queries can be answered in parallel
polylog-time, i.e., polynomial time in the logarithm of
the input using a PRAM with polynomially many pro-
cessors. Such a query class is highly parallel feasible,
i.e., its queries can be efficiently answered on a para-
llel computer[29]. It is also known that a large class
of NC algorithms can be implemented in the MapRe-
duce framework[31], such that if an NC algorithm takes
t time, then its corresponding MapReduce counterpart
takes O(t) rounds. We use NC to denote the set of all
such parallel polylog-time query classes. It should be
remarked that there have been revisions of the PRAM
model by requiring logn processors instead of nO(1)[32].

2.2 BD-Tractability

To make query answering feasible in big data, we
adopt two ideas: 1) using parallel machines, and 2)
separating offline and online processes. The second
idea suggests that we preprocess a dataset D by, e.g.,
building indices or compressing the data, which yields
dataset D′, such that all queries in Q on D can subse-
quently be processed on D′ online efficiently. When the
data is static or when D′ can be incrementally main-
tained efficiently, the preprocessing step can be consi-
dered as an offline process with a one-time cost. Pre-
processing has been a common practice of database peo-
ple for decades.

Example 3. Recall query Q0 and dataset D0 from
Example 1. Extending Q0, let us consider a class Q0 of
Boolean selection queries. A query Q in Q0 is to find
whether there exists a tuple t ∈ D0 such that t[A] = c,
where A is an attribute of D0 and c is a constant. A
naive evaluation of Q would require a linear scan of D0.
To efficiently answer queries of Q0 in D0, we can first
build B+ trees on the values of the attributes of D0,
as a one-time preprocessing step offline. Then we can
evaluate all queries in Q0 on D0 in O(log|D0|) time us-
ing the indices. That is, we no longer need to scan D0

when processing each query in Q0. When D0 consists
of 1PB of data, we can get the results in 15 seconds
with the indices rather than 1.9 days.

Based on these two ideas, below we propose a revi-
sion of the traditional notion of tractable query classes.

Wenfei Fan et al.: Querying Big Data 853

To be consistent with the complexity classes that
are traditionally studied for decision problems[29-30], we
consider Boolean query classes Q, and represent Q as a
language S of pairs (D, Q), where Q is a query in Q, D
is a database on which Q is defined, and Q(D) is true.
In other words, S can be considered as a binary relation
such that (D, Q) ∈ S if and only if Q(D) is true. We
refer to S as the language for Q.

We say that a language S of pairs is in comple-
xity class CQ if it is in CQ to decide whether a pair
(D, Q) ∈ S, i.e., Q(D) is true. Here CQ may be the se-
quential complexity class P or the parallel complexity
class NC, among other things.

Complexity Class BDT 0. We say that a class Q
of queries is BD-tractable if there exists a PTIME-
computable preprocessing function Π on datasets and
a language S′ of pairs such that for queries Q ∈ Q and
all datasets D,
• (D, Q) is in the language S of pairs for Q if and

only if (Π(D), Q) ∈ S′, and
• S′ is in NC, i.e., the language of pairs (Π(D), Q) is

in NC.
We denote by BDT 0 the set of all BD-tractable query
classes.

Intuitively, function Π(·) preprocesses D and gene-
rates another structure D′ = Π(D) offline, in PTIME.
After this, for all queries Q ∈ Q that are defined on D,
Q(D) can be answered by evaluating Q(D′) online in
NC, i.e., in parallel polylog-time.

Observe the following. 1) As shown in Example 3,
parallel polylog-time is feasible on big data. Moreover,
NC is robust and well-understood. It is one of the
few parallel complexity classes whose connections with
classical sequential complexity classes have been well
studied (see, e.g., [29]). 2) We consider PTIME pre-
processing feasible since it is a one-time price and is
performed offline. Note that the preprocessing step is
also expected to be conducted using parallel machines,
possibly by allocating more resources (e.g., computing
nodes) to it than to online query answering. Moreover,
by requiring that Π(·) is in PTIME, the size of Π(D) is
bounded by a polynomial.

Example 4. As we have seen in Example 3, the
class Q0 of Boolean selection queries is in BDT 0. In-
deed, function Π(·) preprocesses a dataset D0 by build-
ing B+-trees on attributes of D0 in PTIME. After this,
all queries in Q0 posed on D0 can be answered in
O(log |D|) time by using the indices in Π(D0). In fact,
the class of all relational algebra queries extended with
transitive closure is also in BDT 0 over ordered rela-
tional datasets, since those queries are in NC in this
setting[33].

2.3 Making Queries BD-Tractable

Some query classes Q are not BD-tractable, but can
be transformed to a BD-tractable query class by means
of re-factorizations. A re-factorization re-partitions the
data and query parts for Q and identifies a dataset
for preprocessing, such that after the preprocessing,
its queries can be subsequently answered in parallel
polylog-time.

Complexity Class BDT. More specifically, we say
that a class Q of queries can be made BD-tractable if
there exist three NC computable functions π1(·), π2(·)
and ρ(·, ·) such that for all (D, Q) in the language S of
pairs for Q,
• D′ = π1(D, Q), Q′ = π2(D, Q), (D, Q) =

ρ(D′, Q′), and
• the query class Q′ = {Q′ | Q′ = π2(D, Q),

(D, Q) ∈ S} is BD-tractable.
Intuitively, π1(·) and π2(·) re-partition x = (D, Q)

into a “data” part D′ = π1(x) and a “query” part
Q′ = π2(x), and ρ is an inverse function that restores
the original instance x from π1(x) and π2(x). The data
part D′ is picked from x and will be preprocessed, such
that after the preprocessing step, all the queries Q′ ∈ Q′
can then be answered in parallel polylog-time.

We use BDT to denote the set of all query classes
that can be made BD-tractable. Obviously, BDT 0 is
a subset of BDT, when D = π1(D, Q), Q = π2(D, Q),
and ρ is the identity function. As will be seen next,
BDT 0 is a proper subset of BDT unless P = NC, i.e.,
there is a query class that is in BDT but not in BDT 0.

Example 5. Consider Breadth-Depth Search
(BDS)[29] :
• Input: an undirected graph G = (V, E) with a num-

bering on the nodes, and a pair (u, v) of nodes in V .
• Question: is u visited before v in the breadth-depth

search of G induced by the vertex numbering?
A breadth-depth search starts at a node s and vis-

its all its children, pushing them onto a stack in the
reverse order induced by the vertex numbering as the
search proceeds. After all of s’s children are visited, the
search continues with the node on the top of the stack,
which plays the role of s.

In the problem statement of BDS given above, the
entire input, i.e., x = (G, (u, v)), is treated as a query,
while its data part is empty. In this setting, there is
nothing to be preprocessed. Moreover, it is known that
BDS is P-complete[29], i.e., it is the hardest problem in
the complexity class P. Unless P = NC, such a query
cannot be processed in parallel polylog-time. In other
words, this class of BDS queries is not in BDT 0 unless

854 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

P = NC. It is also known that the question whether
P = NC is as hard as our familiar open question
whether P = NP.

Nonetheless, there exists a re-factorization
(π1, π2, ρ) of its instances x = (G, (u, v)) that iden-
tifies G as the data part and (u, v) as the query part.
More specifically, π1(x) = G, π2(x) = (u, v), and ρ
maps π1(x) and π2(x) back to x. Given this, we de-
fine preprocessing Π(·) as the function that performs
breadth-depth search on G based on the ordering on
the vertices, and returns a list M consisting of all the
nodes in V in the same order as they are visited during
the search. Then Π(G) is clearly in PTIME in |G|.
Let S′ be the language of pairs (M, (u, v)) such that
u appears before v in M . Obviously, one can decide
whether (M, (u, v)) ∈ S′ by binary searches on M ,
in O(log |M |) time. Hence BDS is in BDT. In other
words, while BDS is not BD-tractable, it can be made
BD-tractable by means of a re-factorization. In light of
this, BDS provides a witness that separates BDT and
BDT 0, unless P = NC.

2.4 Fundamental Issues

There are several important questions in connection
with BD-tractability. What reductions can we use to
transform one query class in BDT to another? Does
there exist a natural class Q of queries that is complete
for BDT, i.e., Q is a class of the “hardest” queries in
BDT? How large is BDT? In other words, is it a new
complexity class or the same as P or NC? The same
questions also arise for BDT 0. In fact, these are the
“standard” questions one would have to answer for any
complexity class, including our familiar P and NP.

These questions have been studied for BDT and
BDT 0[8].
• A form of NC-reductions 6NC

fa has been defined
for BDT, which is transitive (i.e., if Q1 6NC

fa Q2 and
Q2 6NC

fa Q3 then Q1 6NC
fa Q3) and compatible with

BDT (i.e., if Q1 6NC
fa Q2 and Q2 is in BDT, then so

is Q1). Similarly, NC-reductions have been defined for
BDT 0 with these properties. In contrast to our familiar
PTIME-reductions for NP problems (see, e.g., [5]), these
reductions require a pair of NC functions, i.e., both are
in parallel polylog-time.
• There exists a complete query class Qm for BDT

under 6NC
fa reductions, i.e., Qm is in BDT and more-

over, for all query classes Q ∈ BDT, Q 6NC
fa Qm. How-

ever, the question whether there exists a complete query
class for BDT 0 is as hard as the open question whether
P = NC.
• NC ⊆ BDT = P. That is, all PTIME query classes

can be made BD-tractable via proper re-factorizations,
or in other words, by transforming them to a query class

in BDT via 6NC
fa reductions. In contrast, unless P = NC,

BDT 0 ⊂ P, i.e., BDT 0 is indeed a proper subset of P,
and hence, not all PTIME queries are BD-tractable.

These results not only are of theoretical interest, but
also provide guidance for us to answer queries in big
data. For instance, given a query class Q, we can con-
clude that it can be made BD-tractable if we can find a
6NC

fa reduction to a complete query class Qm of BDT. If
so, we are warranted an effective algorithm for answer-
ing queries of Q in big data. Indeed, such an algorithm
can be developed by simply composing the NC reduc-
tion and an NC algorithm for processing Qm queries,
and then the algorithm remains in parallel polylog-time.

One may ask what query classes may not be made
BD-tractable. The results above also tell us the fol-
lowing: unless P = NP, all query classes for which the
membership problem is NP-hard are not in BDT. The
membership problem for a query class Q is to decide,
given a query Q ∈ Q, a dataset D and an element e,
whether e ∈ Q(D), i.e., e is in the answer to Q in D.

2.5 Open Issues

There has been a host of recent work on revis-
ing the traditional complexity theory to characterize
data-intensive computation on big data. The revi-
sions are defined in terms of computational costs[8],
communication (coordination) rounds[34-35], or MapRe-
duce steps[31] and data shipments[36] in the MapReduce
framework[37]. Our notions of BD-tractability focus on
computational costs[8]. The study is still preliminary,
and a number of questions remain open.

1) The first question concerns what complexity class
precisely characterizes online query processing that is
feasible on big data. As a starting point we adopt NC
because
• NC is considered highly parallel feasible[29];
• parallel polylog-time is feasible on big data; and
• many NC algorithms can be implemented in the

MapReduce framework[31], which is being used in cloud
computing and data centers for processing big data.

However, NC is defined in the PRAM model, which
may not be accurate for real-life parallel frameworks
such as MapReduce.

These call for a full treatment of parallel compu-
tation models that are more practical than PRAM
for characterizing available resources in the real world.
Such models should take into account both computa-
tional complexity and communication costs. Upon the
availability of such models, the class BDT 0 of BD-
tractable queries should then be revised accordingly.

2) The second question concerns the complexity of
preprocessing. Let us use PQ[CP ,CQ] to denote the
set of all query classes that can be answered by pre-

Wenfei Fan et al.: Querying Big Data 855

processing the datasets in the complexity class CP and
subsequently answering the queries in CQ. Then BDT 0

can be represented by PQ[P, NC]. One may consider
other complexity classes CP instead of P. For instance,
one may consider PQ[NC,NC] by requiring the prepro-
cessing step to be conducted more efficiently; this is
not very interesting since PQ[NC,NC] coincides with
NC. On the other hand, one may want to consider CP

beyond P, e.g., NP and PSPACE (i.e., PQ[NP,NC] and
PQ[PSPACE,NC]). This is another debatable issue that
demands further study. No matter what PQ[CP ,CQ]
we use, one has to strike a balance between its expres-
sive power and computational cost in the context of big
data.

3) BD-tractability has only been studied for Boolean
queries and decision problems, as people usually do in
complexity theory. Nevertheless, BD-tractability for
general queries, as well as for search and function prob-
lems, remains to be studied.

4) There are several open issues in connection with
query evaluation with preprocessing. Given a query
class, how can we effectively identify a re-factorization
that appropriately picks the right dataset to be prepro-
cessed? What preprocessing strategies should we use?
If a query class cannot be made BD-tractable, can we
still answer its queries in big data? We will address
some of these questions in the next a few sections.

5) The last question concerns the existence of a com-
plete query class for BDT 0. However, this is as hard
as the problem whether P = NC, which is as hard as
whether P = NP.

3 Making Big Data Small

Following up the notion of BD-tractability presented
in the last section, we next investigate how we can make
queries BD-tractable. There are many ways to do this,
such as building up indices as we have seen in Example
3. In this section we focus on a particular approach, by
making big data small. Suppose that we need to answer
a class Q of queries in a big dataset D. We propose to
reduce D to a dataset D′ (or a number of fragments D′)
of a manageable size, such that 1) for all queries Q ∈ Q,
Q(D) = Q(D′), and 2) we can efficiently answer Q in
D′ within our available resources. In other words, as a
preprocessing step, we reduce big D to small D′ such
that we can still compute exact answers Q(D) by ac-
cessing only the small dataset D′ instead of operating
on the original big D directly.

The idea is simple. But to implement it, we need to
settle several fundamental questions and develop practi-
cal techniques. Below we first study questions concern-

ing whether it is possible at all to find a small dataset
D′ such that Q(D) = Q(D′). We then present sev-
eral practical techniques to make big data small, which
have been evaluated by using social network analysis as
a testbed, and have proven effective in the application.

3.1 Scale Independence

We start with fundamental problems associated with
the approach to making big data small. We first study
the existence of a small subset D′ of D such that we
can answer Q in D by accessing only the data in D′.
We then present effective methods for identifying such
a D′. We invite the interested reader to consult [9] for
a detailed report on this subject.

To simplify the discussion, we consider relational
queries. Let R be a relational schema (i.e., R =
(R1, . . . , Rn), where Ri is a relation schema[1]), D a
database instance of R, Q a query in query class Q
such as relational algebra or conjunctive queries, and
M a non-negative integer. Let |D| denote the size of D
measured as the total number of tuples in relations of
D.

3.1.1 Definition

We say that Q is scale-independent in D w.r.t. M if
there exists a subset DQ ⊆ D such that
• |DQ| 6 M , and
• Q(DQ) = Q(D).

That is, to answer Q in D, we need only to fetch at
most M tuples from D, regardless of how big D is. We
refer to DQ as a core for answering Q in D. Note that
DQ may not be unique. As will be seen shortly, we
want to find a minimum core.

One step further, we say that Q is scale-independent
for R w.r.t. M if for all instances D of R, Q is scale-
independent in D w.r.t. M , i.e., one can always find a
core DQ with at most M tuples for answering Q in D.

The term “scale independence” is borrowed from [38-
40]. The need for studying scale independence is evi-
dent in practice. It allows us to answer Q in big D
by accessing a small dataset within our available re-
sources. Moreover, if Q is scale-independent for R, we
can answer Q without performance degradation when
D grows, and hence, make Q scalable with |D|.

Example 6. Some real-life queries are actually
scale-independent. For example, below are (slightly
modified) personalized search queries taken from Graph
Search of Facebook⑤. These example queries are bor-
rowed from [9].

1) Query Q1 is to find all NYC friends of a person p0,
from a dataset D1. Here D1 consists of two relations

⑤Facebook. Introducing graph search. https://en-gb.facebook.com/about/graphsearch, Feb. 2014.

856 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

specified by person(id, name, city) and friend(id1, id2),
which record the basic information of people (with a key
id) and their friend relationships, respectively. Query
Q1 can be written as follows:

Q1(name) = ∃id(
friend(p0, id)

∧ person(id, name,NYC)
)
.

Observe the following. (a) In personalized social
searches, we evaluate queries with a specified person,
e.g., p0 in Q1. (b) Dataset D1 is often big in real life.
For instance, Facebook has more than 1 billion users
with 140 billion friend links⑥. A naive computation of
the answer to Q1, even if p0 is known, may fetch the
entire D1, and is cost prohibitive.

Nonetheless, we can compute Q1(D1) by accessing
only a small subset DQ1 of D1. Indeed, Facebook has
a limit of 5 000 friends per user (cf. [39]), and id is a
key of person. Thus by using indices on id attributes,
we can identify DQ1 , which consists of a subset Df of
friend including all friends of p0, and a set Dp of person
tuples t such that t[id] = t′[id2] for some tuple t′ in Df .
Then Q1(DQ1) = Q1(D1). Moreover, DQ1 contains at
most 10 000 tuples of D1, and is much smaller than D1.
Thus Q1 is scale-independent in D1 w.r.t. M > 10 000.
In fact, one can verify that Q1 is scale-independent in
all instances of the schemas person and friend that sat-
isfy the two constraints.

2) Consider another query Q2, which is to find
from a dataset D2, all A-rated NYC restaurants that
were visited by NYC friends of p0 in 2013. Here
D2 consists of four relations, specified by a relational
schema R2 including person and friend as above, as well
as restr(rid, name, city, rating) (with rid as a key) and
visit(id, rid, yy,mm, dd) (indicating that person id visi-
ted restaurant rid on a given date). Then Q2 can be
expressed as:

Q2(rn, yy) = ∃id, rid, pn,mm, dd
(
friend(p0, id)

∧ visit(id, rid, 2013,mm, dd)

∧ person(id, pn,NYC)

∧ restr(rid, rn,NYC, A)
)
.

Note that query Q2 is also scale-independent. Indeed,
(a) a year has at most 365 days, and (b) it is safe to
assume that on a given day, each person id dines out at
most once. Putting these together with the constraints
on friend and person (i.e., a person can have at most
5 000 friends at Facebook, and id is a key of person),
one can compute Q2(D2) by accessing a bounded num-
ber of tuples, instead of scanning the entire D2. Indeed,

Q2 is scale-independent for all instances of schema R2

under these constraints.
One can show that a query Q is scale-independent

for any schema R when Q is either
• a Boolean conjunctive query if ||Q|| 6 M , or
• a top-k conjunctive query for a constant k and a

scoring function f if k||Q|| 6 M ,
where ||Q|| is the number of tuple templates in the
tableau presentation of the conjunctive query Q[1].
Here Q is Boolean if for any instance D of R, Q(D) re-
turns true if Q(D) is nonempty and false otherwise; and
Q is a top-k query if Q(D) returns a subset U ⊆ Q(D)
such that (a) U consists of at most k tuples (|U | = k if
|Q(D)| > k), and (b) for all tuples t ∈ Q(D) \ U and
s ∈ U , f(s) > f(t)[41].

3.1.2 Decision Problems

To determine whether a query Q is scale-
independent, we need to study the following decision
problems.
• The scale independence problem for (Q, D).

– Input: a relational schema R, an instance D of
R, a query Q ∈ Q over R, and M > 0.

– Question: is Q scale-independent in D w.r.t.
M?

• The scale independence problem for Q.
– Input: R, a query Q ∈ Q over R, and M > 0.

– Question: is Q scale-independent for R w.r.t.
M?

That is, we want to find minimum cores for answer-
ing Q.

The complexity bounds of these problems have been
established[9]. The problems are rather intriguing. For
instance, the first one is Σp

3-complete (NPNPNP

) when Q
is the class of conjunctive queries, and it is PSPACE-
complete when Q is relational algebra (i.e., first-order
logic). Worse still, the second problem becomes unde-
cidable for relational algebra. This is not surprising in
database theory: for instance, the classical membership
problem (see Section 2) is NP-complete for conjunctive
queries, and PSPACE-complete for relational algebra[1].

3.1.3 Identifying a Core

We have seen that it is rather expensive to determine
whether a query Q is scale-independent. Moreover,
even after Q is found scale-independent in a dataset
D, it is non-trivial to identify a core DQ for answering
Q in D with a bounded size. As an example, consider a
Boolean conjunctive query Q over a relational schema
R. As remarked earlier, we know that Q is scale-
independent forR. The question is: is there an efficient

⑥Facebook. http://newsroom.fb.com, Feb. 2014.

Wenfei Fan et al.: Querying Big Data 857

algorithm that, given an instance D of R, finds a core
DQ ⊆ D such that |DQ| 6 ||Q|| and Q(DQ) = Q(D)?

We approach this following the common practice of
database people: we provide a sufficient condition for
checking whether Q is scale-independent and if so, for
helping us efficiently compute a core for answering Q.
This is formalized as follows.

Access Schema. We define an access schema A over
a relational schema R to be a set of tuples (R, X, N, T),
where
• R is a relation schema in R,
• X is a set of attributes of R, and
• N and T are natural numbers.
We say that a database instance D of R conforms

to the access schema A if for each (R, X,N, T) ∈ A:
• for each tuple of values ā of attributes of X, the

set σX=ā(R) has at most N tuples, i.e., there exist at
most N tuples t in R such that t[X] = ā; and
• σX=ā(R) can be retrieved from D in time at most

T .
That is, there exists an index on X that allows effi-
cient retrieval of certain tuples from D, and there is a
bound on the number of such tuples. Access schemas
are a combination of indices and database dependen-
cies, which are commonly used in practice.

Example 7. Continuing with Example 6, we would
have a tuple (friend, id1, 5 000, T) for some value T in
the access schema A. That is, there exists an index
on id1 such that if id1 is provided, at most 5 000 tu-
ples with such an id exist in friend, and it takes time
T to retrieve those. In addition, we would have a tuple
(person, id, 1, T ′) in A, indicating that id is a key for
person with a known time T ′ for retrieving the tuple for
a given id.

Computing a Core by Leveraging Access Schema.
Given a relational schema R, we say that a query Q
is scale-independent under access schema A if for all
instances D of R that conform to A, the answer Q(D)
can be computed in time that depends only on A and
Q, but not on D. That is, Q is scale-independent for
R in the presence of A, independent of the size of the
underlying D. The following results are known.
• There is a set of syntactic rules for us to deter-

mine whether a relational algebra query Q is scale-
independent under A; this provides us with a systema-
tic method and a sufficient condition to check whether
Q can be answered by accessing a bound number of
tuples in all instances of D[9].
• For conjunctive queries Q, there exists a

characterization, i.e., a sufficient and necessary condi-
tion, to determine whether Q is scale-independent un-
derA, better still, the decision problem is in polynomial
time in the size of Q and A[42].

• If Q is scale-independent under A, then an effi-
cient query plan can be worked out using the rules,
such that we can find a core DQ with a bounded size
and Q(D) = Q(DQ). For conjunctive queries, there
has been an experimental study with real-life data that
shows such a query plan takes 9 seconds as opposed to
14 hours by commercial system MySQL[42]! Moreover,
it is easy to mine access constraints from real-life data,
and a large percentage of queries are scale-independent
under simple access constraints. In other words, the
approach by exploring scale independence is effective
and practical.

3.2 Developing BD-Tractable Algorithms

We next turn to practical techniques for making
big data small, and hence, BD-tractable. We take
graph pattern matching in social graphs as our appli-
cation domain, and present four data reduction strate-
gies as examples, namely, distributed query process-
ing via partial evaluation[10], query-preserving data
compression[11], view-based query answering[12], and
bounded incremental computation[13-14]. The idea be-
hind these approaches is simple. When our dataset
D is a social graph G and Q is a pattern query, the
complexity of computing query answer Q(G) (the set
of matches of Q in G) is measured by a function
f(|Q|, |G|). Since f(·, ·) may be the lower bound of the
computation and cannot be further reduced, and |Q| is
typically small in practice, we reduce |G|, i.e., by mak-
ing big G small, to reduce the response time of query
answering.

3.2.1 Graph Pattern Matching

We start with a review of graph pattern matching in
social graphs, which typically represent social networks,
e.g., Facebook, Twitter, LinkedIn.

Social Graphs. A social graph is a node-labeled di-
rected graph G = (V, E, fA), where 1) V is a finite
set of nodes; 2) E ⊆ V × V , in which (v, v′) denotes
an edge from node v to v′; and 3) fA(·) is a func-
tion that associates each node v in V with a tuple
fA(v) = (A1 = a1, . . . , An = an), where ai is a con-
stant, and Ai is referred to as an attribute of v, written
as v.Ai. In social graphs, each node denotes a person,
and its attributes carry the contents of the node, e.g.,
label, keywords, blogs, rating. An edge represents a
relationship between two people.

Patterns. A graph pattern is given as Q =
(VQ, EQ, fv), where
• VQ is a finite set of nodes and EQ is a set of di-

rected edges, as defined for social graphs; and
• fv(·) is a function defined on VQ such that for each

node u, fv(u) is the search condition for u, defined as

858 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

a conjunction of atomic formulas of the form A op a;
here A denotes an attribute, a is a constant, and op is
one of the comparison operators <,6,=, 6=, >, >.

We say that a node v in a social graph G satisfies
the search condition of a pattern node u in Q, denoted
as v ∼ u, if for each atomic formula “A op a” in fv(u),
there exists an attribute A defined by fA(v) such that
v.A op a.

Graph Pattern Matching. Given a social graph G
and a graph pattern Q, we want to compute the set
Q(G) of all matches in G for Q. In this subsection, we
consider a simple semantics for graph pattern matching,
based on graph simulation[43], which has been widely
used in Web site classification and social position de-
tection, among other things (e.g., [44-47]).

We say that a social graph G matches a graph pat-
tern Q via graph simulation, denoted by Q Esim G, if
there exists a binary relation S ⊆ VQ×V that is induc-
tively defined as follows:
• for each pattern node u ∈ VQ, there exists a node

v ∈ V in the social graph such that (u, v) ∈ S; and
• for each (u, v) ∈ S, 1) u ∼ v, and 2) for each edge

(u, u′) in EQ, there is an edge (v, v′) in E such that
(u′, v′) ∈ S.
We refer to S as a match in G for Q.

It is known that if Q Esim G, then there exists a
unique maximum match So

[48], i.e., for any match S in
G for Q, S ⊆ So. We define Q(G) = So if Q Esim G,
and Q(G) = ∅ otherwise.

It is known that it takes O(|Q|2+ |Q||G|+ |G|2) time
to compute So

[48], where |G| denotes the size of G mea-
sured in the number of nodes and edges; similarly for
the size |Q| of Q. As remarked earlier, real-life social
graphs are typically big, e.g., Facebook graph has more
than 1 billion nodes and 140 billion links⑦. Hence it
is often prohibitively expensive to compute Q(G) for
social graphs G in the real world. These highlight the
need for developing efficient techniques for graph pat-
tern matching to cope with the sheer size of G.

3.2.2 Distributed Query Processing with Partial
Evaluation

Distributed query processing is perhaps the most
popular approach to querying big data, notably
MapReduce[37]. Here we advocate distributed query
processing with partial evaluation.

Partial evaluation has been used in a variety of appli-
cations including compiler generation, code optimiza-
tion and dataflow evaluation (see [49] for a survey).
Given a function f(s, d) and a part of its input s, par-
tial evaluation is to specialize f(s, d) with respect to the
known input s. That is, it conducts as much as possible

the part of f(s, ·)’s computation that depends only on
s, and generates a partial answer, i.e., a residual func-
tion f ′(·) that depends on the as yet unavailable input
d.

This idea can be naturally applied to distributed
graph pattern matching. Consider a graph pattern Q
posed on a graph G that is partitioned into fragments
F = (F1, . . . , Fn), where Fi is stored in site Si. We
compute Q(G) as follows.

1) The same pattern Q is posted to each fragment
in F .

2) Upon receiving pattern Q, each site Si computes
a partial answer Q(Fi) of Q in fragment Fi, in parallel,
by taking Fi as the known input s while treating the
fragments that reside in the other sites as yet unavail-
able input d.

3) A coordinator site Sc collects partial answers from
all the sites. It then assembles the partial answers and
finds the answer Q(G) to Q in the entire graph G.

The idea behind this is simple: we divide a big G into
a collection F = (F1, . . . , Fn) of fragments, such that
the response time is determined by the cost of com-
puting Q(Fm) (step 2), where Fm is the largest frag-
ment in F , and the cost of assembling partial answers
(step 3). In other words, its parallel computational cost
is dominated by the largest fragment Fm, rather than
the original big graph G. In this way, we reduce a
big G to small fragments Fi, and hence, reduce the re-
sponse time. When G is not already partitioned and
distributed, one may first partition G as preprocessing.
In particular, when we can afford a number of proces-
sors, each Fi may have a manageable size and hence,
the computation of Q(Fi) is feasible at each site.

There are many ways to develop distributed algo-
rithms for graph pattern matching. To evaluate and
assess these algorithms, we propose the following crite-
ria. We say that a distributed algorithm T is scalable
parallel if for all patterns Q, all graphs G and all frag-
mentations F of G,
• if its parallel computation cost is bounded by a

polynomial in |Q|, |Fm| and |Vf |, and
• the total data shipped is bounded by a polynomial

in |Q| and |Vf |,
where Vf is the set of nodes with edges across diffe-
rent fragments in F . That is, the response time of T
is dominated by the size of the query, the largest frag-
ment in F , and how F partitions G, rather than by
the size of the underlying G; similarly for its network
traffic. In practice, |Vf | is typically much smaller than
|G|, and |Q| is also small. Hence, if algorithm T has
this property, then the more processors are available,
the smaller the fragments tend to be, and therefore,

⑦Facebook. http://newsroom.fb.com, Feb. 2014.

Wenfei Fan et al.: Querying Big Data 859

the less parallel computation time and network traffic
are needed.

Note that MapReduce algorithms require us to re-
distribute the data in each round of Map and Reduce.
Hence, they are not scalable parallel. In contrast, there
exist scalable parallel algorithms for distributed graph
simulation based on partial evaluation. Part of the re-
sults has been reported in [10] for patterns defined in
terms of regular expressions. It is shown that there
exists a distributed algorithm to answer such pattern
queries
• by visiting each site once,
• in O(|Fm||Q|2 + |Q|2|Vf |2) time, and
• with O(|Q|2|Vf |2) communication cost.

That is, it has performance guarantees on both re-
sponse time and communication cost, as well as on-site
visits.

3.2.3 Query Preserving Graph Compression

Another approach to reducing the size of big graph
G is by means of compressing G, relative to a class Q
of queries of users’ choice, e.g., graph pattern queries.
More specifically, a query preserving graph compression
for Q is a pair (R, P), where R(·) is a compression func-
tion, and P (·) is a post-processing function. For any
graph G, Gc = R(G) is the compressed graph computed
from G by R(·), such that 1) |Gc| 6 |G|, and 2) for all
queries Q ∈ Q, Q(G) = P (Q(Gc)). Here P (Q(Gc)) is
the result of post-processing the answers Q(Gc) to Q in
Gc.

That is, we preprocess G by computing the com-
pressed Gc of G offline. After this step, for any query
Q ∈ Q, the answers Q(G) to Q in the big G can be
computed by evaluating the same Q on the smaller Gc

online. Moreover, Q(Gc) can be computed without de-
compressing Gc. Note that the compression schema is
lossy: we do not need to restore the original G from
Gc. That is, Gc only needs to retain the information
necessary for answering queries in Q, and hence can
achieve a better compression ratio than lossless com-
pression schemes.

For a query classQ, if Gc can be computed in PTIME
and moreover, queries in Q can be answered using Gc in
parallel polylog-time, perhaps by combining with other
techniques such as indexing and distributed processing,
then Q is BD-tractable.

The effectiveness of this approach has been
verified[11], for graph pattern matching based on graph
simulation, and for reachability queries as a special case
(i.e., whether there exists a path from one node to an-
other via social links). More specifically, the following
has been reported in [11].
• There exists a query preserving compression (R, P)

for graph pattern matching with simulation, such that
for any graph G = (V, E, fA), R(·) is in O(|E| log |V |)
time, and P (·) is in linear time in the size of the query
answer.
• This compression scheme reduces the sizes of real-

life social graphs by 98% and 57%, and the query evalu-
ation time by 94% and 70% on average, for reachability
queries and pattern queries with graph simulation, re-
spectively.
• Better still, compressed Gc can be efficiently main-

tained. Given a graph G, a compressed graph Gc =
R(G) of G, and update ∆G to G, we can compute
changes ∆Gc to Gc such that Gc⊕∆Gc = R(G⊕∆G),
without decompressing Gc

[11]. As a result, for each
graph G, we need to compute its compressed graph
Gc once for all patterns. When G is updated, Gc is
incrementally maintained.

3.2.4 Graph Pattern Matching Using Views

This technique is commonly used (see [50-51] for sur-
veys). Given a query Q ∈ Q and a set V of view def-
initions, query answering using views is to reformulate
Q into another query Q′ such that 1) Q and Q′ are
equivalent, i.e., for all datasets D, Q and Q′ produce
the same answers in D, and moreover, 2) Q′ refers only
to V and its extensions V(D), without accessing the un-
derlying D.

View-based query answering suggests another ap-
proach to making big data small. As an example, con-
sider graph pattern queries for social network analysis.
Given a big graph G, one may identify a set V of views
(pattern queries) and materialize them with V(G) of
matches for patterns of V in G, as a preprocessing step
offline. Then matches for patterns Q can be computed
online by using V(G) only. In practice, V(G) is typi-
cally much smaller than G, and hence, this approach
allows us to query big G by accessing small V(G). Bet-
ter still, the views can be incrementally maintained in
response to changes to G, and adaptively adjusted to
cover various patterns. In light of this, this approach
has generated renewed interest for querying big graphs
as well as other forms of big data[9,12,40].

More specifically, for pattern queries based on graph
simulation in social network analysis, we know the
following[12]. Given a graph pattern Q and a set V
of view definitions,
• it is in O(|Q|2|V|) time to decide whether query Q

can be answered by using views V; and if so,
• Q(G) can be computed in O(|Q||V(G)|+ |V(G)|2)

time;
• better still, |V(G)| is about 4% of |G| (i.e., |V | +

|E|) on average for real-life social graphs; and as a re-
sult of these,

860 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

• the view-based approach takes no more than 6%
of the time needed for computing Q(G) directly in G
on average.

Contrast these with the O(|Q|2 + |Q||G| + |G|2)
complexity of graph simulation! Note that |Q| and
|V| are sizes of pattern queries and are typically much
smaller than G in real life.

3.2.5 Incremental Graph Pattern Matching

Given a pattern Q and a graph G, as preprocess-
ing we compute Q(G) once. When G is updated
by ∆G, instead of recomputing Q(G ⊕ ∆G) starting
from scratch, we incrementally compute ∆M such that
Q(G ⊕ ∆G) = Q(G) ⊕ ∆M , to minimize unnecessary
recomputation. In real life, ∆G is typically small: only
5% to 10% of nodes are updated weekly[52]. When ∆G
is small, ∆M is often small as well, and is much less
costly to compute than Q(G⊕∆G). The idea has also
been adopted for querying big data[9,13,40].

The benefit is more evident if there exists a bounded
incremental matching algorithm. As argued in [14], in-
cremental algorithms should be analyzed in terms of
|CHANGED| = |∆G|+ |∆M |, the size of changes in the
input and output, which represents the updating costs
that are inherent to the incremental problem itself. An
incremental algorithm is said to be semi-bounded if its
cost can be expressed as a polynomial of |CHANGED|
and |Q|[13]. That is, its cost depends only on the size
of the changes and the size of pattern Q, independent of
the size of big G. This effectively makes big G small,
since |CHANGED| << |G|, and Q is typically small in
practice.

For graph pattern matching via graph simulation,
it has been shown that there exists a semi-bounded
incremental algorithm in O(|∆G|(|Q||CHANGED| +
|CHANGED|2)) time[13].

In general, a query class Q can be considered BD-
tractable if 1) preprocessing Q(D) is in PTIME, and 2)
Q(D⊕∆D) can be incrementally computed in parallel
polylog-time. If so, it is feasible to answer Q in response
to changes to big data D.

3.2.6 Remarks and Open Issues

We remark the following.
1) There are a number of other effective techniques

for querying big data, notably indexing we have seen
earlier. These techniques and the strategies outlined
above can be, and should be, combined together, when
querying big data.

2) View-based and incremental techniques can help
us make queries scale-independent[9]. More specifically,
when a query Q is not scale-independent, we may still

make it feasible to query big data incrementally, i.e., to
evaluate Q incrementally in response to changes ∆D to
D, by accessing an M -fraction of the dataset D. That
is, we compute Q(D), once and offline, and then incre-
mentally answer Q on demand. We may also achieve
scale independence using views, i.e., when a set V of
views is defined, we rewrite Q into Q′ using V, such
that for any dataset D, we can compute Q(D) by using
Q′, which accesses materialized views V(D) and fetches
only a bounded amount of data from D. We refer the
interested reader to [9] for details.

We conclude the section with several open issues.
1) As we have seen in Subsection 3.1, access schemas

help us determine whether a query is scale-independent
and if so, develop an efficient plan to evaluate the query.
A practical question asks how to design an “optimal”
access schema for a given query workload, such that we
can answer as many given queries as possible by access-
ing a bounded amount of data.

2) As remarked earlier, Boolean conjunctive queries
are scale-independent even in the absence of access
schema. A natural question is: given a Boolean con-
junctive query Q and a dataset D on which Q is de-
fined, how can we efficiently identify a core of D for
answering Q, in the absence of access schema?

3) The third question concerns distributed pattern
matching. Does there exist a distributed algorithm
at all that, given a pattern query Q and a graph G
that is partitioned into F = (F1, . . . , Fn), computes
the matches Q(G) of Q in G, such that its response
time and data shipment depend on the size of Q and
the largest fragment Fm of F only? This question
asks about the possibility or impossibility of distributed
query processing with certain performance guarantees.
Recent work has shown that this is beyond reach for dis-
tributed graph simulation (although distributed simu-
lation has certain performance guarantees)[53]. How-
ever, the question remains open for distributed pattern
matching by, e.g., subgraph isomorphism.

4) A more general question asks about parallel sca-
lability. For a query class, does there exist an algorithm
for answering its queries such that the more processors
are used, the less time it takes? That is, if we could
afford “unlimited” resources, then a parallel scalable
algorithm makes it feasible to answer the queries on
big data, by using more computing facilities. There
has been work on this issue. Unfortunately, the prior
work focuses on either shared-memory architectures[54]

or MapReduce[31,55]. A “standard” notion of parallel
scalability is not yet in place for general shared-nothing
architectures, which are widely used in industry.

5) As we have seen, view-based query answering pro-
vides us with an effective technique for querying big

Wenfei Fan et al.: Querying Big Data 861

data. To make practical use of it, however, we need
to answer the following question. Given a query work-
load, what views should we select to build and main-
tain, such that the queries can be efficiently answered
by using views or better still, be scale-independent?

4 Approximate Query Answering

The strategies we have seen in Section 3 help us make
it feasible to answer some queries in big data. However,
some queries may not be made BD-tractable. An exam-
ple is graph pattern matching defined with subgraph
isomorphism: it is NP-complete even to decide whether
there exists a match (cf. [5]). For such queries, it is
beyond reach to find exact answers in big data. More-
over, as remarked earlier, even for queries that can be
answered in PTIME, it is sometimes too costly to com-
pute their exact answers in big data. In light of this,
we often have to evaluate these queries by using in-
exact algorithms, preferably approximation algorithms
with performance guarantees.

This section proposes two approaches to develop-
ing approximation algorithms for answering queries in
big data, referred to as query-driven and data-driven
approximation.

4.1 Query-Driven Approximation

For some query classes Q, we can relax its seman-
tics, such that it is less costly to answer queries Q of Q
in a big dataset D under the new semantics, and more-
over, the answer Q(D) still gives users what they want.
To illustrate this, we give two examples: graph pattern
matching and top-k query answering.

4.1.1 Graph Pattern Matching Revisited

We first review graph pattern matching defined
in terms of subgraph isomorphism. Consider a so-
cial graph G = (V, E, fA) and a graph pattern Q =
(VQ, EQ, fv) as defined in Subsection 3.2. Consider a
subgraph G′ = (V ′, E′, f ′A) of G, where V ′ is a subset
of V , and E′ and f ′A are restrictions of E and fA on
V ′, respectively.

We say that G′ matches Q by isomorphism, de-
noted as Q Eiso G′, if there is a bijective function
h(·) : VQ → V ′ such that
• u ∼ h(u) for each node u ∈ VQ, and
• for each pair (u, u′) of nodes in VQ, (u, u′) ∈ EQ if

and only if (h(u), h(u′)) ∈ E′.
Graph pattern matching by subgraph isomorphism is

to compute, given a social graph G and a graph pat-
tern Q, the set Q(G) of all subgraphs G′ of G such that
Q Eiso G′. This semantics has been proposed for social
graph analysis. However, it is intractable even in the

classical computational complexity theory to compute
Q(G) based on subgraph isomorphism.

In light of the high complexity, we adopt graph simu-
lation for graph pattern matching instead of subgraph
isomorphism[16]. That is, we check Q Esim G (Sec-
tion 3) rather than Q Eiso G′ for subgraphs G′ of G.
In fact, several revisions of graph simulation have been
proposed, by allowing pattern edges to map to paths[16],
incorporating edge labels[15], and retaining the topology
of graph patterns[17]. These reduce the complexity of
graph pattern matching from intractability (subgraph
isomorphism) to low polynomial time (quadratic time
or cubic time). Better still, it has been shown using
real-life social networks that graph pattern matching
with (revisions of) graph simulation is able to capture
more sensible matches in social graph analysis than sub-
graph isomorphism can find. In other words, by relax-
ing the semantics of graph pattern matching from sub-
graph isomorphism to (revised) graph simulation, we
can find high-quality matches for social data analysis
in much less time.

4.1.2 Top-k Graph Pattern Matching

As remarked earlier, even quadratic-time or cubic-
time complexity may be too high when querying big
data. In light of this, we may further relax the seman-
tics of graph pattern matching defined with (revised)
graph simulation and hence reduce the cost of the com-
putation.

In social data analysis, we often want to find
matches of a particular pattern node uo in Q as “query
focus”[56]. That is, we just want those nodes in a so-
cial graph G that are matches of uo in Q(G), rather
than the entire set Q(G) of matches for Q. Indeed, a
recent survey shows that 15% of social queries are to
find matches of specific pattern nodes[57]. Moreover, it
often suffices to find top-k matches of uo in Q(G). More
specifically, assume a scoring function s(·) that given a
match v of uo, returns a non-negative real number s(v).
For a positive integer k, top-k graph pattern matching
is to find a set U of matches of uo in Q(G), such that U
has exactly k matches and moreover, for any k-element
set U ′ of matches of uo, s(U ′) 6 s(U), where s(U)
is defined as Σv∈Us(v). When there exist less than k
matches of uo in Q(G), U includes all the matches (see,
e.g., [41], for top-k query answering).

This suggests that we develop algorithms to find top-
k matches with the early termination property[41], i.e.,
they stop as soon as a set of top-k matches is found,
without computing the entire Q(G). While the worst-
case time complexity of such algorithms may be no
better than their counterparts for computing the en-
tire Q(G), they may only need to inspect part of big

862 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

G, without paying the price of full-fledged graph pat-
tern matching. Indeed, for graph pattern matching de-
fined in terms of graph simulation, we find that top-
k matching algorithms just inspect 65%∼70% of the
matches in Q(G) on average in real-life social graphs[58],
even when diversity is taken into account to remedy
the over-specification problem of retrieving too homo-
geneous answers[59], which makes top-k query answer-
ing a much harder bi-criteria optimization problem[60].

4.2 Data Driven Approximation

In some applications, we may not be able to relax
the semantics of our queries. To this end, we propose
a data-driven approximation strategy, referred to as
resource-bounded approximation. Below we first review
traditional approximation schemes, and then introduce
resource-bounded approximation.

4.2.1 Traditional Approximation Algorithms

Previous work on this subject has mostly focused on
developing PTIME approximation algorithms for NP-
optimization problems (NPOs)[29,61-62]. An NPO A has
a set I of instances, and for each instance x ∈ I and
each feasible solution y of x, there exists a positive score
m(x, y) indicating the quality measure of y. Consider a
function η(·) from natural numbers to the range (0, 1].

An algorithm T is called a η-approximation algo-
rithm for problem A if for each instance x ∈ I, T com-
putes a feasible solution y of x such that R(x, y) >
η(|x|), where R(x, y) is the performance ratio of y w.r.t.
x, defined as follows[61]:

R(x, y) =

opt(x)
m(x, y)

, for minimization problem,

m(x, y)
opt(x)

, for maximization problem,

where opt(x) is the optimal solution of x. That is, while
the solution y found by algorithm T (x) may not be op-
timal, it is not too far from opt(x) (i.e., it is bounded
by η(|x|)).

However, such PTIME approximation algorithms di-
rectly operate on the original instances of a problem,
and may not work well when querying big data for the
following reasons.

1) As we have seen in Section 2, PTIME algorithms
on x may be beyond reach in practice when x is big.
Moreover, approximation algorithms are needed for
problems that are traditionally considered tractable[29],
not limited to NPO.

2) In contrast to NPOs that ask for a single opti-
mum, answering a query Q in a dataset D is to find a

set Q(D) of query answers. Thus we need to revise the
notion of performance ratios to assess the quality of a
set of feasible answers.

4.2.2 Resource-Bounded Approximation

To cope with this, below we propose resource-
bounded approximation. In a nutshell, given a small
ratio α ∈ (0, 1) and a query Q posed on a dataset D,
we extract a fraction DQ of D such that |DQ| 6 α|D|,
and compute approximate answers Q(DQ). Here α is
called a resource ratio or a resolution. It is determined
by our available resources for query evaluation, such as
time and space.

Intuitively, the idea is the same as how we process
our photos. When we cannot afford the time or storage
for photos of high resolution, we settle with smaller im-
ages with lower resolution to reduce the cost, as long
as such images are not too rough.

To formalize the idea, we first revise the notion of
performance ratios for query answering. We then de-
fine resource-bounded approximation and demonstrate
its effectiveness.

Accuracy of Query Answers. Consider a query Q and
a dataset D. The exact answers to Q in D are typically
a set Q(D). Suppose that an algorithm T computes a
set Y of approximate answers to Q in D. We define
the precision and recall of the set Y for (Q,D) in the
standard way, as follows:

precision(Q,D, Y) =
|Y ∩Q(D)|

|Y | ,

recall(Q,D, Y) =
|Y ∩Q(D)|
|Q(D)| .

That is, precision is the ratio of the number of correct
answers in Y to the total number of answers in Y , while
recall is the ratio of the number of correct answers in Y
to the total number of exact answers in Q(D). Based
on these, we define the accuracy of Y for (Q,D) by
adopting the usual F -measure⑧:

accuracy(Q,D, Y)

= 2
precision(Q,D, Y) recall(Q,D, Y)

precision(Q,D, Y) + recall(Q,D, Y)
,

as the harmonic mean of precision and recall. Obvi-
ously, the larger accuracy(Q,D, Y) is, the more accu-
rate Y is.

When both Q(D) and Y are ∅, i.e., no answer exists,
we treat accuracy(Q,D, Y) as 1; we consider precision
only if Q(D) is ∅ but Y is not, and recall only if D is
∅ but Q(D) is not.

⑧Wikipedia. F-measure. http://en.wikipedia.org/wiki/Precision and recall, Aug. 2014.

Wenfei Fan et al.: Querying Big Data 863

Resource-Bounded Query Answering. We now
present resource-bounded approximation algorithms.
Let α ∈ (0, 1) be a resource ratio (or resolution), and Q
be a class of queries.

Given a dataset D and a query Q in Q, an algorithm
T for Q queries with resource-bound α does the follow-
ing:
• visits a fraction DQ of D such that |DQ| 6 α|D|,

and
• computes Q(DQ) as approximate answers.
We say that T has accuracy ratio η for Q

if for all datasets D and all queries Q ∈ LQ,
accuracy(Q,D, Q(DQ)) > η.

Note that the accuracy ratio η is in the range (0, 1].
When η = 1, algorithm T finds exact answers for all
datasets D and queries Q, i.e., the algorithm has 100%
accuracy.

Algorithm T consists of two steps: it first reduces
big D to a small DQ, and then computes approximate
query answers, both by accessing a bounded amount of
data. Observe the following.

1) Dynamic Reduction. Recall that traditional data
reduction schemes such as compression, summarization
and data synopses, build the same structure for all
queries[63-72]. This is also how the strategies of Sub-
section 3.2 do. We refer to such strategies as uniform
reduction.

In contrast, resource-bounded approximation adopts
a dynamic reduction strategy, which finds a small
dataset DQ with only information needed for an in-
put query Q, and hence, allows higher accuracy within
the bound α|D| on data accessed. One can use any
techniques for dynamic reduction, including those for
data synopses such as sampling and sketching, as long
as the process visits a bounded amount of data in D.

2) Approximate Query Answering. Algorithm T
computes Q(DQ) by accessing α|D| amount of data
rather than the entire D. It aims to achieve the best
performance ratio within α|D|.

3) Scale Independence. When Q is scale-independent
in D w.r.t. some M > α|D|, resource-bounded approxi-
mation achieves 100% accuracy, i.e., with performance
ratio η = 1.

4) Access Schema. The notion of resource-bounded
approximation can be readily defined under an access
schema A (see Subsection 3.1), to efficiently retrieve a
bounded amount of data for query processing by leve-
raging indices and bounds in A.

Personalized Social Search. To verify the effective-
ness of the approach, we have conducted a prelimi-
nary study of personalized social search in real-life so-
cial graphs[18]. Such searches are supported by Graph

Search of Facebook, e.g., “find me all my friends in Bei-
jing who like cycling”⑨.

A personalized search is specified by a graph pat-
tern Q in which a node up is designated to map to a
particular node (person) vp in a social graph G. As
in the case for top-k graph pattern matching described
earlier, the pattern Q also has a particular “output”
pattern node uo. The search is to compute Q(G), the
set of all matches of the output pattern node uo of Q in
graph G, while the “personalized” node up is mapped to
vp in G. Such searches are similar to what we have seen
in Example 6. In contrast to queries given there, here
we consider queries Q that are graph patterns rather
than relational queries, and moreover, may not be scale-
independent in G.

For such patterns, we have developed resource-
bounded approximation algorithms for graph pattern
matching defined in terms of subgraph isomorphism
and graph simulation (see Subsection 3.2). We have
experimented with these algorithms using real-life so-
cial graphs. The results are very encouraging. We find
that our algorithms are efficient: they are 135 and 240
times faster than traditional pattern matching algo-
rithms based on graph simulation and subgraph iso-
morphism, respectively. Better still, the algorithms are
accurate: even when the resource ratio α is as small as
15×10−6, the algorithms return matches with 100% ac-
curacy! Observe that when G consists of 1PB of data,
α|G| is down to 15 GB, i.e., resource-bounded approxi-
mation truly makes big data small, without paying a
too high price of sacrificing the accuracy of query an-
swers.

A similar idea has also been verified effective by
BlinkDB[73]. BlinkDB adaptively samples data to
find approximate answers to relational queries within
a probabilistic error-bound and time constraints. In
other words, it answers queries using data samples DQ

of a dataset D, instead of D.

4.2.3 Open Issues

There is naturally more to be done.
1) For a class Q of queries, the first problem is to

find, given a resource ratio α, the maximum provable
accuracy ratio η that resource-bounded algorithms can
guarantee for Q. A dual problem is to find, given an ac-
curacy guarantee η, the minimum resource ratio α that
resource-bounded algorithms can take.

2) Another problem is to study, given an access
schema A, how we can develop a resource-bounded al-
gorithm that makes maximum use of A to retrieve data
efficiently, i.e., it visits a minimum amount of data that
is not covered by A.

⑨Facebook. Introducing graph search. https://en-gb.facebook.com/about/graphsearch, Feb. 2014.

864 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

3) The third topic is to develop resource-bounded
approximation algorithms in various application do-
mains. For instance, for social searches that are not
personalized, i.e., when no nodes in a graph pattern
are designated to map to fixed nodes in a social graph
G, can we develop effective resource-bounded approxi-
mation algorithms for graph pattern matching?

4) Finally, approximation classes for resource-
bounded approximation need to be defined, along the
same lines as their counterparts for traditional approxi-
mation algorithms (e.g., APX, PTAS, FPTAS[61]). Simi-
larly, approximation-preserving reductions should be
developed, and complete problems for those classes
need to be identified for these classes.

5 Data Quality: The Other Side of Big Data

We have so far focused only on how to cope with
the volume (quantity) of big data. Nonetheless, as re-
marked earlier, big data = quantity + quality. This sec-
tion addresses data quality issues. We report the state-
of-the-art of this line of research, and identify challenges
introduced by big data. The primary purpose of this
section is to advocate the study of the quality of big
data, which has been overlooked by and large, although
data quality and data quantity are equally important.

5.1 Central Issues of Data Quality

We begin with an overview of central technical is-
sues in connection with data quality. We then present
current approaches to tackling these issues. We invite
the interested reader to consult [19] for a recent survey
on the subject.

5.1.1 Data Quality Problems

Data in the real world is often dirty. It is common to
find real-life data inconsistent, inaccurate, incomplete,
out of date and duplicated. Error rate of business data
is approximately 1%∼5%, and for some companies it
is above 30%[74]. In most data warehouse projects,
data cleaning accounts for 30%∼80% of the develop-
ment time and budget[75], for improving the quality of
the data rather than for developing the systems. When
it comes to incomplete information, it is estimated that
“pieces of information perceived as being needed for
clinical decisions were missing from 13.6% to 81% of
the time”[76]. When data currency is concerned, it is
known that “2% of records in a customer file become
obsolete in one month”[77]. That is, in a database of
500 000 customer records, 10 000 records may go stale
per month, 120 000 records per year, and within two
years, about 50% of all the records may be obsolete.
As remarked earlier, the scale of the data quality prob-
lem is far worse in the context of big data.

Why do we care about dirty data? As shown in
Example 2, we may not get correct query answers if
our data is dirty. As a result, dirty data routinely leads
to misleading analytical results and biased decisions,
and accounts for the loss of revenues, credibility and
customers. For example, it is reported that dirty data
costs US businesses 600 billion dollars every year[77].

Below we highlight five central issues of data quality.
Data consistency refers to the validity and integrity

of data representing real-world entities. It aims to de-
tect inconsistencies or conflicts in the data. For in-
stance, tuple t1 of Table 1 is inconsistent for its area
code is 20 while its city is Beijing.

Inconsistencies are identified as violations of data
dependencies (a.k.a. integrity constraints[1]). Errors
in a single relation can be detected by intrarelation
constraints such as conditional functional dependencies
(CFDs)[20], while errors across different relations can
be identified by interrelation constraints such as condi-
tional inclusion dependencies (CINDs)[78]. An example
of CFD for the data of Table 1 is: city = “Beijing”
→ AC = 10, asserting that for any tuple t, if t[city] =
“Beijing”, then t[AC] must be 10. As a data quality
rule, this CFD catches the inconsistency in tuple t1:
t1[AC] and t[city] violate the CFD.

Data accuracy refers to the closeness of values in
a database to the true values of the entities that the
database values represent. Observe that data may be
consistent but not accurate. For instance, one may have
a rule for data consistency: age 6 120, indicating that
a person’s age does not exceed 120. Consider a tuple
t representing a high school student, with t[age] = 40.
While t is not inconsistent, it may not be accurate: a
high school student is typically no older than 19 years
old.

There has been recent work on data accuracy[21]:
given tuples t1 and t2 pertaining to the same entity e,
we decide whether t1 is more accurate than t2 in the
absence of the true value of e. It is also based on in-
tegrity constraints as data quality rules.

Information completeness concerns whether our
database has complete information to answer our
queries. Given a database D and a query Q, we want
to know whether the complete answer to Q can be
found by using only the data in D. As shown in
Example 2, when D does not include complete infor-
mation for a query, the answer to the query may not be
correct.

Information completeness has been a longstanding
problem. A theory of relative information complete-
ness has recently been proposed[22], to decide whether
our database has complete information to answer our
queries, and if not, how we can expand the database
and make it complete, by including more data.

Wenfei Fan et al.: Querying Big Data 865

Data currency is also known as timeliness. It aims
to identify the current values of entities, and to answer
queries with the current values, in the absence of valid
timestamps.

For example, recall the dataset D0 from Table 1.
Suppose that we know that tuples t1, t2 and t3 refer to
the same person Mary. Note that these tuples have two
distinct values for salary: 50 k and 80 k, one is current
and the other is stale. We want to decide which one is
current, when their timestamps are missing.

A data currency theory has recently been proposed
in [23], to deduce data currency when temporal infor-
mation is only partly known or not available at all. It
is based on data quality rules defined in terms of tem-
poral constraints. For instance, we can specify a rule
asserting that the salary of each employee in a com-
pany does not decrease, as commonly found in the real
world. Then we can deduce that Mary’s current salary
is 80 k.

Data deduplication aims to identify tuples in one or
more relations that refer to the same real-world en-
tity. It is also known as entity resolution, duplicate de-
tection, record matching, record linkage, merge-purge,
database hardening, and object identification (for data
with complex structures such as graphs).

For example, consider tuples t1, t2 and t3 in Table
1. To answer query Q0 of Example 1, we want to know
whether these tuples refer to the same employee Mary.
The answer is affirmative if, e.g., there exists another
relation which indicates that Mary Smith and Mary
Webber have the same email account.

The need for studying data deduplication is evident
in data cleaning, data fusion and payment card fraud
detection, among other things. No matter how impor-
tant it is, data deduplication is nontrivial. Tuples per-
taining to the same object may have different repre-
sentations in various data sources. Moreover, the data
sources may contain errors. These make it hard, if not
impossible, to match a pair of tuples by simply checking
whether their attributes pairwise equal. Worse still, it
is often too costly to compare and examine every pair
of tuples from big data.

Data deduplication is perhaps the most extensively
studied topic of data quality. A variety of approaches
have been proposed (see [79] for a survey). In particu-
lar, a class of dynamic constraints has been studied for
data deduplication, known as matching dependencies
(MDs), as data quality rules[24].

5.1.2 Improving Data Quality

We have seen that real-life data is often dirty, and
dirty data is costly. In light of these, effective tech-
niques have to be in place to improve data quality. To

do this, a central question concerns how we can tell
whether our data is dirty or clean. To this end, we need
data quality rules to detect semantic errors in our data
and fix those errors. A number of dependency (con-
straint) formalisms have been proposed as data qua-
lity rules, and are being used in industry, e.g., CFDs,
CINDs and MDs. Below we briefly describe the ba-
sic functionality of a rule-based system for data quality
management.

Discovering Data Quality Rules. To use dependen-
cies as data quality rules, it is necessary to have efficient
techniques in place that can automatically discover de-
pendencies from data. Indeed, it is unrealistic to just
rely on human experts to design data quality rules via
an expensive and long manual process, or count on busi-
ness rules that have been accumulated. This suggests
that we learn informative and interesting data quality
rules from (possibly dirty) data, and prune away in-
significant rules.

More specifically, given a database D, the discovery
problem is to find a minimal cover of all dependen-
cies (e.g., CFDs, CINDs, MDs) that hold on D, i.e.,
a non-redundant set of dependencies that is logically
equivalent to the set of all dependencies that hold on
D. Several algorithms have been developed for discov-
ering CFDs and MDs (e.g., [80-82]).

Validating Data Quality Rules. A given set Σ of
dependencies, either automatically discovered or ma-
nually designed by domain experts, may be dirty itself.
In light of this, we have to identify “consistent” depen-
dencies from Σ, i.e., those rules that make sense, to be
used as data quality rules. Moreover, we need to re-
move redundancies from Σ via the implication analysis
of the dependencies, to speed up data cleaning process.

This problem is nontrivial. It is NP-complete to de-
cide whether a given set of CFDs is satisfiable[20]. Ne-
vertheless, there has been an approximation algorithm
for extracting a set Σ′ of consistent rules from a set Σ of
possibly inconsistent CFDs, while guaranteeing that Σ′

is within a constant bound of the maximum consistent
subset of Σ (see [20] for details).

Detecting Errors. After a validated set of data qua-
lity rules is identified, the next question concerns how
to effectively catch errors in a database by using these
rules. Given a set Σ of consistent data quality rules and
a database D, we want to detect inconsistencies in D,
i.e., to find all tuples in D that violate some rule in Σ.
When it comes to relative information completeness, we
want to decide whether D has complete information to
answer an input query Q, among other things.

For a centralized database D, given a set Σ of CFDs
and CINDs, a fixed number of SQL queries can be au-
tomatically generated such that, when being evaluated
against D, the queries return all and only those tuples

866 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

in D that violate Σ[19]. That is, we can effectively
detect inconsistencies by leveraging existing facility of
commercial relational database systems.

Data Repairing. After the errors are detected, we
want to automatically localize the errors and fix the er-
rors. We also need to identify tuples that refer to the
same entity, and for each entity, determine its latest and
most accurate values from the data in our database.
When some data is missing, we need to decide what
data we should import and where to import it from,
so that we will have sufficient information for tasks at
hand.

This highlights the need for data repairing[83]. Given
a set Σ of dependencies and an instance D of a database
schema R, it is to find a candidate repair of D, i.e., an-
other instance D′ of R such that D′ satisfies Σ and D′

minimally differs from the original database D. The
data repairing problem is, nevertheless, highly nontri-
vial since it is NP-complete even when a fixed set of
traditional functional dependencies (FDs) or a fixed set
of inclusion dependencies (INDs) is used as data qua-
lity rules[84]. In light of these, several heuristic algo-
rithms have been developed, to effectively repair data
by employing FDs and INDs[84], CFDs[25,85], CFDs and
MDs[27] as data quality rules.

The data repairing methods mentioned above are es-
sentially heuristic: while they improve the overall qua-
lity, they do not guarantee to find correct fixes for each
error detected, i.e., they do not warrant a precision and
recall of 100%. Worse still, they may introduce new er-
rors when trying to repair the data. Hence, they are not
accurate enough to repair critical data such as medical
data, in which a minor error may have disastrous conse-
quences. This highlights the quest for effective methods
to find certain fixes that are guaranteed correct. Such
a method has been developed in [26]. It guarantees
that whenever it updates data, it correctly fixes an er-
ror without introducing new errors.

The rule discovery, rule validation, error detection
and data repairing methods mentioned above have sup-
ported by commercial systems and have proven effective
in industry.

5.2 New Challenges Introduced by Big Data

Previous work on data quality has mostly focused on
relational data residing in a centralized database. To
improve the quality of big data and hence, get sensible
answers to our queries in big data, new techniques have
to be developed.

5.2.1 Repairing Distributed Data

Big data is often distributed. In the distributed set-
ting, all the data quality issues mentioned above be-

come more challenging. For example, consider error de-
tection. As remarked earlier, this is simple in a centra-
lized database system: SQL queries can be automati-
cally generated so that we can execute them against our
database and catch all inconsistencies and conflicts. In
contrast, this is more intriguing in distributed data: it
necessarily requires us to ship data from one site to an-
other. In this setting, error detection with minimum
data shipment or minimum response time becomes NP-
complete[86], and the SQL-based techniques no longer
work.

For distributed data, effective batch algorithms[86]

and incremental algorithms[87] have been developed for
detecting errors, with certain performance guarantees.
However, rule discovery and data repairing algorithms
remain to be developed for distributed data. These
are highly challenging. For instance, data repairing
for centralized databases is already NP-complete even
when a fixed set of FDs is taken as data quality rules[84],
i.e., when only the size |D| of datasets is concerned
(a.k.a. data complexity[1]). When D is of PB size and
D is distributed, its computational and communication
costs are prohibitive.

5.2.2 Deducing the True Values of Entities

To answer a query in big data, we may have to use
data from tens of thousands sources[2]. With this comes
the need for data fusion and conflict resolution[88]. That
is, for each entity e, we need to identify the set De of
data items that refer to the same e from those sources,
and moreover, deduce the true value of e from De.

Example 8. Recall Table 1. Suppose that t1, t2 and
t3 come from different sources. We need data dedupli-
cation methods to determine whether they refer to the
same person Mary. If so, we want to find the true val-
ues of Mary. To do this, we may need to, e.g., reason
about both data currency and consistency. As an exam-
ple, for attribute LN (last name), Mary has two conflict
values: Smith and Webber. We want to know what is
the latest and correct value. To this end, we know that
marital status can only change from single to married,
and that her last name and marital status are corre-
lated. From these we can deduce that the true value of
LN of Mary is Webber.

As another example, suppose that s1 and s2 of Table
1 refer to the same person. To deduce the true value of
his FN (first name), we may use a CFD: FN = “Bob” →
FN = “Robert”. This rule for data consistency allows
us to normalize the FN attribute and change nickname
Bob to Robert.

From the example we can see that to deduce the
true values of an entity, we need to combine several
techniques: data deduplication, data consistency and

Wenfei Fan et al.: Querying Big Data 867

data currency, among other things. This can be done
in a uniform logical framework based on data quality
rules. There has been recent preliminary work on the
topic[28]. Nonetheless, there is much more to be done.

5.2.3 Cleaning Data with Complex Structures

Data quality techniques have been mostly studied for
structured data with a regular structure and a schema,
such as relational data. When it comes to big data,
however, data typically has an irregular structure and
does not have a schema. For example, an entity may
be represented as a subgraph in a large graph, such as
a person in a social graph. In this context, all the cen-
tral issues of data quality have to be revisited. These
are far more challenging than their counterparts for re-
lational data, and effective techniques are not yet in
place. Consider data deduplication, for instance. Given
two graphs (without a schema), we want to determine
whether they represent the same object. To do this,
we need to extend data quality rules from relations to
graphs.

5.2.4 Coupling with Knowledge Bases

A large part of big data comes from Web sources or
social networks. To improve the quality of such data, we
ultimately have to use knowledge bases and ontology. A
number of knowledge bases are being developed, such
as Knowledge Graph 10O, YAGO 11O, and Wiki 12O. How-
ever, the quality of these knowledge bases needs to be
improved themselves. This suggests that we study the
following. How to detect inconsistencies and conflicts
in a knowledge base? How to repair a knowledge base?
How to make use of available knowledge bases to clean
data from the Web?

6 Conclusions

We have reported an account of recent work of the
International Research Center on Big Data at Beihang
University, on querying big data. Our main conclusions
are as follows.
• Query answering in big data is radically diffe-

rent from what we know about querying traditional
databases.
• We need to revise complexity theory and approxi-

mation theory to characterize what we can do and what
is impossible for computing exact or approximate query
answers.
• Querying big data is challenging, but doable. It

calls for a set of new effective query processing tech-
niques.

• Big data = quantity + quality. These are the two
sides of the same coin, and neither works well when
taken alone.

Summing up, we believe that the need for studying
query answering in big data cannot be overstated, and
that the subject is a rich source of questions and vita-
lity. We reiterate our invitation to interested colleagues
to join us in the study.

References

[1] Abiteboul S, Hull R, Vianu V. Foundations of Databases.
Addison-Wesley, 1995.

[2] Dalvi N N, Machanavajjhala A, Pang B. An analysis of struc-
tured data on the Web. PVLDB, 2012, 5(7): 680-691.

[3] Bienvenu M, ten Cate B, Lutz C, Wolter F. Ontology-based
data access: A study through disjunctive datalog, CSP, and
MMSNP. In Proc. the 32nd PODS, June 2013, pp.213-224.

[4] Sellis T K. Personalization in web search and data manage-
ment. In proc. the 1st Int. Conf. Model and Data Engineer-
ing, September 2011, p.1.

[5] Papadimitriou C H. Computational Complexity. Addison-
Wesley, 1994.

[6] Hartmanis J, Stearns R E. On the computational complexity
of algorithms. Trans. American Mathematical Society, 1965,
117(5): 285-306.

[7] Santos G. SSD ranking: The fastest solid state drives.
http: //www.fastestssd.com/featured/ssd-rankings-the-faste-
st-solid-state-drives/, Aug. 2014.

[8] Fan W, Geerts F, Neven F. Making queries tractable on big
data with preprocessing. PVLDB, 2013, 6(9): 685-696.

[9] Fan W, Geerts F, Libkin L. On scale independence for query-
ing big data. In Proc. the 33rd PODS, June 2014, pp.51-62.

[10] Fan W, Wang X, Wu Y. Performance guarantees for dis-
tributed reachability queries. PVLDB, 2012, 5(11): 1304-
1315.

[11] Fan W, Li J, Wang X, Wu Y. Query preserving graph com-
pression. In Proc. ACM SIGMOD, May 2012, pp.157-168.

[12] Fan W, Wang X, Wu Y. Answering graph pattern queries us-
ing views. In Proc. the 30th ICDE, March 31-April 4, 2014
pp.184-195.

[13] Fan W, Wang X, Wu Y. Incremental graph pattern matching.
ACM Trans. Database Systems, 2013, 38(3): Article No. 18.

[14] Ramalingam G, Reps T. On the computational complexity of
dynamic graph problems. TCS, 1996, 158(1/2): 233-277.

[15] Fan W, Li J, Ma S, Tang N, Wu Y. Adding regular expres-
sions to graph reachability and pattern queries. In Proc. the
27th ICDE, April 2011, pp.39-50.

[16] Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y. Graph pattern
matching: From intractability to polynomial time. PVLDB,
2010, 3(1): 264-275.

[17] Ma S, Cao Y, Fan W, Huai J, Wo T. Strong simulation:
Capturing topology in graph pattern matching. ACM Trans.
Database Systems, 2014, 39(1): Article No. 4.

[18] Fan W, Wang X, Wu Y. Querying big graphs within bounded
resources. In Proc. ACM SIGMOD, June 2014, pp.301-312.

[19] Fan W, Geerts F. Foundations of Data Quality Management.
Morgan & Claypool Publishers, 2012.

[20] Fan W, Geerts F, Jia X, Kementsietsidis A. Conditional func-
tional dependencies for capturing data inconsistencies. ACM
Trans. Database Systems, 2008, 33(2): Article No. 6.

10OGoogle. Knowledge Graph. http://www.google.co.uk/insidesearch/features/search/knowledge.html, Aug. 2014.
11OWikipedia. YAGO. http://en.wikipedia.org/wiki/YAGO (database), Aug. 2014.
12OWikipedia. Wiki. http://en.wikipedia.org/wiki/Wiki, Aug. 2014.

868 J. Comput. Sci. & Technol., Sept. 2014, Vol.29, No.5

[21] Cao Y, Fan W, Yu W. Determining the relative accuracy of
attributes. In Proc. ACM SIGMOD, June 2013, pp.565-576.

[22] Fan W, Geerts F. Relative information completeness. ACM
Trans. Database Systems, 2010, 35(4): Article No. 27.

[23] Fan W, Geerts F, Wijsen J. Determining the currency of data.
ACM Trans. Database Systems, 2012, 37(4): Article No. 25.

[24] Fan W, Gao H, Jia X, Li J, Ma S. Dynamic constraints for
record matching. VLDB J., 2011, 20(4): 495-520.

[25] Cong G, Fan W, Geerts F, Jia X, Ma S. Improving data qua-
lity: Consistency and accuracy. In Proc. the 33rd VLDB,
Sept. 2007, pp.315-326.

[26] Fan W, Li J, Ma S, Tang N, Yu W. Towards certain fixes
with editing rules and master data. VLDB J., 2012, 21(2):
213-238.

[27] Fan W, Ma S, Tang N, Yu W. Interaction between record
matching and data repairing. ACM J. Data and Information
Quality, 2014, 4(4): Article No. 16.

[28] Fan W, Geerts F, Tang N, Yu W. Inferring data currency and
consistency for conflict resolution. In Proc. the 29th ICDE,
April 2013, pp.470-481.

[29] Greenlaw R, Hoover H J, Ruzzo W L. Limits to Parallel Com-
putation: P-Completeness Theory. New York, USA: Oxford
University Press, 1995.

[30] Johnson D S. A catalog of complexity classes. In Hand-
book of Theoretical Computer Science, Volume A: Algorithms
and Complexity (A), Cambridge, USA: The MIT Press, 1990,
pp.67-161.

[31] Karloff H J, Suri S, Vassilvitskii S. A model of computation
for MapReduce. In Proc. the 21st SODA, Jan. 2010, pp.938-
948.

[32] Dorrigiv R, López-Ortiz A, Salinger A. Optimal speedup on
a low-degree multi-core parallel architecture (LoPRAM). In
Proc. the 20th SPAA, June 2008, pp.185-187.

[33] Suciu D, Tannen V. A query language for NC. J. Comput.
Syst. Sci., 1997, 55(2): 299-321.

[34] Hellerstein J M. The declarative imperative: Experiences
and conjectures in distributed logic. SIGMOD Record, 2010,
39(1): 5-19.

[35] Koutris P, Suciu D. Parallel evaluation of conjunctive queries.
In Proc. the 30th PODS, June 2011, pp.223-234.

[36] Afrati F N, Ullman J D. Optimizing joins in a map-reduce
environment. In Proc. the 13th EDBT, March 2010, pp.99-
110.

[37] Dean J, Ghemawat S. MapReduce: Simplified data processing
on large clusters. Commun. ACM, 2008, 51(1): 107-113.

[38] Armbrust M, Curtis K, Kraska T, Fox A, Franklin M J, Pat-
terson D A. PIQL: Success-tolerant query processing in the
cloud. PVLDB, 2011, 5(3): 181-192.

[39] Armbrust M, Fox A, Patterson D A, Lanham N, Trushkowsky
B, Trutna J, Oh H. SCADS: Scale-independent storage for
social computing applications. In Proc. the 4th CIDR, Jan.
2009.

[40] Armbrust M, Liang E, Kraska T, Fox A, Franklin M J, Pat-
terson D. Generalized scale independence through incremen-
tal precomputation. In Proc. ACM SIGMOD, June 2013,
pp.625-636.

[41] Fagin R, Lotem A, Naor M. Optimal aggregation algorithms
for middleware. Journal of Computer and System Sciences,
2003, 66(4): 614-656.

[42] Cao Y, Fan W, Wu T, Yu W. Bounded conjunctive queries.
PVLDB, 2014, 7(12): 1231-1242.

[43] Milner R. Communication and Concurrency. NJ, USA: Pren-
tice Hall, 1989.

[44] Brynielsson J, Högberg J, Kaati L, Mårtenson C, Svenson
P. Detecting social positions using simulation. In Proc.
ASONAM, August 2010, pp.48-55.

[45] Cho J, Shivakumar N, Garcia-Molina H. Finding replicated
Web collections. SIGMOD Rec., 2000, 29(2): 355-366.

[46] Nardo L D, Ranzato F, Tapparo F. The subgraph similarity
problem. TKDE, 2009, 21(5): 748-749.

[47] Zou L, Chen L, Özsu M T. Distance-Join: Pattern match
query in a large graph database. PVLDB, 2009, 2(1): 886-
897.

[48] Henzinger M R, Henzinger T, Kopke P. Computing simula-
tions on finite and infinite graphs. In Proc. the 36th FOCS,
October 1995, pp.453-462.

[49] Jones N D. An introduction to partial evaluation. ACM Com-
put. Surv., 1996, 28(3): 480-503.

[50] Lenzerini M. Data integration: A theoretical perspective. In
Proc. the 21st PODS, June 2002, pp.233-246.

[51] Halevy A Y. Answering queries using views: A survey. VLDB
J., 2001, 10(4): 270-294.

[52] Ntoulas A, Cho J, Olston C. What’s new on the Web? The
evolution of the Web from a search engine perspective. In
Proc. the 13th WWW, May 2004, pp.1-12.

[53] Fan W, Wang X, Wu Y, Deng D. Distributed graph simu-
lation: Impossibility and possibility. PVLDB, 2014, 7(12):
1083-1094.

[54] Kruskal C P, Rudolph L, Snir M. A complexity theory of ef-
ficient parallel algorithms. TCS, 1990, 71(1): 95-132.

[55] Tao Y, Lin W, Xiao X. Minimal MapReduce algorithms. In
Proc. ACM SIGMOD, June 2013, pp.529-540.

[56] Bendersky M, Metzler D, Croft W. Learning concept impor-
tance using a weighted dependence model. In Proc. the 3rd
WSDM, Feb. 2010, pp.31-40.

[57] Morris M, Teevan J, Panovich K. What do people ask their
social networks, and why? A survey study of status message
Q&A behavior. In Proc. the 28th CHI, April 2010, pp.1739-
1748.

[58] Fan W, Wang X, Wu Y. Diversified top-k graph pattern
matching. PVLDB, 2013, 6(13): 1510-1521.

[59] Gollapudi S, Sharma A. An axiomatic approach for result
diversification. In Proc. the 18th WWW, April 2009, pp.381-
390.

[60] Deng T, Fan W. On the complexity of query result diversifi-
cation. PVLDB, 2013, 6(8): 577-588.

[61] Crescenzi P, Kann V, Halldórsson M. A compendium of NP
optimization problems. http://www.nada.kth.se/∼viggo/w-
wwcompendium/, Aug. 2014.

[62] Vazirani V V. Approximation Algorithms. Springer, 2003.

[63] Acharya S, Gibbons P B, Poosala V, Ramaswamy S. Join
synopses for approximate query answering. In Proc. ACM
SIGMOD, June 1999, pp.275-286.

[64] Babcock B, Chaudhuri S, Das G. Dynamic sample selection
for approximate query processing. In Proc. ACM SIGMOD,
June 2003, pp.539-550.

[65] Ester M, Kriegel H P, Sander J, Xu X. A density-based algo-
rithm for discovering clusters in large spatial databases with
noise. In Proc. the 2nd KDD, August 1996, pp.226-231.

[66] Garofalakis M N, Gibbons P B. Wavelet synopses with error
guarantees. In Proc. ACM SIGMOD, June 2002, pp.476-487.

[67] Gibbons P B, Matias Y. Synopsis data structures for massive
data sets. In Proc. the 10th SODA, Jan. 1999, pp.909-910.

[68] Ioannidis Y E, Poosala V. Histogram-based approximation of
set-valued query-answers. In Proc. the 25th VLDB, Sept.
1999, pp.174-185.

[69] Jagadish H V, Koudas N, Muthukrishnan S, Poosala V, Sev-
cik K C, Suel T. Optimal histograms with quality guarantees.
In Proc. the 24th VLDB, August 2009, pp.275-286.

[70] Kaufman L, Rousseeuw P J. Finding Groups in Data: An In-
troduction to Cluster Analysis. New York, USA: John Wiley,
1990.

Wenfei Fan et al.: Querying Big Data 869

[71] Rösch P, Lehner W. Sample synopses for approximate an-
swering of group-by queries. In Proc. the 12th EDBT, March
2009, pp.403-414.

[72] Vitter J S, Wang M. Approximate computation of multidi-
mensional aggregates of sparse data using wavelets. In Proc.
ACM SIGMOD, June 1999, pp.193-204.

[73] Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Sto-
ica I. BlinkDB: Queries with bounded errors and bounded
response times on very large data. In Proc. the 8th EuroSys,
April 2013, pp.29-42.

[74] Redman T. The impact of poor data quality on the typical
enterprise. Commun. ACM, 1998, 41(2): 79-82.

[75] Shilakes C C, Tylman J. Enterprise information portals.
Technical Report, Merrill Lynch, Inc., 1998.

[76] Miller Jr D W, Yeast J D, Evans R L. Missing prenatal records
at a birth center: A communication problem quantified. In
AMIA Annu. Symp. Proc., 2005, pp.535-539.

[77] Eckerson W W. Data quality and the bottom line: Achieving
business success through a commitment to high quality data.
Technical Report, The Data Warehousing Institute, 2002.

[78] Ma S, Fan W, Bravo L. Extending inclusion dependencies
with conditions. TCS, 1998, 515: 64-95.

[79] Herzog T N, Scheuren F J, Winkler W E. Data Quality and
Record Linkage Techniques. Springer, 2009.

[80] Chiang F, Miller R J. Discovering data quality rules. PVLDB,
2008, 1(1): 1166-1177.

[81] Fan W, Geerts F, Li J, Xiong M. Discovering conditional func-
tional dependencies. TKDE, 2011, 23(5): 683-698.

[82] Golab L, Karloff H, Korn F, Srivastava D, Yu B. On gener-
ating near-optimal tableaux for conditional functional depen-
dencies. PVLDB, 2008, 1(1): 376-390.

[83] Arenas M, Bertossi L, Chomicki J. Consistent query answers
in inconsistent databases. In Proc. the 18th PODS, May
31-June 2, 1999, pp.68-79.

[84] Bohannon P, Fan W, Flaster M, Rastogi R. A cost-based
model and effective heuristic for repairing constraints by value
modification. In Proc. ACM SIGMOD, June 2005, pp.143-
154.

[85] Yakout M, Elmagarmid A K, Neville J, Ouzzani M, Ilyas I F.
Guided data repair. PVLDB, 2011, 4(5): 279-289.

[86] Fan W, Geerts F, Ma S, Müller H. Detecting inconsistencies
in distributed data. In Proc. the 26th ICDE, March 2010,

pp.64-75.

[87] Fan W, Li J, Tang N, Yu W. Incremental detection of incon-
sistencies in distributed data. TKDE, 2014, 26(6): 1367-1383.

[88] Bleiholder J, Naumann F. Data fusion. ACM Comput. Surv.,
2008, 41(1): Article No. 1.

Wenfei Fan is the Chair of
Web Data Management in the School
of Informatics, University of Edin-
burgh, UK, and the director of the
International Research Center on Big
Data, Beihang University, Beijing.
He received his Ph.D. degree in com-
puter science from the University of
Pennsylvania, USA, and B.S. and
M.S. degrees from Peking University,

Beijing. Prof. Fan is a fellow of the Royal Society of Edin-
burgh, UK, a fellow of the ACM, USA, a national professor
of the 1 000-Talent Program, and a Yangtze River Scholar,
China. His current research interests include database the-
ory and systems, in particular big data, data quality, data
fusion, distributed query processing, and social networks.

Jin-Peng Huai is a professor of
the School of Computer Science and
Engineering at Beihang University,
Beijing. He received his Ph.D. degree
in computer science from Beihang
University, China, in 1993. Prof.
Huai is an academician of Chinese
Academy of Sciences and the vice
honorary chairman of China Com-
puter Federation (CCF). His research

interests include big data computing, distributed system,
virtual computing, service-oriented computing, trustworthi-
ness and security.

