
Li LD, Lu JL, Cheng X. Retention benefit based intelligent cache replacement. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 29(6): 947–961 Nov. 2014. DOI 10.1007/s11390-014-1481-2

Retention Benefit Based Intelligent Cache Replacement

Ling-Da Li1,2,3 (李凌达), Student Member, CCF, ACM, Jun-Lin Lu1,2,3,∗ (陆俊林), Member, CCF
and Xu Cheng1,2,3 (程 旭), Member, CCF

1Microprocessor Research and Development Center, Peking University, Beijing 100871, China
2Engineering Research Center of Microprocessor and System, Ministry of Education, Beijing 100871, China
3School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

E-mail: {lilingda, lujunlin, chengxu}@mprc.pku.edu.cn

Received December 19, 2013; revised May 6, 2014.

Abstract The performance loss resulting from different cache misses is variable in modern systems for two reasons: 1)
memory access latency is not uniform, and 2) the latency toleration ability of processor cores varies across different misses.
Compared with parallel misses and store misses, isolated fetch and load misses are more costly. The variation of cache
miss penalty suggests that the cache replacement policy should take it into account. To that end, first, we propose the
notion of retention benefit. Retention benefits can evaluate not only the increment of processor stall cycles on cache misses,
but also the reduction of processor stall cycles due to cache hits. Then, we propose Retention Benefit Based Replacement
(RBR) which aims to maximize the aggregate retention benefits of blocks reserved in the cache. RBR keeps track of the
total retention benefit for each block in the cache, and it preferentially evicts the block with the minimum total retention
benefit on replacement. The evaluation shows that RBR can improve cache performance significantly in both single-core
and multi-core environment while requiring a low storage overhead. It also outperforms other state-of-the-art techniques.

Keywords retention benefit, replacement, last-level cache

1 Introduction

Cache performance, especially last-level cache per-
formance, is crucial to the system performance due to
the increasing memory access latency. In order to re-
duce the processor stall time on cache misses, a large
number of cache management policies are proposed re-
cently to improve cache performance. Most of these
proposals focus on reducing the absolute cache miss
count[1-8], and they implicitly assume that all cache
misses result in equal performance degradation. How-
ever, this assumption is inaccurate in modern systems
for two reasons.

The first reason is that memory access latency is not
uniform in modern systems. There are many sources
of the variation of memory latency. First, in modern
DRAM systems, memory requests need additional serv-
ing time when the request queue is not empty or bank
conflicts occur, and memory requests that access the
same row as previous requests are served faster. Sec-
ond, the interconnect network introduces variable ac-
cess latency. For instance, requests to remote memory

usually spend more time than those to local memory.
Moreover, the disparity in memory latency will become
even larger in future systems. Due to the stringent
power and energy limitation in modern system design,
heterogeneous multi-core systems will become more and
more popular in the future. In such systems, multiple
different memory techniques are used simultaneously
(e.g., eDRAM, PCRAM, STT-RAM[9]), where the ac-
cess latency depends on the type of the accessed me-
mory. Besides, such systems also tend to use hybrid me-
mory hierarchies (e.g., 3D-stacked DRAM caches[10]).
In such scenarios, access latency depends on which level
of the memory provides the data.

The other reason for the disparity in miss penalty is
that to reduce the processor stall time on cache misses,
modern processors make use of various techniques such
as non-blocking caches[11] and prefetching[12] to serve
multiple cache misses in parallel. Using these tech-
niques makes the processor stall time on a cache miss
depend not only on its memory access latency, but
also on the situation of other concurrent misses. For
instance, the memory access latency of cache misses

Regular Paper
The work was supported in part by the National Science and Technology Major Project of the Ministry of Science and Technology

of China under Grant No. 2009ZX01029-001-002-2.
∗Corresponding Author
©2014 Springer Science +Business Media, LLC & Science Press, China



948 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

which can be served in parallel can be partly hidden by
that of other concurrent misses, and these misses thus
have small performance impact. On the other hand,
cache misses that occur in isolation can cause signifi-
cant performance loss.

The variation of miss penalty motivates the require-
ment for a miss penalty aware cache replacement policy,
which should focus on reducing the aggregate miss
penalty (i.e., processor stall cycles on cache misses)
rather than the aggregate miss count. Some recently
proposed cache replacement policies have taken into
account the miss penalty on replacement[13-18]. These
proposals compute and record the miss penalty when a
block is inserted into the cache, and preferentially re-
place blocks with small miss penalty.

However, only considering the miss penalty is not
enough. For instance, assume that block A has a large
miss penalty of 200 cycles on its insertion and is only
accessed once, while block B has a small miss penalty of
50 cycles and receives 9 hits when being resident in the
cache, and on each hit it prevents the processor from
stalling for another 50 cycles. In such a scenario, re-
serving B will save an aggregate penalty of 500 cycles,
while it is 200 cycles for A, and thus the cache should
reserve B instead of A. If we only consider the one-
time penalty on cache misses, block A will incorrectly
be preferred. Therefore, besides the penalty on cache
misses, it is also important to evaluate the potential
saved penalty due to cache hits, and the cache replace-
ment policy should take into account both of them to
make replacement decisions.

To evaluate both the penalty on cache misses and the
saved penalty on cache hits, we propose the notion of
retention benefit. The retention benefit of a block rep-
resents the increment of processor stall cycles assuming
that it is not resident in the cache. We also propose
a simple method to compute the retention benefit for
cache requests in superscalar processors.

Then, we propose Retention Benefit Based Replace-
ment (RBR) to maximize the aggregate retention bene-
fits of blocks reserved in the cache. RBR associates
each cache block with a retention benefit value (RBV)
to record its total retention benefit. On each access
(including hits and misses) to a cache block, RBR com-
putes the retention benefit and then accumulates it to
the RBV of that block. On replacement, the block with
the minimum RBV is selected as the victim block.

RBR can address the retention benefit variation of
different cache requests from both intra-program and
inter-program, and it is also prefetch-aware. Besides,
since RBR can adapt to the variation of miss penalty
intelligently, it can be applied in future systems without
requiring any extra effort of redesign and verification.

We model a modern desktop system to evaluate
the performance of RBR in the last-level cache. Our
evaluation shows that RBR can improve cache perfor-
mance significantly while requiring a low storage over-
head. On average, RBR outperforms LRU (Least Re-
cent Used) by 6.3% and 5.3% for single-core and 4-
core workloads respectively in the absence of prefetch-
ing. In the presence of prefetching, its average perfor-
mance improvement is 6.7% and 5.9% for single-core
and 4-core workloads respectively. It also outperforms
other state-of-the-art techniques including MLP-aware
replacement[16], DIP[3], RRIP[6], PIPP[5], and UCP[2].

The rest of this paper is organized as follows. Section
2 discusses some related work. Section 3 introduces the
notion of retention benefit and its computation method.
Section 4 describes the design and implementation of
RBR. Section 5 shows the experimental methodology,
and then Section 6 analyzes the results. Finally, Section
7 concludes this paper.

2 Related Work

Extensive research has been done to improve cache
performance. Based on the goal, these work can be
classified into two major categories: miss count based
policies which aim to reduce the miss count, and miss
penalty based policies which aim to reduce the miss
penalty. We will first introduce the primary work of
these two types of policies respectively in this sec-
tion. Then we will introduce some memory aware cache
management policies.

2.1 Miss Count Based Policies

A lot of studies propose to improve cache perfor-
mance by reducing the miss count. DIP[3] attempts
to insert most incoming blocks into the LRU posi-
tion to avoid thrashing when the working set is larger
than the cache size. Pseudo-LIFO[19] uses a fill stack
instead of the LRU stack, and prioritizes to replace
blocks on the top of fill stack. Keramidas et al. pro-
posed to explicitly predict the reuse distance to guide
replacement[20]. RRIP[6] distinguishes reused blocks
with no reused ones, and evicts no reused blocks prefe-
rentially. SHiP[8] can further improve the performance
of RRIP with a signature-based re-reference interval
predictor, and their signatures include memory region,
PC, and instruction sequence. PACMan[21] extends
RRIP to make it prefetch-aware. Duong et al. pro-
posed to protect cache blocks within a predicted reuse
distance[22].

Dead block prediction techniques try to identify
blocks that will not be accessed again (i.e., dead



Ling-Da Li et al.: Retention Benefit Based Intelligent Cache Replacement 949

blocks), and evict them preferentially to improve per-
formance. Dead block prediction can be classified into
three categories based on how to identify dead blocks:
trace-based[1], time-based[23], and counter-based[4]. By
making prediction for continuous access sequences,
cache burst predictor[24] can improve dead block pre-
diction accuracy. SDBP[7] samples a part of sets to
reduce conflicts in the predictor for low overhead and
high prediction accuracy.

Bypass techniques improve cache performance by
bypassing blocks with poor locality. Based on how
to predict the locality, these studies can be classified
into address-based[25-28], block-based[29-30], and PC-
based[31-33]. LRF[34] combines address-based and PC-
based methods to improve performance. DSB[35] ad-
justs the bypass probability based on which one is ac-
cessed first between the incoming block and the victim
block. Gaur et al. proposed a bypass and insertion al-
gorithm for exclusive last-level caches[36]. It classifies
blocks based on their accessed time in the cache hierar-
chy. OBM[37] makes bypass decisions by predicting the
behavior of the optimal bypass.

To improve shared cache performance, some re-
cent work proposed to partition shared caches to mini-
mize the aggregate miss count of multi-core processors.
UCP[2] collects the cache utility information for each
core. Then based on the collected utility information,
UCP decides the cache allocation for each core to mini-
mize the total miss count. TADIP[38] extends DIP to
select the best insertion policy for each core. PIPP[5]

changes the insertion and promotion policy of different
cores to partition shared caches implicitly. NUcache[39]

improves shared cache performance by only retaining
blocks accessed by selected PCs. Vantage[40] partitions
shared caches at cache block granularity to make it
applicable in many-core systems. PriSM[41] partitions
shared caches by controlling the eviction probabilities of
different cores. There are also some studies that focus
on improving the fairness or QoS of shared cache[42-44].
Although we mainly focus on improving performance in
this paper, our policy can also be extended to improve
fairness or QoS.

Miss count based cache management policies implici-
tly assume that all cache misses are equally important.
However, the penalty of different misses can change dra-
matically in modern systems. Thus, only reducing the
miss count is not enough, and it is important for cache
management policies to take into account the variation
of miss penalty.

2.2 Miss Penalty Based Policies

Jeong and Dubois first proposed to take into account
the miss cost in cache management[13,45-46]. They use
two static miss costs to represent the miss cost to a

local memory and the miss cost to a remote memory
respectively in CC-NUMA multiprocessors, and several
replacement policies are proposed to extend LRU to
consider the miss cost. In uniprocessor environment,
Jeong et al. proposed to distinguish the miss penalty
between load and store misses[14]. However, they do
not distinguish the miss penalty between different load
misses.

Critical cache[15] and LACS[17-18] both estimate
the miss penalty using the number of issued instruc-
tions during the cache miss. Critical cache dedicates a
part of cache to preserve critical loads. LACS replaces
blocks with small miss penalty preferentially, and it can
dynamically adapt to different applications and execu-
tion phases. Issued instruction number is more related
to the processor performance. However, when memory
access latency is long enough, the number of issued in-
struction will show no difference, and thus using it to
estimate miss penalty is not accurate. Besides, such in-
formation is difficult to be obtained by the last-level
cache. On the other hand, our method uses cache serv-
ing time to estimate miss penalty, and thus it does not
need to obtain additional information from the proces-
sor.

Qureshi et al. proposed to take into account the
variation of miss penalty due to the ability of serving
multiple misses in parallel in modern processors, which
is called the memory level parallelism (MLP) cost[16].
They use the reciprocal of the in-flight miss number to
represent the MLP cost. On replacement, the MLP-
aware replacement policy selects the block with the
minimum weighted sum of MLP cost and LRU stack
position as the victim. However, their method does
not distinguish fetch and load misses with store misses
and is only applied in uniprocessors. MLP-DCP[47] and
MCFQ[48] partition shared cache based on the MLP
cost, and their MLP cost computation methods are
similar to that of [16].

Compared to our work, these previous miss penalty
based policies only take into account the miss penalty
on the insertion of blocks, and they do not consider the
reduced penalty on the hits of cache blocks. Therefore,
these policies cannot make replacement decisions based
on miss penalty information alone, and they also need
recency information provided by LRU. On the other
hand, our policy takes into account both the penalty
on cache misses and the saved penalty on cache hits.
Therefore, our policy can make replacement decisions
based on penalty information alone, and it does not
need any recency information.

2.3 Memory Aware Policies

In the main memory, the access latency of read re-
quests can increase due to conflicts caused by write-



950 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

back and other requests. To address this problem,
some recently proposed polices schedule writebacks ear-
lier or combine multiple writeback requests to reduce
the interference introduced by writebacks[49-52]. Lee
et al. proposed to take advantage of the memory
characteristics[53]. These policies can reduce the me-
mory access latency of read requests. Our policy can
cooperate with these policies to improve performance
further. However, it is beyond the scope of this paper,
and we leave it as part of our future work.

3 Retention Benefit

In order to reduce the total processor stall time on
cache misses, caches should retain blocks that may hurt
the performance most on misses. Therefore, we propose
the notion of retention benefit to evaluate the reduction
of processor stall cycles on a cache access if the accessed
block is resident in the cache. In the rest of this sec-
tion, we will introduce how to compute the retention
benefit for cache miss and hit requests in modern su-
perscalar processors respectively. Then the next section
will introduce how to compute the aggregate retention
benefits of cache blocks and use them to guide cache
replacement.

3.1 Retention Benefit Computation for Cache
Misses

The retention benefit of a missing block reflects the
increment of processor stall cycles on its miss. We de-
scribe how to compute the retention benefit for cache
misses based on the request type.

Data Writeback. Writeback requests are generated
by inner caches on dirty block replacement. They do
not affect the processor performance, and thus their re-
tention benefits are set to 0.

Data Store. Modern processors usually employ a
structure called store queue to keep in-flight store in-
structions, and store instructions do not access caches
until they retire from the processor. As a result, store
misses hurt the performance only when the store queue
is full, which occurs rarely. Therefore, the retention
benefits of store misses are set to 1 to indicate their
small performance influence.

Instruction Fetch and Data Load. We use a method
similar to the MLP cost computation method proposed
by Qureshi et al.[16] for computing retention benefits of
instruction fetch and data load misses. After a long-
latency fetch or load miss (e.g., last-level cache miss),
the processor will run out of resources and stall soon.
Therefore, the processor stall cycles on a miss can be
approximated by the number of cycles that the cache
spends on serving the miss. If multiple misses occur in

parallel, the cache serving cycles can be divided equally
for all in-flight misses.

To compute the retention benefits for fetch and
load misses, we extend the MSHR (miss status hold-
ing register)[11] existing in current cache design. MSHR
is used to record in-flight cache misses, and each miss
is allocated an MSHR entry before the miss request is
sent to memory. We append each MSHR entry with
a field RB to compute its retention benefit. When an
MSHR entry is allocated on a fetch or load miss, its RB
is initialized to 0. Then, its RB is increased by 1/ (the
number of concurrent fetch and load misses) every cy-
cle, which indicates that all concurrent fetch and load
misses share the responsibility for this stall cycle. We
use a counter Cload miss to count the number of concur-
rent fetch and load misses. When the memory returns
data to an MSHR entry, its RB represents the reten-
tion benefit of the recorded miss request. Fig.1 presents
an example for computing the retention benefit, where
R1, R2, R3, and R4 denote different fetch and load miss
requests.

Fig.1. Example for retention benefit computation of instruction

fetch and data load misses.

To compute 1/Cload miss, a naive implementation
will need floating-point operations. We convert com-
plex floating-point operations to fixed-point operations
using a 64-entry lookup table (the maximum possible
value of Cload miss is 64 in our experiments). Besides,
as discussed in [16], it is not necessary to associate an
adder with each MSHR entry for its retention benefit
computation, and the time sharing four adders has a
negligible impact on the value of retention benefit.

Compared to the original method proposed by
Qureshi et al.[16], our method can distinguish the types
of different requests; while their method treats all types
of requests identically, which makes it less accurate.

The retention benefit of a miss request depends on
the current situation of other cache requests. For in-
stance, if request D converts to a hit in Fig.1, the re-
tention benefit of request C will increase. However,
Qureshi et al. have demonstrated that in most cases,
the situations of other cache requests are similar for two



Ling-Da Li et al.: Retention Benefit Based Intelligent Cache Replacement 951

requests to the same block[16]. Therefore, previous re-
tention benefits of a block can be used to predict future
ones of the same block.

Prefetch. Prefetch misses do not stall the proces-
sor. However, they may be valuable since subsequent
demand requests may use prefetched data. Thus, the
retention benefits of prefetch misses are set to 1.

For demand misses, prefetch misses can affect their
retention benefits in two ways. One is that for a
prefetch request which is not timely, the following de-
mand request to the same block cannot get its data
on time and misses in the cache, but with a relative
small retention benefit. In such scenarios, we only need
to reset the RB of the corresponding MSHR entry to 0
and restart the retention benefit computation when the
address of an in-flight prefetch request is found to be
identical to that of the current demand request. The
other way is that prefetch requests contend with de-
mand requests for the memory bandwidth, which will
eventually affect the memory access latency of demand
requests. However, our method for retention benefit
computation takes into account variable memory la-
tency. Consequently, our retention benefit computation
method is applicable in the presence of prefetching.

3.2 Retention Benefit Computation for Cache
Hits

As discussed in Section 1, it is not enough to only
compute retention benefits for cache misses, and it is
important to also compute retention benefits for cache
hits. The retention benefit on a cache hit can be viewed
as the increment of processor stall cycles when the hit
converts to a miss.

Data Writeback and Store. We use the same method
as that in the miss situation, since the performance im-
pact is negligible on their misses.

Prefetch. The retention benefit of a prefetch hit is set
to 0 since the prefetched block is already in the cache,
and thus the prefetch request provides no benefit.

Instruction Fetch and Data Load. Computing re-
tention benefits on instruction fetch and data load hits
is much more challenging compared with that on their
misses. Therefore, we pretend the hit request is a miss
and then use the retention benefit computation method
for fetch and load misses. At first, we need to estimate
the memory access latency when the hit request con-
verts to a miss. Since we model a desktop-like system
in our experiments, where the variation of memory la-
tency is not very large, we use a static estimated me-
mory access latency (200 cycles) in our experiments.
For more complex systems where memory latency can
change dramatically, a small address based memory
latency predictor can be potentially employed, since

cache block address usually determines its location in
the memory system, and thus roughly determines its
access latency.

With the estimated memory access latency, we also
need the information about other concurrent fetch and
load misses to compute the retention benefit. To sim-
plify the computation, we use the current number of
fetch and load misses (Cload miss) plus 1 (the pretended
miss itself) to approximate the average concurrent miss
number during the serving time of the pretended miss.
Consequently, the retention benefit of instruction fetch
or data load hit can be computed using the following
formula:

retention benefit =
estimated memory latency

Cload miss + 1
.

A more accurate method to compute retention bene-
fits for fetch and load hits is to design a structure HSHR
(Hit Status Holding Register), which is similar to the
MSHR. On each fetch or load hit, an HSHR entry is al-
located to compute its retention benefit using the same
method as that of MSHR. However, our analysis shows
that the performance of this method is similar to that
of the simple method above, and using HSHR also in-
curs extra hardware cost. Therefore, we use the simpler
method in this paper.

3.3 Analysis of Retention Benefit

Using the method described above, we analyze reten-
tion benefits of cache misses for SPEC CPU2006 bench-
marks in an LRU-managed 2MB L2 cache without
prefetching. Fig.2 presents the retention benefit distri-
bution for some representative programs. The left bars
in the histogram represent the retention benefit distri-
bution of fetch and load misses, while the rightmost bar
represents the percentage of store misses, whose reten-
tion benefits are always 1. There is no writeback miss
because we model an inclusive cache hierarchy.

For programs with high retention benefits, such as
milc and libquantum, most of their misses are fetch and
load misses and occur in isolation. For programs with
middle retention benefits, such as zeusmp and omnetpp,
some of misses have retention benefits equal to me-
mory access latency, while the others have small reten-
tion benefits. For programs with low retention benefits,
most of their misses occur in parallel and their memory
latency is hidden by that of other concurrent misses.
We observe that for programs with middle or low re-
tention benefits, the disparity in retention benefits of
different misses is large, and thus it is more important
for the cache replacement policy to take into account
the variation of retention benefits for these programs.



952 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Fig.2. Retention benefit distribution of LRU for representative

programs in SPEC CPU2006. (a) milc. (b) libquantum. (c)

zeusmp. (d) omnetpp. (e) mcf. (f) lbm. (a) and (b) are with

high retention benefits. (c) and (d) are with middle retention

benefits. (e) and (f) are with low retention benefits.

Moreover, in multi-core systems where last-level
caches are shared, the variation of retention benefits ex-
ists not only between different requests from the same
core, but also between requests from different cores. For
instance, when libquantum and lbm execute in paral-
lel, since the misses of libquantum have larger retention
benefits, more cache space should be allocated to it.
In doing so, although the miss count of lbm increases,
its performance loss is limited since extra misses have
small retention benefits.

Our results above motivate the need for a retention
benefit based cache replacement policy, which can deal
with the retention benefit variation of different misses.

4 Retention Benefit Based Replacement

Our goal is to calculate the aggregate retention bene-
fit for each cache block, and then design a cache re-

placement policy that focuses on reserving blocks with
larger aggregate retention benefits to improve perfor-
mance. To that end, we propose retention benefit based
replacement (RBR).

4.1 Aggregate Retention Benefit Computation

To enable retention benefit based cache replacement,
it is necessary to calculate and keep track of aggregate
retention benefits for all cache blocks. Therefore, RBR
associates each cache block with an M -bit retention
benefit value (RBV) to record its aggregate retention
benefit. The RBV of 0 indicates the minimal aggregate
retention benefit, while the RBV of 2M − 1 indicates
the maximum aggregate retention benefit.

On each cache miss and hit, the computed retention
benefit using the method in Section 3 is accumulated
to the RBV of the corresponding block. If a block
has a large RBV, it indicates that the processor will
stall for more cycles if that block is not resident in the
cache, and thus the cache should retain blocks with
larger RBVs preferentially.

As introduced in Section 3, the value of retention
benefit can be hundreds of cycles, and keeping accu-
rate aggregate retention benefits requires large storage
overhead and is also not necessary. In the real imple-
mentation, the retention benefit is quantized to a num-
ber between 0 and the maximum promotion number
MAX PRO. Table 1 shows the retention benefit quan-
tization when MAX PRO = 3. Then, the quantized
promotion number is accumulated to the RBV. After
accumulation, if the RBV is larger than the maximum
value of RBV (2M−1), the RBV is saturated to 2M−1.

Table 1. Retention Benefit Quantization When

MAX PRO = 3

Retention Benefit (Cycles) Quantized Promotion Number

0 0

1∼90 1

91∼180 2

180+ 3

When the width of RBV is fixed, MAX PRO should
be large enough to distinguish accesses with different
retention benefits. On the other hand, MAX PRO can-
not be too large because it will limit the ability of RBV
to record aggregate retention benefits for more cache
accesses. We study how to select the width of RBV
and the value of MAX PRO in Section 6.

4.2 Static RBR

To improve cache performance by retaining blocks
with large retention benefits preferentially, we propose
static RBR (SRBR) to select blocks with the smallest
RBVs as the victim.



Ling-Da Li et al.: Retention Benefit Based Intelligent Cache Replacement 953

On a cache miss, SRBR selects the block with the
minimum RBV in the corresponding cache set as the
victim block. If there are multiple blocks with the same
minimal RBVs, SRBR breaks the tie by always search-
ing for the victim from a fixed position (from the left-
most block in this paper). If the minimal RBV is larger
than 0, SRBR decreases the RBVs of all blocks in the
corresponding cache set by the minimal RBV. In doing
so, SRBR can remove stale blocks from the cache, which
have accumulated large RBVs in the past, but have not
been accessed recently. Thus, decreasing RBVs of all
block in a cache set allows SRBR to adapt to changes
in the working set.

After the victim selection, SRBR inserts the new
block into the cache and updates its RBV. SRBR uses
the method mentioned in Subsection 4.1 to calculate
and quantize the retention benefit of the new incoming
block. Then, the RBV of the incoming block is initiated
to the quantized promotion number.

On a hit to a block, SRBR updates the RBV of the
hit block. We also use the same method to calculate
and quantize the retention benefit. At last, the quan-
tized promotion number is accumulated to the RBV of
the hit block. Fig.3 shows an example of the working
process of SRBR.

Fig.3. Example of SRBR working process.

Specifically, when MAX PRO = 1, i.e., all accesses
are considered to have the same retention benefits,
SRBR downgrades to an LFU-like (Least Frequently
Used) policy, since the RBV of a block records its ac-
cessed time in such situations. When the width of RBV
RBV width = 1 and MAX PRO = 1, SRBR is identical
to NRU (Not Recently Used), which is a pseudo LRU
policy widely used in modern processors[54-55].

4.3 Dynamic RBR

The limitation of SRBR is that it cannot deal with
thrashing access patterns. The following cache access
sequence shows a typical thrashing access pattern:

(a1, a2, a3, . . . , an)I .

It denotes that an access sequence from block a1 to
block an repeats I times (n > cache size), and we as-
sume that a1, . . . , an have the same retention benefits.

In such scenarios, the working set is larger than the
cache size, and SRBR will cause cache thrashing and
result in no cache hits.

To avoid cache thrashing, we propose Bimodal RBR
(BRBR) to address thrashing access pattern. On cache
misses, BRBR sets the RBVs of most incoming blocks
to the minimal RBV value 0, and infrequently sets the
RBVs of incoming blocks to the quantized retention
benefit value as SRBR. By setting the RBVs of most
incoming blocks to 0, BRBR can prevent new incom-
ing blocks from evicting blocks resident in the cache to
keep a part of working set in the cache steadily, and
thus the retained part of working set can receive hits
on accesses. Besides, infrequently setting the RBVs of
incoming blocks as SRBR makes BRBR adaptive to the
working set changes. BRBR is similar to the Bimodal
Insertion Policy (BIP) component of DIP[3].

Our experiments show that only setting the RBVs
of 1/64 incoming blocks as SRBR is enough. To imple-
ment it, the last-level cache only needs to add a 6-bit
counter which is added by 1 on each miss. When the
counter overflows, BRBR sets the RBV of the incoming
block as SRBR. Otherwise, the RBV is set to 0.

On the other hand, BRBR can hurt the performance
for non-thrashing access patterns. In order to improve
performance for all kinds of access patterns, we pro-
pose dynamic RBR (DRBR) to dynamically determine
which policy suits best for the current cache access pat-
tern, SRBR or BRBR. DRBR uses set dueling[3] to
compare the performance of SRBR and BRBR.

Set dueling is widely used to compare the per-
formance of two competitive replacement policies[3,6].
It permanently dedicates a few fixed number of sets
(called leader sets) to each policy and compares the
miss number of two groups of leader sets. Then, set due-
ling uses a saturating policy selection (PSEL) counter
to record which group of leader sets incurs less misses,
and thus selects its policy as the winning policy. The
winning policy is applied to the remaining sets (called
follower sets) of the cache as their replacement policy.

Instead of deciding the winning policy by compar-
ing their total miss number, DRBR extends set dueling
to decide the winning policy by comparing the total
retention benefits of misses of their leader sets with a
PSEL counter. PSEL is initiated to 0. On a miss in the
leader sets of SRBR, PSEL is decreased by the quan-
tized retention benefit of the miss. While on a miss
in the leader sets of BRBR, PSEL is increased by the
quantized retention benefit of the miss. If PSEL > 0,
it indicates that the misses of BRBR leader sets have
larger aggregate retention benefits and thus stall the
processor for more cycles. As a result, SRBR is chosen
as the winning policy and applied to all remaining sets
in the cache. Otherwise, if PSEL < 0, it indicates SRBR



954 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

incurs more performance loss and BRBR is chosen as
the winning policy. In our experiments, we use a 12-bit
PSEL.

4.4 Thread-Aware Dynamic RBR

In multi-core processors, last-level caches are usua-
lly shared by all cores. Since concurrently executing
programs can show different cache access patterns and
thus have different favorite replacement policies be-
tween SRBR and BRBR, we extend DRBR to Thread-
Aware DRBR (TADRBR), which is similar to the ex-
tension from DIP[3] to Thread-Aware DIP (TADIP)[38].
TADRBR chooses the best suited replacement policy
for each core. TADRBR dedicates two groups of leader
sets for each core to determine which policy the core
should use in the presence of cache requests of other
cores.

Like TADIP, TADRBR requires one PSEL per core
to be thread-aware. Besides, to compute retention
benefits for requests of each core, we assign a Cload miss

for each independent core. On a cache access from a
specific core, the Cload miss of that core is used to com-
pute the retention benefit. The hardware overhead of
TADRBR is negligible.

4.5 Design Issues for Inclusive Caches

In our experiments, we evaluate the performance of
various techniques in an inclusive L2 cache. In an in-
clusive cache hierarchy, when a cache block is evicted
from the L2 cache, the same block must be evicted by
L1 caches to satisfy the inclusion property, and these
evicted L1 cache blocks as a result of inclusion are called
inclusion victims[56]. Inclusion victims may show good
locality in L1 caches, and thus evicting them early can
hurt performance[56].

To eliminate inclusion victims, the L2 cache replace-
ment policy should avoid replacing blocks resident in L1
caches. In the typical implementation of a two-level in-
clusive cache hierarchy, each L2 cache block is associa-
ted with per-core tracking bits that denote which cores
are caching the block. Therefore, we can use the track-
ing bits of a block to decide whether it is retained by
any L1 cache. However, the information provided by
tracking bits is inaccurate because L1 caches silently
drop evicted clean blocks. To address this problem, on
the replacement of a clean block in the L1 cache, it
sends an explicit eviction notification to the L2 cache,
and thus the L2 cache can update the tracking bits of
the corresponding block[57].

Upon replacement, the L2 cache preferentially se-
lects the victim among blocks which are not resident in

L1 caches. If there are no such blocks, the replacement
policy will select the victim block from all blocks in the
cache set. This method is similar to a recently proposed
inclusive cache replacement policy[58]. To make a fair
comparison, we evaluate the performance of all tech-
niques using this extension in our experiments. Our
experiments show that the performance of all tech-
niques can improve slightly with this extension, and the
increasing traffic due to explicit eviction notifications is
very small.

5 Experimental Methodology

5.1 Simulator

The simulator we used is gem5[59]. The microarchi-
tecture parameters of the simulator are shown in Table
2, and the configuration of the processor is similar to
the Intel Nehalem①. The simulator models a two-level
inclusive cache hierarchy using the MESI coherence pro-
tocol. The L1 caches are private to each core, while the
L2 cache is shared by all cores. In single-core configu-
ration, the L2 cache is 16-way 2 MB. In multi-core con-
figuration, the L2 cache is 4MB for 4-core configuration
and 8MB for 8-core configuration. The simulator also
models a hardware stream prefetcher for each core, and
prefetched blocks are inserted into both the L1 and the
L2 caches.

Table 2. Parameters of the Simulator

Parameter Configuration

Processor 4-wide, 128-entry ROB, 48-entry load queue,
32-entry store queue

L1 ICache 32KB, 64B block size, 4-way, 3-cycle hit la-
tency, PLRU

L1 DCache 32KB, 64B block size, 4-way, 3-cycle hit la-
tency, PLRU, 32-entry MSHR

L2 cache 2MB/4MB/8MB, 64B block size, 16-way,
16-cycle hit latency, 64-entry MSHR

Memory 1 channel, 2 dimms, 2 ranks per dimm, 8
banks per rank, bank conflicts modeled, 150-
cycle minimal access latency

5.2 Benchmarks

We use SPEC CPU2006 benchmarks[60] with the
first reference inputs to do evaluation. SimPoint[61]

is used to obtain a single representative 200 million
instructions for each benchmark. Among 29 SPEC
CPU2006 benchmarks, seven benchmarks cannot be ad-
dressed by our simulation infrastructure. For the re-
maining ones, gamess, namd, povray, calculix, h264ref,
and wrf are not evaluated because their working sets
are very small and their MPKI (misses per kilo instruc-

①Intelr CoreTM i7 processor. http://www.intel.com/products/processor/corei7/, Sept. 2014.



Ling-Da Li et al.: Retention Benefit Based Intelligent Cache Replacement 955

tions) is less than 0.1 in a 2MB L2 cache under LRU.
The rest of 16 benchmarks are used in our experiments.

For the performance evaluation in multi-core envi-
ronment, we choose several benchmarks out of the 16 se-
lected SPEC CPU2006 benchmarks at random to com-
bine into a multi-core workload. Totally, we create 20
4-core workloads and eight 8-core workloads. We quan-
tify the performance in multi-core environment with the
following three widely used metrics:

weighted speedup =
n∑

i=1

IPC i

SingleIPC i

,

throughput =
n∑

i=1

IPC i,

fair speedup = n/
n∑

i=1

SingleIPC i

IPC i
,

where n is the number of cores, IPC i represents the
number of instructions per cycle of program i, and
SingleIPC i represents the number of instructions per
cycle of i when it runs alone.

6 Results and Analysis

6.1 Single-Core Workloads

At first, we evaluate the performance of SRBR in
the absence of prefetching. Fig.4 studies the sensiti-
vity of SRBR to the width of RBV (RBV width) and
the maximum promotion number MAX PRO. The x-
axis represents the value of MAX PRO under different
widths of RBV, and the y-axis represents the geometric
mean speedup of 16 single-core workloads. The speedup
is computed by dividing the IPC of SRBR by that of
LRU. When MAX PRO = 1, all accesses are considered
to have the same retention benefits, and thus SRBR
has no performance improvement. When MAX PRO is

close to its maximum value (2RBV width − 1), it limits
the ability of RBV to record the aggregate retention
benefit for more cache accesses. The results show that
when MAX PRO equals 3, SRBR achieves the best per-
formance improvement. They also show that using 3-bit
RBVs is enough. Therefore, RBV width is set to 3 and
MAX PRO is set to 3 in the following experiments. We
also observe that even using 2-bit RBVs and MAX PRO
of 3 can achieve a geometric mean speedup of 3.8%.

Fig.4. Sensitivity to the RBV width and the MAX PRO value

for RBR.

Then, we compare the performance of SRBR and
DRBR with other state-of-the-art techniques in the ab-
sence of prefetching. Besides SRBR and DRBR, we in-
vestigate the performance of other techniques including
MLP-aware replacement (MLP)[16], DIP[3], SRRIP[6],
and DRRIP[6]. Since RBR uses 3-bit RBVs, we also use
SRRIP and DRRIP with 3-bit RRPVs in our experi-
ments to make their comparison fair, and our experi-
ments show that their 3-bit versions perform slightly
better than the 2-bit versions.

Figs. 5∼6 show MPKI and IPC both normalized to
LRU for various techniques respectively. The geometric

Fig.5. Normalized MPKI for various techniques in the absence of prefetching.



956 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Fig.6. Normalized speedup for various techniques in the absence of prefetching.

mean speedup of SRBR and DRBR is 4.9% and 6.3%
respectively, while it is 3.1% for SRRIP, 4.1% for MLP,
4.6% for DRRIP, and 5.5% for DIP. Among these
benchmarks, mcf and sphinx3 show thrashing access
patterns. Therefore, DRBR chooses BRBR dynami-
cally and outperforms SRBR for these two benchmarks.
For the remaining benchmarks, SRBR is mainly chosen
by DRBR. Our results show that SRBR outperforms
other static cache replacement policies including LRU,
SRRIP, and MLP, while DRBR outperforms all other
static and dynamic policies. We observe that although
DRBR increases the MPKI of bzip2, it can improve
the IPC of bzip2 slightly since the increasing misses of
DRBR have small retention benefits. For lbm and astar,
their retention benefits are unpredictable and only LRU
performs well for them. Thus, most other policies de-
grade their performance compared with LRU. DIP does
not degrade their performance since it can dynamically
switch to LRU. However, the performance loss of RBR
for these programs is limited, and RBR requires less
storage compared with LRU as we will show. Thus, we
conclude RBR also suits for LRU friendly programs.

To illustrate why RBR can improve cache perfor-
mance, Fig.7 compares the retention benefit distribu-
tion of cache misses under LRU, DIP, and DRBR for
omnetpp. The retention benefit distribution of DIP and
DRBR is both normalized to the miss number of LRU.
Compared with LRU, both of them can reduce the ag-
gregate miss count significantly. While DIP reduces
more misses with small retention benefits compared
with DRBR, DRBR can reduce more misses with large
retention benefits. Hence, DRBR can achieve more per-
formance gain compared with DIP. The retention bene-
fit distribution of SRBR shows similar results.

We also study the performance of SRBR and DRBR
in the presence of prefetching. Fig.8 shows the speedup
when prefetching is enabled. The speedup is normal-
ized to that of LRU in the presence of prefetching.
SRBR and DRBR reduce average MPKI by 4.9% and
7.6% and achieve a geometric mean (gmean) speedup
of 5.6% and 6.7% respectively, and DRBR also out-
performs other techniques. Compared with LRU with-
out prefetching, DRBR outperforms it by 22.2%, while
LRU with prefetching outperforms it by 14.5%. These
experiments show that SRBR and DRBR can also im-
prove cache performance in the presence of prefetching.

Fig.7. Retention benefit distribution of LRU, DIP, and DRBR

for omnetpp. (a) LRU. (c) DIP. (c) DRBR.



Ling-Da Li et al.: Retention Benefit Based Intelligent Cache Replacement 957

6.2 Multi-Core Workloads

In multi-core environment, TADRBR has more per-
formance potential since it can deal with the varia-
tion of retention benefits between different concurrent
programs. On multi-core workloads, we compare the
performance of TADRBR with other state-of-the-art
shared cache management policies including TADIP[38],
TADRRIP, UCP[2], and PIPP[5]. TADIP and TADR-
RIP are the thread-aware versions of DIP and DRRIP
respectively.

Fig.9 presents the weighted speedup normalized to
LRU for various techniques on 20 4-core workloads
in the absence of prefetching, where mix i represents
the i-th multi-core workload. Compared with LRU,
TADRBR achieves a geometric mean weighted speedup
of 5.3%, while it is 2.0% for PIPP, 3.1% for UCP, 3.9%
for TADRRIP, and 4.0% for TADIP. TADRBR only
degrades the performance of three workloads, and their

performance loss is all less than 0.3%.
The results on the metrics of throughput and fair

speedup are similar to those on weighted speedup.
TADRBR can achieve a normalized throughput im-
provement of 5.5% on geometric mean, and the geomet-
ric mean fair speedup of TADRBR is 8.0%. TADRBR
also outperforms other state-of-the-art techniques on
the metrics of throughput and fair speedup. The perfor-
mance improvement of TADRBR on fair speedup is the
most, since TADRBR rarely causes performance degra-
dation for individual program in a multi-core workload.

Fig.10 shows the normalized weighted speedup on
4-core workloads when prefetching is enabled. Com-
pared with LRU with prefetching, the weighted speedup
improvement is 5.9% for TADRBR, while it is 4.2%
for TADIP which performs the best among the rest
of techniques. TADRBR outperforms the other tech-
niques significantly. The results on throughput and fair
speedup are similar.

Fig.8. Normalized speedup for various techniques in the presence of prefetching.

Fig.9. Normalized weighted speedup for 4-core workloads in the absence of prefetching.



958 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Fig.10. Normalized weighted speedup for 4-core workloads in the presence of prefetching.

To study the scalability of TADRBR with the num-
ber of cores, we also evaluate the performance of
TADRBR on 8-core workloads. Fig.11 presents the
normalized weighted speedup for 8-core workloads in
the absence of prefetching. Compared with LRU, the
weighted speedup improvement of TADRBR is 4.5%,
which is roughly 1.5 times of the improvement of other
techniques in which TADIP performs the best and out-
performs LRU by 3.0%. With the increment of core
number, the retention benefit difference from different

cores also increases, and TADRBR thus has signifi-
cantly better performance.

In summary, due to the variation of retention bene-
fits between different cores, TADRBR is effective in
multi-core environment.

6.3 Storage Overhead

Table 3 shows the storage overhead of various tech-
niques for the 4MB L2 cache used in the 4-core configu-

Fig.11. Normalized weighted speedup for 8-core workloads in the absence of prefetching.

Table 3. Storage Overhead of Various Techniques for the 16-Way 4MB L2 Cache in 4-Core Configuration

Weighted Speedup Weighted Speedup with Prefetching Storage per Block (Bit) Extra Storage Total (KB)

LRU 1.000 1.180 4 0 32.00

PIPP 1.020 1.201 4 5KB 37.00

UCP 1.031 1.224 6 5KB 53.00

TADRRIP 1.039 1.221 3 40 bits 24.00

TADIP 1.040 1.223 4 40 bits 32.00

TADRBR 1.053 1.241 3 0.12KB 24.12

Note: the weighted speedup is normalized to that of LRU without prefetching.



Ling-Da Li et al.: Retention Benefit Based Intelligent Cache Replacement 959

ration. The storage overhead of TADRBR comes from
the counters for retention benefit computation, per-
block RBV, and PSELs. To compute the retention
benefit, each core requires a 9-bit Cload miss, and each
MSHR entry requires a 14-bit RB. Each cache block
needs three bits to record its RBV. To be thread-
aware, each core needs a 12-bit PSEL. It totally con-
sumes (9 × 4 + 14 × 64 + 3 × 65 536 + 12 × 4) bits
= 24.12KB of extra storage to implement TADRBR,
which is roughly 0.6% of the total storage of a 4 MB
LLC. Compared with other recent proposals except
TADRRIP, TADRBR has a significant lower storage
overhead. The storage overhead of TADRRIP is simi-
lar to that of TADRBR. The storage overhead of DRBR
in single-core configuration is also very low.

7 Conclusions

Compared to the aggregate cache miss count, the ag-
gregate cache miss penalty is more related to the system
performance. In modern systems, memory access la-
tency is variable, and processors adopt techniques such
as non-blocking caches and prefetching to tolerate me-
mory access latency. As a result, cache miss penalty
can change dramatically, which motivates the need for
the cache replacement policy to be aware of the varia-
tion of miss penalty. This paper addresses this problem
by making the following contributions.

1) We proposed the notion of retention benefit to
represent the reduction of processor stall cycles when a
block is reserved by the cache, and we also proposed a
simple method for its computation. The retention bene-
fit can evaluate not only the performance loss on cache
misses, but also the performance gain due to cache hits.

2) We proposed Static Retention Benefit Based Re-
placement (SRBR), which selects the block with the
minimum aggregate retention benefit as the victim. In
doing so, SRBR retains blocks with larger aggregate
retention benefits in the cache.

3) We proposed dynamic retention benefit based re-
placement (DRBR). DRBR uses set dueling to dynami-
cally select the best suited policy between SRBR and
BRBR (bimodal RBR), which is designed to deal with
thrashing access patterns. DRBR can also be thread-
aware with only several additional counters.

Our evaluation shows that RBR improves cache per-
formance for both single-core and multi-core workloads,
no matter whether prefetching is enabled or not.

To the best of our knowledge, RBR is the first
pure penalty-based cache replacement policy without
depending on any other information. RBR is applied in
a desktop-like system in this paper. In future systems,
cache miss penalty can change more dramatically, and
thus it is even more important to deal with the varia-

tion of miss penalty. To apply RBR in such systems is
part of our future work. Besides, since memory aware
policies can reduce memory access latency as discussed
in Subsection 2.3 and RBR is aware of the changes of
memory access latency, they can cooperate with each
other to improve performance further. Thus, to apply
RBR with memory aware policies is also part of our
future work.

References

[1] Lai A C, Fide C, Falsafi B. Dead-block prediction & dead-
block correlating prefetchers. In Proc. the 28th ISCA, Jun.
2001, pp.144-154.

[2] Qureshi M K, Patt Y N. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to par-
tition shared caches. In Proc. the 39th MICRO, Dec. 2006,
pp.423-432.

[3] Qureshi M K, Jaleel A, Patt Y N, Steely Jr S C, Emer J.
Adaptive insertion policies for high performance caching. In
Proc. the 34th ISCA, Jun. 2007, pp.381-391.

[4] Kharbutli M, Solihin D. Counter-based cache replacement
and bypassing algorithms. IEEE Transactions on Comput-
ers, 2008, 57(4): 433-447.

[5] Xie Y, Loh G H. PIPP: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In Proc. the 36th
ISCA, Jun. 2009, pp.174-183.

[6] Jaleel A, Theobald K B, Steely Jr S C, Emer J. High perfor-
mance cache replacement using re-reference interval predic-
tion (RRIP). In Proc. the 37th ISCA, Jun. 2010, pp.60-71.

[7] Khan S M, Tian Y, Jimenez D A. Sampling dead block pre-
diction for last-level caches. In Proc. the 43rd MICRO, Dec.
2010, pp.175-186.

[8] Wu C J, Jaleel A, Hasenplaugh W, Martonosi M, Steely Jr
S C, Emer J. SHiP: Signature-based hit predictor for high
performance caching. In Proc. the 44th MICRO, Dec. 2011,
pp.430-441.

[9] Xie Y. Modeling, architecture, and applications for emerging
memory technologies. IEEE Design & Test of Computers,
2011, 28(1): 44-51.

[10] Loh G H, Hill M D. Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches. In Proc. the
44th MICRO, Dec. 2011, pp.454-464.

[11] Kroft D. Lockup-free instruction fetch/prefetch cache organi-
zation. In Proc. the 8th ISCA, May 1981, pp.81-87.

[12] Vanderwiel S P, Lilja D J. Data prefetch mechanisms. ACM
Comput. Surv., 2000, 32(2): 174-199.

[13] Jeong J, Dubois M. Optimal replacements in caches with two
miss costs. In Proc. the 11th SPAA, Jun. 1999, pp.155-164.

[14] Jeong J, Stenström P, Dubois M. Simple penalty-sensitive re-
placement policies for caches. In Proc. the 3rd CF, May 2006,
pp.341-352.

[15] Ju R D C, Lebeck A R, Wilkerson C. Locality vs. criticality.
In Proc. the 28th ISCA, Jun. 2001, pp.132-143.

[16] Qureshi M K, Lynch D N, Mutlu O, Patt Y N. A case for
MLP-aware cache replacement. In Proc. the 33rd ISCA, Jun.
2006, pp.167-178.

[17] Sheikh R, Kharbutli M. Improving cache performance by com-
bining cost-sensitivity and locality principles in cache replace-
ment algorithms. In Proc. the 28th ICCD, Oct. 2010, pp.76-
83.

[18] Kharbutli M, Sheikh R. LACS: A locality-aware cost-sensitive
cache replacement algorithm. IEEE Transactions on Com-
puters, 2013, 63(8): 1975-1987.



960 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

[19] Chaudhuri M. Pseudo-LIFO: The foundation of a new family
of replacement policies for last-level caches. In Proc. the 42nd
MICRO, Dec. 2009, pp.401-412.

[20] Keramidas G, Petoumenos P, Kaxiras S. Cache replacement
based on reuse-distance prediction. In Proc. the 25th ICCD,
Oct. 2007, pp.245-250.

[21] Wu C J, Jaleel A, Martonosi M, Steely Jr S C, Emer J. PAC-
Man: Prefetch-aware cache management for high performance
caching. In Proc. the 44th MICRO, Dec. 2011, pp.442-453.

[22] Duong N, Zhao D, Kim T, Cammarota R, Valero M, Vei-
denbaum A V. Improving cache management policies using
dynamic reuse distances. In Proc. the 45th MICRO, Dec.
2012, pp.389-400.

[23] Hu Z, Kaxiras S, Martonosi M. Timekeeping in the memory
system: Predicting and optimizing memory behavior. In
Proc. the 29th ISCA, May 2002, pp.209-220.

[24] Liu H, Ferdman M, Huh J, Burger D. Cache bursts: A new
approach for eliminating dead blocks and increasing cache ef-
ficiency. In Proc. the 41st MICRO, Nov. 2008, pp.222-233.

[25] Jalminger J, Stenstrom P. A novel approach to cache block
reuse predictions. In Proc. the 2003 ICPP, Oct. 2003,
pp.294-302.

[26] Johnson T L, Connors D A, Merten M C, Hwu W M W.
Run-time cache bypassing. IEEE Transactions on Comput-
ers, 1999, 48(12): 1338-1354.

[27] Rivers J A, Davidson E S. Reducing conflicts in direct-
mapped caches with a temporality-based design. In Proc.
the 1996 ICPP, Aug. 1996, Vol. 1, pp.154-163.

[28] Rivers J A, Tam E S, Tyson G S, Davidson E S, Farrens M.
Utilizing reuse information in data cache management. In
Proc. the 12th ICS, Jul. 1998, pp.449-456.

[29] John L K, Subramanian A. Design and performance evalua-
tion of a cache assist to implement selective caching. In Proc.
the 1997 ICCD, Oct. 1997, pp.510-518.

[30] Walsh S J, Board J A. Pollution control caching. In Proc. the
1995 ICCD, Oct. 1995, pp.300-306.

[31] Chi C H, Dietz H. Improving cache performance by selective
cache bypass. In Proc. the 22nd HICSS, Jan. 1989, Vol. 1,
pp.277-285.

[32] González, A, Aliagas C, Valero M. A data cache with multi-
ple caching strategies tuned to different types of locality. In
Proc. the 9th ICS, Jul. 1995, pp.338-347.

[33] Tyson G, Farrens M, Matthews J, Pleszkun A R. A modi-
fied approach to data cache management. In Proc. the 28th
MICRO, Dec. 1995, pp.93-103.

[34] Xiang L, Chen T, Shi Q, Hu W. Less reused filter: Improving
L2 cache performance via filtering less reused lines. In Proc.
the 23rd ICS, Jun. 2009, pp.68-79.

[35] Gao H, Wilkerson C. A dueling segmented LRU replacement
algorithm with adaptive bypassing. In Proc. the 1st JWAC,
Jun. 2010.

[36] Gaur J, Chaudhuri M, Subramoney S. Bypass and insertion
algorithms for exclusive last-level caches. In Proc. the 38th
ISCA, Jun. 2011, pp.81-92.

[37] Li L, Tong D, Xie Z, Lu J, Cheng X. Optimal bypass moni-
tor for high performance last-level caches. In Proc. the 21st
PACT, Sept. 2012, pp.315-324.

[38] Jaleel A, Hasenplaugh W, Qureshi M, Sebot J, Steely Jr
S, Emer J. Adaptive insertion policies for managing shared
caches. In Proc. the 17th PACT, Oct. 2008, pp.208-219.

[39] Manikantan R, Rajan K, Govindarajan R. NUcache: An effi-
cient multicore cache organization based on next-use distance.
In Proc. the 17th HPCA, Feb. 2011, pp.243-253.

[40] Sanchez D, Kozyrakis C. Vantage: Scalable and efficient fine-
grain cache partitioning. In Proc. the 38th ISCA, Jun. 2011,
pp.57-68.

[41] Manikantan R, Rajan K, Govindarajan R. Probabilistic
shared cache management (PriSM). In Proc. the 39th ISCA,
Jun. 2012, pp.428-439.

[42] Hsu L R, Reinhardt S K, Iyer R, Makineni S. Communist,
utilitarian, and capitalist cache policies on CMPs: Caches as
a shared resource. In Proc. the 15th PACT, Sept. 2006,
pp.13-22.

[43] Iyer R. CQoS: A framework for enabling QoS in shared caches
of CMP platforms. In Proc. the 18th ICS, Jun. 2004, pp.257-
266.

[44] Kim S, Chandra D, Solihin Y. Fair cache sharing and parti-
tioning in a chip multiprocessor architecture. In Proc. the
13th PACT, Sept. 2004, pp.111-122.

[45] Jeong J, Dubois M. Cache replacement algorithms with
nonuniform miss costs. IEEE Transactions on Computers,
2006, 55(4): 353-365.

[46] Jeong J, Dubois M. Cost-sensitive cache replacement algo-
rithms. In Proc. the 9th HPCA, Feb. 2003, pp.327-337.

[47] Moreto M, Cazorla F, Ramirez A, Valero M. MLP-aware dy-
namic cache partitioning. In Proc. the 3rd HiPEAC, Jan.
2008, pp.337-352.

[48] Kaseridis D, Iqbal M, John L. Cache friendliness-aware mana-
gement of shared last-level caches for high performance multi-
core systems. IEEE Transactions on Computers, 2014, 63(4):
874-887.

[49] Lee H H S, Tyson G S, Farrens M K. Eager writeback — A
technique for improving bandwidth utilization. In Proc. the
33rd MICRO, Dec. 2000, pp.11-21.

[50] Lee C J, Narasiman V, Ebrahimi E, Mutlu O, Patt Y N.
DRAM-aware last-level cache writeback: Reducing write-
caused interference in memory systems. Technical Report,
TR-HPS-2010-002, High Performance Systems Group, De-
partment of Electrical and Computer Engineering, The Uni-
versity of Texas at Austin & Department of Electrical and
Computer Engineering, Carnegie Mellon University, April
2010.

[51] Stuecheli J, Kaseridis D, Daly D, Hunter H C, John L K. The
virtual write queue: Coordinating DRAM and last-level cache
policies. In Proc. the 37th ISCA, Jun. 2010, pp.72-82.

[52] Wang Z, Khan S M, Jiménez D A. Improving writeback ef-
ficiency with decoupled last-write prediction. In Proc. the
39th ISCA, Jun. 2012, pp.309-320.

[53] Lee C J, Ebrahimi E, Narasiman V, Mutlu O , Patt Y N.
DRAM-aware last-level cache replacement. Technical Re-
port, TR-HPS-2010-007, High Performance Systems Group,
Department of Electrical and Computer Engineering, The
University of Texas at Austin & Department of Electrical
and Computer Engineering, Carnegie Mellon University, Dec.
2010.

[54] HP. Inside the Intelr Itaniumr 2 processor. HP Technical
White Paper, July 2002. http://www.dig64.org/about/Itani-
um2 white paper public.pdf, Oct. 2014.

[55] Oracle. UltraSPARC T2 supplement to the UltraSPARC ar-
chitecture 2007. Draft D1.4.3, Sept. 2007. http://www.ora-
cle.com/technetwork/systems/opensparc/t2-14-ust2-uasuppl
-draft-hp-ext-1537761.html, Oct. 2014.

[56] Jaleel A, Borch E, Bhandaru M, Steely Jr S C, Emer J.
Achieving non-inclusive cache performance with inclusive
caches: Temporal locality aware (TLA) cache management
policies. In Proc. the 43rd MICRO, Dec. 2010, pp.151-162.

[57] Martin M M K, Hill M D, Sorin D J. Why on-chip cache co-
herence is here to stay. Commun. ACM, 2012, 55(7): 78-89.

[58] Albericio J, Ibáñez P, Viñals V, Llabeŕıa J M. Exploiting reuse
locality on inclusive shared last-level caches. ACM Trans.
Archit. Code Optim., 2013, 9(4): Article No. 38.

[59] Binkert N, Beckmann B, Black G, Reinhardt S K, Saidi A,
Basu A, Hestness J, Hower D R, Krishna T, Sardashti S, Sen



Ling-Da Li et al.: Retention Benefit Based Intelligent Cache Replacement 961

R, Sewell K, Shoaib M, Vaish N, Hill M D, Wood D A. The
gem5 simulator. SIGARCH Comput. Archit. News, 2011,
39(2): 1-7.

[60] Henning J L. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 2006, 34(4): 1-17.

[61] Perelman E, Hamerly G, Biesbrouck M V, Sherwood T,
Calder B. Using SimPoint for accurate and efficient simu-
lation. SIGMETRICS Perform. Eval. Rev., 2003, 31(1):
318-319.

Ling-Da Li received his B.E. de-
gree in computer science from Harbin
Institute of Technology in 2008. He
is now a Ph.D. candidate in com-
puter architecture of Peking Univer-
sity. His research interests include
cache system, processor architecture,
and multi-core system. He is a stu-
dent member of CCF and ACM.

Jun-Lin Lu received his Ph.D.
degree in computer science from
Peking University. He is now an as-
sistant professor in Peking Univer-
sity. His research interests include
computer architecture, HW/SW co-
design and the communication archi-
tecture of system-on-chip.

Xu Cheng is a professor and
Ph.D. advisor in Peking University.
He is the director of Microproces-
sor Research and Development Cen-
ter and a member of Advisory Com-
mittee for State Informatization. His
research interests include high per-
formance microprocessor, system-on-
chip, embedded system, instruction-
level parallelism, HW/SW co-design

and compiler optimization. He is also a member of CCF.


