
Cao Z, Liu XL, Li Q et al. An intra-server interconnect fabric for heterogeneous computing. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 29(6): 976–988 Nov. 2014. DOI 10.1007/s11390-014-1483-0

An Intra-Server Interconnect Fabric for Heterogeneous Computing

Zheng Cao (曹 政), Member, CCF, ACM, Xiao-Li Liu (刘小丽), Member, CCF, ACM
Qiang Li (李 强), Member, CCF, ACM, Xiao-Bing Liu (刘小兵), Member, CCF, ACM
Zhan Wang (王 展), Student Member, CCF, and Xue-Jun An (安学军), Member, CCF, ACM

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

E-mail: {cz, liuxiaoli, liqiang, liuxiaobing, wangzhan, axj}@ncic.ac.cn

Received December 16, 2013; revised July 4, 2014.

Abstract With the increasing diversity of application needs and computing units, the server with heterogeneous pro-
cessors is more and more widespread. However, conventional SMP/ccNUMA server architecture introduces communication
bottleneck between heterogeneous processors and only uses heterogeneous processors as coprocessors, which limits the
efficiency and flexibility of using heterogeneous processors. To solve this problem, this paper proposes an intra-server inter-
connect fabric that supports both intra-server peer-to-peer interconnection and I/O resource sharing among heterogeneous
processors. By connecting processors and I/O devices with the proposed fabric, heterogeneous processors can perform direct
communication with each other and run in stand-alone mode with shared intra-server resources. We design the proposed
fabric by extending the de-facto system I/O bus protocol PCIe (Peripheral Computer Interconnect Express) and implement
it with a single chip cZodiac. By making full use of PCIe’s original advantages, the interconnection and the I/O sharing
mechanism are light weight and efficient. Evaluations that have been carried out on both the FPGA (Field Programmable
Gate Array) prototype and the cycle-accurate simulator demonstrate that our design is feasible and scalable. In addition,
our design is suitable for not only the heterogeneous server but also the high density server.

Keywords heterogeneous system, interconnection, I/O virtualization, PCI-express

1 Introduction

In order to achieve ultra-high power efficiency, hete-
rogeneous servers mixing many-core processors (such as
GPGPU and Xeon Phi) have been widely used in HPC
(high performance computing) systems[1-2]. Recently,
not only in HPC, but also in datacenter, heterogeneous
architectures are becoming more widely used. Research
and industry are showing interest in building servers
with heterogeneous processors, even using mobile or
embedded processors[3]. Guevara et al.[4] showed that
the proper mixing of Atom and Xeon processors can
achieve greater power efficiency, and Zapater et al.[5]

introduced a mixture of X86 and SPARC processors.
Suneja et al.[6] used GPGPU to accelerate cloud man-
agement tasks. Today, heterogeneity mainly lies at the
server level. With the increasing diversity of application
needs and hardware, we can expect that the degree of
heterogeneity will also keep increasing and heterogene-
ity in a single server will become common in the future.
However, the conventional server architecture, such as
SMP/ccNUMA, is not well suited for such heteroge-
neity.

1) Limited Communication Efficiency Between Hete-
rogeneous Processors and the Limited Number of Hete-
rogeneous Processors. Heterogeneous processors are
used only as coprocessors, and all of the data ex-
changing between heterogeneous processors must be
forwarded by a master CPU (usually general-purpose
CPU). The forwarding process introduces high com-
munication overhead and imposes constraints on the
intra-server switching bandwidth.

2) Heterogeneous Processors Cannot Use Intra-
Server I/O Resources Directly. A single physical I/O
device can belong only to one operating system domain
(master CPU), thus it cannot be directly operated by
heterogeneous processors, neither those working as co-
processors nor those running their own operating sys-
tems.

To overcome the above drawbacks, we propose a
network-centric server architecture shown in Fig.1 to
support heterogeneous computing, with features de-
fined as follows.
• Support both the coprocessor and stand-alone

heterogeneous processing modes. In the network-cen-
tric server, depending on the heterogeneous processor’s

Regular Paper
This work was supported by the National Natural Science Foundation of China under Grant No. 61100014.
©2014 Springer Science +Business Media, LLC & Science Press, China

Zheng Cao et al.: An Intra-Server Interconnect Fabric 977

Fig.1. Network-centric server architecture.

type, it can attach to general purpose processors either
working as coprocessors or running their own operating
system as hosts.
• To improve intra-server communication efficiency,

direct interconnections between all of the components
(including processors and I/O devices) are imple-
mented.
• To improve the sharing efficiency of intra-server

I/O resources, especially network devices for inter-
server communication, we provide a hardware-based
I/O resource sharing mechanism.

As shown in Fig.1, all of these features are im-
plemented with a central controller cZodiac, which
supports intra-server global addressing space and in-
tegrates the function of interconnection and intra-
server resource pooling into a single fabric. PCIe
(PCI-Express), the de-facto intra-server system I/O
bus, plays an important role in our network-centric
server. Especially in terms of supporting the dual hete-
rogeneous processing mode, every port of cZodiac can
be configured as either a PCIe downstream port① in
coprocessor mode or a PCIe upstream port/endpoint①

in stand-alone mode.
Regarding the intra-server interconnection, we pro-

pose an intra-server network design which makes full
use of PCIe point-to-point communication features. Re-
garding the I/O resource sharing, we propose a hard-
ware mechanism of building an I/O pool with PCIe
SR-IOV② (Single-Root I/O Virtualization) or multi-
function devices, so that resources in the pool can be
shared by all of the intra-server processors.

The rest of this paper is organized as follows. Section
2 introduces key issues of designing the interconnect
fabric. Section 3 introduces the proposed PCIe compli-
ant interconnection. Section 4 introduces the mecha-

nism of I/O resource pooling. Section 5 introduces
the micro-architecture of cZodiac. Section 6 shows the
performance evaluations on the prototype of cZodiac.
Section 7 introduces related work, and the last section
presents our conclusions.

2 Key Issues

2.1 Extending PCIe to Host-to-Host Network

PCIe has been integrated into many processors, such
as Xeon, Xeon Phi, GPGPU, and ARM, and is the de-
facto I/O bus today. Thus, PCIe is a suitable fabric for
unifying the processors’ interconnection interface and
integrating functions of the interconnection and I/O
expansion. What is more, both the communication hie-
rarchy and the server architecture can be simplified.

However, the standard PCIe was originally designed
for host-to-I/O interconnection. For two reasons, the
original PCIe is not suitable for multi-root environment,
as shown in Fig.2(a).

Fig.2. PCIe interconnection system. (a) Legacy PCIe system.

(b) Peer-to-peer PCIe system.

1) Limited Scalability. PCIe is designed for the single
root system, which means only the heterogeneous pro-
cessors and devices in the same OS domain can commu-
nicate with each other. In this case, the heterogeneous
processor can only be used as the co-processor, and the

①PCI-SIG. PCI Express base 3.0 specification, Nov. 2010. http://www.pcisig.com/members/downloads/specifications/pciexpress/
PCI Express Base r3.0 10Nov10.pdf, Sept. 2014.
②PCI-SIG. Single root I/O virtualization and sharing 1.1 specification, Jan. 2010. http://www.pcisig.com/memers/down-

loads/specifications/iov/sr-iov1 1 20Jan10 cb.pdf, Sept. 2014.

978 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

number of heterogeneous processors is limited by the
physical address space.

2) Limited Peer-to-Peer (P2P) Communication.
Some work is enabling the peer-to-peer communica-
tion between two endpoint devices. For example,
GPUDirect③ can achieve direct communication be-
tween GPUs by accessing the same memory block on
the master CPU. However, it is still a single node op-
timization technique that requires sequential accessing
to the master’s main memory. In addition, not all the
heterogeneous processors have the DMA function. Us-
ing only load/store operations for peer-to-peer commu-
nication is very low efficient.

Facing above limitations, we propose a peer-to-peer
PCIe interconnection system that enhances the peer-to-
peer communication. As shown in Fig.2(b), we intro-
duce the idea of network into our peer-to-peer architec-
ture and implement a network interface (NI) for each
host to perform the peer-to-peer communication. All
these NIs are interconnected with a central crossbar.

To analyze the benefit of the proposed peer-to-peer
architecture, we build performance models for both the
legacy and peer-to-peer architectures. We define the
forwarding delay of a PCIe root complex as Trc, the
transmit delay between two endpoints or an endpoint
and the root as Tp2p, the bandwidth of each link as BW,
the number of processors as n, and the average message
length in the system as L.

In the legacy PCIe architecture, the switching band-
width is only BW (the link bandwidth between PCIe
switch and root). In this case, the average intra-server
message delay is:

T = Tp2p + Trc + Tp2p + L/BW .

In a peer-to-peer architecture, the switching band-
width equals the switching bandwidth provided by
the central crossbar (the peak switching bandwidth is
n×BW). If the switching throughput of crossbar is ε,
then the average intra-server message delay is:

T ′ = Tp2p + L/(ε× n× BW), ε ∈
[1
n

, 1
]
.

Then, the performance improvement G can be de-
fined as:

G = T/T ′.

Because ε is larger than 1/n under most communica-
tion patterns, the performance improvement is in direct
proportion to n and the limit value of G is:

limG =
{

(2 + Trc/Tp2p), if L → 0,

ε× n, if L →∞.
(1)

As shown in (1), in terms of latency, the peer-to-peer
architecture can achieve at least two times performance
improvement for short message, while at most n times
for long message.

To make the network protocol lightweight, we define
the interconnection protocol by extending the transac-
tion layer protocol of PCIe. In addition, this protocol is
still compatible with the standard PCIe protocol. The
detailed design of PCIe interconnection network is given
in Section 3.

2.2 Sharing I/O Devices Between Multiple
Hosts

Commercial devices including SR-IOV devices are
designed to the single host (root) system, in other
words, one device can only accept ID number and phy-
sical addresses from one host. As shown in Fig.3(a),
once BARs (basic address registers) of the device have
been configured by host 0, the configuration from host
1 will conflict with the configuration from host 0. Even
each virtual function in an SR-IOV device has its own
BAR, such confliction still cannot be avoided, because
all BARs of virtual devices belong to a single consecu-
tive space.

Fig.3. Isolation of I/O spaces among multiple hosts.

To efficiently share the devices, we propose an ID
and I/O space remapping mechanism in hardware level.
As shown in Fig.3(b), we implement virtual BARs for
BARs in the device and implement device ID and physi-
cal address remapping between them. In this way, host
1 can own its virtual devices. From the device’s view,
it is still controlled by a single host (host 0).

In addition, by sharing devices among multiple
hosts, the server can achieve several new features, in-
cluding:

1) Decoupling of Processors and I/O Devices. Any
host can directly communicate with any device/virtual
device.

2) Elastic I/O Bandwidth Allocation. On-demand
inter-server I/O bandwidth allocation can be achieved

③Mellanox Inc., NVIDIA GPUDirectTM technology-accelerating GPU-based systems, Jan. 2010. http://www.mellanox.com/pdf/
whitepapers/TB GPU Direct.pdf, Sept. 2014.

Zheng Cao et al.: An Intra-Server Interconnect Fabric 979

by dynamically adding/removing virtual devices to/
from hosts.

3) Parallel Intra-Server Switching. The network
card such as Intel 82599 often contains an embedded
L2 switch that performs fast packet switching between
virtual devices. By assigning virtual devices belonging
to one NIC to different hosts, the switching between
hosts can be performed inside NIC. Therefore, in ad-
dition to the switching capacity of peer-to-peer PCIe
network, all the internal switching capacity inside net-
work cards can be used for intra-server communication.

3 PCIe Compliant Interconnection

Making full use of PCIe as host-to-host interconnec-
tion fabric requires carefully designed network interface
and internal switching architecture. In addition, to in-
tegrate several network interfaces into a single chip, it
must be lightweight.

3.1 Network Interface

In terms of the design of network interface, three as-
pects must be taken into consideration: the user-level
interface, the hardware virtualization, and the commu-
nication primitive.

The user-level interface, also known as the OS by-
pass, is the key technology to reduce communication
latency in the software layer. In our design, commu-
nication processes operate an NIC (network interface
controller) with doorbell and their own registered QPs
(queue pairs), including send queue, receive queue, and
completion queue. Thus each process owns a “virtual
network interface.”

However, such a “virtual network interface” accepts
only the host’s physical address, thereby processes on
a VM (virtual machine) cannot use the user-level inter-
face. To use cZodiac in the virtualization environment,
the network interface supports hardware virtualization
and is compliant with PCIe SR-IOV specification.

Finally, the communication primitive determines the
communication function offloaded by the network in-
terface. Corresponding to the MPI (both eager and
rendezvous models) and PGAS programming model,
we define four primitives: DAP (direct access packet),
NAP (no address packet), RDMA PUT, and RDMA
GET. For intra-server interconnection, the network in-
terface must be lightweight and efficient. Thus, the
primitives are connectionless, and memory protection
is achieved by performing the magic number matching
between the sender and the receiver.

3.1.1 DAP

DAP is designed to support GAS (global addressing
space). Maintaining cache coherence between different

kinds of processors is difficult. However, the facilitation
of intra-server resource sharing requires GAS. Each pro-
cessor exposes part of its main memory to other proces-
sors, and all of the memory regions are addressed into a
single space. DAP is initialized with a load/store ope-
ration and transmits data of very small size with very
low overhead, as shown in Fig.4(a).

3.1.2 NAP

NAP is a type of RDMA operation that can be used
to transmit data of less than 2 KB. Because each QP
allocates a dedicated receive ring for NAP in the main
memory, NAP does not carry any destination informa-
tion except for the identification of the QP at the re-
ceiver side, as shown in Fig.4(b). Each entry of the
receive ring occupies 2 KB memory and has a corre-
sponding entry in the completion queue. If the mes-
sage is very small, then data can be written directly
into the DMA descriptor, and the local DMA read is
not needed. We call it as NAP immediate, while the
normal NAP as NAP indirect.

NAP removes the step of negotiating destination ad-
dress with the receiver side, but introduces an extra
step of copying data from the ring to the application’s
memory; thus, it is suitable for transmitting only small
amounts of data.

3.1.3 RDMA PUT/GET

RDMA PUT can transmit large messages and place
them directly into the user space of the application on
the receiver side. The destination information, includ-
ing discrete destination addresses and lengths, is ob-
tained from a handshake between the sender and the
receiver through the use of NAP, as shown in Fig.4(c).
After the handshake, all memory pages to be written by
RDMA PUT are pinned. The improvement of commu-
nication efficiency requires that RDMA operations sup-
port a huge memory page from 4KB to 128MB while
not requiring any constraint on address alignment.

Based on RDMA PUT, we implement RDMA GET.
The sender directly transmits the RDMA GET descrip-
tor to the receiver. Then, the receiver translates the
descriptor into the local RDMA PUT descriptor by ex-
changing source and destination information, and fi-
nally the receiver executes the RDMA PUT procedure,
as shown in Fig.4(d).

With the implementation of RDMA GET with the
RDMA PUT primitive, all RDMA transactions be-
tween the sender and the receiver are remote write ope-
rations. Because the implementation of remote write
operation is based on the PCIe posted transaction, and
the interconnection protocol is simplified by releasing
the constraint on the number of PCIe tags used in PCIe

980 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Fig.4. Communication primitives. (a) DAP. (b) NAP. (c) RDMA PUT. (d) RDMA GET.

non-posted transactions. In addition, communication
traffic is reduced by the removal of frequent remote
request-response interaction.

3.2 Internal Switching

3.2.1 Network Packet Format

To minimize the protocol conversion overhead, we
define all the network packet formats with an exten-
sion to the PCIe request formats. The formats of the
DAP load and DAP completion (not shown in Fig.5) are
much the same as the formats of the PCIe read request
and PCIe completion. The DAP load redefines some re-
served fields in the PCIe read request as identifications
of the source processor and the destination processor,
while the DAP completion uses only the identification
of the destination processor.

The header formats of other network packets are
given in Fig.5. The fields in blue are defined in the
same way as ones in the PCIe specification, while the
fields in white are defined as:

1) SubType: the type of network packet, which could
be RDMA GET, RDMA PUT, or NAP;

2) Dest CPU: identification of the destination CPU
(regarding the server’s scalability, all of the reserved
bits shown in Fig.5 can be used as the Dest CPU);

3) Dest VF: identification of the destination virtual
function in the destination network interface;

4) Dest QP: identification of the destination queue
pair in the destination virtual function;

5) QP Magic Num: the verification key used to check
whether the sender has been authorized to communi-
cate with the destination queue pair. This key is gene-
rated by the receiver.

3.2.2 Switching

We introduce two parallel crossbars for switching.
One is called SMALL, which is used to transmit data
of very small size, including DAP and RDMA GET; the
other is called LARGE, which is used to transmit large
amount of data including NAP and RDMA PUT. We
also use the SMALL crossbar to avoid the deadlock be-
tween RDMA GET and RDMA PUT operations (the
RDMA GET primitive is implemented with the RDMA
PUT primitive).

The MTU (maximum transmission unit) in the
SMALL crossbar is only 128 B (the common payload
length in standard PCIe packets). To avoid the re-
quest/response deadlock, this crossbar uses two virtual
channels: one for DAP load/store and RDMA GET;
the other for DAP completion.

The MTU in the LARGE crossbar is 2KB which is
the largest payload size of NAP. This crossbar requires
several virtual channels to reduce Head-of-Line block-
ing. We propose a Dest-Mod strategy for these virtual

Zheng Cao et al.: An Intra-Server Interconnect Fabric 981

Fig.5. Network packet header. (a) NAP/RDMA GET. (b) RDMA PUT/DAP store.

channels: if the number of virtual channels is n, the
number of ports is P , and the message’s destination
port is d, then the message will be buffered in the vir-
tual channel [d mod n]. The Dest-Mod strategy yields
three advantages: 1) the throughput is improved; 2)
the packet order is guaranteed; 3) the scale of output
arbitrator is still P , instead of P × n:1.

4 I/O Resource Pooling

Sharing I/O devices across multiple operating sys-
tem domains is just what PCI-SIG Multi-Root I/O
Virtualization (MR-IOV)④ aims to achieve. However,
MR-IOV makes so many changes to the standard PCIe
specification that MR-IOV I/O devices can seldom be
found today.

Instead of using PCI-SIG MR-IOV, we propose a
mechanism to build an I/O resource pool with the PCIe
SR-IOV⑤ or multi-function devices. In addition, the
mechanism requires no modification to commercial de-
vice drivers. The mechanism involves three key steps:

1) Unification of the I/O Addressing Space. Because

the commercial I/O device driver runs only in a sin-
gle operating system domain, multiple processors’ I/O
addressing spaces should first be mapped into a single
one.

2) Creation of Logic Full-Function Devices. Because
virtual function (VF)⑤ itself can perform only incom-
plete device functions, it must be virtualized as a full-
function device before it is allocated to the processor.

3) Elastical Allocation of the Logic Devices. Because
processors’ I/O requirements change dynamically, logic
devices should be dynamically attached to or detached
from processors on demand.

4.1 Unification of I/O Addressing Space

Intel VT-d⑥ and AMD IOMMU⑦ are well-known
direct I/O assignment technologies. They allocate a
device directly to VMs (virtual machines) by creating
the DMA remapping between the VM and the physi-
cal host. Learning from VT-d, we create remapping
between addressing spaces of different processors.

④PCI-SIG. Multi-root I/O virtualization and sharing 1.0 specification, May 2008. http://www.pcisig.com/members/downloads/
specifications/iov/mr-iov1.0 12May08.pdf, Sept. 2014.
⑤PCI-SIG. Single root I/O virtualization and sharing 1.1 specification, Jan. 2010. http://www.pcisig.com/memers/down-

loads/specifications/iov/sr-iov1 1 20Jan10 cb.pdf, Sept. 2014.
⑥Burger T. Intel virtualization technology for directed I/O (VT-d): Enhancing Intel platforms for efficient virtualization of

I/O devices, March 2012. http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-
platforms-for-efficient-virtualization-of-io-devices/, Sept. 2014.
⑦AMD Inc. AMD I/O virtualization technology (IOMMU) specification, Nov. 2009. http://support.amd.com/TechDocs/34434-

IOMMU-Rev 1.26 2-11-09.pdf, Sept. 2014.

982 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

The remapping is implemented with two look-up ta-
bles: an RID table, which performs RID (PCIe request
ID⑧) remapping and an MMIO table, which performs
MMIO address remapping (MSI-X interrupt is treated
as PCIe memory write). RID is the identification of a
PCIe device, and the MMIO address is the addressing
space allocated to a PCIe BAR⑧. Each RID owns six
BARs at maximum.

To facilitate the explanation of the remapping
mechanism, we take the scenario of two processors shar-
ing one PCIe SRIOV device as an example. As shown
in Fig.6, the processor that owns the device is called
OWNER processor, and the one that shares the device
is called USER processor.

First, the OWNER processor discovers and configu-
res the SR-IOV device that has one physical function
(PF) and the N virtual functions (VF). Both the phy-
sical function and N virtual functions are mapped to
the OWNER’s address space with OID i (i ∈ [0, N])
and OBARi 0∼5 (i ∈ [0, N]), where OID i represents
the RID of the i-th function, and OBARi 0∼5 repre-
sents the MMIO addresses assigned to BAR0 ∼ BAR5

of the i-th function.

Second, USER starts its device discovery proce-
dure. VF j , the virtual function allocated to USER is
assigned with UIDj and UBARj 0∼5 (j ∈ [0, N]) by
USER, where UIDj and UBARj 0∼5 represent the RID
and MMIO addresses in USER’s address space respec-
tively. After this procedure, the RID table (mapping
between OID and UID, N entries) and the MMIO ta-
ble (mapping between OBAR and UBAR, 6×N entries)
are completely configured.

Finally, UIDs and UBARs in the PCIe requests
(from the USER processor to the device) are translated
to the OIDs and OBARs with the two tables, as the
blue lines indicate in Fig.6. In the opposite direction
(from the device to the USER processor), only the OIDs
in the PCIe requests are translated to UIDs, because
the addresses that the PCIe requests carried are in the
USER processor’s space (e.g., addresses in the DMA
descriptor), as the green lines in Fig.6.

As a result, all USER processors’ I/O addressing
spaces are unified to the space of the OWNER pro-
cessor. cZodiac sets up one RID table and one MMIO
table for each endpoint device, regardless of the number
of USER processors.

Fig.6. I/O remapping mechanism.

⑧PCI-SIG. PCI Express base 3.0 specification, Nov. 2010. http://www.pcisig.com/members/downloads/specifications/pciexpress/
PCI Express Base r3.0 10Nov10.pdf, Sept. 2014.

Zheng Cao et al.: An Intra-Server Interconnect Fabric 983

4.2 Creation of Logic Full-Function Devices

We must create logic full-function devices for VFs or
PFs that are allocated to USER processors, because of:

1) Incorrect Responses. VF does not possess com-
plete configuration space, and many registers are read-
only copies of PF (physical function). When a proces-
sor reads these read-only registers with VF’s RID, only
meaningless value (for example, all 1s) is returned.

2) Forbidden Write Operations. Even though PF
possesses complete configuration space, control regis-
ters and BAR registers can only be written by the
OWNER processor.

Thus, the logic full-function device must implement
all of the registers that the USER processor cannot read
or write. In addition, it intercepts all the transactions
between the I/O device and the USER processor and
decides whether the request is forwarded to the I/O de-
vice or responded by itself. Fig.7 shows the desired con-
figuration space emulated by the logic device. All PCIe
requests to colored fields are completely intercepted by
the logic device, while requests to other fields are di-
rectly passed through to the physical device. As shown
in Fig.7, green fields are emulated because of incorrect
responses; blue fields are emulated because of forbidden
write operations; orange fields are emulated for both
reasons. For example, not only PF’s but VF’s device ID
and vendor ID must be returned to the USER proces-
sor. In addition, if multiple VFs are allocated to a sin-
gle USER processor, the head type of “multi-function
device” will be returned to the USER processor.

Fig.7. Configuration space header of the logic device.

Through the implementation of logic devices, diffe-
rent functions in a physical I/O device can be directly
accessed by different processors simultaneously. The
original device driver can be used on the USER proces-
sor without any modification.

4.3 Elastical Allocation of logic Devices

The I/O resource pool is built with logic devices
through the use of two remapping tables. However,
such an I/O resource pool can only statically allo-
cate resources to processors during the power-on phase.
Since the processor’s I/O requirement may vary dras-
tically over time, we must dynamically assign or with-
draw logic devices on demand. To achieve this goal, we
propose a virtual hot plug & play mechanism based on
PCIe hot plug & play.

For each endpoint device, we set a virtual plug mo-
dule. All hot plug & play registers (slot capabilities,
slot status, and slot control) in the downstream ports’
configuration spaces are implemented in this module.
The module generates corresponding MSI interrupts ac-
cording to the I/O reallocation and responds to all PCIe
requests (from USER processors to downstream ports)
without performing any real actions to slot. In addi-
tion, write and read requests to the I/O device during
the plug and unplug procedure are directly passed to a
logic full-function device, and the logic device guaran-
tees that these operations are harmless.

5 Micro-Architecture

The micro-architecture of cZodiac is shown in Fig.8.
It contains several CommPorts and three parallel cross-
bars. The LARGE crossbar and the SMALL crossbar
are used for host-to-host interconnection, while the IOV
crossbar is used for I/O resource pooling. The IOV
crossbar has the same architecture as the SMALL cross-
bar, which has been introduced in Section 3.

Fig.8. Micro-architecture of cZodiac.

CommPorts are designed to support both the co-
processor and stand-alone heterogeneous processing
modes. When a CommPort interconnects with a copro-
cessor or an I/O device, IOPort is enabled; otherwise,
CPUPort is enabled. The processing mode selection, as
well as the control of I/O reallocation, is configured by
the system administrator from OWNER processor.

984 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

5.1 CPUPort

CPUPort is designed to connect with the host pro-
cessor and can be treated as a PCIe device with two
functions. As shown in Fig.9, its first function, called
communication engine, is a PCIe endpoint device with
one physical function and seven virtual functions (each
VF is statically allocated with four QPs), while the se-
cond function is a P2P (PCIe-to-PCIe) bridge, which is
used for the I/O resource pooling.

Fig.9. Micro-architecture of the CPUPort.

The communication engine implements the network
interface described in Subsection 3.1. The DAP module
deals only with DAP primitives and can be used only
by the physical function. Except for packet format con-
version, the DAP module forwards requests based on a
GAS lookup table in the downstream direction, while
it manages local PCIe source tags for DAP load and
DAP completion in the upstream direction.

NAP and RDMA doorbells from PF and VFs are
buffered into separate doorbell queues (Q 0∼Q 7) and
fairly scheduled to UDMA downstream for execution
with a matrix arbiter[7]. UDMA downstream executes
doorbells in a 3-stage pipeline: “doorbell”, “descrip-
tor”, and “payload”. UDMA downstream first retrieves
NAP/RDMA descriptors from main memory via the in-
formation in the doorbell, then retrieves payload data
according to descriptors, and finally packages the pay-
load into network packets. Network packets are de-
signed based on PCIe request formats, thus the upload
procedure in UDMA upstream is simple and efficient.

Regarding I/O resource sharing, cZodiac implements
a standard PCIe switch first. The PCIe switch is made
up of several PCIe-to-PCIe bridges; thus, for a P-port
cZodiac, each CPUPort should contain one PCIe-to-
PCIe bridge, and each IOPort should contain P PCIe-
to-PCIe bridges. These bridges have many registers

in common, thereby we implement all bridges in CPU-
Ports to save hardware resources and facilitate the com-
parisons of PCIe RIDs and BAR addresses. As shown
in Fig.9, function 1 is the bridge that should be im-
plemented in CPUPort (PCIe upstream port), while
the other P bridges are related with P IOPorts (PCIe
downstream ports).

5.2 IOPort

IOPort is the main module to implement I/O re-
source sharing. As shown in Fig.10, it contains three
main sub-modules: virtual hot plug, remapping table,
and logic full-function devices. The virtual hot plug
and logic full-function devices use RAMs (random ac-
cess memories) to store corresponding PCIe configura-
tion spaces, while the remapping table uses both CAMs
(content-addressable memories) and RAMs to build the
RID table and MMIO table.

Fig.10. Micro-architecture of the IOPort.

As designed in Subsection 4.1, the MMIO table is
used to translate UBAR to OBAR. Thus, it contains six
CAMs (CAM0∼CAM5) for BAR 0∼BAR5, respec-
tively. If the PCIe endpoint device has N functions
(including PFs and VFs), then each CAM will have at
maximum N entries (one entry per function). OBARs
are stored in an RAM indexed by the combination of
the VF/PF’s function number and the BAR’s sequence
number. Thus, by using the decoded matching result
from six CAMs as the read address, the value of OBAR
can be gotten from the RAM.

Zheng Cao et al.: An Intra-Server Interconnect Fabric 985

The RID table performs bi-direction remapping. Re-
garding the USER to OWNER remapping, two N -entry
CAMs (CAM 6 and CAM 7) and two N -entry RAMs
(RAM 1 and RAM 2) are used (N is the number of
virtual and physical functions). RAM 1 and CAM 6
perform the remapping for PCIe requests, while RAM
2 and CAM 7 perform the remapping for PCIe comple-
tions. In fact, RAM 1 and RAM 2 store exactly the
same content, so do CAM 6 and CAM 7. We use two
pairs of RAM and CAM to improve the remapping per-
formance. In the opposite direction, because one device
has only N functions and OIDs are sequential numbered
(we choose the last nine bits), an N -entry RAM (RAM
3 in Fig.10) indexed by OID can perform the OWNER
to USER remapping. DestPort i (i ∈ [0, P − 1], P is
the number of cZodiac’s ports) stored in RAM 3 is the
destination port number used for internal switching.

6 Evaluation

6.1 Prototype

As shown in Fig.11, the prototype is a 3-port cZodiac
implemented with Xilinx Virtex6 XC6VLX365T. All of
the 24 high speed serial links (GTH transceivers) in
the FPGA are used to implement the three ports (each
port is 8× PCIe Gen2). FPGA runs at 250 MHz and
uses a 128 bit internal data bus. According to the PAR
(place and route) report generated by Xilinx PlanA-
head, each CommPort occupies 21% FPGA’s logic re-
sources (CPUPort uses 10%, IOPort uses 3%, and PCIe
controller uses 8%). Based on such resource consump-
tion, an 8-port cZodiac can be implemented with the
latest Xilinx Virtex7 XC7VX690T (contains 80 GTH
transceivers and almost double logic resources).

Fig.11. Prototype: 3-port cZodiac.

We configure the three ports as two CPUPorts and
one IOPort to verify both the interconnection and I/O
sharing mechanisms. Both LARGE and SMALL cross-
bars have two virtual channels. CPUPort 0 shown in
Fig.11 connects with the OWNER server by plugging

into the server’s PCIe slot, CPUPort 1 connects with
a USER server by using a PCIe cable, and the IOPort
connects with an Intel 82599EB 10GE controller by us-
ing the PCIe slot on the FPGA board. In order to fully
evaluate cZodiac’s performance, we use two Intel Xeon
nodes (Xeon i5-3470, 3.2 GHZ, 16X PCIe Gen2 slots)
with high I/O performance as an OWNER server and
a USER server respectively.

6.2 PCIe Compliant Interconnection

The evaluation of the point-to-point communication
is carried out in the user-level communication library
layer. DAP store gets the lowest latency of 0.53 µs.
As shown in Fig.12, the minimum latencies of NAP
and RDMA are 1.12µs and 1.73µs respectively. When
transmitting short messages, NAP can achieve lower
latency than RDMA. However, as the message length
becomes larger, its latency increases quickly because of
the time spent in memory copy. Because the RDMA
GET involves an additional process of transmitting its
descriptor in the SMALL crossbar, its latency is slight
higher than that of the RDMA PUT.

Fig.12. Point-to-point communication latency.

Bandwidth of the point-to-point communication is
shown in Fig.13. There are few differences in the
bandwidth between RDMA PUT and RDMA GET.
The maximum bandwidth that can be achieved is
3.19GBps, which is 79.8% of PCIe peak bandwidth (8×
PCIe Gen2). Because the maximum payload size of
PCIe TLP packets in our prototype is 128B and the
TLP packet header is 16 B, the theoretical maximum
throughput is 88.9%. That means 89.6% of PCIe valid
bandwidth has been achieved by using RDMA PUT.

We use a cycle-accurate simulator written in Sys-
temVerilog to evaluate cZodiac’s switching perfor-
mance. We use the RDMA PUT primitive, 2 KB mes-
sage length, Dest-Mod virtual channel allocation stra-
tegy, and random distributed traffic pattern. Conside-

986 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Fig.13. Point-to-point communication bandwidth.

ring the limited space and power budgets, even us-
ing high power efficient processors, the radix of 16 is
quite large for the interconnection in a 1 U∼2U server.
Therefore, the maximum number of port in this evalua-
tion is set to 16.

As shown in Fig.14, the highest throughput of 71%
is achieved when the LARGE crossbar has four vir-
tual channels in the 4-port cZodiac. That is just
the VoQ (virtual output queuing) architecture without
HOL (head of line blocking). Compared with the high-
est throughput (71%), the 4-port cZodiac with two VCs
only decreases by 4%. For the 8-port cZodiac, the max-
imum throughput of using two VCs is 65.5%, while the
one of using four VCs is 68.75%. Therefore, using two
virtual channels for the 8-port cZodiac can achieve the
best cost performance. However, for the 16-port cZo-
diac, it is necessary to use four VCs.

Fig.14. Switching performance.

6.3 Multi-Root Sharing of Intel 82599EB

As shown in Fig.15, except for the OWNER and
USER servers, we introduce another Intel server
marked as TESTER to communicate with the Intel

82599 adapter attached to the IOPort. In the software
layer, the Intel 82599 PF driver (ixgbe-3.14.5) runs on
the OWNER server, while the Intel 82599 VF driver
(ixgbevf-2.7.12) runs on the USER server. Also, we run
four virtual machines (VMM is KVM) on the USER
server to test the performance of multi-client I/O shar-
ing. We use iperf-2.0.5⑨ for our tests. The MTU is set
only to 1 500B, because the 82599EB does not allow
MTU larger than 1 500 B when the feature of SR-IOV
is enabled.

On five paths, we carry out the evaluations.
• Path 1. Between the OWNER and the TESTER,

this path includes cZodiac’s forwarding overhead. If the
OWNER acts as the iperf client, we name the path as
o2t. If the OWNER acts as the iperf server, we name
the path as t2o.

Fig.15. I/O sharing evaluation environment.

• Path 2. Between the USER and the TESTER,
this path includes cZodiac’s forwarding and remapping
overhead. If the USER acts as the iperf client, we name
the path as u2t. If the USER acts as the iperf server,
we name the path as t2u.
• Path 3 (v2t). Between VMs on the USER and

VMs on the TESTER, we allocate one Intel 82599 vir-
tual function to each VM in pass-through mode. Each
VM on the USER acts as one iperf client. The name
v2t-i means that i VMs act as iperf clients.
• Path 4 (t2v). Between VMs on the USER and VMs

on the TESTER, on both the USER and the TESTER,
we allocate one Intel 82599 virtual function to each VM
in pass-through mode. Each VM on the TESTER acts
as one iperf client, while each VM on the USER acts as
one iperf server. The name t2v-i means that i pairs of
VMs are under testing.
• Path 5 (o2u). Between the OWNER and the

USER, the OWNER communicates with the USER
by using the internal L2 switching inside the Intel
82599EB.

As shown in Fig.16, without using cZodiac, the raw
bandwidth between the two hosts is 9.41 Gbps. As the
function of I/O resource sharing is completely imple-
mented in hardware, it introduces very low overhead.

⑨http://sourceforge.net/projects/iperf, June 2014.

Zheng Cao et al.: An Intra-Server Interconnect Fabric 987

Almost all of our tests can approach the maximum
value 9.41 Gbps. For both paths v2t and t2v, the band-
width is shared fairly among VMs. For example, in
the path v2t 4, bandwidths allocated to VM 0∼VM 3
are 2.42Gbps, 2.24Gbps, 2.35Gbps, and 2.37Gbps, re-
spectively. Such fair sharing is guaranteed by the QoS
supported by Intel 82599EB. Therefore, if the processor
owns more virtual devices, it owns more bandwidth.

Fig.16. Network sharing performance.

The path o2u gets the lowest bandwidth of
9.17Gbps. That is because the IOPort is busy with
transmitting both DMA reads and DMA writes gene-
rated by the Intel 82599EB. In our implementation,
PCIe post requests and PCIe non-post requests are
buffered into a single queue. Thus, the PCIe non-post
requests generated by the DMA reads will have inter-
ference with the PCIe post requests generated by the
DMA writes, somewhat like HOL (head of line block-
ing). However, such interference only introduces 2.55%
reduction in bandwidth.

7 Related Work

In the field of heterogeneous computing, the con-
ventional SMP/ccNUMA is still the dominant server
architecture[1-2,8]. In SMP/ccNUMA servers, system
buses supporting cache coherence (such as Intel QPI
and AMD Hyper-Transport) are used as the fabrics that
interconnect multiple homogeneous processors. How-
ever, such coherence memory fabrics are not suitable
for interconnecting heterogeneous processors, because:
1) many accelerators such as GPGPU do not support
cache coherence; 2) the proprietary cache coherence
protocols designed by different companies are not open
and not compatible with each other.

Therefore, some work proposed to interconnect
processors with network fabrics without maintaining

the cache coherence between heterogeneous processors.
KnightShift[9] is a board-level heterogeneous architec-
ture that interconnects heterogeneous computing com-
ponents with traditional Ethernet network interface.
However, because both the data exchanging and the
device sharing between components are implemented
in the software level and introduce large overhead,
KnightShift is only suitable for a loosely-coupled hete-
rogeneous computing model. SeaMicro Freedom 10O in-
terconnects different kinds of processors with its pro-
prietary fabric and provides I/O virtualization techno-
logy for I/O device sharing. cZodiac implements similar
functions, but there are not enough details from Free-
dom’s published document to judge the differences.

On the inter-server level, there are some studies ex-
tending PCIe as interconnection fabric. Dolphin[10-11]

announced PCIe Cluster/I/O switch to provide host-to-
host interconnection. However, Dolphin’s interconnec-
tion designed to support TCP/IP is too complicated
for intra-server interconnection. In addition, the I/O
device attached to the switch cannot be accessed simul-
taneously by multiple processors. PLX is announcing
the PCIe-based ExpressFabric 11O as the datacenter fab-
ric. Also, no implementation details are given. Judg-
ing from the only available document[12], its I/O shar-
ing mechanism is based on the NTB (non-transparent
bridge), which can be different from ours. NEC[13] and
NEXTIO 12O provide their own multi-root I/O sharing
solutions. Both of them are using Ethernet, while we
are using raw PCIe and can achieve better performance.

8 Conclusions

Focusing on the heterogeneity inside a single server,
we proposed an intra-server interconnect fabric de-
signed for the network-centric server architecture. From
two aspects, we meet the system requirements brought
by heterogeneity. First, high efficient interconnec-
tion between processors is achieved by introducing
a lightweight PCIe compliant network. Second, the
multi-root I/O resource sharing is achieved by intro-
ducing an RID and an address remapping mechanism
between processors in hardware level, and there is no
modification to original device drivers. In addition, the
implementation of the fabric cZodiac is of good scala-
bility. Actually, our proposed fabric is suitable for not
only the heterogeneous server but also the high density
server.

Acknowledgement We thank anonymous re-
viewers for their constructive and valuable comments.

10ORao A. SeaMicro technology overview, Oct. 2012. http://www.seamicro.com/sites/default/files/SM TO01 64 v2.7.pdf, Sept.
2014.

11Ohttp://www.plxtech.com/applications/expressfabric, June 2014.
12Ohttp://www.nextio.com/products/vnet, June 2014.

988 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Our thanks also go to Dong-Dong Wu and Yong Su at
Institute of Computing Technology, Chinese Academy
of Sciences, for their generous help on the implementa-
tion of cZodiac.

References

[1] Barker K J, Davis K, Hoisie A et al. Entering the petaflop
era: The architecture and performance of Roadrunner. In
Proc. ACM/IEEE Conf. Supercomputing, Nov. 2008, Arti-
cle No. 1.

[2] Sun N H, Xing J, Huo Z G et al. Dawning Nebulae: A
petaFLOPS supercomputer with a heterogeneous structure.
Journal of Computer Science and Technology, 2011, 26(3):
352-362.

[3] Reddi V J, Lee B C, Chilimbi T, Vaid K. Web search using
mobile cores: Quantifying and mitigating the price of effi-
ciency. In Proc. the 37th Annual Int. Symp. Computer
Architecture, June 2010, pp.314-325.

[4] Guevara M, Lubin B, Lee B C. Navigating heterogeneous pro-
cessors with market mechanisms. In Proc. the 19th IEEE Int.
Symp. High Performance Computer Architecture, Feb. 2013,
pp.95-106.

[5] Zapater M, Ayala J L, Moya J M. Leveraging heterogeneity
for energy minimization in data centers. In Proc. the 12th
IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing,
May 2012, pp.752-757.

[6] Suneja S, Baron E, Lara E D et al. Accelerating the cloud
with heterogeneous computing. In Proc. the 3rd USENIX
Conf. Hot Topics in Cloud Computing, June 2011, p.23.

[7] Peh L S, Dally W J. A delay model and speculative architec-
ture for pipelined routers. In Proc. the 7th Int. Symp. High
Performance Computer Architecture, Jan. 2001, pp.255-266.

[8] Ohno Y, Nishibori E, Narumi T et al. A 281Tflops calcula-
tion for X-ray protein structure analysis with special-purpose
computers MDGRAPE-3. In Proc. ACM/IEEE Conference
on Supercomputing, Nov. 2007, pp.1-10.

[9] Wong D, Annavaram M. KnightShift: Scaling the energy pro-
portionality wall through server-level heterogeneity. In Proc.
the 45th IEEE/ACM Int. Symp. Microarchitecture, Dec.
2012, pp.119-130.

[10] Krishnan V. Evaluation of an integrated PCI express IO ex-
pansion and clustering fabric. In Proc. the 16th IEEE Symp.
High Performance Interconnects, Aug. 2008, pp.93-100.

[11] Krishnan V. Towards an integrated IO and clustering solution
using PCI express. In Proc. IEEE International Conference
on Cluster Computing, Sept. 2007, pp.259-266.

[12] Aswadhati A. Scaling data center services with PCI express.
In Proc. Linley Tech. Data Center Conference, Feb. 2012.

[13] Suzuki J, Hidaka Y, Higuchi J et al. Multi-root share of
single-root I/O virtualization (SR-IOV) compliant PCI Ex-
press device. In Proc. the 18th IEEE Symp. High Perfor-
mance Interconnects, Aug. 2010. pp.25-31

Zheng Cao received his Ph.D.
degree in computer science from
Institute of Computing Technology
(ICT), Chinese Academy of Sciences
(CAS), Beijing, in 2009. He is an
associate professor of ICT, CAS. His
main research interests include high
performance computer architecture
and high performance interconnec-
tion networks. He is a member of

CCF and ACM.

Xiao-Li Liu received her M.S.
degree in telecommunication from
Beijing University of Posts and
Telecommunications in 2011. She is
an engineer of ICT, CAS. Her main
research interests focus on IO virtu-
alization and high performance inter-
connection networks. She is a mem-
ber of CCF and ACM.

Qiang Li received his Ph.D. de-
gree in computer science from ICT,
CAS, in 2012. He is an assistant
professor of ICT, CAS. His research
interests focus on high performance
communication. He is a member of
CCF and ACM.

Xiao-Bing Liu received his M.S.
degree in computer science from
Peking University in 2012. He is an
associate engineer of ICT, CAS. His
main research interests include com-
puter architecture and high perfor-
mance interconnection networks. He
is a member of CCF and ACM.

Zhan Wang is a Ph.D candidate
in computer science of ICT, CAS. His
main research interests include virtu-
alization and high performance inter-
connection networks. He is a student
member of CCF.

Xue-Jun An received his Ph.D.
degree in computer science from ICT,
CAS. He is a professor of ICT, CAS.
His main research interests include
high performance computer architec-
ture and high performance intercon-
nection networks. He is a member of
CCF and ACM.

