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Abstract Various problems are encountered when adopting ordinary vector space algorithms for high-order tensor data
input. Namely, one must overcome the Small Sample Size (SSS) and overfitting problems. In addition, the structural
information of the original tensor signal is lost during the vectorization process. Therefore, comparable methods using a
direct tensor input are more appropriate. In the case of electrocardiograms (ECGs), another problem must be overcome;
the manual diagnosis of ECG data is expensive and time consuming, rendering it difficult to acquire data with diagnosis
labels. However, when effective features for classification in the original data are very sparse, we propose a semisupervised
sparse multilinear discriminant analysis (SSSMDA) method. This method uses the distribution of both the labeled and
the unlabeled data together with labels discovered through a label propagation algorithm. In practice, we use 12-lead
ECGs collected from a remote diagnosis system and apply a short-time-fourier transformation (STFT) to obtain third-order
tensors. The experimental results highlight the sparsity of the ECG data and the ability of our method to extract sparse
and effective features that can be used for classification.

Keywords ECG analysis, semisupervised learning, sparse coding, dimension reduction, tensor learning approach

1 Introduction

The importance of and the demand for clas-
sification and feature analysis mean that original
electrocardiogram (ECG) signals must undergo a
dimension-reduction process to prevent the “curse
of dimensionality.” The most common dimension-
reduction approaches include principal component
analysis (PCA)[1-3], independent component analysis
(ICA)[4], and linear discriminant analysis (LDA)[5].
These methods can be classified into two types: super-
vised (LDA) and unsupervised (PCA and ICA). Super-
vised strategies require training data with class labels
to generate a projection matrix. For the ECG classifi-
cation problem, a number of machine learning methods
have been used. Zhao and Zhang proposed a feature
extraction method using a wavelet transform[6], and
Hwang and Jen introduced a neural network approach
for determining the features of an ECG signal[7]. Pa-
solli and Melgani presented an active learning method
for ECG classification based on the morphology and
temporal features of ECGs[8]. A PCA algorithm was
used to extract features from ECG data[9], and an ECG
feature extraction scheme using ICA was reported by
Wu et al.[10-11].

With the development of research fields such as im-
age analysis and multichannel biomedical signaling, me-
thods using vector input data have been extended from
the original vector space into matrix form. However,
the original method must still consider the overfitting
problem caused by too many coefficients[12]. In addi-
tion, converting a matrix to a vector causes the loss of
structural information in the original data. LDA suf-
fers from the Small Sample Size (SSS) problem that
has led to the development of two-dimensional PCA
(2DPCA)[13] and two-dimensional LDA (2DLDA)[14].
A common disadvantage of two-dimensional (2D) me-
thods is that a single projection method is learned from
only one side of the image matrix. Generalized low rank
approximations of matrices (GLRAM)[15] and bidirec-
tional LDA[16] have yet to be developed.

To more effectively extract valuable features from
biomedical signals, the original signals are transformed
into higher-order tensors using a wavelet transform, Ga-
bor transform, or short-time Fourier transform (STFT).
With the development of research topics in video ana-
lysis such as gait analysis and video emotion ana-
lysis, some widely used approaches have been ex-
tended to higher-order tensor versions, e.g., general
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tensor discriminant analysis (GTDA)[17]. Other ten-
sor methods include multilinear principal component
analysis (MPCA)[18], uncorrelated multilinear PCA
(UMPCA)[19-20], tensor rank 1 discriminative ana-
lysis (TR1DA)[21] and k-mode cluster-based discrimi-
nant analysis (DATER)[22]. These approaches can
be divided into two classes[23]: those correspond-
ing to a tensor-to-tensor (T2T) projection and those
corresponding to a tensor-to-vector (T2V) projec-
tion. GTDA[17], MPCA[18], and DATER[22] belong
to the T2T projection type, whereas TR1DA[21] and
UMPCA[19-20] use T2V projections. DATER[22] is
different from GTDA[17]. The within-class and the
between-class scatter matrices of DATER are the sums
of the cluster-based within-class and the cluster-based
between-class scatter matrices, respectively.

Generally, 12-lead labeled ECG signals are not easy
to obtain. Early studies mostly dealt with 1- or 2-
lead ECG signals. The diagnosis of heart disease using
an ECG is based on a specific waveform (i.e., specific
frequency component) of a specific channel at a spe-
cific time. Hence, the original 12-lead ECG signal is
transformed using STFT into a tensor representation
of valuable features. The tensor-based approach has
been adopted for ECG classification tasks in [24-26].

Because of the specificity of ECGs, the manual dia-
gnosis of ECG data is expensive and time consuming,
requiring a semisupervised method. In addition, not all
the features are useful, implying the need for a selec-
tion process. In the tensor representation of an ECG
signal, useful features tend to be sparse. Those that can
be used to diagnose heart disease are always in a spe-
cific waveform in a specific lead at a specific position.
Sparse coding was proposed for the recognition of such
patterns, and this was later extended to sparse PCA[27]

and sparse LDA[28]. Note that a tensor-based algo-
rithm has already been proposed[29]. In this paper, we
modify the discriminant problem to a Maximum Scat-
ter Difference Discriminant Analysis problem. In other
words, we proposed a sparse PCA method to find the
discriminant directions. In fact, we combine the main
idea of sparse PCA[27] and semisupervised LDA[30-31]

into a semisupervised sparse multilinear discriminant
analysis (SSSMDA) method. The main idea of semisu-
pervised LDA in our paper is different from the pre-
vious one, as we add two regularization items by con-
sidering the labels of unlabeled data, assigned via label
propagation[32]. Note that our sparse tensor discrimi-
nant analysis differs from that in [29], as we employ
a T2V rather than a T2T projection. In addition, in
this paper, we use the sparse PCA approach instead of
sparse discriminant analysis.

The paper is organized as follows. Section 2 intro-
duces some common tensor operations. In Section 3, we

explain our choice of a sparse tensor representation for
ECG data, giving a proper description of our semisu-
pervised sparse discriminant analysis (SSSDA) method
in Section 4. SSSDA is extended to a multilinear ver-
sion in tensor space in Subsection 5.1. Subsections 5.2
and 5.3 address the convergence issue and the computa-
tional complexity, respectively. The effectiveness of our
semisupervised model is tested on a toy dataset in Sub-
section 6.1, Subsection 6.2 introduces the 12-lead ECG
database, and Subsection 6.3 presents our experimental
results on the ECG dataset. Section 7 concludes this
work.

2 Tensor Operations

We first introduce some definitions of tensor opera-
tions. In our paper, mathcal and uppercase letters
denote tensors, e.g., X ,Y,Z. Matrices are expressed
as uppercase bold italic letters, e.g., X,B. Lower-
case bold italic letters are used for vectors, e.g., u,a,
whereas regular lowercase and uppercase italic letters
denote scalars, e.g., a, b, c, D, E.

Definition 1 (Tensor Product). The tensor product
of two vectors x ∈ RM and y ∈ RN is a matrix:

(x⊗ y)ij = xi × yj ,

which is a rank-1 tensor of mode 2. Here, 0 < i 6 M
and 0 < j 6 N . xi and yj denote the i-th and j-th
element of vector x and y. The tensor product of three
vectors x ∈ RM , y ∈ RN , and z ∈ RS is a mode-3
tensor:

(x⊗ y ⊗ z)ijk = xi × yj × zk,

which is also of rank 1. Here, 0 < i 6 M , 0 < j 6 N ,
and 0 < k 6 S. zk denotes the k-th element of vector
z.

Definition 2 (Tensor Mode Product). A mode-M
tensor X of size X ∈ RN1×N2×···×NM multiplied by a
vector of mode r is a tensor of size N1 × N2 × · · · ×
Nr−1 × 1×Nr+1 × · · · ×NM :

(X×ru)i1×i2×···×ir−1×1×ir+1×···×iM

=
∑

ir

(Xi1×i2×···×ir−1×ir×ir+1×···×iM
uir

),

which is in fact a tensor of mode M − 1.
Definition 3 (Multiple Tensor Product). The ten-

sor product of multiple vectors forms a rank-1 tensor.
To simplify its notation, we use the following form to
represent the tensor product of several vectors:

u1 ⊗ u2 ⊗ · · · ⊗ un =
M∏

l=1

⊗(ul)T,

where ui (1 6 i 6 n) denotes any vector.
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3 Sparse Tensor Representation of ECG Data

ECG data are measured by a standard 12-lead dia-
gnosis system, which includes channels I, II, III, aVR,
aVL, aVF, V1, V2, V3, V4, V5, and V6. I, II, and
III are limb leads, and aVR, aVL, and aVF are aug-
mented limb leads. Note that the raw ECG signals
usually feature strong background noise. Therefore, we
apply several methods, such as a wavelet transforma-
tion, to remove the high-frequency noise, and use a
median filter to eliminate the baseline drift[33]. The
original ECG signal of one diagnosis is approximately
20 seconds long, and is composed of about 25 beats.
Another pre-processing step consists of segmenting the
signals into a set of ECG pieces, each of which contains
one heartbeat. Fig.1 displays such an example of a 12-
lead ECG signal. It is important to understand that if
the 12 beats are combined into a single one, then the
whole structure of the information is destroyed. Hence,
the matrix form of a 12-beat ECG cannot be changed.

Fig.1. Example of 12-lead ECG signals in our ECG database.

The original signals represent features in the
spatiotemporal domain. As ECG signals are non-
stationary, we employ an STFT[34], rather than a regu-
lar Fourier transform, to recover information on the
time at which a frequency component occurs. STFT
provides useful information on the time resolution of
the spectrum. In essence, a useful feature for classifi-
cation is the specific waveform (specific frequency com-
ponent) at a specific time point of a specific channel.
We use STFT to transform the original signals into the
spatial-spectral-temporal domain, and represent them
as high-dimensional third-order tensors.

For a 12-lead (lead× time) ECG signal sample,
s[l, n] represents the discrete-time signal at time n for
lead l. The STFT at time n4t and frequency f is de-
fined by

STFT{s[l, n]}(m,w) ≡ S(l, m, n)

= ΣM
m=0ω(n−m)s(l, n)e−j2πfm ,

where w[n] is the window function that selectively de-
termines the portion of s[l, n] for analysis. In this work,
we choose the Hann window. After applying the STFT
to the ECG signals, they are represented as third-order
tensors for the rest of the analysis. Fig.2 shows an ex-
ample of tensor ECG data for six classes. Following
previous work on expending an ECG signal to a third-
order tensor[35-37], we extend the original ECG signal
to enable more effective extraction of valuable features
in the spatial-spectral-temporal domain. To properly
handle this type of data, a tensor-based learning ap-
proach is necessary. Fig.2 displays an example of six
classes of tensor data.

For diagnostic purposes, the most useful portions
of the ECG signal are the specific shapes of P, QRS,
and T waves. Thus, useful features for classification
are very sparse in the original tensor representation.
Hence, the projection tensor should be sparse to allow
the extraction of valuable features for classification pur-
poses. Here, we plot the sparse tensor representation of
the original six-class, 12-lead ECG signal correspond-
ing to the sparse projection tensor in Fig.3. It appears
that the sparse representation is more discriminative
than the original tensor representation, and as such is
clearly more suitable for classification.

In addition, we observe that tensor-based methods,
especially the sparse version, can reduce the parame-
ter count. To some extent, this prevents the overfitting
problem from occurring. As for LDA-like methods, the
well-known SSS problem can also be avoided. For in-
stance, when given a tensor X of size N1, N2, N3, we
only need to apply the projection tensor u1 ⊗ u2 ⊗ u3

and estimate N1 + N2 + N3 parameters, instead of
N1×N2×N3. The parameter count can be even lower
in the sparse case.

4 Semi-Supervised Sparse Discriminant
Analysis

Classical LDA is to used to solve the following there
equivalent optimization problems. The target is to map
high-dimensional data into a subspace with lower di-
mension.

R(x) =
xTSbx

xTSwx
,

xTSbx

xTStx
,

xTSwx

xTStx
.

Sw, Sb, and St are the within-class scatter matrix,
the between-class scatter matrix, and the total scatter
matrix. These matrices can be calculated as

Sw =
1
n

k∑

i=1

∑

x∈Ai

(x− c(i))(x− c(i))T,
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Fig.2. Example of tensor ECG data in the spatial-spectral-temporal domain. (a) Class 1. (b) Class 2. (c) Class 3. (d) Class 4. (e)

Class 5. (f) Class 6.

Fig.3. Example of tensor ECG data in the sparse spatial-spectral-temporal domain. (a) Class 1. (b) Class 2. (c) Class 3. (d) Class 4.

(e) Class 5. (f) Class 6.
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Sb =
1
n

k∑

i=1

∑

x∈Ai

(c(i) − c)(c(i) − c)T

=
1
n

k∑

i=1

ni(c(i) − c)(c(i) − c)T,

St =
1
n

k∑

j=1

(xj − c)T(xj − c).

Here Ai means class i and ni represents its point
count. c(i) is the sample mean of class i and c is the
mean of all samples. It is easy to understand that
Sw is the sum of each class covariance matrix. Sb is
the weighted sum of the class mean covariance matrix
where the weight is the number in each data class, and
St is the covariance matrix of all the points. Obtaining
the equation St = Sw + Sb is straightforward. St is
called the total scatter matrix.

Sb =
c∑

k=1

lk(u(k))(u(k))T

=
c∑

k=1

lk

( 1
lk

lk∑

i=1

x
(k)
i

)( 1
lk

lk∑

i=1

x
(k)
i

)T

=
c∑

k=1

X(k)U (k)(X(k))T,

where U (k) is an lk × lk matrix with all the elements
equal to lk, u(k) is the demeaned sample matrix of class
k, and X(k) is the original sample matrix of class k.

U l×l =




U (1) 0 · · · 0
0 U (2) · · · 0
...

...
. . .

...
0 0 · · · U (c)


 .

The final objective function is defined as:

aopt = arg max
a

aTSba

aTSta

= arg max
a

aTXU l×lX
Ta

aTXXTa
.

Because the labeled data is very limited and the
manual tagging task is expensive and time costing, we
here consider the cluster character of unlabeled data to
calculate the regularization item JW(a). In this way,
we can achieve a better projection vector which makes
the data cluster closely to each class. In addition, to
further take advantage of the distribution nearing the
boundary of different classes, the logistic label propa-
gation as a semi-supervised method is used to give a
category label to each unlabeled sample data and the

between-class regularization item JB(a) is calculated
to achieve better boundary separation. Thus we add
these two items JB(a) and JW(a) to the original LDA
target function. This is different from any existing work
as usually only a single regularized item[30] is used:

max
a

aTSba + αJB(a)
aTSta + βJW(a)

.

The calculations of these two items rely on an adja-
cent matrix[38-39]. In our case we take advantage of the
labels generated by label propagation in order to work
out the adjacent matrix[32]. Its definition is as follows:

Sij =
{

1, if xi ∈ Np(xj) or xj ∈ Np(xi),

0, otherwise.
(1)

Here Np means the set of p nearest points of the ar-
gument which is a point. Based on the semi-supervised
learning label propagation algorithm[32,38-39], each un-
labeled data is given a category label. Then two addi-
tional adjacent matrices are calculated. They are the
between class adjacent matrices B and the within class
adjacent matrix W . The between class adjacent matrix
B is defined by:

Bij =
{

1, if Sij = 1 and xi,xj /∈ the same class,

0, otherwise.

The within class adjacent matrix W is as follows:

Wij =
{

1, if Sij = 1, and xi,xj ∈ the same class,

0, otherwise.

Obviously, we have the following relation:

Sij = Bij + Wij .

Hence if either of these matrices is computed, then
the other one can be easily calculated by subtracting
the matrix to the full adjacent matrix S. With these
two adjacent matrices, the two additional items in the
objective function can be easily expressed as follows:

JB(a) =
∑

ij

(aTxi − aTxj)2Bij ,

JW(a) =
∑

ij

(aTxi − aTxj)2Wij .

These two items can be expressed in a matrix form.
The between class item is calculated as follows:

JB(a) =
∑

ij

(aTxi − aTxj)2Bij

=2
∑

i

aTxiDBii
xT

i a− 2
∑

ij

aTxiBijx
T
j a

=2aTXLBXTa,
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where D is a diagonal matrix similar to I, but its di-
agonal value is not 1. Its entries are column (or row,
since B is symmetric) sum of B, and Dii =

∑
j Bij .

L = D − B is the Laplacian matrix[40]. B in LB is
the same as that in JB. Then we have the within class
item:

JW(a) =
∑

ij

(aTxi − aTxj)2Bij

=2
∑

i

aTxiDWii x
T
i a− 2

∑

ij

aTxiWijx
T
j a

=2aTXLWXTa.

The final objective function with additional between
class item and within class item is:

max
a

aTSba + αJB(a)
aTSta + βJW(a)

= max
a

aT(Sb + αJB)a
aT(St + βJW)a

,

where α and β are the weights that can be adjusted
to make a trade-off between the original LDA and our
approach.

Since we choose to apply a semi-supervised method,
these two additional items B and W use all the data
including the labeled training data and the unlabeled
testing data. However Sb and St only use the labeled
training sample. To uniformly express the objective
function over all the data X, the original matrices W
and I in the objective function must be extended.

U =
(

U l×l 0
0 0

)
,

Ĩ =
(

I 0
0 0

)
,

where I is the identical matrix.
From the above derivation, the objective function

can be expressed following a uniform equation:

max
a

aT(XUXT + αXLBXT)a

aT(XĨX
T

+ βXLWXT)a
.

It can be transformed into a Maximum Scatter Diffe-
rence Discriminant Analysis problem:

max
a

aT(X(U − Ĩ + αLB − βLW)XT)a. (2)

Here we have changed the target function for a
Maximum Scatter Difference Discriminant Analysis
problem[41-42]. Thus it is unnecessary to use the sparse
discriminant analysis approach. Therefore we use the
sparse PCA approach to calculate the target discrimi-
nant projection vectors[27].

Here V [, 1 : k] is the first k principal components.
Given a fixed A = (α1, . . . ,αk), we solve the elastic
net problem for j = 1, 2, . . . , k.

βj = arg min
β

(αj − β)TXTX(αj − β)+

λ‖β‖2 + λ1,j‖β‖1.

For a fixed B = (β1, . . . ,β1), we compute the SVD
(singular value decomposition) of XXTB = UDV T

and then update A = UV T. By repeating these two
steps until it converges, the projection vector can be
computed.

To use the above algorithm, we have to apply the
Cholesky decomposition to the innermatrix A = U −
Ĩ + LB − LW. But first, the innermatrix must be reg-
ularized to be positive definite (so we must make all
the eigenvalue not smaller than 0 which is listed as the
third equation below):

[V ,D] = eig(A);

d = diag(D);

(d 6 0) = min(d > 0);

Ar = V · diag(d) · V T.

Because the eigenvalue d is not always larger than 0,
we set the one which is not larger than 0 to be the min-
imum of eigenvalue which is larger than 0. Then the
new innermatrix Ar can be used using the Cholesky
decomposition Ar = Ac ·AT

c . Next we multiply X by
Ac and get X ′ = Ac · X. Finally we can solve the
elastic net problem as follows:

βj = arg min
β

(αj − β)TXTX(αj − β)+

λ‖β‖2 + λ1,j‖β‖1, (3)

where vector αj is the j-th principal component. Here
βk is the expected result as µk−1. It means βk will
converge to µk−1. Here we must use µk−1 to represent
the result. The original LDA rises (c−1) low rank prob-
lems, which means that it can only get c− 1 projection
vector corresponding to nonzero eigenvalues. We use a
similar method as that in complementary space LDA to
overcome the limitation[21,43-44]. We repeat the process
each time we get a projection vector.

λk = xµk−1,

x1 = x,

xk = xk−1 − λk · µk−1.

We actually calculate one projection vector each
time and then the original data is adjusted for the cal-
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culation of the next projection vector.

β = arg min
β

(α− β)TXTX(α− β)+

λ‖β‖2 + λ1,j‖β‖1, (4)

where α and β are matrixes different from the above
definition. In above equations, we calculate each vector
in α and β one by one. Here we just simplify (3) to be
a matrix form (4).

Following this strategy our method will not be con-
fronted to the c − 1 rank low problem, and it can cal-
culate as many projection vectors as the dimension of
the original data vector.

5 Semi-Supervised Sparse Multilinear
Discriminant Analysis

5.1 Algorithm

For 12-lead ECG or other high-dimensional tensor
data, using the vector space algorithm by expanding
the original tensor data into vectors is not a good choice
as it will introduce the SSS and the overfitting prob-
lems. In addition, the structure information will be lost
during the vectorization process. Therefore, designing
a multilinear or tensor version algorithm which takes
tensor data as direct input is useful and necessary. We
proposed a multilinear version of the semi-supervised
sparse algorithm in the previous section. The original
St and Sb in the original LDA can be easily trans-
formed into a multilinear version by replacing x with
X based on an analogy with (2).

P =




(
1
n

c∑

i=1

(
(Mk

i −Mk)
M∏

l=1

×l(ul
k)T

)
×

(
(Mk

i −Mk)
M∏

l=1

×l(ul
k)T

)T

−

ζl
k

n∑

j=1

(
(X k

ji −Mk
i )

M∏

l=1

×l(ul
k)T

)
×

(
(X k

ji −Mk
i )

M∏

l=1

×l(ul
k)T

)T
)




, (5)

where X and M are both tensors.
The most important two additional items JB and

JW can be transformed by following a similar strategy.
The transformed form of additional between class item
JB is as follows:

JB =




∑

ij

Bij

(
(Xi −Xj)

M∏

l=1

×l(ul
k)T

)
×

(
(Xi −Xj)

M∏

l=1

×l(ul
k)T

)T


 .

The additional within class item JW should be
transformed in a similar way.

JW =




∑

ij

Wij

(
(Xi −Xj)

M∏

l=1

×l(ul
k)T

)
×

(
(Xi −Xj)

M∏

l=1

×l(ul
k)T

)T


 .

By adding the JB and JW items to (5), the objective
function of SSSMDA is defined by:

ul
k|Ml=1 = argul

k|Ml=1
max(P + JB − JW).

As the objective function above has no close form so-
lution, an alternate projection method is adopted. Here
JB and JW can be transformed:

JB =
( ∑

ij

Bij ((Xi −Xj)×̄l(ul
k)T×l(ul

k)T)×
((Xi −Xj)×̄l(ul

k)T×l(ul
k)T)T

)
,

JW =
( ∑

ij

Wij ((Xi −Xj)×̄l(ul
k)T×l(ul

k)T)×
((Xi −Xj)×̄l(ul

k)T×l(ul
k)T)T

)

= ul
k

( ∑

ij

Bij ((Xi −Xj)×̄l(ul
k)T)×

((Xi −Xj)×̄l(ul
k)T)T

)
(ul

k)T

= ul
k

( ∑

ij

Wij ((Xi −Xj)×̄l(ul
k)T)×

((Xi −Xj)×̄l(ul
k)T)T

)
(ul

k)T,

J ′B =Bij((Xi −Xj)X l(ul
k)T × ((Xi −Xj)X l(ul

k)T)T,

J ′W =Wij((Xi −Xj)X l(ul
k)T)× ((Xi −Xj)X l(ul

k)T)T.

Here X l means multiplying the tensor in all the modes
except model l. By substituting the equation in the
bracket:

JB − JW = ul
k(J ′B − J ′W)(ul

k)T.

The item P in the objective function corresponding
to St and Sb in the original LDA can also be similarly
transformed:

P ′ =




( 1
n

c∑

i=1

((Mk
i −Mk)×̄l(ul

k)T)×

((Mk
i −Mk)×̄l(ul

k)T)T−

ζl
k

ni∑

j=1

((X k
ji −Mk

i )×̄l(ul
k)T)×

((X k
ji −Mk

i )×̄l(ul
k)T)T

)




.

The optimization problem of SSSMDA is trans-
formed into m subproblems, where m is the mode count
of the original data.

arg max
ul

k

=
(
ul

k(P ′ + J ′B − J ′W)(ul
k)

T)
.



Kai Huang et al.: SSS Multilinear Discriminant Analysis 1065

In the alternate projection process, the original data
is multiplied by the projection tensor except one mode
as Xi×̄l(ul

k)T forms a matrix in which each column rep-
resents one data as X. The whole matrix is Xall. In
this way, we can reformulate the algorithm as follows:

max
a

aT(X (U − Ĩ + LB −LW)XT)a.

It is similar to the semi-supervised sparse discrimi-
nant analysis. In the process of calculating each mode
in the alternate projection, U , I, B, W remain un-
changed.

((Xall)×̄l(ul
k)T)× (U − Ĩ + LB −LW)×

((Xall)×̄l(ul
k)T)T.

Here we get a target function which is similar to the
semisupervised sparse discriminant analysis. Thus for
our case we only adopt the calculation method.

[V ,D] = eig(A);

d = diag(D);

(d 6 0) = min(d > 0);

Ar = V · diag(d) · V T.

We now apply the Cholesky decomposition to Ar =
Ac ·AT

c . Substituting it into the original equation, we
get X ′ = Ac · ((X k

j )×̄l(ul
k)T). Then the objective func-

tion can still be solved through the generalized elastic
net problem.

The target function of sparse discriminant analysis
is defined sequentially:

β = arg min
β

(α− β)TX ′TX ′(α− β)+

λ‖β‖2 + λ1,j‖β‖1.

Here we still use the alternative optimization in or-
der to solve the problem. Then a method similar to the
one used in the complementary space computation is
adopted to process the original tensor data[21,43-44].

X k
ij = X k−1

ij − λk−1u1
k−1 ⊗ u2

k−1 ⊗ · · · ⊗ uM
k−1.

The algorithm we use is described in Algorithm 1.
As previously mentioned, we know that the original

LDA encounters the small size problem, the (c− 1) low
rank problem, the heteroscedastic problem and the un-
reasonable between-class scatter matrix. The proposed
method is developed such as to tackle these issues. In
addition, our approach fully considers the distribution
structure of both labeled and unlabeled data such that
it calculates a better projection tensor for classification
purpose.

Algorithm 1. Semi-Supervised Sparse Multilinear Discri-

minant Analysis

Input: training tensors Xij , 1 6 i 6 c, 1 6 j 6 ni, the
number R of rank-1 tensors allowed in SSSMDA, and the
tuning parameters

Output: the projection vectors ul
k, 1 6 l 6 M

1: Set X l
i,j = Xi,j , 1 6 i 6 c, 1 6 j 6 ni, ud

k = Optimal
ud

k

2: U − Ĩ + LB −LW = Ac ·AT
c

3: for k = 1 to R do

4: Calculate X k
i,j = X k−1

i,j − λk−1
i,j

∏M
l=1⊗ul

k−1 with

λk−1
i,j = X k−1

i,j

∏M
l=1×lu

l
k−1

5: for t = 1 to L do

6: for l = 1 to M do

7: X ′ = Ac · ((X k
j )×̄l(u

l
k)T)

8: ((Xall)×̄l(u
l
k)T)× (U − Ĩ + LB −LW)×

((Xall)×̄l(u
l
k)T)T

% this result can be easily got by X ′T ·X ′

9: % elastic net problem

β = arg min
β

(α− β)TX ′TX ′(α− β) + λ‖β‖2+
λl,j‖β‖1

10: end for % for loop in step 4

11: Convergence check: If ‖ul
k − ul

k−1‖F 6 ε for all

directions l in the k-th iteration, stop the loop in

step 3.

12: end for % for loop in step 3.

13: end for % for loop in step 2.

To make a summary, we take unlabeled data into
consideration to calculate the regularization item. We
first use a logistic label propagation to assign a category
label to each unlabeled sample. And then the within-
class regularization item and the between-class regu-
larization item are calculated to get better projection
vector. The reason why it works is that the cluster char-
acter in addition to the distribution of different classes
are considered. Therefore, better projection vector can
be achieved and very few training samples with label
are needed for the calculation method. In this way,
with fewer training samples, the cost of calculation is
reduced and the model can be with more generation
power. Also our method takes the tensor data as direct
input with less parameters to be determined. Conse-
quently, according to the Occam’s Razor principle, the
over-fitting problem can be relieved. Thus the combi-
nation of semi-supervised learning and tensor learning
model makes our method more effective.

5.2 Convergence Issue

Another important aspect of our algorithm is the
convergence. In this paper, the convergence issue is
analyzed in a similar way as papers of Tao et al.[17,45]
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Indeed as we use the alternative projection method, it
can be proved that our algorithm is monotonic, that is,
the target function with the µl

k achieved by each iter-
ation is monotonically decreasing. We give a definition
of the target function with respect to the mode and
iteration numbers:

arg max
ul

k

=
(
ul

k(P ′ + J ′B − J ′W )(ul
k)

T)
,

F (ul
k, k) =

(
ul

k(P ′ + J ′B − J ′W )(ul
k)

T)
,

where k is the iteration number and l is the mode num-
ber. Our algorithm generates a sequence of objective
function value with each mode l and iteration k. The
sequence is as follows:

F (u1
k, 1) 6F (u2

k, 1) 6 · · · 6 F (uM
k , 1)

6F (u1
k, 2) 6 F (u2

k, 2) 6 · · · 6 F (u1
k, k)

6F (u2
k, k) 6 · · · 6 F (u1

k,K) 6 F (u2
k,K)

6 · · · 6 F (uM
k ,K).

The alternate projection algorithm is actually a com-
position of M sub-algorithms. To check the conver-
gence at each step and whether the algorithm should
be stopped, we solve the following equation and com-
pare the result with a given threshold.

∥∥∥
M∏

l=1

⊗(ul
k)

T −
M∏

l=1

⊗(ul
k−1)

T
∥∥∥

F
.

This method allows us to determine whether the al-
gorithm converges or not and then to terminate the
entire algorithm.

5.3 Computational Complexity

To evaluate the actual performance of our algorithm,
we examine the computational complexity and memory
requirements, which provide relative measures of its
practicality and usefulness. We study the computa-
tional issues in a fashion similar to that introduced in
[18].

Because this is an iterative solution, the compu-
tational complexity analysis considers a single itera-
tion. For simplicity, it is assumed that I1 = I2 =

· · · = IM = (
∏M

m=1 Im)
1
M = I. Here, M is the

mode count of the tensor data. From a computational
complexity point of view, the most demanding steps are
the formation of the matrices ((Xall)×̄l(ul

k)T) · (U −
Ĩ + LB − LW ) · ((Xall)×̄l(ul

k)T)T. First, we must
calculate (U − Ĩ + LB − LW ). The time comple-
xity of these matrices is O(n), O(n), O(n2 × IM ), and
O(n2 × IM ), respectively, where n is the number of

sample data. This matrix experiences a Cholesky de-
composition Ar = Ac ·AT

c , which has O(n3) time cost.
Then, the matrix X ′ = Ac ·((X k

j )×̄l(ul
k)T) must be cal-

culated. The calculation of ((Xall)×̄l(ul
k)T) has a time

cost of (M − 1) × I(M + 1). To obtain X ′, the time
cost is n2I. The calculation of the I× I matrix X ′TX ′

requires nI2 operations. X ′TX ′β costs I2, and the sin-
gular value decomposition of X ′TX ′β is of order O(I).
Each elastic net solution requires at most O(I3) opera-
tions. To calculate X k

i,j = X k−1
i,j − λk−1

i,j

∏M
l=1⊗ul

k−1

with λk−1
i,j = X k−1

i,j

∏M
l=1×lu

l
k−1, the time cost is

2 × In + 2 × In−1 + · · · + 2 × I, which is O(In). The
total complexity is O(n2 × IM + n3 + R(n× IM + L×
M × ((M − 1) × I(M+1) + n2I + nI 2 + tI3))), where t
is the number of iterations before the convergence of
one elastic net problem, L is the number of iterations
needed by our algorithm, and R is the projection tensor
count of our algorithm.

As for the memory requirements of the SSSMDA al-
gorithm, because many calculations are performed in-
crementally, the time cost is not especially high. At
first, the matrix (U − Ĩ + LB − LW) should be cal-
culated. The calculation process of LB − LW re-
quires n2 space to store the distance matrix. An-
other 2n2 space is needed to store the adjacent ma-
trix. To store U and Ĩ requires 2n2 space, and calcu-
lating the Cholesky decomposition takes a further n2

space. To compute X k
i,j = X k−1

i,j − λk−1
i,j

∏M
l=1⊗ul

k−1

with λk−1
i,j = X k−1

i,j

∏M
l=1×lu

l
k−1, we require memory

space of O(IM ). Other steps in the calculation need
O(IM ) memory space, because X can be read into me-
mory sequentially without loss of information. Thus,
the total memory requirement is O(n2 + IM ).

6 Experiments and Results

6.1 Experiments on a Toy Dataset

Here we use a synthetic toy dataset to discuss the
effectiveness of our method that takes advantage of the
distribution of unlabeled data. We assign the labels to
unlabeled data using label propagation[32]. In this way,
the distribution near the boundary of labeled and un-
labeled data is considered. We generate three classes
of non-Gaussian three-dimensional (3D) data whose se-
lected sample is shown in Fig.4. Class 1 is a Gaussian
sample cluster, and classes 2 and 3 consist of two Gaus-
sian sample clusters. To explore the nature of our ten-
sor feature extraction method and compare the perfor-
mance of our method to other vector space and tensor-
based approaches, we group 10 local 3D samples to form
a 10 × 3 tensor sample.

To validate the effectiveness of the semisupervised
model, the generated samples are divided into a trai-
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Fig.4. Three classes of 3D non-Gaussian distributions.

ning sample set with labels and a testing sample set
without labels. We generate 110 000 random sample
vectors for each class of which 100 000 are allocated to
the testing sample set and 10 000 are reserved for the
training sample set. Because 10 samples form one ten-
sor sample, we generate a total of 1 000 training tensor
samples and 10 000 testing tensor samples.

The classification accuracy of our method compared
with other methods is given in Table 1. It can be seen
that our semisupervised model is effective on the toy
dataset.

Table 1. Classification Accuracy of Different Approaches

Approach Classification Accuracy (%)

PCA 76.2

ICA 75.1

LDA 76.8

UMP 82.9

TR1 85.6

SSM 92.3

6.2 12-Lead ECG Database

To evaluate the performance of our method, we test
the proposed method on a large dataset① collected from
a local hospital. Our database is provided by the Si
Wei Medical Company and the Ren Ji Hospital Re-
mote ECG Diagnostic Center. It consists of the clinical
diagnostic data of a medical diagnostic system, and has
been accumulated by the Ren Ji Hospital over a period
of about three years. The entire database consists of
98 287 pieces of ECG data, and one piece of data con-
sists of a 12-lead ECG signal of 20 seconds at a sampling
rate of 500 Hz. The ECG data are measured by a stan-
dard 12-lead diagnosis system and include the channels
I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6.
Channels I, II, III are limb leads, while aVR, aVL, aVF
are augmented limb leads, and V1, V2, V3, V4, V5, and

V6 are chest leads. The database consists of 1 251 types
of single or mixed diseases. There are 249 single disease
categories. The dataset used in our experiment is a sub-
set of the entire database. It consists of 3 000 pieces of
high-quality 12-lead ECG records. Each piece includes
about 10 to 25 beats for a total of 65 716 beats. These
records are collected from people of different genders,
ages and physical conditions. The doctor’s diagnosis is
taken as the label for the beats; this is one of the fol-
lowing six types: normal beat (N), left bundle branch
block beat (L), right bundle branch block beat (R),
left ventricular hypertrophy (V), sinus bradycardia (S),
and electrical axis left side (E). After the preprocess-
ing step for the raw ECG signal, we get the following
single heartbeat segments: 19 400 of N type, 7 056 of
L type, 10 080 of R type, 6 720 of V type, 14 540 of S
type, and 7 920 of E type. Next, we split the dataset
into two parts: training and test. We use the training
part to calculate the projection vectors and then train
the SVM model. The models are then used for classi-
fying the test dataset. We randomly split the original
dataset into two parts: 10 952 beats for training and
54 764 beats for testing. The training set consists of
one sixth of the total data while the testing set consists
of the remaining five sixths. Details regarding the size
of the training and the testing sets for each specific type
are listed in Table 2.

Table 2. Number of Beats for Each Class in the Dataset

Beat Number of Number of

Type Training Beats Testing Beats

N 3 233 16 167

L 1 176 5 880

R 1 680 8 400

V 1 120 5 600

S 2 423 12 117

E 1 320 6 600

6.3 Dataset Results

Our overall process includes the following steps:
data preprocessing, tensor data computation, STFT,
tensor feature extraction, dimension reduction based on
our proposed SSSMDA approach, and multiclass clas-
sification. Fig.5 presents the block diagram of this pro-
cess.

In our method, we use label propagation to assign a
label to each unlabeled datum. In this specific case, we
use logistic label propagation to calculate the label[32].
The calculated result is shown in Fig.6. The label
propagation accuracy is close to 65%, which is sufficient
to be used in our method.

①This dataset will be made public in the near future. See http://bcmi.sjtu.edu.cn/ehealth/ for further information.



1068 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Fig.5. Tensor-based process for ECG feature extraction.

Fig.6. Logistic label propagation correct labels and error rates

for each class.

In our method, parameter Np represents the Np clo-
sing point graph as shown in (1). Here we calculate
the classification accuracy corresponding to various N .
Fig.7 displays the results while the variance is plotted
in Fig.8. Clearly, numbers near 30 are the best choices.

Fig.7. Classification accuracy corresponding to different choices

of closing point number.

Fig.8. Variance of classification accuracy corresponding to diffe-

rent choices of closing point number.

A major characteristic of our method is the sparse-
ness of the projection tensor. Thus we compare here the
classification accuracy of different nonzero value counts
in the projection tensor. Fig.9 highlights the fact that
20∼30 nonzero values in the projection tensor provide
better accuracy. A plot of the variance is shown in
Fig.10. Hence, the original ECG tensor data are sparse
and, as such, facilitate the classification process.

Fig.9. Classification accuracy corresponding to different numbers

of nonzero values in the projection tensor.

Fig.10. Variance of classification accuracy corresponding to diffe-

rent numbers of nonzero values in the projection tensor.
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As for our tensor feature extraction method, the
most important performance metric is classification ac-
curacy. Here the classification accuracies of SSSMDA,
TR1DA, UMPCA, PCA, ICA, and LDA are compared
for dimensions 1∼20 (Fig.11).

Fig.11. Classification accuracy of different approaches with diffe-

rent feature dimensions.

In Fig.11, it can be seen that the tensor-based ap-
proach is much better than any vector space based
method. The main reason for this relies in the
fact that the tensor-based approaches use the tensor
data directly as input, preventing the well-known SSS
problem[46] as well as preserving the structural informa-

tion in the tensor data. SSSMDA achieves the best per-
formance compared with other tensor-based methods.
As for vector space based methods, the order from the
best to the worst is: LDA, PCA, and ICA for low di-
mensions. Note that the order differs for higher di-
mensions: LDA, ICA, and PCA. The accuracy of ICA
increases sharply for dimensions over 15.

The classification accuracy of each class is listed in
Table 3. Clearly, tensor-based methods reach a higher
accuracy and outperform other approaches. In addi-
tion, our SSSMDA method performs much better than
all other tensor-based methods. Four classes of ECG
have a 100% classification accuracy rate, meaning that
SSSMDA gives good results in practice.

Table 3. Comparison of Classification Accuracy (%) for

Different Approaches

Beat Type PCA ICA LDA UMPCA TR1DA SSSMDA

N 79.24 85.78 82.49 89.97 91.58 95.32

L 73.12 80.82 84.41 90.98 90.35 94.78

R 79.98 78.10 70.56 88.97 89.24 96.47

V 89.37 88.22 80.78 85.78 88.99 92.98

S 95.90 92.14 91.34 91.89 92.85 97.59

E 82.16 81.32 75.48 86.49 93.01 96.12

To further illustrate the effectiveness of our ap-
proach, we extract 3D features using feature extraction
methods and plot the distribution of these features in
Fig.12.

Fig.12. 3D dimensional distribution of extracted features. (a) SSSMDA. (b) TR1DA. (c) UMPCA. (d) PCA. (e) ICA. (f) LDA. Dim:

dimension.
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From Fig.12, it is clear that SSSMDA, TR1DA, and
LDA show clustering characteristics. Both LDA and
TR1DA seem to feature better clustering characteris-
tics; however, there is an obvious overlap at the bound-
ary of each data class. In the end, the proposed SSS-
MDA method achieves a better classification accuracy
than both LDA and TR1DA.

7 Conclusions

To enable feature extraction, we overcame the
dimension-reduction and classification problems related
to large 12-lead hospital-standard ECG datasets by
transforming the data into tensor form in the spatial-
spectral-temporal domain using STFT. Conventional
methods face three main challenges, namely: 1) ECG
effective features are sparse in the tensor representa-
tion, 2) manual diagnosis incurs high expense, and 3)
the lack of labeled ECG data. Therefore, we proposed
a multilinear semisupervised sparse discriminative ana-
lysis approach (SSSMDA) that takes the tensor data
as its direct input. The method effectively calculates
the sparse projection tensor and extracts valuable fea-
tures for classification. Compared with original LDA,
our approach additionally considers the manifold struc-
ture and distribution of the unlabeled data. This new
strategy allows us to determine the best projection
tensor and extract valuable features for classification
purposes. The experimental results show that tensor
ECG data contain sparse valuable features. In addi-
tion, the tensor-based scheme outperforms traditional
vector-based methods. In particular, SSSMDA outper-
forms both TR1DA and UMPCA in terms of classi-
fication accuracy, demonstrating the effectiveness and
robustness of SSSMDA (and tensor-based schemes in
general) for classifying 12-lead ECG signals.
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