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Abstract Proteins usually bind together to form complexes, which play an important role in cellular activities. Many
graph clustering methods have been proposed to identify protein complexes by finding dense regions in protein-protein
interaction networks. We present a novel framework (CPL) that detects protein complexes by propagating labels through
interactions in a network, in which labels denote complex identifiers. With proper propagation in CPL, proteins in the same
complex will be assigned with the same labels. CPL does not make any strong assumptions about the topological structures
of the complexes, as in previous methods. The CPL algorithm is tested on several publicly available yeast protein-protein
interaction networks and compared with several state-of-the-art methods. The results suggest that CPL performs better
than the existing methods. An analysis of the functional homogeneity based on a gene ontology analysis shows that the
detected complexes of CPL are highly biologically relevant.
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1 Introduction

A protein complex consists of a group of interact-
ing proteins[1] that play an important role in a bio-
logical process or cellular component. A complex con-
sisting of multiple proteins provides more information
about the activities of the proteins than a pairwise in-
teraction between two proteins. Although many bio-
logical technologies have been used to identify pro-
tein complexes, such as tandem affinity purification
with mass spectrometry, they have several limitations,
for example, missing transient protein complexes[2].
It is important to identify complexes from biological
data with computational methods[3-4]. With the deve-
lopment of high-throughput experiment technologies,
many protein-protein interaction (PPI) networks have
been published in public databases. A PPI network can
be modeled as a graph, in which the nodes are proteins
and the edges are interactions, to illustrate the physical
binding between the proteins at the system level. The
PPI network is a significant data resource for the com-
putational detection of complexes because complexes

often correspond to dense sub-graphs in the network[2].
It should be noted that protein complexes often over-
lap, as a protein can participate in multiple complexes
under different conditions. Detecting complexes from
a PPI network can be formalized as an overlapping
graph clustering problem. Many algorithms[5-8] have
been proposed to detect complexes from PPI networks,
which can be generally grouped into clique-based[9-11]

and seed expansion[7,12-14] algorithms.
A clique is a complete sub-graph, in which all of the

nodes connect with each other. CFinder is one of the
most popular clique-based methods[15-16]. It assumes
that a complex consists of a set of adjacent cliques
and detects complexes by searching for adjacent cliques.
However, as they rely heavily on a specific topological
structure, most of the clique-based methods, includ-
ing CFinder, are influenced dramatically by the incom-
pleteness of and the noise in PPI networks.

Seed expansion algorithms expand an initial set of
seed complexes to optimize a predefined quality func-
tion. MCODE[13] selects proteins with high weights as
seeds and then expands the set by including any neigh-
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boring proteins with weights higher than a threshold.
ClusterONE is a popular seed expansion method that
iteratively adds proteins into or removes proteins from
a set of initial complexes to maximize the cohesiveness
function[7]. Wang and Wu proposed a new distance
measurement method for expanding seed complexes[17].
Expansion and seed selection in most of the seed expan-
sion methods generally depends on a predefined quality
function or on expansion techniques.

Other technologies have also been proposed to detect
complexes[18-23]. Markov clustering (MCL)[18] simu-
lates random walking on a network. Anirban et al. pro-
posed a multi-objective evolutionary approach based on
semantic similarity[20]. ProRank+ uses a ranking al-
gorithm to detect protein complexes by ordering the
proteins based on their importance[21-22]. SLCP2 is a
spectral approximate algorithm that enables the simul-
taneous identification of both dense and sparse regions
in a network[23].

Although much progress has been made in identify-
ing protein complexes from PPI networks, accurately
identifying protein complexes still remains a challenge.
The methods mentioned tend to find less-known pro-
tein complexes, since they may suffer from limitations
such as depending on the distribution of a specific topo-
logical structure or on expanding techniques.

In this paper, we propose a novel framework that
identifies complexes by propagating labels through a
PPI network (CPL). In CPL, a label is used to denote
the identifier of a complex. With proper label propa-
gation, proteins in the same complex will be assigned
with the same labels. It should be noted that CPL does
not require any strong definitions of the interaction pat-
terns in complexes, such as a predefined quality func-
tion or prior information of the topological structure.
The experimental results show that the complexes iden-
tified by CPL are of a higher quality than those identi-
fied by several state-of-the-art methods. The complexes
detected by CPL cover more known complexes and have
a high functional homogeneity.

The remainder of this paper is organized as follows.
Section 2 illustrates the basic idea of label propagation
in CPL. Section 3 describes the proposed CPL algo-
rithm. The experimental results are shown and dis-
cussed in Section 4. Finally, Section 5 presents some
concluding remarks and future work.

2 Label Propagation for Complex Detection

The label propagation algorithm (LPA)[24] was first
proposed to identify disjointed communities in social
networks. In LPA, each node has only one label, de-
noting the community to which it may belong. Al-
though LPA has many advantages for finding commu-

nities within a social network, it faces challenges when
detecting complexes from PPI networks. For example,
protein complexes generally overlap, as a protein can
belong to multiple complexes. In addition, although
PPI networks are available in many databases, they suf-
fer from noise and incompleteness. Consequently, the
performance of LPA is dramatically reduced when it is
directly used to detect complexes.

We therefore present CPL, a novel framework of la-
bel propagation, to detect complexes in a PPI network.
By allowing each protein to carry multiple labels and
by using the propagating intensity, the propagation in
CPL is able to handle the detection of complexes. CPL
uses the interactions in a network alone to guide the
progress of propagation, independent of any measure of
complex quality, such as a clique or quality function, as
in previous methods.

Fig.1(a) shows an example network. The propa-
gation of CPL is illustrated by Figs. 1(b)∼1(f), in which
different shapes denote different labels. The main ideas
behind the proposed CPL are as follows.

1) Proteins are allowed to carry multiple labels dur-
ing propagation, not just one. LPA cannot handle the
overlapping between complexes, as it uses one label for
each protein. By assigning each protein multiple labels,
the proteins can belong to multiple complexes, such as
protein 3 in Fig.1(f).

Fig.1. Illustration of propagation in CPL. Nodes denote proteins

and edges denote their interactions. Different shapes on nodes

represent different labels that the proteins carry. (a) An exam-

ple network with five proteins, each of which is initialized with

a unique label. The label propagation process proceeds from (b)

to (f). (g) Two complexes sharing the overlapping protein 3.

2) When a label is propagated from one protein to
another, it is assigned a certain propagating intensity.
In Fig.1, the width of the arrow line denotes the inten-
sity of the propagation. The intensity is determined on
the basis of common neighbors of the interacting pro-
teins. If two proteins have a more similar neighborhood,
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then the intensity of the label propagated through their
interaction is greater. A label with greater propagating
intensity has a higher priority for being assigned to the
target protein. This makes the propagation more ro-
bust.

3) The propagation in LPA depends on the order
in which the nodes are updated. Using a different up-
date order may yield a poorer result. Assigning protein
labels according to a specific order may feasibly ad-
dress this problem. As shown in the following section,
it is better to update the labels of proteins with greater
weights later.

As shown in Fig.1, the proteins update their label
information one by one according to their order. The
protein marked by * is being updated. Before protein
1 in Fig.1(b) updates, all of its neighbors first propa-
gate a label to protein 1. Protein 1 then updates its
own labels using the received labels with high inten-
sities. After propagation, two complexes sharing the
overlapping protein 3 are identified in Fig.1(g).

3 CPL Algorithm

Based on the above framework, the CPL algorithm
is developed to detect complexes from PPI networks. A
high-level description of the algorithm is given in Algo-
rithm 1.

Algorithm 1. CPL

Input: PPI network N

Output: complex set C

1) Initialize the label memory for each protein in network
N .

2) According to the assigning order, select a protein u
whose label memory has not been updated.

3) All of the neighbors of protein u propagate a label to it
with a certain intensity.

4) The label memory of protein u is assigned based on the
received labels.

5) Repeat steps 2)∼4) until no protein remains.

6) Post-process and output complex set C.

In step 1), we initialize the label memory of each
protein. In the propagation process of steps 2)∼5),
all of the proteins determine the complexes in which
they participate according to a specific order. Each
protein takes part in label propagation 3) and label as-
signment 4). Proteins with the same label are then
grouped together into a complex. The label memory,
assigning order, label propagation and assignment, and
post-processing are now described in detail.

3.1 Label Memory and Initialization

A protein can participate in more than one complex.
A label memory that saves multiple labels and their cor-

responding belonging coefficients is used to represent
the membership of a protein to different complexes. For
protein u, the memory Lu is a set of pairs (li, ci), which
denotes that protein u belongs to complex li with a be-
longing coefficient ci. If there is more than one pair
in the memory, the protein may overlap multiple com-
plexes.

Each protein is first assigned a unique label with
a belonging coefficient of 1.0. Each protein is consi-
dered as an initial complex containing only itself before
propagation begins.

3.2 Label Propagation Rule

After initialization, each protein determines its la-
bel memory, one by one. For each protein u, each of
its neighboring proteins first propagates a label to u. If
v is a neighbor of protein u, the label propagated from
protein v to u is lv→u. This is the label with the maxi-
mum belonging coefficient in the memory of protein v.
If there is more than one label with the same maximum
belonging coefficient in protein v’s memory, one of the
labels is randomly propagated. The propagating inten-
sity (PI) pv→u of the label lv→u propagated from v to
u is calculated from the interaction weight as follows:

pv→u =
|N+(u) ∩N+(v)|
|N+(u)| × |N+(v)| ,

where N+(u) is the protein set consisting of u and all of
its neighbors N(u). The propagating intensity is higher
if there are more common neighbors between the two
proteins. Fewer common interacting partners yield a
lower intensity. This information can be used to reduce
the influence of noise in a PPI network, as false positive
interactions will generally correlate with low common
neighborhoods.

The protein u receives a set of labels Su propagated
from all of its neighbors:

Su = {lv→u|v ∈ N(u)}.
As different neighbors may send the same label, we

sum the propagating intensities of the same propagated
label:

pi =
∑

v∈N(u)

(pv→u × δ(li, lv→u)),

where δ(a, b) is an indicator function that equals 1 if
a = b, and 0 otherwise.

The received labels and corresponding propagating
intensities of protein u are given by Pu:

Pu = {(li, pi)|li ∈ Su}.
3.3 Label Assignment Rule

After propagation, the label memory of protein u is
updated by exploiting the propagated labels with high
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intensities. In Pu, all of the labels with propagating
intensities greater than the threshold threu are used to
update the label memory of protein u:

Lu ←
{

arg
(li,pi)∈l′u

(pi > threu)
}
.

The threshold threave
u is an adaptive threshold for

protein u based on the average value of pi in Pu:

threave
u =

1
|Pu|

∑

(li,pi)∈Pu

pi. (1)

The average value adaptively extracts the repre-
sented labels from the received labels. In addition, the
intensities of all of the propagated labels may be very
low due to the noise in the network. To filter the noise,
the label memory will not be updated when the adap-
tive threshold is smaller than a minimum value τ . The
higher the minimum value, the greater the inhibition
of noise. However, at the same time, it will reduce the
number of the complexes. In order to make a balance,
τ is set to 0.05.

3.4 Propagating Order

The propagating order is crucial to propagation.
CPL updates the label information of each protein ac-
cording to the protein’s weight. The weight wu of pro-
tein u is the sum of the weights of the interactions with
which the protein is involved:

wu =
∑

v∈N(u)

pv→u.

We find that CPL using the ascending order of pro-
tein weight gives a better performance. It means that
proteins with a lower weight are updated first.

3.5 Post-Processing

After all of the proteins are updated, each protein
obtains the labels denoting the underlying complexes
in which it may participate. Each protein is allocated
to the complexes according to the saved labels in its
label memory. An elementary set of complexes C with
respect to the network is obtained.

It should be noted that there may be complexes that
are subsets of others or are disconnected in C. A re-
fining step is used to split disconnected complexes into
a set of connected complexes and to remove any com-
plexes that are subsets of others. Complexes in C with
less than three proteins are removed. The remaining
complexes in C are the final output of CPL.

4 Experimental Results

We implement the CPL algorithm① in Java. We
investigate some of the strategies proposed in the algo-
rithm. The algorithm is compared with several state-of-
the-art methods, and the accuracy and the functional
homogeneity of the complexes predicted by these meth-
ods are studied. Some of the putative complexes de-
tected by CPL are discussed.

4.1 Datasets and Evaluation Methods

The CPL algorithm is tested using the widely used
PPI networks of Saccharomyces cerevisiae (yeast) from
Biology General Repository for Interaction Dataset
(BioGRID)[25], the Database of Interacting Proteins
(DIP)[26] and the Munich Information Center for Pro-
tein Sequences (MIPS)[27]. The details of these net-
works are listed in Table 1. The BioGRID network
that we use contains only the physical interactions from
the original version of BioGRID. These networks con-
tain similar numbers of proteins. The BioGRID net-
work contains the most interactions, approximately five
times as many as the MIPS network.

Table 1. Three PPI Networks

Used in the Experiments

Network Date Number of Number of

Proteins Interactions

BioGRID (Physical) 2012/08/31 5 640 59 748

DIP 2012/08/18 5 046 22 449

MIPS 2006/05/18 4 554 12 526

We use the known complexes in the CYC2008
catalogue② as our gold standard for comprehensive
comparisons, which is reported in [28]. The catalogue
contains 408 protein complexes validated by small-scale
experiments and reported in the literature. These com-
plexes cover 1 628 proteins. We use CYC2008 because
it represents an up-to-date set of the known protein
complexes in yeast. It has a better coverage of the
yeast genome and is more representative than the cor-
responding MIPS catalogue.

We evaluate the accuracy of each predictive ap-
proach by matching the predicted complexes to the gold
standard. Two evaluation metrics are used to mea-
sure the matching between the predicted and the known
complexes.

1) Precision, Recall and F -Measure (PRF) Metric.
The overlapping score OS between a predicted complex
p and a known complex b is defined as:

①http://nclab.hit.edu.cn/CPL, Sept. 2014.
②http://wodaklab.org/cyc2008/, Sept. 2014.
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OS (p, b) =
|p ∩ b|2
|p| × |b| .

Complexes p and b are considered as a match if
OS(p, b) > w, where w is the matching threshold and is
set to 0.2 as in the literature[5]. The predicted complex
set is denoted with P and the complex set in the gold
standard is B. Each complex in each set consists of a
set of proteins. Let Ncp be the number of predicted
complexes that match at least one known complex. Let
Ncb be the number of known complexes that match at
least one predicted complex. The PRF components[5]

are defined as:

precision =
Ncp

|P | ,

recall =
Ncb

|B| ,

F -measure =
2× precision × recall

precision + recall
.

2) Composite Score. The composite score[7] is also
used to evaluate the matching between the predicted
and the known complexes. The composite score is the
sum of three sub-metrics, the maximum matching ratio
(MMR), the fraction of matched known complexes in
the gold standard (Fraction) and the geometric accu-
racy (Acc). The composite score is described in detail
in [7].

4.2 Effectiveness of the Strategies Proposed in
CPL

We investigate the use of the adaptive propagating
threshold, assigning order of ascending protein weights
and propagating intensity based on interaction weights
in CPL. PRF and composite score are both used to test
the performance.

4.2.1 Adaptive Propagating Threshold

We propose using the average-based propagating
threshold threave

u in (1), which is an adaptive threshold
for protein u. We study its effectiveness by comparing
threave

u to the max-based threshold thremax
u

[29], where:

thremax
u = ( max

(li,pi)∈Pu

pi)× r.

The parameter r ranges from 0.1 to 1.0, with an in-
terval of 0.1. Table 2 compares the results of using the
different thresholds in CPL to predict complexes from
the three PPI networks.

The best results obtained using the max-based
thresholds are mainly distributed from r = 0.2 to
r = 0.4. Using the average-based threshold yields resu-
lts similar to the best results obtained from the max-
based thresholds. Although careful parameter adjust-
ments of the max-based threshold may result in better

Table 2. Comparison of the Use of Different Propagating Thresholds in CPL Applied to the Three Networks

Network Measure thremax threave

r = 0.0 r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9 r = 1.0

BioGRID Precision 0.171 0.298 0.318 0.328 0.332 0.321 0.322 0.293 0.288 0.293 0.312 0.388

Recall 0.419 0.721 0.738 0.748 0.743 0.733 0.723 0.676 0.632 0.586 0.576 0.706

F -measure 0.243 0.421 0.445 0.456 0.459 0.446 0.445 0.409 0.395 0.391 0.405 0.500

Acc 0.464 0.609 0.658 0.688 0.706 0.709 0.715 0.718 0.708 0.703 0.690 0.631

MMR 0.216 0.330 0.362 0.383 0.394 0.404 0.411 0.406 0.394 0.395 0.393 0.373

Fraction 0.289 0.551 0.615 0.640 0.650 0.657 0.647 0.613 0.556 0.547 0.529 0.632

DIP Precision 0.170 0.242 0.252 0.251 0.241 0.229 0.227 0.225 0.217 0.219 0.220 0.302

Recall 0.485 0.623 0.647 0.610 0.591 0.566 0.551 0.510 0.493 0.471 0.466 0.620

F -measure 0.252 0.348 0.362 0.355 0.343 0.326 0.322 0.313 0.302 0.299 0.299 0.406

Acc 0.406 0.559 0.587 0.598 0.604 0.601 0.602 0.589 0.584 0.575 0.566 0.604

MMR 0.238 0.318 0.338 0.337 0.337 0.330 0.332 0.326 0.317 0.314 0.306 0.363

Fraction 0.336 0.502 0.539 0.522 0.525 0.517 0.493 0.473 0.451 0.424 0.409 0.566

MIPS Precision 0.162 0.214 0.216 0.211 0.210 0.202 0.203 0.196 0.182 0.181 0.182 0.229

Recall 0.407 0.495 0.488 0.461 0.453 0.431 0.400 0.380 0.358 0.336 0.326 0.496

F -measure 0.231 0.298 0.299 0.290 0.287 0.275 0.269 0.259 0.241 0.235 0.234 0.313

Acc 0.378 0.444 0.466 0.480 0.485 0.492 0.489 0.482 0.476 0.471 0.464 0.491

MMR 0.214 0.273 0.278 0.276 0.271 0.265 0.265 0.260 0.256 0.249 0.242 0.297

Fraction 0.301 0.422 0.417 0.409 0.400 0.377 0.365 0.336 0.309 0.294 0.282 0.452

Note: thremax and threave are the max-based and the average-based threshold for the whole network respectively. The values colored
in red under thremax are the best results using the max-based thresholds. The performance of CPL using an average-based threshold
is colored in blue. PRF and composite scores are both shown.
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prediction, it is difficult to determine the best value of
r. Using the adaptive threshold based on the average
intensity has a comparatively good detection perfor-
mance.

4.2.2 Propagating Order of Ascending Protein
Weights

We study the use of the shuffle, the ascending and
the descending orders of protein weights in CPL. The
results are compared in Fig.2. Figs. 2(a)∼2(c) compare
the PRF scores for the complexes predicted by each
method in each network, and Figs. 2(d)∼2(f) compare
the composite scores.

The results show that the ascending order generally
performs better than the shuffle order and the descend-
ing order performs the worst. We conclude that CPL
yields more accurate complexes when the label memo-
ries of proteins with smaller weights are updated earlier
in the propagation. Proteins with higher weights tend
to have a greater influence on the surrounding proteins.
Propagation may be skewed if the higher weight pro-
teins are updated prematurely.

4.2.3 Propagating Intensity Based on Interaction
Weight

We study the effect of the propagating intensity on
CPL’s predictive ability by comparing the CPL algo-

rithm with CPLuw, which does not use the propagating
intensity. In CPLuw, the propagating intensities of all
of the interactions in the network are set to 1. CPL
and CPLuw are compared in Fig.3. CPL performs bet-
ter than CPLuw on all three of the networks. The
results suggest that using propagating intensities en-
hances propagation and the denser the network, the
greater the effect of using the propagating intensities.
Intensities based on interaction weights may reduce the
effect of noise in the network.

4.3 Comparing CPL with Other Methods

We study the performance of CPL by comparing it
with the state-of-the-art methods SLCP2, ProRank+,
ClusterONE, MCL and CFinder. We set the parame-
ters of these methods based on their recommendations.
We cannot obtain the results for CFinder identifying
complexes from the BioGRID network, as the calcula-
tion requires more memory than our 4 GB computer.

The characteristics of the complexes predicted by
the methods are presented in Table 3, which shows the
number of predicted complexes and the number of pro-
teins covered by the predicted complexes. CPL detects
1 316 complexes covering 3 779 proteins from the Bi-
oGRID network, 1 192 complexes covering 3 670 pro-
teins from the DIP network and 975 complexes covering
3 136 proteins from the MIPS network. CPL detects fe-

Fig.2. Comparison of the use of different propagating orders in CPL to detect complexes from the three networks. (a)∼(c) Comparisons

of the PRF metrics. (d)∼(f) Comparisons of the composite scores. (a) and (d) are BioGRID network results. (b) and (e) are DIP

network results, and (c) and (f) are MIPS network results.
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Fig.3. Comparison of the complexes predicted by CPL and CPLuw from the three networks. (a)∼(c) Comparison of the PRF metrics.

(d)∼(f) Comparison of the composite scores. (a) and (d) are BioGRID network results, (b) and (e) are DIP network results, and (c)

and (f) are MIPS network results.

wer complexes from the MIPS network than from the
BioGRID network. A similar pattern is seen in the
other methods, except for MCL. The BioGRID network
may have a more complicated connectivity than the
other networks. The complexes predicted by CFinder
from the MIPS network cover 1 387 proteins, which is
approximately one third of the proteins in the network
and is 44% of the proteins covered by CPL. CFinder
may require a more stringent clique distribution in the
network than the other methods.

We also examine the overlapping proteins in the pre-
dicted complexes. Table 3 shows the number of over-
lapping proteins in the predicted complexes and the
number of overlapping proteins in CYC2008 that are
detected by the different methods. The results show
that SLCP2 and MCL do not predict any overlapping

proteins. CPL predicts 2 409 overlapping proteins from
the BioGRID network, 1 387 from the DIP networks
and 84 from the MIPS network. There are 190 over-
lapping proteins from the BioGRID network, 137 from
the DIP network and 71 from the MIPS network and
they are consistent with the overlapping proteins in
CYC2008, which is more than any of the other overlap-
ping methods. The results suggest that the proposed
CPL method handles the overlapping protein problem
well.

4.3.1 Accuracy of the Complexes Predicted by CPL

We investigate the matching between the complexes
predicted by the different methods and the known com-
plexes in the gold standard. As shown in Fig.4, CPL
yields the best recall rates, a PRF metric, of all of the

Table 3. Characteristics of the Complexes Predicted by Various Methods from the Three Networks

Method BioGRID DIP MIPS

#Com #Pro #OVPred #OVKnow #Com #Pro #OVPred #OVKnow #Com #Pro #OVPred #OVKnow

CPL 1 316 3 779 2 409 190 1 192 3 670 1 378 137 975 3 136 84 71

SLCP2 810 3 721 0 0 783 2 980 0 0 653 2 396 0 0

ProRank+ 568 4 623 4 392 179 267 1 304 525 53 235 1 079 402 21

ClusterONE 954 4 368 1 804 97 931 3 661 1 249 68 762 3 146 848 26

MCL 204 5 640 0 0 1 198 5 046 0 0 1 096 4 554 0 0

CFinder – – – – 201 2 216 329 31 178 1 387 192 23

Note: #Com: number of predicted complexes, #Pro: number of proteins covered by the predicted complexes, #OVPred: number of
overlapping proteins in the predicted complexes, #OVKnow: number of overlapping proteins in CYC2008 that are predicted.
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Fig.4. Comparison of CPL with other methods. (a)∼(b) Application of the methods to the BioGRID network. (c)∼(d) Application

of the methods to the DIP network. (e)∼(f) Application of the methods to the MIPS network. (a), (c), (e): comparison of the PRF

metrics. (b), (d), (f): comparison of the composite scores.

tested methods, indicating that it finds the most known
complexes. In Fig.4(a), for example, CPL’s recall is
0.706, which is almost six times that of MCL. MCL
has comparative recall values when applied to the DIP
and the MIPS networks, but has poor precision scores.
It can also be found that CPL provides less precision
scores than ProRank+ and CFinder on DIP and MIPS
datasets. It may be due to that CPL could not handle
the incompleteness of the dataset, as these two networks
are sparser than the BioGRID one. Generally, CPL has
the best F -measure scores on all three networks.

CPL also outperforms the other methods on the
composite score, shown in Figs. 4(b), 4(d) and 4(f).
CPL’s composite score when applied to the BioGRID
network is 1.636, which is approximately three times
that of MCL. The results suggest that CPL can iden-
tify complexes from PPI networks with a high level of
accuracy.

4.3.2 Functional Homogeneity of the Complexes
Predicted by CPL

As the gold standard datasets are incomplete, a pre-
dicted complex that does not match any known com-

plexes may still be valid. We therefore investigate the
biological relevance of the predicted complexes on the
basis of the functional homogeneity of the constituent
proteins. The reason is that the proteins in a complex
tend to be responsible for a specific molecular function
or biological process, or are located in the same cellular
compartment[5,7]. The gene ontology (GO) corpus[30] of
yeast is downloaded from the Saccharomyces Genome
database (SGD) (dated on August 11, 2010).

We use GO::TermFinder (Version 0.83)[31] to com-
pute the p-value for each predicted complex. A pre-
dicted complex that has at least one function annota-
tion with a p-value equal to or smaller than a threshold
p is considered to have functional homogeneity. The
number of complexes in a set of predicted complexes
that are functionally homogeneous is used to evaluate
the performance of the prediction method. Table 4
shows the number of functionally homogeneous com-
plexes predicted by each method. We set p to 1.0E−2,
1.0E−10 and 1.0E−20 and investigate the effect on all
three aspects of GO. Although CPL predicts fewer func-
tionally homogeneous complexes than SLCP2 in some
cases under p = 1.0E−20, it predicts more complexes
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Table 4. Comparison of CPL with Other Methods Using Functional Homogeneity

p Method BioGRID DIP MIPS

MF BP CC MF BP CC MF BP CC

1.0E−2 CPL 1 080 1 098 942 864 754 583 684 596 454

SLCP2 574 424 291 503 370 267 408 326 203

ProRank+ 359 260 170 193 192 153 173 180 144

ClusterONE 381 459 332 297 375 291 306 393 310

MCL 39 63 41 228 295 229 225 342 253

CFinder – – – 80 110 90 95 129 94

1.0E−10 CPL 488 485 498 421 262 230 307 153 94

SLCP2 359 149 95 315 109 80 219 64 39

ProRank+ 165 69 52 83 55 52 56 34 33

ClusterONE 65 112 106 53 64 76 27 52 48

MCL 4 9 7 28 45 53 13 30 26

CFinder – – – 14 18 23 13 19 16

1.0E−20 CPL 328 236 255 340 139 101 268 66 26

SLCP2 338 98 50 302 98 50 211 55 28

ProRank+ 143 36 22 61 24 18 42 7 9

ClusterONE 20 30 43 11 23 28 2 7 6

MCL 3 4 3 7 7 16 0 5 5

CFinder – – – 3 3 7 2 7 3

Note: MF: molecular function, BP: biological process, CC: cellular compartment.

with functional homogeneity than the other methods
in most cases. The results suggest that the complexes
derived by CPL are highly biologically relevant.

In summary, the results show that CPL performs
well in detecting protein complexes and overlapping
proteins, and that the predicted complexes of CPL are
of good quality, as measured by functional homogeneity.
This good performance may be due to the self-adaptive
process of the propagation, which exploits the interac-
tions in the network alone and does not need predefined
descriptions of the complexes.

4.4 Putative Complexes Predicted by CPL

Some of the putative complexes predicted by CPL
are shown in Table 5. The listed complexes are not
reported in CYC2008. The proteins in bold are anno-
tated with the corresponding term in the GO corpus.
Each complex is given an overlapping score between the
predicted complex and the set of proteins annotated by
a certain GO term. Although the listed complexes are
not reported in CYC2008, their overlapping scores are
higher than 0.6, indicating that they are highly likely
to be biologically relevant. These complexes should be
investigated in further biological experiments.

5 Conclusions and Future Work

In this paper, we presented the novel framework
CPL, which generates protein complexes by propa-
gating labels through a PPI network. The main chara-
cteristic of CPL is its self-adaptive label propagation,
which is independent of topological structures and

quality functions. We investigated the performance
of CPL when using the average-based adaptive propa-
gating threshold, propagating intensity based on inter-
action weights, and assigning order based on protein
weights. We also compared CPL with several state-of-
the-art methods. The experimental results show that
the complexes detected by CPL match more known
complexes in the gold standard with a higher accuracy
than the other methods, and also have better functional
homogeneity. The proposed CPL algorithm offers a new
way to detect complexes from a PPI network.

Although CPL performs well, it still has some limi-
tations. Some of the predicted complexes are redun-
dant, which may be due to false positives in the high-
throughput PPI networks. One way to further im-
prove the performance of CPL is to use the struc-
tural PPI data from X-ray crystallography, NMR spec-
troscopy, and other high-resolution techniques. The
reason is that it could provide detailed information
about the residues at an interacting interface. However,
the development of accurate, complete structural PPI
sets is still in its early stages. Although much struc-
tural data is available from the Protein Data Bank[32],
many of the structures are monomeric and do not
show native packing interactions[33]. Computational
approaches, such as docking and homology-based meth-
ods, have recently been proposed for predicting struc-
tural interactions[33-34]. In the future, we will consider
both structural information and graph-based network
about PPIs, to further reduce the noise existing in the
high-throughput PPI networks.
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Table 5. Putative Complexes Predicted by CPL and Their GO Annotations

Complex OS Term p-Value Network

YPL201C, YER062C, YIL053W 1.00 Glycerol biosynthesis 3.09E−10 DIP, MIPS

YLR306W, YLR128W, YDR139C 1.00 Protein neddylation 4.63E−09 BioGRID

YOR257W, YJL019W, YNL188W 1.00 Half bridge of the spindle pole body 1.54E−09 MIPS

YFR029W, YDR160W, YJL156C 1.00 Response to an amino acid stimulus 9.26E−11 BioGRID

YNL223W, YNR007C, YBL078C, YHR171W, 0.80 C-terminal protein lipidation 1.56E−12 BioGRID

YLR450W

YLL001W, YKR036C, YIL065C, YJL112W, 0.80 Mitochondrial fission 4.65E−13 BioGRID

YBL029W

YLR376C, YIL132C, YHL006C, YDR078C, 0.80 Error-free DNA repair 6.77E−13 BioGRID

YLR046C

YNL106C, YIL002C, YOR109W, YIR006C 0.75 Phosphoinositide 5-phosphatase 1.97E−09 MIPS

YHL003C, YKL008C, YMR298W, YNL107W 0.75 Ceramide biosynthesis 1.23E−09 MIPS

YDR078C, YHL006C, YLR376C, YLR046C 0.75 Error-free DNA repair 3.95E−09 DIP, MIPS

YDR507C, YCL024W, YKL048C, YGR021W 0.75 Septin checkpoint 1.26E−08 BioGRID

YPR145W, YGR124W, YBL039C 0.67 Asparagine synthase activity 5.63E−07 BioGRID

YLR284C, YOR180C, YGR263C 0.67 Dodecenoyl-CoA delta-isomerase 5.63E−07 DIP

YCR048W, YNR019W, YLR242C 0.67 Sterol O-acyltransferase activity 7.88E−07 MIPS

YML106W, YMR271C, YDR058C 0.67 Orotate phosphoribosyltransferase 5.63E−07 BioGRID

YLR354C, YGR043C, YIR034C 0.67 Transaldolase activity 4.50E−07 BioGRID

YJR148W, YHR208W, YHR152W 0.67 Branched chain amino acid transaminase 5.63E−07 DIP

YBL039C, YJR103W, YDR133C 0.67 CTP synthase activity 4.50E−07 MIPS

YGL253W, YFR053C, YPR042C 0.67 Fructose transport 5.52E−06 BioGRID

YER062C, YIL053W, YPL201C 0.67 Glycerol-1-phosphatase activity 6.76E−07 DIP, MIPS

YEL041W, YJR049C, YOR009W 0.67 NAD+ kinase activity 7.88E−07 BiGRID, MIPS

YDL138W, YDL194W, YDR277C 0.67 Glucose binding 7.88E−07 BioGRID

YDL182W, YDL131W, YNL247W 0.67 Homocitrate synthase activity 5.63E−07 BioGRID

YAL054C, YLR153C, YLR049C 0.67 Acetate-CoA ligase activity 6.76E−07 MIPS

Note: Proteins in bold are annotated by the corresponding GO terms. OS: overlapping score.
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