
Dong K, Gu T, Tao XP et al. Complete bipartite anonymity for location privacy. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 29(6): 1094–1110 Nov. 2014. DOI 10.1007/s11390-014-1493-y

Complete Bipartite Anonymity for Location Privacy

Kai Dong1,2 (董 恺), Tao Gu3 (顾 涛), Senior Member, IEEE, Member, ACM
Xian-Ping Tao1,2,∗ (陶先平), Member, CCF, IEEE, and Jian Lv1,2 (吕 建), Fellow, CCF, Member, ACM

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
2Institute of Computer Software, Nanjing University, Nanjing 210046, China
3School of Computer Science and Information Technology, RMIT University, Melbourne, Victoria 3001, Australia

E-mail: kaidong@smail.nju.edu.cn; tao.gu@rmit.edu.au; {txp, lj}@nju.edu.cn

Received October 28, 2013; revised April 18, 2014.

Abstract Users are vulnerable to privacy risks when providing their location information to location-based services (LBS).
Existing work sacrifices the quality of LBS by degrading spatial and temporal accuracy for ensuring user privacy. In this
paper, we propose a novel approach, Complete Bipartite Anonymity (CBA), aiming to achieve both user privacy and quality
of service. The theoretical basis of CBA is that: if the bipartite graph of k nearby users’ paths can be transformed into a
complete bipartite graph, then these users achieve k-anonymity since the set of “end points connecting to a specific start
point in a graph” is an equivalence class. To achieve CBA, we design a Collaborative Path Confusion (CPC) protocol which
enables nearby users to discover and authenticate each other without knowing their real identities or accurate locations,
predict the encounter location using users’ moving pattern information, and generate fake traces obfuscating the real ones.
We evaluate CBA using a real-world dataset, and compare its privacy performance with existing path confusion approach.
The results show that CBA enhances location privacy by increasing the chance for a user confusing his/her path with others
by 4 to 16 times in low user density areas. We also demonstrate that CBA is secure under the trace identification attack.

Keywords location privacy, k-anonymity, path confusion, query obfuscation, complete bipartite anonymity

1 Introduction

With the advances of global positioning system
(GPS) and mobile devices, people can easily obtain
their location information, and access a wide range of
location-based services (LBS). To access LBS, users
have to reveal their locations to location-based service
providers (LSP). This poses significant privacy risks
since users’ location information may be disclosed.

Two different approaches have been proposed to pre-
serve location privacy. Spatial and temporal cloaking[1]

uses location blurring in which an accurate location is
blurred into an area and all the requests from this area
within a certain period of time are managed together
to achieve anonymity. Some other studies use the same
concept in different settings such as [2-4]. Another
approach[5] achieves user anonymity by leveraging the
concept of mix zone, which has been widely adopted
in [6-8]. A mix zone exists if there are enough users
located in the same place at the same time. Since no
location information is reported when users are in a mix

zone, their traces are “mixed”. As such, the LSP can-
not distinguish a user either when he/she is in a mix
zone or after he/she moves out of the zone.

However, many LBSs such as GeoLife[9] and Face-
map① rely on an accurate, continuous, and real-time
stream of location information to provide high quality
of service (QoS). It remains a challenging issue to bal-
ance the privacy with functionality. The aforemen-
tioned techniques do not guarantee the desired QoS.
The cloaking-based techniques degrade the spatial ac-
curacy and increase the delay in reporting users’ loca-
tions; and the mix zone based techniques temporarily
prevent users from reporting their locations in the zone
area, resulting in the loss of their accurate locations.

This paper extends our previous work[10], and uses
complete bipartite anonymity (CBA) to achieve both
privacy and functionality (QoS) for LBS. The intuition
behind CBA is simple. We group k nearby users into
a specific region, named CBA zone, to ensure that the
users enter or leave the region at the same time. Our
idea is to confuse the paths of these users by connecting

Regular Paper
This work was supported by the National Natural Science Foundation of China under Grant Nos. 61373011, 91318301, and

61321491.
∗Corresponding Author
①http://zen-mobi.com/, Sept. 2014.
©2014 Springer Science +Business Media, LLC & Science Press, China

Kai Dong et al.: Complete Bipartite Anonymity for Location Privacy 1095

their traces with fake ones. In a CBA zone, a user not
only reports his/her real trace, but also generates fake
traces connecting to the traces of all other users. All
the traces in a CBA zone compose a complete bipartite
graph where each entry or exit point is a vertex and
there exists a query trace for each pair of (entry, exit)
(i.e., edge). In this case, we say this group of users
satisfies complete bipartite anonymity, since the proba-
bility of tracing a user from his/her entry to his/her
real exit is 1/k. For this user group, the functionality
is also achieved since every user is able to query LBS
with his/her accurate, continuous, and real-time loca-
tion information.

Although this idea works in principle, developing a
realistic CBA scheme is non-trivial. The first question
is that how nearby users can find each other to cre-
ate a CBA zone as far as privacy is concerned. The
LSP may not be trustworthy, thereby user privacy can
be violated if a CBA zone is generated based on the
information provided by the LSP. In this work, we pro-
pose a collaborative path confusion mechanism to en-
able nearby users to work together to generate a CBA
zone without involving any trusted entities. Second, we
use fake traces for path confusion[6]. At its entry point,
each user generates the fake traces to the exit points of
all other users. This means each user has to know in
advance the exit points. To achieve this, we design a
local prediction engine in which each user can predict
these exit points. Third, how to ensure the fake traces
resemble the real ones is a difficult task. Recent studies
have demonstrated that fake traces can be distinguished
from realistic user move patterns, e.g., Peddinti et al.[11]

presented a classification attack that can identify up to
93.67% of real user trips from a dataset with 5 times
fake user trips. To address this problem, we propose a
cloaked obfuscation method which removes the charac-
teristics in real move patterns to make it indistinguish-
able from fake ones.

The rest of the paper is organized as follows. We
first discuss the related work in Section 2. We then de-
scribe the idea of CBA in Section 3, and the detailed
scheme of CBA in Section 4. Section 5 presents the
evaluation, and Section 6 concludes the paper.

2 Background and Related Work

In this section, we define what we mean by “location
privacy”, and survey the existing techniques preserving
location privacy.

2.1 Understanding Location Privacy

According to Machanavajjhala et al.[12], “the key to
defining privacy is to model knowledge of the attacker”.
To better understand users’ location privacy in LBS, we

must first look at how a user’s location is disclosed. To
access LBS, users have to reveal their locations to LSP.
This poses significant privacy risks since the LSP may
be untrustworthy and disclose users’ information.

Anonymous communication techniques have been
proposed to preserve location privacy. In these tech-
niques, user ID is typically omitted and the net-
work address is handled by mechanisms such as onion
routing[13] to ensure user anonymity. However, reveal-
ing anonymous positional information still poses new
problems[1]. The anonymous locations can be classified
by their temporal and spatial relationships, to discover
traces of different users[14], much like a trial of bread-
crumbs left by Hansel and Gretel in the fairy tales. An
adversary may mount an identification attack to iden-
tify and track a subject if the breadcrumb trial contains
some “identifying locations”. For example, if the LBS
is invoked at the time when a user is in the garage, the
location coordinates can be mapped to the address of
the owner of the residence.

In this paper, location privacy refers to users’ ability
to avoid being tracked or identified by the aforemen-
tioned attack.

2.2 k-Anonymity and Spatial Cloaking

Much work has been done by leveraging the concept
of k-anonymity to preserve users’ location privacy. k-
anonymity is originally proposed by Sweeney[15] to pro-
tect sensitive information from being disclosed. A table
satisfies k-anonymity if every record is indistinguish-
able from at least k − 1 other records with respect to
every set of quasi-identifiers. To achieve k-anonymity,
a generalization function is often used[16] to obscure the
quasi-identifiers. If an aggregation of k reports of diffe-
rent individuals satisfies k-anonymity, the probability
of identifying an individual will be theoretically 1/k.

Gruteser and Grunwald[1] proposed spatial and tem-
poral cloaking to preserve location privacy. In this
technique, all the requests (from at least k different
users) from an area within a certain period of time
are managed together as an anonymity set to achieve
k-anonymity. This idea of spatial cloaking has been
widely adopted, e.g., in [2-4, 17].

In these approaches, there exists a trade-off between
functionality and privacy, i.e., to ensure privacy, they
sacrifice the granularity of location information. As a
result, users cannot access accurate LBSs.

2.3 Mix Zone and Path Confusion

Path confusion[6] addresses the trade-off between lo-
cation privacy and the QoS of LBS. In path confusion,
two users change their pseudonyms when they cross
their paths to become indistinguishable. This “cross”

1096 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

of their paths serves as a small mix zone, where multi-
ple users achieve anonymity when they occupy the same
place at the same time[5].

Different algorithms are developed to implement
path confusion. Hoh et al.[7] proposed path cloaking,
which ensures two users pass a same place at diffe-
rent time, can incorporate a delay to expose this lo-
cation to the LBS at the same time. Meyerowitz and
Choudhury[14] proposed a solution named CacheCloak
to cache service results. When a user requests loca-
tion data, the CacheCloak server either returns cached
data or obtains new data from the location-based ser-
vice, thus a user’s location is surrounded and mixed by
other users’ paths.

In these approaches, a trusted third party (TTP) is
required to notify nearby users’ existence and confuse
their paths. However, the TTP may cause a single point
of failure problem. Furthermore, in real life, we are not
convinced that there exists such a TTP which is really
trusted by all the users. Hence, the solution that relies
on a single entity to collect and store all information
from users may not work in reality.

2.4 Collaborative Location Privacy

Several approaches have been proposed to ad-
dress the above limitation by providing a peer-to-peer
(P2P) method to achieve collaborative location pri-
vacy. Shokri et al.[18] introduced MobiCrowd to in-
crease privacy without assuming third party servers.
In MobiCrowd, each user buffers context information
he/she obtained until it expires; and this information
is spread to nearby users through Wi-Fi ad hoc connec-
tion. Hence a user does not need to access the LBS if
some other user sends him/her the requested informa-
tion. Christin et al.[19] proposed a similar collaborative
path hiding mechanism for participatory sensing appli-
cations. The main difference is that when users en-
counter each other, they exchange part of their sensed
information; and when a user reaches his/her destina-
tion, he/she reports all his/her buffered information to
the server. Thus the server can obtain the sensed in-
formation, and in the meanwhile the users’ historical
paths are mixed.

The existed P2P approaches have their limitations,
since they cannot provide real time context information
to the users.

2.5 Query Obfuscation

A different technique to preserve location privacy is
to use dummies or fake queries. Kido et al.[20] proposed
the concept of dummies to achieve k-anonymity when
user density is low. Some recent researches use different
data mining methods to generate dummies. Krumm[21]

proposed a probabilistic model, and Shaker et al.[22]

proposed a statistical clustering technique.
There are two limitations in these techniques. The

first limitation is the cost — users have to query k − 1
extra times to achieve k-anonymity, and the LSP has to
process and respond to all these fake queries. Although
the overhead may be acceptable in the realm of bits,
the cost will be too high for real world services[5]. Sec-
ond, recent studies have demonstrated that fake traces
can be distinguished from realistic user move patterns,
e.g., Peddinti et al.[11] presented a classification attack
that can identify up to 93.67% of real user trips from a
dataset with 5 times fake user trips.

2.6 Complete Bipartite Anonymity

In our previous work[10], we proposed CBA to
achieve both privacy and functionality. For a certain
area, the users’ paths compose a bipartite graph, where
each path contains a start point and an end point. CBA
generates fake traces for these users, and turns the bi-
partite trace graph to a complete bipartite graph. CBA
ensures user anonymity since the set of “end points con-
necting to a specific start point” is an equivalence class.

This work extends our previous work by enhancing
CBA from both privacy and functionality. We now
assume the confusion server is untrustworthy, and re-
design the Collaborative Path Confusion protocol in
Section 4. We propose a symmetric key exchange pro-
tocol in Subsection 4.1, leveraging on Wi-Fi Direct for
the authentication between nearby users. Now users’
privacy is ensured even if the confusion server performs
some strong attacks like the man-in-the-middle attack.
We also design a new prediction engine in CBA in
Subsection 4.2, implemented by using the Google Map
APIs. Nearby users now can predict where they meet
each other more precisely. Experiments also show that
users now achieve higher privacy and functionality.

3 Complete Bipartite Anonymity: The
Principle

In this section, we first define CBA, and then use an
example to show how CBA achieves both privacy and
QoS. The terms and notations used later are listed in
Table 1.

3.1 Definitions

Based on the breadcrumb effect, a user’s queries can
be classified and linked to form a trace.

Definition 1 (Trace). A trace T is composed of a
sequence of coordinates,

Sc =
(
(x0, y0), (x1, y1), . . . , (xn, yn)

)
,

Kai Dong et al.: Complete Bipartite Anonymity for Location Privacy 1097

Table 1. Notations Used

Term Definition

Z Zone

G Graph

T Trace

Sc Sequence of coordinates

St Sequence of time stamps

l(x, y) Location (coordinates)

t Time stamp

d Moving direction

o Destination direction

f Query frequency

and a sequence of corresponding time stamps

St = (t0, t1, . . . , tn).

A user has a trace T means that, at each time ti ∈ St,
this user reports (xi, yi) ∈ Sc as his/her location.

Definition 2 (Real Trace). If all the coordinates
(xi, yi) ∈ Sc that a user reports are his/her real loca-
tions, his/her trace T is a real trace.

Definition 3 (Obfuscating Trace). Otherwise, T is
an obfuscating trace.

For a group of users U , each user has a different
trace. The distance between any two traces can be mea-
sured by two thresholds: the spatial distance disS and
the temporal distance disT. Based on these thresholds,
we give the following definition.

Definition 4 (Nearby Trace). Two traces T1, T2 are
nearby traces if and only if they satisfy that:

∀x1, y1, t1, (x1, y1) ∈ S ′c1
∧ t1 ∈ S ′t1

∃x2, y2, t2, (x2, y2) ∈ S ′c2
∧ t2 ∈ S ′t2

→ |(x1, y1)− (x2, y2)| < disS ∧ |t1 − t2| < disT.

Definition 5 (Zone). For a user group U , each user
ui ∈ U has a trace Tui . For each trace Tui , if we can
find a sub-trace T ′ui

= (S ′c,S ′t), where S ′c ⊆ Sc∧S ′t ⊆ St,
satisfying any two of these sub-traces are nearby traces,
there exists a smallest zone Z which covers all these
sub-traces.

Definition 6 (Trace Graph). In a zone Z, tak-
ing the first and the last coordinate and the time
stamp of each trace as vertices, and taking all the
traces (including both the real traces and the obfuscating
traces) as edges, we get the trace graph GZ of Z.

Definition 7 (Complete Bipartite Anonymity). If
the trace graph of a zone is a complete bipartite graph,
we name this zone a CBA zone. The user group in a
CBA zone satisfies complete bipartite anonymity, and
we name it a CBA group.

As illustrated in Fig.1, in a CBA zone, a group
of users satisfying CBA generate obfuscating traces to

confuse real traces of each other, ensuring user privacy.
Meanwhile, each user is still able to query LBS with
his/her accurate, continuous and real-time location in-
formation, achieving a high QoS.

Fig.1. Complete bipartite anonymity. In a CBA zone, (a)

presents the real trace of user A, B and C, respectively, repre-

sented by the solid line; (b) presents a complete bipartite graph,

where obfuscating traces are generated, represented by the dotted

line.

3.2 Illustration Example

We now use a two-user example to illustrate how
CBA works in principle. Suppose users A and B access
LBS anonymously, they may be traced and identified
since they update their accurate locations continuously.
When they drive close in an area, their queries form
two nearby traces in a zone Z. To generate a CBA
zone from Z, user A and user B apply the Collabora-
tive Path Confusion protocol. First they discover each
other with the help of a confusion server, apply a key ex-
change protocol to establish a symmetric key, and then
predict their exit points using a local prediction engine.
An obfuscating trace will be generated to connect one’s
entry to the other’s exit. To resemble their obfuscating
traces to the real ones, a cloaked obfuscation technique
is used to remove the characteristics of their move pat-
terns. In the zone area, their queries form a complete
bipartite trace graph, thus Z is a CBA zone, and they
form a 2-anonymity CBA group. After both users leave
zone Z, they are still untraceable. As shown in Fig.2,
the grey area represents a CBA zone created by user
A and user B. They become indistinguishable after
they pass this CBA zone. In the following sections, we
describe the detailed design of CBA.

4 Collaborative Path Confusion

The Collaborative Path Confusion (CPC) protocol
enables nearby users to confuse their paths collabo-
ratively. It involves three elements: the LBS server,
the mobile user, and the confusion server. The confu-

1098 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

sion server aggregates users’ locations to notify nearby
users’ existence and provides a communication channel
for these users. In our design, we do not assume the
confusion server to be a trustworthy entity, and we will
discuss related security issues in Subsection 4.2.

Fig.2. Example of 2-anonymity CBA zone (user A and user B

each generates a fake trace to confuse each other’s real paths).

Fig.3 gives an overview of how CPC works in a two-
user scenario. A mobile user (i.e., A) queries an LBS
server with his/her accurate location information con-
tinuously in real time. In the meanwhile, he/she gene-
rates a tile ID by using a public location generaliza-

tion function, and reports this tile ID to the confusion
server. The confusion server selects users sharing the
same tile ID by using a matching function, and notifies
these users the existence of each other. With this server,
nearby users (e.g., B) exchange their moving patterns,
including their locations, directions, and speeds by us-
ing the information exchange function. Based on these
information, they predict their real paths by using a lo-
cal cross prediction function, and use the trace genera-
tion function to generate the obfuscating traces. CPC
ensures user anonymity since all these paths are con-
fused, and it also ensures the quality of the LBS since
users report their accurate locations.

We now describe the details for the aforementioned
methods (i.e., location generalization, matching, infor-
mation exchange, cross prediction and trace generation)
in the following subsections.

4.1 Location Generalization and Matching

In CPC, the confusion server collects users’ loca-
tions, and notifies users if they come close to each
other. In case that the confusion server is not trustwor-
thy, users only report their generalized locations with
pseudonyms, described as follows.

By using GPS, a user A obtains his/her current loca-
tion which is represented by a GPS coordinate with lati-
tude and longitude, e.g., (+00.123 456,−01.234 567).
We then generalize the coordinate to an area with a
radius of 100+ meters, which is reasonable for building

Fig.3. Overview of the CPC protocol.

Kai Dong et al.: Complete Bipartite Anonymity for Location Privacy 1099

a CBA zone. This can be done by rounding off
the coordinate to the third decimal (the third deci-
mal represents an accuracy of 110m to 160 m), i.e.,
(+00.123,−01.235). A tile ID is then generated by ap-
pending the longitude bits to the latitude bits (a sign
bit is added), i.e., A’s tile ID is 100123001235.

We define the matching method to find nearby users
for any given user. Finding all the users sharing a same
tile ID can be implemented by an SQL operation in the
database (table T) maintained by the confusion server.

“SELECT t2.id WHERE t2.tile id = t1.tile id (SE-
LECT t1.id)”.

Since nearby users may be located in two neighbor-
ing tiles, the matching method returns all the nearby
users within the same tile, as well as the users in the
next tile.

4.2 Information Exchange

In CPC, users require other users’ information in-
cluding location, time, speed, and direction to pre-
dict their paths. The information is transmitted via
the communication channel provided by the confusion
server. The transmitted information may be revealed
by attacks such as eavesdropping if the confusion server
is untrustworthy. Simple key exchange protocols such
as Diffie-Hellman key exchange may not secure this pro-
cess since the confusion server may masquerade as a
normal user or perform the man-in-the-middle attack
to obtain the shared symmetric key.

To address this problem, we design a symmetric key
exchange protocol implemented in the information ex-
change method to secure all the information exchange
among nearby users. Users can first apply the Diffie-
Hellman (D-H) key exchange protocol to exchange a
symmetric key which may not be secure, then use Wi-
Fi Direct to discover each other and authenticate the
symmetric key. Our symmetric key exchange protocol
operates in four phases: D-H key exchange, peer dis-
covering, authentication, and encryption and transfer,
as illustrated in Fig.4.

D-H Key Exchange. Two nearby users (i.e., A and
B) who wish to exchange information will need to es-
tablish a symmetric key ki via the confusion server ap-
plying the D-H key exchange protocol. To do this,
they first negotiate a public prime number p and a
public base g. One user, say A, then chooses a se-
cret integer a and sends a message mA to B where
mA = ga mod p; correspondingly, B chooses a secret
integer b and sends mB = gb mod p to A. Next, A com-
putes sA = ma

B mod p and B computes sB = mb
A mod p.

Since sA = ma
B mod p is equal to mb

A mod p = sB ,
A and B now share a common secret key generator
s = sA = sB for computing a symmetric key ki. ki

may not be secure since the D-H key exchange protocol
does not provide user authentication.

Adversary Model. We suppose two adversary mo-
dels. A weak adversary can perform a masquerade at-
tack, where the adversary masquerades as user A to
obtain B’s accurate location and his/her moving pa-

Fig.4. Symmetric key exchange protocol.

1100 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

tterns, or vice versa. A strong adversary (e.g., when
the confusion server is compromised) can perform the
man-in-the-middle attack (even if A and B are both
real users) and establish two distinct D-H key exchanges
(one with A and the other with B) to obtain both their
accurate locations. In CPC, we use Wi-Fi Direct to
authenticate each user and defend these two attacks,
which will be described in the following phases.

Peer Discovering. To discover the existence of
nearby users, we use the Wi-Fi Direct protocol since
it is widely available in many smartphones. Wi-Fi
Direct provides an API, the discoverPeers() function
for this purpose. To do so, user A generates a string
A′|tA consisting of his/her pseudonym A′ and a time
tag tA, and then uses ki to encrypt this string and
moderates his/her device name as cypher text A′′ =
Encki

(A′|tA). After that, A calls the discoverPeers()
function. Meanwhile, user B sets his/her device name
as B′′ = Encki

(B′|tB) and also calls the discoverPeers()
function. At the end of the peer discovering phase, user
A finds a nearby peer B′′, and user B finds a nearby
peer A′′.

Authentication. To make ki secure, A and B de-
crypt his/her peer’s device name to get its pseudonym
respectively. In this case, A is expected to get B′, and
B gets A′ to authenticate each other. The weak ad-
versary will not be able to masquerade as a fake user
unless it controls a device near the target user.

We now prove that the strong adversary will not be
able to perform the man-in-the-middle attack as well.
When the adversary establishes two distinct D-H key
exchanges, it may masquerade as either a real user (i.e.,
A′ or B′) or a fake user (i.e., C). In the case of a fake
user C, it will be recognized since A and B do not dis-
cover a peer with the device name Enck(C|t). In the
case of a real user A′ or B′, it shares a key k1 with A
and another key k2 with B. This means users A and
B do not share the same key, thus A cannot use k1 to
decrypt B′′ = Enck2(B

′|tB), and vice versa for B. As
a result, the adversary can be recognized.

Encryption and Transfer. Using ki, A and B can
encrypt their messages. They exchange information in-
cluding accurate location, time, speed, moving direc-
tion, and destination direction. The moving direction
(i.e., the direction that a user is currently heading) can
be obtained by the mobile phone from its accelerometer
readings. The destination direction is set by a user.

4.3 Cross Prediction

After information exchange among nearby users,
they predict where they will meet each other. This is
done by the cross prediction method consisting of the

following two steps. First, it applies a prediction en-
gine to compute an area where two users are present at
the same time, and it then refines the area with a road
map.

Prediction Engine (Named JointCache). A method
FZ is called by both users A and B to generate three
areas.

FZ : L,D,O → Z.

It takes inputs of current locations l ∈ L, moving di-
rections d ∈ D and orientations (destination directions)
o ∈ O from both users, and outputs three areas zi ∈ Z.

As illustrated in Fig.5, users A and B move ap-
proaching to each other. dA, oA, and dB form an trian-
gle area, and we name this area A’s cache zone, similar
for B. The two cache zones have an overlap area (i.e.,
an quadrangle area), named the joint zone. The joint
zone is where the two users’ paths will intersect each
other. Both the two cache zones form an area named
the CBA zone where we can find a complete bipartite
graph with four vertices.

Fig.5. Joint zone and cache zone generation. The grey area rep-

resents the joint zone generated by user A and user B, and the

white area represents the cache zones.

Refinement. With the knowledge of a local map,
FZ can be improved. We first describe the points of
interest (POIs). A continuous area zi is composed of
infinite location points, and only a definite number of
these location points can be inputs of certain LBS. For
any zi, we use Google Maps API② and find a set of
location points {li}, satisfying that 1) li is a point of
a road in Google Maps, 2) the discrete location points
Li are sufficiently dense to ensure accurate QoS, and 3)
li is as sparse as possible to have a minimum i. These
location points are POIs in JointCache.

To decide the POIs, a user first generates a set of
discrete location points {Li} from a continuous area A.
Let

②https://developers.google.com/maps/, Sept. 2014.

Kai Dong et al.: Complete Bipartite Anonymity for Location Privacy 1101

A = {L(x,y)|xmin 6 x 6 xmax ∧ ymin 6 y 6 ymax},
where (x, y) represents the coordinates. Then the user
calculates

{Li} = {L(x,y)|L(x,y) ∈ A ∧ x mod r = 0∧
y mod r = 0},

where r indicates the radius of an area, which is precise
enough to meet accurate QoS. The area A can be di-
vided into several grids, the side length of which equals
to r, and each point in {Li} is the center of a grid. For
any points within A, we can find a point in {Li} such
that the distance between these two points is less than
r/
√

2. Note that even in very severe situations, when
the LBS requires very accurate locations, the distance
can be larger than 10 meters due to the accuracy of
GPS positioning. Based on this understanding, Joint-
Cache uses the set of discrete location points {Li} to
represent the continuous area A when accessing LBS.

From {Li} we choose the points satisfying the follow-
ing conditions as POIs: 1) There must be at least one
road, which can be obtained from Google Maps API,
passing through the grid which contains the point. 2)
In the grid, the centerline of this road must be longer
than r/2. 3) This road is reachable to the current loca-
tion of the user in the road graph. Fig.6(a) illustrates
how to decide the POIs and Fig.6(b) shows an example.

We define the POIs laying on the border of the joint
zone as vertices of the trace graph, one of which must
be the entrance point of the user to the joint zone, while
the others are candidate exit points as outcomes C of
the prediction.

4.4 Trace Generation

Having the candidate exit points, a trace generation
method FT is called by both users A and B to generate
all the traces.

FT : Lf , C, t, f → {T }.

This method takes the start location Ls ∈ Lf , the end
location Le ∈ C, and the corresponding time stamps
ts, te, and a reporting frequency f as inputs, and out-
puts a trace Ti = (Sic

,Sit
). Here, the frequency

means the frequency of a user accessing a certain LBS
(or reporting his/her locations to the LBS). This fre-
quency can be identifying information since two users
with different reporting frequencies can easily be dis-
tinguished. In our method, we require the users A and
B change their frequencies to a similar one. The fre-
quency f can be different for different LBSs to ensure
functionality.

We use Google Maps API to implement FTraceGen.
The API takes the source and the destination pair
(Ls,Le) as inputs, and generates the shortest path be-
tween them. The locations in Sc are evenly distributed
in the shortest path, and the time stamps in S ′t satisfy:

∀i, ts < ti 6 te ∧ ti = ti−1 + 1/f.

Trace Identification Problem. One of the most sig-
nificant challenges in the query obfuscation based tech-
niques is how to generate fake traces indistinguishable
from real user move patterns. Peddinti et al.[11] pre-
sented two types of attacks depending upon whether a
short-term query history is available. When the history
is available, a classification attack can be performed by
using machine learning such as the support vector ma-
chine (SVM) classifier which can be trained with the
user training data and the fake query training data
generated from known user trips. In the absence of his-
tory, a trip correlation attack can be performed based
on two metrics — distance and average speed. For the
security parameter k = 5, i.e., four fake traces will be
generated to obfuscate one real trace, the classification

Fig.6. Deciding the POIs. (a) JointCache outputs the grey area, then narrows it down to roads with the knowledge of a local map.

POIs are spread on these roads. (b) Example of POI decision.

1102 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

attacks can identify up to 93.67% of user trips, with
only 2.02% of fake trips misclassified, and the trip corre-
lation attacks can increase the user query identification
probability from 20% to 40%.

Cloaked Obfuscation. We address the trace identi-
fication problem from a new perspective. Instead of
generating fake traces resemble to the real ones, we re-
move the characteristics in real user move patterns to
make it resemble to the fake ones while the accuracy of
the location information is still guaranteed. We name
this method “cloaked obfuscation”.

Before we introduce the details of cloaked obfusca-
tion, we first need to define one special type of obfus-
cating traces — the cloaking trace.

For any real trace, which is composed of real loca-
tions and real time stamps

T =
(
((x0, y0), t0), ((x1, y1), t1), . . . , ((xn, yn), tn)

)
,

the user can generate a corresponding cloaking trace.
The first step is to use the prediction engine with the
input of the real start point to predict the end point
((x′n, y′n), t′n). The second step is to call the trace gene-
ration method FT to connect the real start point and
the predicted end point, and generate an obfuscating
trace,

T ′ =
(
((x0, y0), t0), ((x′1, y

′
1), t

′
1), . . . , ((x

′
n, y′n), t′n)

)
.

This cloaking trace has the following features.
1) The distance between the cloaking trace and the

real trace is small. If the prediction is accurate and the
method FT outputs a path that the user really moves
through, for every point in the real trace, there exists
a point in the cloaking trace satisfying that the spatial
distance disS and the temporal distance disT of these
two points are small enough. This means the user can
access LBS with the cloaking trace, while QoS is still
guaranteed.

2) The cloaking trace and the other obfuscating
traces can be indistinguishable. Since the cloaking trace
is generated using the same function FT as normal ob-
fuscating traces, they are indistinguishable under at-
tacks based on data mining techniques without extra
knowledge on the user’s real trace. We prove the secu-
rity of the cloaked obfuscation method by reducing it
to that of the mix zone (in Subsection 5.4).

An example is shown in Fig.7. The solid line repre-
sents the user A’s real trace, and the dotted line rep-
resents A’s fake trace. In Fig.7(a), using trace identifi-
cation, the real trace and the fake trace can be distin-
guished. Fig.7(b) shows how this problem is solved by
CBA. Every time user A accesses LBS in a CBA zone,
he/she sends only fake queries with his/her fake loca-
tions (represented as F1 and F2). Since F1 and F2 are

generated with the same algorithm, with no other back-
ground knowledge, they cannot be distinguished using
machine learning techniques.

Fig.7. Real trace, obfuscating trace, and the predicted cloaking

trace. The solid lines indicate A’s real traces, and the dotted lines

indicate the fake traces. In (a), using machine learning, A’s real

trace and fake trace F1 (obfuscating trace) can be distinguished

based on his/her move patterns. In (b), user A generates a fake

trace F2 (cloaking trace) to approximate his/her real trace — in

this case, F1 and F2 are indistinguishable.

4.5 CPC for Multiple Users

In the situation where there are multiple users in a
CBA zone, i.e., k users nearby, we now illustrate how
to create a k-anonymity CBA zone with CPC. When
k users are close by, we can find a sub-trace for each
user where all these sub-traces are nearby traces, and a
zone Z which concludes all these sub-traces. Each pair
of these k users can create a 2-anonymity CBA zone
Zi, where Zi ⊆ Z. If each possible pair combination of
users creates a CBA zone, we have C(k, 2) obfuscating
traces in Z and any pair of (entry, exit) is connected.
Thus GZ is a complete bipartite graph and Z is a k-
anonymity CBA zone.

Fig.8(a) depicts an example of 3-anonymity CBA
zone. For users A, B, and C, each pair combination
generates a 2-anonymity CBA zone, i.e., A and B gene-
rate zone I, B and C generate zone II, A and C generate
zone III. Combining these three zones, we obtain a 3-
anonymity CBA zone, represented as the large circle.
In contrast, if A and C are not close enough, they will
not be able to generate a 3-anonymity CBA zone, as
illustrated in Fig.8(b).

In the crowded areas of a city, users have too many
chances to meet others. With k increasing, the num-
ber of obfuscating traces (C(k, 2)) can be very large. It
may be costly in terms of resources used to generate,
send and serve the obfuscating queries. We address this
issue by temporarily restricting a user from calling the
information exchange method.

Kai Dong et al.: Complete Bipartite Anonymity for Location Privacy 1103

Fig.8. CBA zones with multiple users. In (a), users A, B, C are

nearby users. They can generate a 3-anonymity CBA zone which

is composed of three 2-anonymity CBA zones. In (b), since users

A, C are not close enough, they cannot generate a 3-anonymity

CBA zone.

5 Evaluations

We evaluate the CBA scheme from the following as-
pects.
• Can CBA guarantee privacy and functionality at

the same time?
• Can the CPC protocol adapt to real applications?
• Is the prediction engine accurate?
• Is the obfuscation process secure under various at-

tacks?

5.1 Evaluation of CBA Performance

In this subsection, we evaluate the performance of
CBA using real taxi cab traces[23]. The cab traces are
collected in the Cabspotting project③, which tracks the
location of the cabs in the San Francisco Bay area us-
ing on-board GPS devices for 2 071 530 seconds (i.e., 24
days approximately). Each cab reports its location to
the server at various time intervals (e.g., 10 seconds, 8
minutes, 1 hour). The distribution of the time intervals
based on collection frequency is shown in Fig.9. Each
cab’s reports are aggregated to form a mobility trace
and saved in a separate ASCII file which contains many
lines of (latitude, longitude, occupancy, time), where the
latitude and the longitude are in decimal degrees, the
occupancy shows if a cab has a fare (1 = occupied, 0
= free) and the time is in UNIX epoch format. The
dataset contains 11 219 955 records of 536 cabs in total.

5.1.1 Parameter Setting

In the implementation of CBA, there are three key
parameters in generating CBA zones: the speed δφ and
the turning angle δψ of users, and the query frequency
f . We set these parameters as follows. Fig.10(a) shows
the CDF of the speed for all the users and only the fre-

Fig.9. Features of the cabspotting dataset. (a) Distribution over

24 days. (b) Distribution in a day.

quent querying users, respectively. We set δφ to
36 km/h since most of the users drive slower than this
speed. Fig.10(b) shows the CDF of the turning angle
between any two records when a user is making a turn.
We observe that it is unlikely that users turn at an an-
gle larger than π/2 (even if a user makes a “U” turn,
his/her turning angle between two records is not π),
thus we set δψ to π/2. Fig.10(c) shows the CDF of
query intervals. We set f to 1/60 Hz since 80% of the
queries are sent within 60 seconds.

5.1.2 System Performance

Among the existing techniques, two approaches —
the path confusion approach[6] and the query obfusca-
tion approach[22] — can preserve privacy while guaran-
teeing the LBS functionality. We compare the perfor-
mance of CBA with these two approaches, and report
the results in the subsections below.

Waiting Time. We use waiting time tw to indicate
the time interval when a user is not covered by a CBA.
It is defined as the time interval between a user leaving

③http://cabspotting.org/, Oct. 2014.

1104 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Fig.10. CDF of different parameter settings. (a) Speed δφ. (b) Turning angle δψ . (c) Query frequency f .

Fig.11. System performance comparison. (a) Comparison of mean waiting time between CBA and path confusion. (b) Comparison

of worst case waiting time between CBA and path confusion. (c) Comparison of cost-effectiveness ratio between CBA and query

obfuscation. The distance parameter dS and the time parameter dT indicate the upper bounds of the CBA zone in the space dimension

and the time dimension.

a CBA zone and joining another CBA zone. The longer
the waiting time a user has, the more likely the user
can be identified. In the path confusion or mix zone
approach, users’ location can be protected when two
users are presented in the same place at the same time.
However, in the low user density areas of a city, peo-
ple may not meet each other very frequently, resulting
in long waiting time. CBA does not require that users
have to meet each other. Instead, users in a CBA zone
can confuse their paths with each other using obfuscat-
ing traces.

We compare the waiting time between CBA and
path confusion. The results in Fig.11(a) and Fig.11(b)
show that CBA increases the chance for a user to join
in an anonymity group by about 10 times. Fig.11(a)
shows that on average a user in CBA creates a CBA
zone every 10 minutes, as compared to more than two
hours in path confusion. Fig.11(b) shows that even in
the worst case, a user is still able to create a CBA
zone every three hours, and this is in comparison to
longer than a day in path confusion. Both figures show
that the waiting time decreases with a larger CBA zone.
However, a larger CBA zone may increase the cost of
resources spent to generate obfuscating queries, which
we evaluate in the next experiment.

Query obfuscation does not have this same-place-
same-time problem since a user can generate fake
queries whenever he/she wants. CBA achieves higher
anonymity degree since in low user density areas, it is
easier to perform a classification attack to identify the
obfuscating queries[11].

Cost-Effectiveness Ratio. To indicate the effec-
tiveness of resources used in CBA, we define cost-
effectiveness ratio as follows.

r =
k∑

uWT /
∑

uWTR

,

where k represents the anonymity degree (the k-
anonymity parameter), and W represents the resource
consumed (quantified as the number of queries), T rep-
resents a trace generated by user u, and TR represents
his/her real trace. To achieve the same anonymity
degree, less resources used result in a higher cost-
effectiveness ratio.

In this experiment, we compare CBA with query ob-
fuscation in terms of r, as shown in Fig.11(c). From
the figure, we observe that the cost-effectiveness ratio
of CBA is much higher than that of query obfusca-
tion. For query obfuscation, the cost-effectiveness ratio
is constant: rQuery Obfucation = 1, since users should ge-

Kai Dong et al.: Complete Bipartite Anonymity for Location Privacy 1105

nerate k − 1 fake queries for every real query to
achieve k anonymity. Specifically, when k = 1, we have
rNoProtection = 1. For CBA, fake queries are generated
only in CBA zones, thus only a small proportion (i.e.,
1/m, where m > 1) of queries are fake queries. The
cost-effectiveness ratio for this user can be calculated
as follows.

rCBAzone =
k

WTO
+WTP

/WTP

=
k

1 + 1/m
=

m× k

m + 1
.

Fig.11(c) also shows that the cost-effectiveness ra-
tio decreases with a larger CBA zone, due to more
fake queries generated. We find that even when the
diameter of a CBA zone is up to 100 meters, the
cost-effectiveness ratio of CBA still achieves 10, i.e.,
to achieve the same anonymity degree, CBA only
consumes at most 10% of the resources consumed in
query obfuscation. As mentioned earlier in the previ-
ous section, there exists a trade-off between the waiting
time and the cost-effectiveness ratio. According to our
experimental results, we find that setting the spatial
distance parameter disS (the upper bound of the di-
ameter of CBA zones) to 100 meters achieves the best
trade-off.

Path confusion does not consume additional re-
sources since it does not generate fake queries. Com-
pared with path confusion, CBA consumes at most
10% more resources while solving the same-place same-
time problem, and achieves a higher anonymity degree,
which is measured in the following subsection.

5.1.3 Privacy Performance

We now evaluate the privacy performance of CBA
under the de-anonymizing and re-identification attack.

With the knowledge of user queries, an attacker may
mount an identification attack to identify a target. In
this case, the spatial and temporal information of a
query will be analyzed by an attacker to track an anony-
mous user. If any of these locations in the trace can be
linked with a certain identity, the attacker knows this
user’s real identity with high confidence.

Attacker Model. To simulate an identification at-
tack, we must first consider how an attacker can link
a location with a certain identity. Let pu(lat , long)
represent the probability that an attacker knows user
u’s location in the latitude and longitude coordinate
(lat , long). We have pu(lat i, long i) = 1, if location
(lat i, long i) is an identifying location for user u. The
dataset we used does not contain drivers’ identifying
location information due to privacy reason. Thus, we
introduce two models to simulate how an attacker iden-
tifies a user. In both models, we assume the LSP and
the confusion server are untrustworthy, and hence the

attackers may know all the information the LSP or the
confusion server obtained.

Designation Model. From the dataset, we find every
cab occasionally stops querying or stops moving at diffe-
rent locations for various periods of time. For a user
u, we treat a location as an identifying location in ei-
ther the following situations: u stops querying for more
than 104 seconds (about 3 hours); or u stops moving
but keeps querying for more than 103 seconds (about
17 minutes). Based on this criteria, we designate the
identifying locations for each cab. Within the 24-day
trips of 536 cabs, there are in total 376 896 times that a
cab enters an identifying location, and on average, each
cab is identified for every 50 minutes.

Iteration Model. The more queries sent to the LSP,
the more likely the user can be identified. In the second
model, we use an even distribution model to simulate
the trend that the probability of identifying a user is
increased with the number of queries sent by a user. In
this model, no specific locations are treated as identify-
ing locations. Let Pi denote the probability of identi-
fying a user who queries i times (p = P1 is a constant).

Pi = 1− (1− Pi−1)× (1− p) = 1− (1− p)i.

Privacy Metrics. Hol et al.[7] used information theo-
retic metrics to measure the uncertainty or confusion
in tracking. For any point on the trace, tracking un-
certainty is defined as H = −∑

pi × log2 pi, where pi

denotes the probability that location sample i belongs
to the vehicle currently tracked. Lower values of H in-
dicate more certainty or lower privacy. The tracking
confidence C on attacker’s trial can be calculated as
(1−H). This privacy metrics is also used in [14, 24].

For each identifying location model proposed, we
measure the degree of privacy as the time that an at-
tacker can correctly follow a trace, i.e., the trend that
the attacker’s uncertainty H goes with the user’s online
time t. For a given user, we have a sequence of time
stamps T = {t0, t1, . . . , tn}, and at each time stamp
ti ∈ T , this user sends a query to the server.

In model A, the identifying locations are simulated
as designated locations. Suppose a user u locates at an
identifying location at time tm, the attacker is able to
identify u, and hence the location entropy for this user
Hu(tm) = 0. Starting from this identifying location, u
will be tracked until he/she crosses his/her path with
another user v at time tn. At tn, the location entropy
for both u and v increases. In this example, we have:

Hu(ti) =
{

0, if m 6 i < n,

1, if i = n.

In model B, we choose a random query of a user u
generated at time tr, and assume the track uncertainty
Hu(tr) = 0. User u will be tracked until he/she crosses

1106 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

his/her path with another user v at time tm. At tn,
the location entropy for both u and v increases, and
Hu(tn) = 1. Starting from tn, the track uncertainty
increases with every query sent by u until u crosses
his/her path with some other user again at time tn. In
this example, we have:

Hu(ti) =





0, if r 6 i < m,

1, if i = m,

− log2 0.5× (1− p)i−m, if m < i < n.

The probabilities of identifying a user based on diffe-
rent numbers of queries are shown in Fig.12.

Fig.12. Identification attacker model.

Results and Analysis. For each user in the dataset,
we calculate the location entropy using both attacker
models. The results comparing CBA with the path con-
fusion approach are shown in Fig.13. In all the cases,
CBA has much better privacy performance than the
path confusion approach. In the worst case, when the
user density is very low (shown in Fig.13(b)), CBA
achieves certain anonymity degree (H ≈ 2) while the
path confusion approach cannot provide any protection.

5.2 Evaluation of the Key Exchange Protocol

CBA uses a symmetric key exchange protocol to
encrypt information exchanged between nearby users.
The time consumed in authentication may affect the
performance (i.e., a long period of time in the authen-
tication phase may cause nearby users unable to confuse
their paths in time before they move away). We evalu-
ate the time cost in this procedure.

In this experiment, we have three volunteers, each
carrying a SAMSUNG Galaxy Nexus smartphone with
Android 4.2.1 installed, moving around in a campus
area. Their locations are recorded every 10 seconds,
and reported to a confusion server. Whenever two of
them are coming close to each other (i.e., within 200 me-
ters), the server notifies both devices. Then each device
uses Wi-Fi Direct to discover each other for authenti-
cation, and records the time consumed in this phase.
This experiment lasts for two hours.

Fig.13. Privacy entropy in different cases in both models: comparison between CBA and path confusion. (a) Mean entropy over time

in model A. (b) Worst case entropy in model A. (c) Best case entropy in model A. (d) Mean entropy over time in model B. (e) Worst

case entropy in model B. (f) Best case entropy in model B.

Kai Dong et al.: Complete Bipartite Anonymity for Location Privacy 1107

Figs. 14 and 15 show the results within the distance
range of 130 meters. The authentication works fine with
a distance of 120 meters, but the failure rate increases
to 0.4 with a distance of 130 meters. The authentication
phase can be divided into two steps — the Wi-Fi disco-
very step and the setup step. The Wi-Fi discovery step
in the authentication phase is more time consuming.
It requires 2 to 12 seconds depending on the distance
between two smartphones, as shown in Fig.14(a). The
setup step requires only 0.1 to 0.12 seconds and does not
depend on the distance, as shown in Fig.14(b). Next,
we focus our analysis on the Wi-Fi discovery step.

By analyzing different instances of records, we find
that most discoveries last for 2 to 3 seconds. However
there are cases where the discovery lasts for more than
10 seconds or even longer. These records increase the
time consumed, and the proportion of such records in-
creases with distance. We use a simple quit strategy to
avoid users waiting for too long within a single disco-
very — if no peer is found after starting a discovery for 4

seconds, Wi-Fi is reset and the discovery is re-initiated.
Using this strategy, the average time consumed is re-
duced to 3 seconds as shown in Fig.15(a). Note that the
real line represents the average time consumed, where
the time wasted in these instances is taken into ac-
count. The quit rate increases with distance as shown
in Fig.15(b). When the distance is between 120 and
130 meters, the quit rate is between 0.7 and 0.8.

5.3 Evaluation of Prediction Engine

We use an open source context simulator Siafu④

to evaluate our prediction engine under realistic con-
ditions. The reason that we use a simulator to generate
data instead of using real traces like the cabspotting
dataset[23] is that our prediction engine requires the
users’ orientation to an input, which cannot be found
in most real traces dataset. On the other hand, the
simulator Siafu provides all the moving pattern infor-
mation of the simulated users including location, time,
moving direction, destination (orientation), speed, etc.

Fig.14. Time consumed in the authentication phase. (a) Average time consumed in the Wi-Fi discovery step with different distances.

(b) Average time consumed in the setup step (setup and other operations).

Fig.15. Time consumed in the authentication phase by using the quit strategy. (a) Average time consumed in the Wi-Fi discovery step

with different distances using the quit strategy. (b) Discovery failure rate and quit rate using the quit strategy.

④http://siafusimulator.sourceforge.net/, Sept. 2014.

1108 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

Fig.16. Context simulator Siafu and the city of Leimen.

Our simulation is based on an existing simulation
scenario of Leimen⑤. In this scenario, people in Leimen
lead a simple life. They wake up in the morning, go to
office for work (by walk or car), then go back home,
or go for parties after work. The same pattern repeats
the next day. In our evaluation, we focus on the people
who are driving, and treat them as potential users of
CBA. The simulation runs continuously, and we record
the location information and the moving pattern infor-
mation for all the users (i.e., cars) for every 10 seconds,
and mark each record with the user’s name. The trace
is recorded, and then loaded into our prediction engine,
simulating a real-time stream of location updates from
users.

We focus on cases in which the real traces of two
users are close to each other, i.e., we can find a pair of
records, each from a different trace, where the spatial
distance disS is below a threshold θS, and the tempo-
ral distance disT is below a threshold θT. Since the
recording interval is 10 seconds, we set θT to 10 sec-
onds. Assuming different θS, we randomly select 1 000
cases, and use our prediction engine to calculate the
CBA zone. After we get the CBA zone area, we match
it to the Leimen map as shown in Fig.16 and obtain the
POIs (as we can do by using the Google Maps API) on
the border of the CBA zone as the candidate exit points
of the CBA zone. The results are shown in Fig.17. Our
prediction engine has a success rate of more than 82%
on predicting the border of the CBA zone (a success-
ful prediction means that the user goes through the
joint zone), and has a success rate of more than 93% on
predicting the candidate exit points (a successful pre-
diction means that one of the candidate exit points is
the real exit point). The overall success rate of our
prediction engine is above 78%.

5.4 Evaluation of Cloaked Obfuscation

As discussed in Subsection 4.4, under a trace identifi-
cation attack, an attacker distinguishes fake traces from

Fig.17. Success rate of the prediction engine.

user move patterns. In CBA, users access LBS with
only real locations when they are out of CBA zones. In
case that the LSP is untrustworthy, an attacker may
know a user’s historical location information from the
LSP, and can perform a classification attack to identify
this user. In this subsection, we demonstrate that the
security of CBA reduces to that of the mix zone ap-
proach.

Security Assumption of Identifying Mix Zones. Let
u, v ∈ U be chosen at random in a mix zone Z, T1, T2

be the traces of them after they pass Z. We define the
security assumption of identifying mix zones as that no
machine learning algorithmM can distinguish u’s trace
Tu from T1 and T2 with non-negligible advantage. The
advantage of M is |P (Tu = T1)− P (Tu = T2)|.

Attacker Model. To simulate a classification attack,
suppose an attacker knows all the information the LSP
knows, the attacker may generate fake queries based on
historical information. Then he/she chooses a classifier
and trains the classifier with both the user data and
the fake query data. If a classifier C has a classification
accuracy PC , the probability of distinguishing a fake
trace in a CBA zone is PC .

Privacy Analysis. We now conduct experiments to
analyze if CBA is secure under the classification attack.

⑤ http://siafusimulator.sourceforge.net/?what=simulations&simtitle=leimen/, Sept. 2014.

Kai Dong et al.: Complete Bipartite Anonymity for Location Privacy 1109

Similar to the privacy metrics in Subsection 5.1.3, we
use threshold H to indicate privacy entropy, which is
defined as follows.

H = −
∑

P × log2 P = − log2 PC .

We use various classifiers available in Weka, such as
naive bayes, support vector machines, AD trees, J48
trees. Using these classifiers, the probability of identi-
fying the real traces ranges from 0.5 to 0.57 when k = 2.
To this aspect, CBA is secure. Proving the security of
CBA is constrained by the classifier used. Instead we
prove that the security of CBA in the above attacker
model can be reduced to the hardness of the security
assumption of identifying mix zones.

Proof of Security. Suppose there exists a machine
learning algorithm N that can distinguish users u, v
who pass the same CBA zone with more than negligible
advantage σ. For the same users u, v, assume the CBA
zone to be a mix zone, we have their traces before they
enter this mix zone and the traces after they leave this
mix zone. We use the algorithm FTraceGen (described
in Subsection 4.4) to generate four traces connecting
their entries and their exits to this mix zone. Accord-
ing to Definition 1, the mix zone with these four traces
is a CBA zone. Then we have composition algorithm
M = CFTraceGenN , which can distinguish u’s trace Tu

from T1 and T2 with more than a negligible advantage
σ. ¤

Discussion on Location Accuracy. Querying LBS
with only fake locations decreases QoS. We conduct ex-
periments on this factor, and the results are shown in
Fig.18. We observe that even in the worst case, the dis-
tance between the predicted queries and the real queries
is less than 10 meters, which is similar to the accuracy
provided by commercial GPS. We believe that the price
is reasonable to trade off privacy.

Fig.18. Distance between the predicted queries and the real

queries.

6 Conclusions

This paper presents a novel CBA scheme to balance
user privacy with the functionality for location-based
services. We proposed an collaborative path confusion
mechanism for nearby users to generate a CBA zone,
the local prediction algorithm for each user to gene-
rate the obfuscating traces for path confusion, and the
cloaked obfuscation method to prevent the trace identi-
fication attacks. Using a real-world dataset, we demon-
strated that CBA outperforms the path confusion ap-
proach and the query obfuscation approach in terms of
robustness and resources consumed.

We have proven that the security of CBA reduces to
that of the mix zone approach. However, temporal and
spatial relations exist between a user’s traces before en-
tering a CBA zone and after leaving a CBA zone. By
analyzing such relations, an attacker may still be able to
launch attacks using advanced machine learning tech-
niques, resulting in the decreases in the anonymity de-
gree of CBA. For our future work, we plan to improve
the robustness of CBA against such attack. To address
this problem, users can apply the same cloaked obfus-
cation method to remove the characteristics of real user
move patterns along his/her trace outside CBA zones.

References

[1] Gruteser M, Grunwald D. Anonymous usage of location-based
services through spatial and temporal cloaking. In Proc. the
1st International Conference on Mobile Systems, Applica-
tions and Services (MobiSys 2003), May 2003, pp.31-42.

[2] Gedik B, Liu L. Location privacy in mobile systems: A
personalized anonymization model. In Proc. the 25th In-
ternational Conference on Distributed Computing Systems
(ICDCS 2005), June 2005, pp.620-629.

[3] Mokbel M, Chow C, Aref W. The new Casper: Query pro-
cessing for location services without compromising privacy.
In Proc. the 32nd International Conference on Very Large
Data Bases (VLDB 2006), Sept. 2006, pp.763-774.

[4] Kalnis P, Ghinita G, Mouratidis K, Papadias D. Prevent-
ing location-based identity inference in anonymous spatial
queries. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 2007, 19(12): 1719-1733.

[5] Beresford A, Stajano F. Location privacy in pervasive com-
puting. IEEE Pervasive Computing, 2003, 2(1): 46-55.

[6] Hoh B, Gruteser M. Protecting location privacy through path
confusion. In Proc. the 1st International Conference on Se-
curity and Privacy for Emerging Areas in Communications
Networks (SECURECOMM 2005), September 2005, pp.194-
205.

[7] Hoh B, Gruteser M, Xiong H, Alrabady A. Preserving privacy
in GPS traces via uncertainty-aware path cloaking. In Proc.
the 14th International Conference on Computer and Com-
munications Security (CCS 2007), October 29-November 2,
2007, pp.161-171.

[8] Palanisamy B, Liu L. MobiMix: Protecting location privacy
with mix-zones over road networks. In Proc. the 27th In-
ternational Conference on Data Engineering (ICDE 2011),
April 2011, pp.494-505.

[9] Zheng Y, Chen Y, Xie X, Ma W. Geolife2.0: A location-based

1110 J. Comput. Sci. & Technol., Nov. 2014, Vol.29, No.6

social networking service. In Proc. the 10th International
Conference on Mobile Data Management: Systems, Services
and Middleware (MDM 2009), May 2009, pp.357-358.

[10] Dong K, Gu T, Tao X, Lu J. Complete bipartite anonymity:
Confusing anonymous mobility traces for location privacy. In
Proc. the 18th International Conference on Parallel and Dis-
tributed Systems (ICPADS 2012), December 2012, pp.205-
212.

[11] Peddinti S, Saxena N. On the limitations of query obfusca-
tion techniques for location privacy. In Proc. the 13th In-
ternational Conference on Ubiquitous Computing (UbiComp
2011), September 2011, pp.187-196.

[12] Machanavajjhala A, Gehrke J, Götz M. Data publishing
against realistic adversaries. Proc. the VLDB Endowment,
2009, 2(1): 790-801.

[13] Goldschlag D, Reed M, Syverson P. Onion routing. Commu-
nications of the ACM, 1999, 42(2): 39-41.

[14] Meyerowitz J, Choudhury R. Hiding stars with fireworks: Lo-
cation privacy through camouflage. In Proc. the 15th Annual
International Conference on Mobile Computing and Network-
ing (MobiCom 2009), September 2009, pp.345-356.

[15] Sweeney L. k-anonymity: A model for protecting privacy. In-
ternational Journal of Uncertainty Fuzziness and Knowledge-
Based Systems, 2002, 10(5): 557-570.

[16] Sweeney L. Achieving k-anonymity privacy protection us-
ing generalization and suppression. International Journal of
Uncertainty Fuzziness and Knowledge-Based Systems, 2002,
10(5): 571-588.

[17] Hashem T, Kulik L. “Don’t trust anyone”: Privacy protection
for location-based services. Pervasive and Mobile Computing,
2011, 7(1): 44-59.

[18] Shokri R, Papadimitratos P, Theodorakopoulos G, Hubaux
J. Collaborative location privacy. In Proc. the 8th Inter-
national Conference on Mobile Adhoc and Sensor Systems
(MASS 2011), Oct. 2011, pp.500-509.

[19] Christin D, Guillemet J, Reinhardt A, Hollick M, Kanhere S.
Privacy-preserving collaborative path hiding for participatory
sensing applications. In Proc. the 8th International Confer-
ence on Mobile Adhoc and Sensor Systems (MASS 2011),
Oct. 2011, pp.341-350.

[20] Kido H, Yanagisawa Y, Satoh T. An anonymous communica-
tion technique using dummies for location-based services. In
Proc. the 3rd International Conference on Pervasive Services
(ICPS 2005), July 2005, pp.88-97.

[21] Krumm J. Realistic driving trips for location privacy. In Proc.
the 7th International Conference on Pervasive Computing,
March 2009, pp.25-41.

[22] Shankar P, Ganapathy V, Iftode L. Privately querying
location-based services with SybilQuery. In Proc. the 11th In-
ternational Conference on Ubiquitous Computing (UbiComp
2009), September 30-October 3, 2009, pp.31-40.

[23] Piorkowski M, Sarafijanovoc-Djukic N, Grossglauser M. A
parsimonious model of mobile partitioned networks with clus-
tering. In Proc. the 1st International Conference on Com-
munication Systems and Networks (COMSNETS 2009), Jan.
2009, pp.1-10.

[24] Bindschaedler L, Jadliwala M, Bilogrevic I, Aad I, Ginzboorg
P, Niemi V, Hubaux JP. Track me if you can: On the effec-
tiveness of context-based identifier changes in deployed mobile
networks. In Proc. the 19th Network and Distributed System
Security Symposium (NDSS 2012), February 2012.

Kai Dong received his B.S. and
M.S. degrees in computer science
from Nanjing University in 2007 and
2010, respectively. He is currently a
Ph.D. candidate in the Department
of Computer Science at Nanjing Uni-
versity. His research interests include
privacy preservation, mobile and per-
vasive computing.

Tao Gu received his B.S. degree
from Huazhong University of Science
and Technology, and M.S. degree
from Nanyang Technological Univer-
sity, Singapore, and Ph.D. degree in
computer science from National Uni-
versity of Singapore. He is currently
an associate professor in the School
of Computer Science and Informa-
tion Technology at RMIT University,

Melbourne. His research interests include mobile and per-
vasive computing, wireless sensor networks, distributed net-
work systems, sensor data analytics, cyber physical system,
Internet of Things, and online social networks. He is a senior
member of IEEE and a member of ACM.

Xian-Ping Tao received his
M.S. and Ph.D. degrees in computer
science from Nanjing University in
1994 and 2001, respectively. He is
currently a professor in the Depart-
ment of Computer Science at Nan-
jing University. His research inter-
ests include software agent, middle-
ware system, Internetware methodol-
ogy, and pervasive computing. He is

a member of CCF and IEEE.

Jian Lv received his B.S., M.S.,
and Ph.D. degrees in computer sci-
ence from Nanjing University in
1982, 1984, and 1988, respectively.
He is currently a professor in the
Department of Computer Science at
Nanjing University. He is also the di-
rector of the State Key Laboratory
for Novel Software Technology and
the vice director of the Institute of

Software Technology at Nanjing University. His research
interests include programming methodology, pervasive com-
puting, software agent, and middleware. He is a fellow of
CCF and a member of ACM.

